1
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
2
|
Kim HY, Ha H. Distinct granzyme k expression in immune cells: a single-cell rna-seq meta-analysis. Genes Genomics 2024; 46:1097-1106. [PMID: 39115674 DOI: 10.1007/s13258-024-01555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Granzymes are essential serine proteases in cytotoxic T cells and natural killer (NK) cells, with GZMK's expression being less understood. This study aims to uncover GZMK expression profiles across various immune cell types using single-cell RNA sequencing meta-analysis. OBJECTIVE This study aims to uncover GZMK expression profiles across various immune cell types using single-cell RNA sequencing meta-analysis. METHODS We conducted a meta-analysis using cellxgene, an interactive data exploration platform developed by the Chan Zuckerberg Initiative. We focused on mature T cells, NK cells, B cells, and NKT cells. We also checked transcription factor binding sites at the granzyme gene promoter regions using JASPAR. Comparative analysis was also done using mouse single-cell RNA sequencing data. RESULTS GZMK was the most lowly expressed in NK cells and mature NKT cells in most tissues except for colon and lymph nodes. In mature T cells, GZMK is similarly or more highly expressed than other granzymes. HBCA data revealed weak expression of GZMK in NK cells but strong expression in effector memory CD8-positive, alpha-beta T cells. Combined data shows no significant difference in GZMK expression between cell types. Subtype analysis shows that GZMK expression was higher in CD16-negative, CD56-bright NK cells when compared to CD16-positive, CD56-dim NK cells. We also identified unique transcription factor binding sites for GZMK. While this pattern in mouse data with low Gzmk expression in NK cells and higher T cells was repeated. CONCLUSION GZMK expression is distinctively regulated among immune cells and tissues, with unique promoter regions and transcription factor binding sites contributing to this differential expression. These insights into GZMK's role in immune function and regulation offer potential therapeutic targets.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- Department of Molecular and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hongseok Ha
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Aubert A, Jung K, Hiroyasu S, Pardo J, Granville DJ. Granzyme serine proteases in inflammation and rheumatic diseases. Nat Rev Rheumatol 2024; 20:361-376. [PMID: 38689140 DOI: 10.1038/s41584-024-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Granzymes (granule-secreted enzymes) are a family of serine proteases that have been viewed as redundant cytotoxic enzymes since their discovery more than 30 years ago. Predominantly produced by cytotoxic lymphocytes and natural killer cells, granzymes are delivered into the cytoplasm of target cells through immunological synapses in cooperation with the pore-forming protein perforin. After internalization, granzymes can initiate cell death through the cleavage of intracellular substrates. However, evidence now also demonstrates the existence of non-cytotoxic, pro-inflammatory, intracellular and extracellular functions that are granzyme specific. Under pathological conditions, granzymes can be produced and secreted extracellularly by immune cells as well as by non-immune cells. Depending on the granzyme, accumulation in the extracellular milieu might contribute to inflammation, tissue injury, impaired wound healing, barrier dysfunction, osteoclastogenesis and/or autoantigen generation.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA); Department of Microbiology, Radiology, Paediatrics and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Centre for Heart Lung Innovation, Providence Research, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
5
|
Mao M, Jiang F, Han R, Xiang Y. Identification of the prognostic immune subtype in copy-number high endometrial cancer. J Gynecol Oncol 2024; 35:e8. [PMID: 37857563 PMCID: PMC10792215 DOI: 10.3802/jgo.2024.35.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE The TCGA molecular subtype of endometrial cancer (EC) is widely applied, among which the copy-number high (CNH) subtype has the poorest prognosis. However, the heterogeneity of this subtype remains elusive. In this study, we aimed to identify heterogeneous immune subtypes in CNH EC and explore their prognostic significance. METHODS We collected 60 CNH EC cases in the TCGA database and performed unsupervised cluster analysis based on the enrichment scores of immune-related gene signatures to identify immune subtypes. We described their immune characteristics and prognoses and conducted differential gene analysis and lasso regression to identify a prognostic biomarker, GZMM. For experimental validation, we performed immunohistochemical staining of GZMM in 39 p53-positive EC surgical samples. RESULTS We defined two immune subtypes, immune-hot (IH) and immune-cold (IC), which differed in immune cell infiltration, cytokine and chemokine expression and prognosis. The IH subtype has significantly stronger immune activation than the IC subtype, showing a significant infiltration of immune effector cells and high expression of relevant chemokines, with better prognosis. Moreover, the immunohistochemical staining of GZMM in a cohort of 39 p53-positive EC surgical samples confirmed GZMM as a unique prognostic biomarker, with high expression in both tumor cells and lymphocytes predicting a better prognosis. CONCLUSION Our study revealed heterogeneous immune subtypes in CNH EC and identified GZMM as a prognostic biomarker. The stratified classification strategy combining molecular and immune subtypes provides valuable insights for future clinical practice.
Collapse
Affiliation(s)
- Mingyi Mao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Fang Jiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China.
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
6
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Zhou M, Liang S, Liu D, Ma K, Peng Y, Wang Z. Engineered Nanoprobes for Immune Activation Monitoring. ACS NANO 2022; 16:19940-19958. [PMID: 36454191 DOI: 10.1021/acsnano.2c09743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The activation of the immune system is critical for cancer immunotherapy and treatments of inflammatory diseases. Non-invasive visualization of immunoactivation is designed to monitor the dynamic nature of the immune response and facilitate the assessment of therapeutic outcomes, which, however, remains challenging. Conventional imaging modalities, such as positron emission tomography, computed tomography, etc., were utilized for imaging immune-related biomarkers. To explore the dynamic immune monitoring, probes with signals correlated to biomarkers of immune activation or prognosis are urgently needed. These emerging molecular probes, which turn on the signal only in the presence of the intended biomarker, can improve the detection specificity. These probes with "turn on" signals enable non-invasive, dynamic, and real-time imaging with high sensitivity and efficiency, showing significance for multifunctionality/multimodality imaging. As a result, more and more innovative engineered nanoprobes combined with diverse imaging modalities were developed to assess the activation of the immune system. In this work, we comprehensively review the recent and emerging advances in engineered nanoprobes for monitoring immune activation in cancer or other immune-mediated inflammatory diseases and discuss the potential in predicting the efficacy following treatments. Research on real-time in vivo immunoimaging is still under exploration, and this review can provide guidance and facilitate the development and application of next-generation imaging technologies.
Collapse
Affiliation(s)
- Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
8
|
Nüssing S, Sutton VR, Trapani JA, Parish IA. Beyond target cell death - Granzyme serine proteases in health and disease. Mol Aspects Med 2022; 88:101152. [PMID: 36368281 DOI: 10.1016/j.mam.2022.101152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/06/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Granzymes are a family of small (∼32 kDa) serine proteases with a range of substrate specificities that are stored in, and released from, the cytoplasmic secretory vesicles ('granules') of cytotoxic T lymphocytes and natural killer cells. Granzymes are not digestive proteases but finely tuned processing enzymes that target their substrates in specific ways to activate various signalling pathways, or to inactivate viral proteins and other targets. Great emphasis has been placed on studying the pro-apoptotic functions of granzymes, which largely depend on their synergy with the pore-forming protein perforin, on which they rely for penetration into the target cell cytosol to access their substrates. While a critical role for granzyme B in target cell apoptosis is undisputed, both it and the remaining granzymes also influence a variety of other biological processes (including important immunoregulatory functions), which are discussed in this review. This includes the targeting of many extracellular as well as intracellular substrates, and can also lead to deleterious outcomes for the host if granzyme expression or function are dysregulated or abrogated. A final important consideration is that granzyme repertoire, biochemistry and function vary considerably across species, probably resulting from the pressures applied by viruses and other pathogens across evolutionary time. This has implications for the interpretation of granzyme function in preclinical models of disease.
Collapse
Affiliation(s)
- Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Vivien R Sutton
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia; John Curtin School of Medical Research, ANU, ACT, Australia.
| |
Collapse
|
9
|
GZMK high CD8 + T effector memory cells are associated with CD15 high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome. Nat Commun 2022; 13:6752. [PMID: 36347862 PMCID: PMC9643357 DOI: 10.1038/s41467-022-34467-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
CD8+ T cells are a major prognostic determinant in solid tumors, including colorectal cancer (CRC). However, understanding how the interplay between different immune cells impacts on clinical outcome is still in its infancy. Here, we describe that the interaction of tumor infiltrating neutrophils expressing high levels of CD15 with CD8+ T effector memory cells (TEM) correlates with tumor progression. Mechanistically, stromal cell-derived factor-1 (CXCL12/SDF-1) promotes the retention of neutrophils within tumors, increasing the crosstalk with CD8+ T cells. As a consequence of the contact-mediated interaction with neutrophils, CD8+ T cells are skewed to produce high levels of GZMK, which in turn decreases E-cadherin on the intestinal epithelium and favors tumor progression. Overall, our results highlight the emergence of GZMKhigh CD8+ TEM in non-metastatic CRC tumors as a hallmark driven by the interaction with neutrophils, which could implement current patient stratification and be targeted by novel therapeutics.
Collapse
|
10
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Kaiserman D, Zhao P, Rowe CL, Leong A, Barlow N, Joeckel LT, Hitchen C, Stewart SE, Hollenberg MD, Bunnett N, Suhrbier A, Bird PI. Granzyme K initiates IL-6 and IL-8 release from epithelial cells by activating protease-activated receptor 2. PLoS One 2022; 17:e0270584. [PMID: 35881628 PMCID: PMC9321427 DOI: 10.1371/journal.pone.0270584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/13/2022] [Indexed: 01/05/2023] Open
Abstract
Granzyme K (GzmK) is a tryptic member of the granzyme family of chymotrypsin-like serine proteases produced by cells of the immune system. Previous studies have indicated that GzmK activates protease-activated receptor 1 (PAR1) enhancing activation of monocytes and wound healing in endothelial cells. Here, we show using peptides and full length proteins that GzmK and, to a lesser extent the related protease GzmA, are capable of activating PAR1 and PAR2. These cleavage events occur at the canonical arginine P1 residue and involve exosite interactions between protease and receptor. Despite cleaving PAR2 at the same point as trypsin, GzmK does not induce a classical Ca2+ flux but instead activates a distinct signalling cascade, involving recruitment of β-arrestin and phosphorylation of ERK. In epithelial A549 cells, PAR2 activation by GzmK results in the release of inflammatory cytokines IL-6 and IL-8. These data suggest that during an immune response GzmK acts as a pro-inflammatory regulator, rather than as a cytotoxin.
Collapse
Affiliation(s)
- Dion Kaiserman
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peishen Zhao
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| | - Caitlin Lorraine Rowe
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Andrea Leong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| | - Nicholas Barlow
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lars Thomas Joeckel
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Corinne Hitchen
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sarah Elizabeth Stewart
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Morley D. Hollenberg
- Department of Physiology & Pharmacology, Department of Medicine, University of Calgary, Calgary AB, Canada
| | - Nigel Bunnett
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY, United States of America
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Phillip Ian Bird
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
13
|
Pączek S, Łukaszewicz-Zając M, Mroczko B. Granzymes-Their Role in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23095277. [PMID: 35563668 PMCID: PMC9104098 DOI: 10.3390/ijms23095277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the most common malignancies worldwide. CRC is considered a heterogeneous disease due to various clinical symptoms, biological behaviours, and a variety of mutations. A number of studies demonstrate that as many as 50% of CRC patients have distant metastases at the time of diagnosis. However, despite the fact that social and medical awareness of CRC has increased in recent years and screening programmes have expanded, there is still an urgent need to find new diagnostic tools for early detection of CRC. The effectiveness of the currently used classical tumour markers in CRC diagnostics is very limited. Therefore, new proteins that play an important role in the formation and progression of CRC are being sought. A number of recent studies show the potential significance of granzymes (GZMs) in carcinogenesis. These proteins are released by cytotoxic lymphocytes, which protect the body against viral infection as well specific signalling pathways that ultimately lead to cell death. Some studies suggest a link between GZMs, particularly the expression of Granzyme A, and inflammation. This paper summarises the role of GZMs in CRC pathogenesis through their involvement in the inflammatory process. Therefore, it seems that GZMs could become the focus of research into new CRC biomarkers.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Correspondence: ; Tel.: +48-85-831-8587
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
14
|
Rawle DJ, Le TT, Dumenil T, Bishop C, Yan K, Nakayama E, Bird PI, Suhrbier A. Widespread discrepancy in Nnt genotypes and genetic backgrounds complicates granzyme A and other knockout mouse studies. eLife 2022; 11:e70207. [PMID: 35119362 PMCID: PMC8816380 DOI: 10.7554/elife.70207] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Thuy T Le
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Troy Dumenil
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Cameron Bishop
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kexin Yan
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Eri Nakayama
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Department of Virology I, National Institute of Infectious DiseasesTokyoJapan
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Australian Infectious Disease Research Centre, GVN Center of ExcellenceBrisbaneAustralia
| |
Collapse
|
15
|
Uranga-Murillo I, Tapia E, Garzón-Tituaña M, Ramirez-Labrada A, Santiago L, Pesini C, Esteban P, Roig FJ, Galvez EM, Bird PI, Pardo J, Arias M. Biological relevance of Granzymes A and K during E. coli sepsis. Am J Cancer Res 2021; 11:9873-9883. [PMID: 34815792 PMCID: PMC8581435 DOI: 10.7150/thno.59418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022] Open
Abstract
Aims: Recent in vitro findings suggest that the serine protease Granzyme K (GzmK) may act as a proinflammatory mediator. However, its role in sepsis is unknown. Here we aim to understand the role of GzmK in a mouse model of bacterial sepsis and compare it to the biological relevance of Granzyme A (GzmA). Methods: Sepsis was induced in WT, GzmA-/- and GzmK-/- mice by an intraperitoneal injection of 2x108 CFU from E. coli. Mouse survival was monitored during 5 days. Levels of IL-1α, IL-1β, TNFα and IL-6 in plasma were measured and bacterial load in blood, liver and spleen was analyzed. Finally, profile of cellular expression of GzmA and GzmK was analyzed by FACS. Results: GzmA and GzmK are not involved in the control of bacterial infection. However, GzmA and GzmK deficient mice showed a lower sepsis score in comparison with WT mice, although only GzmA deficient mice exhibited increased survival. GzmA deficient mice also showed reduced expression of some proinflammatory cytokines like IL1-α, IL-β and IL-6. A similar result was found when extracellular GzmA was therapeutically inhibited in WT mice using serpinb6b, which improved survival and reduced IL-6 expression. Mechanistically, active extracellular GzmA induces the production of IL-6 in macrophages by a mechanism dependent on TLR4 and MyD88. Conclusions: These results suggest that although both proteases contribute to the clinical signs of E. coli-induced sepsis, inhibition of GzmA is sufficient to reduce inflammation and improve survival irrespectively of the presence of other inflammatory granzymes, like GzmK.
Collapse
|
16
|
Wyatt NJ, Speight RA, Stewart CJ, Kirby JA, Lamb CA. Targeting Leukocyte Trafficking in Inflammatory Bowel Disease. BioDrugs 2021; 35:473-503. [PMID: 34613592 DOI: 10.1007/s40259-021-00496-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
In the last two decades, understanding of inflammatory bowel disease (IBD) immunopathogenesis has expanded considerably. Histopathological examination of the intestinal mucosa in IBD demonstrates the presence of a chronic inflammatory cell infiltrate. Research has focused on identifying mechanisms of immune cell trafficking to the gastrointestinal tract that may represent effective gut-selective targets for IBD therapy whilst avoiding systemic immunosuppression that may be associated with off-target adverse effects such as infection and malignancy. Integrins are cell surface receptors that can bind to cellular adhesion molecules to mediate both leukocyte homing and retention. In 2014, Vedolizumab (Entyvio®) was the first anti-integrin (anti-α4ß7 monoclonal antibody) treatment to be approved for use in IBD. Several other anti-integrin therapies are currently in advanced stages of development, including novel orally administered small-molecule drugs. Drugs targeting alternative trafficking mechanisms such as mucosal addressin cellular adhesion molecule-1 and sphingosine-1-phosphate receptors are also being evaluated. Here, we summarise key established and emerging therapies targeting leukocyte trafficking that may play an important role in realising the goal of stratified precision medicine in IBD care.
Collapse
Affiliation(s)
- Nicola J Wyatt
- Faculty of Medical Sciences, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - R Alexander Speight
- Faculty of Medical Sciences, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Christopher J Stewart
- Faculty of Medical Sciences, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - John A Kirby
- Faculty of Medical Sciences, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher A Lamb
- Faculty of Medical Sciences, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
17
|
de Jong LC, Crnko S, ten Broeke T, Bovenschen N. Noncytotoxic functions of killer cell granzymes in viral infections. PLoS Pathog 2021; 17:e1009818. [PMID: 34529743 PMCID: PMC8445437 DOI: 10.1371/journal.ppat.1009818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytotoxic lymphocytes produce granules armed with a set of 5 serine proteases (granzymes (Gzms)), which, together with the pore-forming protein (perforin), serve as a major defense against viral infections in humans. This granule-exocytosis pathway subsumes a well-established mechanism in which target cell death is induced upon perforin-mediated entry of Gzms and subsequent activation of various (apoptosis) pathways. In the past decade, however, a growing body of evidence demonstrated that Gzms also inhibit viral replication and potential reactivation in cell death–independent manners. For example, Gzms can induce proteolysis of viral or host cell proteins necessary for the viral entry, release, or intracellular trafficking, as well as augment pro-inflammatory antiviral cytokine response. In this review, we summarize current evidence for the noncytotoxic mechanisms and roles by which killer cells can use Gzms to combat viral infections, and we discuss the potential thereof for the development of novel therapies.
Collapse
Affiliation(s)
- Lisanne C. de Jong
- Radboud University, Nijmegen, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
18
|
de Miguel D, Ramirez-Labrada A, Uranga I, Hidalgo S, Santiago L, Galvez EM, Arias M, Pardo J. Inflammatory cell death induced by cytotoxic lymphocytes: a dangerous but necessary liaison. FEBS J 2021; 289:4398-4415. [PMID: 34174027 DOI: 10.1111/febs.16093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 01/20/2023]
Abstract
Cytotoxic lymphocytes (CLs), and more specifically Tc and NK cells, are the main executors of cell death in the immune system, playing a key role during both immunosurveillance and immunotherapy. These cells induce regulated cell death (RCD) by different mechanisms, being granular exocytosis and expression of death ligands the most prominent and best characterized ones. Apoptosis, a traditionally considered low-inflammatory type of cell death, has been accepted for years as the paradigm of RCD induced by CLs. However, several recent studies have demonstrated that NK cells and Tc cells can also induce more inflammatory forms of cell death, namely, necroptosis, pyroptosis, and ferroptosis. Activation of these highly inflammatory types of cell death appears to critically contribute to the activation of a successful antitumour immune response. Additionally, the role of specific cell death pathways in immunogenic cell death is still under intense debate, especially considering the interconnections with other inflammatory forms of cell death. These evidences, together with the advent of new cancer immunotherapies, highlight the necessity to deepen our understanding of the link between the cell death triggered by CLs and inflammation. This knowledge will be instrumental to maximize the antitumour potential of immunotherapies, minimizing deleterious effects associated with these treatments. In this review, we will briefly summarize the main features of apoptosis, necroptosis, pyroptosis and ferroptosis, to subsequently discuss the most recent evidences about the role of these RCD pathways during the elimination of cancer cells mediated by CLs and its modulation to increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Diego de Miguel
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Iratxe Uranga
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Sandra Hidalgo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Llipsy Santiago
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - Maykel Arias
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Spain.,Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| |
Collapse
|
19
|
Li T, Yang C, Jing J, Sun L, Yuan Y. Granzyme K - A novel marker to identify the presence and rupture of abdominal aortic aneurysm. Int J Cardiol 2021; 338:242-247. [PMID: 34139229 DOI: 10.1016/j.ijcard.2021.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND Immune inflammatory dysfunction is a hallmark of abdominal aortic aneurysm (AAA). Granzyme K (GZMK) is involved in the regulation of inflammation. However, the correlation between GZMK expression and AAA risk remains unknown. METHODS This case-control study included 112 AAA patients and 112 controls. Serum GZMK levels were determined by enzyme-linked immunosorbent assay and immunohistochemistry was utilized to determine GZMK expression in aortic tissues. RESULTS Compared with controls, AAA patients had higher levels of serum GZMK, and GZMK expression in AAA tissues was increased and positively associated with its serum levels (r = 0.688, P = 0.019). A positive association of serum GZMK levels with CRP or AAA diameter was confirmed, while there was a relationship between tissue GZMK expression and AAA diameter. The AUC of serum GZMK for AAA diagnosis was 0.78 with the sensitivity and specificity of 62.5% and 81.2%, whereas AUC for rupture detection was 0.76 with a sensitivity of 90.0% and specificity of 51.3%. A combination of clinically used inflammatory parameters with serum GZMK could enhance the accuracy of WBC or CRP alone in detecting AAA or rupture type. Multiple logistic analyses revealed an association of per unit increase of serum GZMK with AAA presence (OR = 1.046, P < 0.001) and its rupture risk (OR = 1.015, P = 0.048) after adjusting for confounding factors. CONCLUSIONS Our study provides proof that elevated GZMK expression both in serum and tissues is correlated with the presence of AAA, and serum GZMK may be a useful non-invasive marker that helps to identify AAA and its rupture risk in clinical practice.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang 110001, China; Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chao Yang
- Trauma Center and Department of Burns, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
20
|
Nathan A, Beynor JI, Baglaenko Y, Suliman S, Ishigaki K, Asgari S, Huang CC, Luo Y, Zhang Z, Lopez K, Lindestam Arlehamn CS, Ernst JD, Jimenez J, Calderón RI, Lecca L, Van Rhijn I, Moody DB, Murray MB, Raychaudhuri S. Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease. Nat Immunol 2021; 22:781-793. [PMID: 34031617 PMCID: PMC8162307 DOI: 10.1038/s41590-021-00933-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/15/2021] [Indexed: 12/27/2022]
Abstract
Multimodal T cell profiling can enable more precise characterization of elusive cell states underlying disease. Here, we integrated single-cell RNA and surface protein data from 500,089 memory T cells to define 31 cell states from 259 individuals in a Peruvian tuberculosis (TB) progression cohort. At immune steady state >4 years after infection and disease resolution, we found that, after accounting for significant effects of age, sex, season and genetic ancestry on T cell composition, a polyfunctional type 17 helper T (TH17) cell-like effector state was reduced in abundance and function in individuals who previously progressed from Mycobacterium tuberculosis (M.tb) infection to active TB disease. These cells are capable of responding to M.tb peptides. Deconvoluting this state-uniquely identifiable with multimodal analysis-from public data demonstrated that its depletion may precede and persist beyond active disease. Our study demonstrates the power of integrative multimodal single-cell profiling to define cell states relevant to disease and other traits.
Collapse
Affiliation(s)
- Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jessica I Beynor
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yuriy Baglaenko
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Sara Suliman
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kazuyoshi Ishigaki
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Samira Asgari
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Chuan-Chin Huang
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Zibiao Zhang
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kattya Lopez
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Socios En Salud Sucursal Peru, Lima, Peru
| | | | - Joel D Ernst
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Roger I Calderón
- Socios En Salud Sucursal Peru, Lima, Peru
- Programa Acadêmico de Tuberculose, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonid Lecca
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Socios En Salud Sucursal Peru, Lima, Peru
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Megan B Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
21
|
Bouwman AC, van Daalen KR, Crnko S, Ten Broeke T, Bovenschen N. Intracellular and Extracellular Roles of Granzyme K. Front Immunol 2021; 12:677707. [PMID: 34017346 PMCID: PMC8129556 DOI: 10.3389/fimmu.2021.677707] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
Granzymes are a family of serine proteases stored in granules inside cytotoxic cells of the immune system. Granzyme K (GrK) has been only limitedly characterized and knowledge on its molecular functions is emerging. Traditionally GrK is described as a granule-secreted, pro-apoptotic serine protease. However, accumulating evidence is redefining the functions of GrK by the discovery of novel intracellular (e.g. cytotoxicity, inhibition of viral replication) and extracellular roles (e.g. endothelial activation and modulation of a pro-inflammatory immune cytokine response). Moreover, elevated GrK levels are associated with disease, including viral and bacterial infections, airway inflammation and thermal injury. This review aims to summarize and discuss the current knowledge of i) intracellular and extracellular GrK activity, ii) cytotoxic and non-cytotoxic GrK functioning, iii) the role of GrK in disease, and iv) GrK as a potential therapeutic target.
Collapse
Affiliation(s)
- Annemieke C Bouwman
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kim R van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toine Ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
22
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Garzón-Tituaña M, Sierra-Monzón JL, Comas L, Santiago L, Khaliulina-Ushakova T, Uranga-Murillo I, Ramirez-Labrada A, Tapia E, Morte-Romea E, Algarate S, Couty L, Camerer E, Bird PI, Seral C, Luque P, Paño-Pardo JR, Galvez EM, Pardo J, Arias M. Granzyme A inhibition reduces inflammation and increases survival during abdominal sepsis. Theranostics 2021; 11:3781-3795. [PMID: 33664861 PMCID: PMC7914344 DOI: 10.7150/thno.49288] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aims: Peritonitis is one of the most common causes of sepsis, a serious syndrome characterized by a dysregulated systemic inflammatory response. Recent evidence suggests that Granzyme A (GzmA), a serine protease mainly expressed by NK and T cells, could act as a proinflammatory mediator and could play an important role in the pathogenesis of sepsis. This work aims to analyze the role and the therapeutic potential of GzmA in the pathogenesis of peritoneal sepsis. Methods: The level of extracellular GzmA as well as GzmA activity were analyzed in serum from healthy volunteers and patients with confirmed peritonitis and were correlated with the Sequential Organ Failure Assessment (SOFA) score. Peritonitis was induced in C57Bl/6 (WT) and GzmA-/- mice by cecal ligation and puncture (CLP). Mice were treated intraperitoneally with antibiotics alone or in combination serpinb6b, a specific GzmA inhibitor, for 5 days. Mouse survival was monitored during 14 days, levels of some proinflammatory cytokines were measured in serum and bacterial load and diversity was analyzed in blood and spleen at different times. Results: Clinically, elevated GzmA was observed in serum from patients with abdominal sepsis suggesting that GzmA plays an important role in this pathology. In the CLP model GzmA deficient mice, or WT mice treated with an extracellular GzmA inhibitor, showed increased survival, which correlated with a reduction in proinflammatory markers in both serum and peritoneal lavage fluid. GzmA deficiency did not influence bacterial load in blood and spleen and GzmA did not affect bacterial replication in macrophages in vitro, indicating that GzmA has no role in bacterial control. Analysis of GzmA in lymphoid cells following CLP showed that it was mainly expressed by NK cells. Mechanistically, we found that extracellular active GzmA acts as a proinflammatory mediator in macrophages by inducing the TLR4-dependent expression of IL-6 and TNFα. Conclusions: Our findings implicate GzmA as a key regulator of the inflammatory response during abdominal sepsis and provide solid evidences about its therapeutic potential for the treatment of this severe pathology.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Laura Comas
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Tatiana Khaliulina-Ushakova
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Elena Tapia
- Animal Unit, University of Zaragoza, 50009, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Sonia Algarate
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Ludovic Couty
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, 75015, Paris, France
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, 75015, Paris, France
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, 3800, Clayton VIC, Australia
| | - Cristina Seral
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Pilar Luque
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Aragon I+D Foundation (ARAID), 50018, Zaragoza, Spain
- Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
| | - Maykel Arias
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| |
Collapse
|
24
|
Ma L, Li Q, Cai S, Peng H, Huyan T, Yang H. The role of NK cells in fighting the virus infection and sepsis. Int J Med Sci 2021; 18:3236-3248. [PMID: 34400893 PMCID: PMC8364442 DOI: 10.7150/ijms.59898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022] Open
Abstract
Natural killer cells, one of the important types of innate immune cells, play a pivotal role in the antiviral process in vivo. It has been shown that increasing NK cell activity may promote the alleviation of viral infections, even severe infection-induced sepsis. Given the current state of the novel coronavirus (SARS-CoV-2) global pandemic, clarifying the anti-viral function of NK cells would be helpful for revealing the mechanism of host immune responses and decipher the progression of COVID-19 and providing important clues for combating this pandemic. In this review, we summarize the roles of NK cells in viral infection and sepsis as well as the potential possibilities of NK cell-based immunotherapy for treating COVID-19.
Collapse
Affiliation(s)
- Lu Ma
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qi Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Suna Cai
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hourong Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Huyan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
25
|
Qiao J, Zhou M, Li Z, Ren J, Gao G, Zhen J, Cao G, Ding L. Elevated serum granzyme B levels are associated with disease activity and joint damage in patients with rheumatoid arthritis. J Int Med Res 2020; 48:300060520962954. [PMID: 33143503 PMCID: PMC7780569 DOI: 10.1177/0300060520962954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Little is known about the roles of granzyme B in rheumatoid arthritis (RA). We aimed to evaluate the serum level of granzyme B in patients with RA and determine relationships with clinical features and joint destruction of RA. METHODS We enrolled 100 patients with RA, 50 patients with osteoarthritis (OA), and 50 healthy controls (HC). Granzyme B serum concentrations were measured by ELISA; we then analyzed associations between granzyme B levels, clinical features, and joint destruction by calculating Sharp scores and disease activity as measured by Disease Activity Score-28 based on erythrocyte sedimentation rate (DAS28-ESR) in patients with RA. RESULTS Compared with HC and patients with OA, serum granzyme B levels in patients with RA were remarkably elevated. Serum granzyme B levels did not differ between patients with OA and HC. Granzyme B levels correlated with ESR, rheumatoid factor, swollen joint counts, joint erosion scores, total Sharp scores, and DAS28-ESR. Moreover, patients with RA with high disease activity had higher granzyme B levels. CONCLUSIONS Serum granzyme B levels were elevated significantly in patients with RA and correlated positively with disease activity and joint destruction. Serum granzyme B may have potential applications in laboratory evaluation of patients with RA.
Collapse
Affiliation(s)
- Junjie Qiao
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Meng Zhou
- Department of Orthopedics, Beijing Jishuitan Hospital, Fourth Medical College of Peking University, Beijing, China
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Ren
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guanghan Gao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jumei Zhen
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lixiang Ding
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Bou-Dargham MJ, Sang QXA. Secretome analysis reveals upregulated granzyme B in human androgen-repressed prostate cancer cells with mesenchymal and invasive phenotype. PLoS One 2020; 15:e0237222. [PMID: 32764784 PMCID: PMC7413421 DOI: 10.1371/journal.pone.0237222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical early step in cancer metastasis and a complex process that involves multiple factors. In this study, we used proteomics approaches to investigate the secreted proteins (secretome) of paired human androgen-repressed prostate cancer (ARCaP) cell lines, representing the epithelial (ARCaP-E) and mesenchymal (ARCaP-M) phenotypes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses showed high levels of proteins involved in bone remodeling and extracellular matrix degradation in the ARCaP-M cells, consistent with the bone metastasis phenotype. Furthermore, LC-MS/MS showed a significantly higher level of the serine protease granzyme B (GZMB) in ARCaP-M conditioned media (CM) compared to that of ARCaP-E. Using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to detect mRNA and Western blot to detect protein expression, we further demonstrated that the GZMB gene was expressed by ARCaP-M and the protein was secreted extracellularly. ARCaP-M cells with GZMB gene knockdown using small interfering RNA (siRNA) have markedly reduced invasiveness as demonstrated by the Matrigel invasion assay in comparison with the scrambled siRNA negative control. This study reports that GZMB secretion by mesenchymal-like androgen-repressed human prostate cancer cells promotes invasion, suggesting a possible extracellular role for GZMB in addition to its classic role in immune cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Mayassa J. Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
27
|
Garzón-Tituaña M, Arias MA, Sierra-Monzón JL, Morte-Romea E, Santiago L, Ramirez-Labrada A, Martinez-Lostao L, Paño-Pardo JR, Galvez EM, Pardo J. The Multifaceted Function of Granzymes in Sepsis: Some Facts and a Lot to Discover. Front Immunol 2020; 11:1054. [PMID: 32655547 PMCID: PMC7325996 DOI: 10.3389/fimmu.2020.01054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a serious global health problem. In addition to a high incidence, this syndrome has a high mortality and is responsible for huge health expenditure. The pathophysiology of sepsis is very complex and it is not well-understood yet. However, it is widely accepted that the initial phase of sepsis is characterized by a hyperinflammatory response while the late phase is characterized by immunosuppression and immune anergy, increasing the risk of secondary infections. Granzymes (Gzms) are a family of serine proteases classified according to their cleavage specificity. Traditionally, it was assumed that all Gzms acted as cytotoxic proteases. However, recent evidence suggests that GzmB is the one with the greatest cytotoxic capacity, while the cytotoxicity of others such as GzmA and GzmK is not clear. Recent studies have found that GzmA, GzmB, GzmK, and GzmM act as pro-inflammatory mediators. Specially, solid evidences show that GzmA and GzmK function as extracellular proteases that regulate the inflammatory response irrespectively of its ability to induce cell death. Indeed, studies in animal models indicate that GzmA is involved in the cytokine release syndrome characteristic of sepsis. Moreover, the GZM family also could regulate other biological processes involved in sepsis pathophysiology like the coagulation cascade, platelet function, endothelial barrier permeability, and, in addition, could be involved in the immunosuppressive stage of sepsis. In this review, we provide a comprehensive overview on the contribution of these novel functions of Gzms to sepsis and the new therapeutic opportunities emerging from targeting these proteases for the treatment of this serious health problem.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Nanotoxicology and Immunotoxicology Unit (UNATI), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis Martinez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain.,Aragon I + D Foundation (ARAID), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
28
|
The high-resolution proteomic analysis of protein composition of rat spleen lymphocytes stimulated by Concanavalin A; a comparison with morphine-treated cells. J Neuroimmunol 2020; 341:577191. [PMID: 32113006 DOI: 10.1016/j.jneuroim.2020.577191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 11/23/2022]
Abstract
Morphine- and Concanavalin A-induced changes of protein composition of rat spleen lymphocytes were determined by high-resolution proteomic analysis, gel-free, label-free quantification, MaxLFQ. Stimulation by Con A resulted in a major reorganization of spleen cell protein composition evidenced by increased expression level of 94 proteins; 101 proteins were down-regulated (>2-fold). Interestingly, among proteins that were up-regulated to the largest extent were the prototypical brain proteins as a neuron specific enolase, synapsin-1, brain acid-soluble protein-1 and myelin basic protein. Morphine-induced change was limited to no more than 5 up-regulated and 18 down-regulated proteins (>2-fold).
Collapse
|
29
|
Schanoski AS, Le TT, Kaiserman D, Rowe C, Prow NA, Barboza DD, Santos CA, Zanotto PMA, Magalhães KG, Aurelio L, Muller D, Young P, Zhao P, Bird PI, Suhrbier A. Granzyme A in Chikungunya and Other Arboviral Infections. Front Immunol 2020; 10:3083. [PMID: 31993061 PMCID: PMC6971054 DOI: 10.3389/fimmu.2019.03083] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022] Open
Abstract
Granzyme A (GzmA) is secreted by cytotoxic lymphocytes and has traditionally been viewed as a mediator of cell death. However, a growing body of data suggests the physiological role of GzmA is promotion of inflammation. Here, we show that GzmA is significantly elevated in the sera of chikungunya virus (CHIKV) patients and that GzmA levels correlated with viral loads and disease scores in these patients. Serum GzmA levels were also elevated in CHIKV mouse models, with NK cells the likely source. Infection of mice deficient in type I interferon responses with CHIKV, Zika virus, or dengue virus resulted in high levels of circulating GzmA. We also show that subcutaneous injection of enzymically active recombinant mouse GzmA was able to mediate inflammation, both locally at the injection site as well as at a distant site. Protease activated receptors (PARs) may represent targets for GzmA, and we show that treatment with PAR antagonist ameliorated GzmA- and CHIKV-mediated inflammation.
Collapse
Affiliation(s)
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Dion Kaiserman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Caitlin Rowe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Natalie A Prow
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Diego D Barboza
- Bacteriology Laboratory, Butantan Institute, São Paulo, Brazil
| | - Cliomar A Santos
- Health Foundation Parreiras Horta, Central Laboratory of Public Health, State Secretary for Health, Aracajú, Brazil
| | - Paolo M A Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, Brazil
| | - Luigi Aurelio
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - David Muller
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Paul Young
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Peishen Zhao
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Kumar V. Natural killer cells in sepsis: Underprivileged innate immune cells. Eur J Cell Biol 2019; 98:81-93. [DOI: 10.1016/j.ejcb.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
|
31
|
Spetz J, Presser AG, Sarosiek KA. T Cells and Regulated Cell Death: Kill or Be Killed. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:27-71. [PMID: 30635093 DOI: 10.1016/bs.ircmb.2018.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell death plays two major complementary roles in T cell biology: mediating the removal of cells that are targeted by T cells and the removal of T cells themselves. T cells serve as major actors in the adaptive immune response and function by selectively killing cells which are infected or dysfunctional. This feature is highly involved during homeostatic maintenance, and is relied upon and modulated in the context of cancer immunotherapy. The vital recognition and elimination of both autoreactive T cells and cells which are unable to recognize threats is a highly selective and regulated process. Moreover, detection of potential threats will result in the activation and expansion of T cells, which on resolution of the immune response will need to be eliminated. The culling of these T cells can be executed via a multitude of cell death pathways which are used in context-specific manners. Failure of these processes may result in an accumulation of misdirected or dysfunctional T cells, leading to complications such as autoimmunity or cancer. This review will focus on the role of cell death regulation in the maintenance of T cell homeostasis, as well as T cell-mediated elimination of infected or dysfunctional cells, and will summarize and discuss the current knowledge of the cellular mechanisms which are implicated in these processes.
Collapse
Affiliation(s)
- Johan Spetz
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Adam G Presser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Liesche C, Sauer P, Prager I, Urlaub D, Claus M, Eils R, Beaudouin J, Watzl C. Single-Fluorescent Protein Reporters Allow Parallel Quantification of Natural Killer Cell-Mediated Granzyme and Caspase Activities in Single Target Cells. Front Immunol 2018; 9:1840. [PMID: 30135688 PMCID: PMC6092488 DOI: 10.3389/fimmu.2018.01840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells eliminate infected and tumorigenic cells through delivery of granzymes via perforin pores or by activation of caspases via death receptors. In order to understand how NK cells combine different cell death mechanisms, it is important to quantify target cell responses on a single cell level. However, currently existing reporters do not allow the measurement of several protease activities inside the same cell. Here, we present a strategy for the comparison of two different proteases at a time inside individual target cells upon engagement by NK cells. We developed single-fluorescent protein reporters containing the RIEAD or the VGPD cleavage site for the measurement of granzyme B activity. We show that these two granzyme B reporters can be applied in combination with caspase-8 or caspase-3 reporters. While we did not find that caspase-8 was activated by granzyme B, our method revealed that caspase-3 activity follows granzyme B activity with a delay of about 6 min. Finally, we illustrate the comparison of several different reporters for granzyme A, M, K, and H. The approach presented here is a valuable means for the investigation of the temporal evolution of cell death mediated by cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Clarissa Liesche
- Division of Theoretical Bioinformatics at German Cancer Research Center (DKFZ), Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Patricia Sauer
- Division of Theoretical Bioinformatics at German Cancer Research Center (DKFZ), Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Isabel Prager
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Doris Urlaub
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Maren Claus
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics at German Cancer Research Center (DKFZ), Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Joël Beaudouin
- Division of Theoretical Bioinformatics at German Cancer Research Center (DKFZ), Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
33
|
Jaime-Sánchez P, Catalán E, Uranga-Murillo I, Aguiló N, Santiago L, M Lanuza P, de Miguel D, A Arias M, Pardo J. Antigen-specific primed cytotoxic T cells eliminate tumour cells in vivo and prevent tumour development, regardless of the presence of anti-apoptotic mutations conferring drug resistance. Cell Death Differ 2018; 25:1536-1548. [PMID: 29743559 DOI: 10.1038/s41418-018-0112-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic CD8+ T (Tc) cells are the main executors of transformed and cancer cells during cancer immunotherapy. The latest clinical results evidence a high efficacy of novel immunotherapy agents that modulate Tc cell activity against bad prognosis cancers. However, it has not been determined yet whether the efficacy of these treatments can be affected by selection of tumoural cells with mutations in the cell death machinery, known to promote drug resistance and cancer recurrence. Here, using a model of prophylactic tumour vaccination based on the LCMV-gp33 antigen and the mouse EL4 T lymphoma, we analysed the molecular mechanism employed by Tc cells to eliminate cancer cells in vivo and the impact of mutations in the apoptotic machinery on tumour development. First of all, we found that Tc cells, and perf and gzmB are required to efficiently eliminate EL4.gp33 cells after LCMV immunisation during short-term assays (1-4 h), and to prevent tumour development in the long term. Furthermore, we show that antigen-pulsed chemoresistant EL4 cells overexpressing Bcl-XL or a dominant negative form of caspase-3 are specifically eliminated from the peritoneum of infected animals, as fast as parental EL4 cells. Notably, antigen-specific Tc cells control the tumour growth of the mutated cells, as efficiently as in the case of parental cells. Altogether, expression of the anti-apoptotic mutations does not confer any advantage for tumour cells neither in the short-term survival nor in long-term tumour formation. Although the mechanism involved in the elimination of the apoptosis-resistant tumour cells is not completely elucidated, neither necroptosis nor pyroptosis seem to be involved. Our results provide the first experimental proof that chemoresistant cancer cells with mutations in the main cell death pathways are efficiently eliminated by Ag-specific Tc cells in vivo during immunotherapy and, thus, provide the molecular basis to treat chemoresistant cancer cells with CD8 Tc-based immunotherapy.
Collapse
Affiliation(s)
- Paula Jaime-Sánchez
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Elena Catalán
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Nacho Aguiló
- Dept. Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Llipsy Santiago
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Pilar M Lanuza
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Diego de Miguel
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Maykel A Arias
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain.
| | - Julián Pardo
- Biomedical Research Centre of Aragon (CIBA), IIS Aragon/University of Zaragoza, Zaragoza, Spain. .,Dept. Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain. .,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain. .,Aragon I+D Foundation, Zaragoza, Spain.
| |
Collapse
|
34
|
Kiniry BE, Hunt PW, Hecht FM, Somsouk M, Deeks SG, Shacklett BL. Differential Expression of CD8 + T Cell Cytotoxic Effector Molecules in Blood and Gastrointestinal Mucosa in HIV-1 Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1876-1888. [PMID: 29352005 DOI: 10.4049/jimmunol.1701532] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022]
Abstract
We previously reported that CD8+ T cells in human gastrointestinal mucosa exhibit reduced perforin expression and weak or impaired cytotoxic capacity compared with their counterparts in blood. Nevertheless, these cells degranulate and express cytokines and chemokines in response to cognate Ag. In addition to weak expression of perforin, earlier studies suggested differential regulation of perforin and granzymes (Gzms), with GzmA and B expressed by significantly higher percentages of mucosal CD8+ T cells than perforin. However, this topic has not been fully explored. The goal of this study was to elucidate the expression and coexpression patterns of GzmA, B, and K in conjunction with perforin in rectosigmoid CD8+ T cells during HIV-1 infection. We found that expression of both perforin and GzmB, but not GzmA or GzmK, was reduced in mucosa compared with blood. A large fraction of rectosigmoid CD8+ T cells either did not express Gzms or were single-positive for GzmA. Rectosigmoid CD8+ T cells appeared skewed toward cytokine production rather than cytotoxic responses, with cells expressing multiple cytokines and chemokines generally lacking in perforin and Gzm expression. These data support the interpretation that perforin and Gzms are differentially regulated, and display distinct expression patterns in blood and rectosigmoid T cells. These studies may help inform the development of strategies to combat HIV-1 and other mucosal pathogens.
Collapse
Affiliation(s)
- Brenna E Kiniry
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616
| | - Peter W Hunt
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110
| | - Frederick M Hecht
- Positive Health Program, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110
| | - Ma Somsouk
- Division of Gastroenterology, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110; and
| | - Steven G Deeks
- Positive Health Program, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110
| | - Barbara L Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616; .,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California Davis, Davis, CA 95616
| |
Collapse
|
35
|
Mollah ZUA, Quah HS, Graham KL, Jhala G, Krishnamurthy B, Dharma JFM, Chee J, Trivedi PM, Pappas EG, Mackin L, Chu EPF, Akazawa S, Fynch S, Hodson C, Deans AJ, Trapani JA, Chong MMW, Bird PI, Brodnicki TC, Thomas HE, Kay TWH. Granzyme A Deficiency Breaks Immune Tolerance and Promotes Autoimmune Diabetes Through a Type I Interferon-Dependent Pathway. Diabetes 2017; 66:3041-3050. [PMID: 28733313 DOI: 10.2337/db17-0517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022]
Abstract
Granzyme A is a protease implicated in the degradation of intracellular DNA. Nucleotide complexes are known triggers of systemic autoimmunity, but a role in organ-specific autoimmune disease has not been demonstrated. To investigate whether such a mechanism could be an endogenous trigger for autoimmunity, we examined the impact of granzyme A deficiency in the NOD mouse model of autoimmune diabetes. Granzyme A deficiency resulted in an increased incidence in diabetes associated with accumulation of ssDNA in immune cells and induction of an interferon response in pancreatic islets. Central tolerance to proinsulin in transgenic NOD mice was broken on a granzyme A-deficient background. We have identified a novel endogenous trigger for autoimmune diabetes and an in vivo role for granzyme A in maintaining immune tolerance.
Collapse
Affiliation(s)
| | - Hong Sheng Quah
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Kate L Graham
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Gaurang Jhala
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Balasubramanian Krishnamurthy
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Joanna Francisca M Dharma
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Jonathan Chee
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Prerak M Trivedi
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Evan G Pappas
- St. Vincent's Institute, Fitzroy, Victoria, Australia
| | - Leanne Mackin
- St. Vincent's Institute, Fitzroy, Victoria, Australia
| | - Edward P F Chu
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | | | - Stacey Fynch
- St. Vincent's Institute, Fitzroy, Victoria, Australia
| | | | - Andrew J Deans
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Mark M W Chong
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thomas C Brodnicki
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
36
|
Martín-Antonio B, Suñe G, Perez-Amill L, Castella M, Urbano-Ispizua A. Natural Killer Cells: Angels and Devils for Immunotherapy. Int J Mol Sci 2017; 18:ijms18091868. [PMID: 28850071 PMCID: PMC5618517 DOI: 10.3390/ijms18091868] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, the relevance of the immune system to fight cancer has led to the development of immunotherapy, including the adoptive cell transfer of immune cells, such as natural killer (NK) cells and chimeric antigen receptors (CAR)-modified T cells. The discovery of donor NK cells’ anti-tumor activity in acute myeloid leukemia patients receiving allogeneic stem cell transplantation (allo-SCT) was the trigger to conduct many clinical trials infusing NK cells. Surprisingly, many of these studies did not obtain optimal results, suggesting that many different NK cell parameters combined with the best clinical protocol need to be optimized. Various parameters including the high array of activating receptors that NK cells have, the source of NK cells selected to treat patients, different cytotoxic mechanisms that NK cells activate depending on the target cell and tumor cell survival mechanisms need to be considered before choosing the best immunotherapeutic strategy using NK cells. In this review, we will discuss these parameters to help improve current strategies using NK cells in cancer therapy. Moreover, the chimeric antigen receptor (CAR) modification, which has revolutionized the concept of immunotherapy, will be discussed in the context of NK cells. Lastly, the dark side of NK cells and their involvement in inflammation will also be discussed.
Collapse
Affiliation(s)
- Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Guillermo Suñe
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Lorena Perez-Amill
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Maria Castella
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| | - Alvaro Urbano-Ispizua
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain.
| |
Collapse
|
37
|
Comte D, Karampetsou MP, Yoshida N, Kis-Toth K, Kyttaris VC, Tsokos GC. Signaling Lymphocytic Activation Molecule Family Member 7 Engagement Restores Defective Effector CD8+ T Cell Function in Systemic Lupus Erythematosus. Arthritis Rheumatol 2017; 69:1035-1044. [PMID: 28076903 DOI: 10.1002/art.40038] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/05/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Effector CD8+ T cell function is impaired in systemic lupus erythematosus (SLE) and is associated with a compromised ability to fight infections. Signaling lymphocytic activation molecule family member 7 (SLAMF7) engagement has been shown to enhance natural killer cell degranulation. This study was undertaken to characterize the expression and function of SLAMF7 on CD8+ T cell subsets isolated from the peripheral blood of SLE patients and healthy subjects. METHODS CD8+ T cell subset distribution, SLAMF7 expression, and expression of cytolytic enzymes (perforin, granzyme A [GzmA], and GzmB) on cells isolated from SLE patients and healthy controls were analyzed by flow cytometry. CD107a expression and interferon-γ (IFNγ) production in response to viral antigenic stimulation in the presence or absence of an anti-SLAMF7 antibody were assessed by flow cytometry. Antiviral cytotoxic activity in response to SLAMF7 engagement was determined using a flow cytometry-based assay. RESULTS The distribution of CD8+ T cell subsets was altered in the peripheral blood of SLE patients, with a decreased effector cell subpopulation. Memory CD8+ T cells from SLE patients displayed decreased amounts of SLAMF7, a surface receptor that characterizes effector CD8+ T cells. Ligation of SLAMF7 increased CD8+ T cell degranulation capacity and the percentage of IFNγ-producing cells in response to antigen challenge in SLE patients and healthy controls. Moreover, SLAMF7 engagement promoted cytotoxic lysis of target cells in response to stimulation with viral antigens. CONCLUSION CD8+ T cell activation in response to viral antigens is defective in SLE patients. Activation of SLAMF7 through a specific monoclonal antibody restores CD8+ T cell antiviral effector function to normal levels and thus represents a potential therapeutic option in SLE.
Collapse
Affiliation(s)
- Denis Comte
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Maria P Karampetsou
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nobuya Yoshida
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Katalin Kis-Toth
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Vasileios C Kyttaris
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Expression and Function of Granzymes A and B in Escherichia coli Peritonitis and Sepsis. Mediators Inflamm 2017; 2017:4137563. [PMID: 28694562 PMCID: PMC5485334 DOI: 10.1155/2017/4137563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/05/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022] Open
Abstract
Escherichia (E.) coli is the most common causative pathogen in peritonitis, the second most common cause of sepsis. Granzymes (gzms) are serine proteases traditionally implicated in cytotoxicity and, more recently, in the inflammatory response. We here sought to investigate the role of gzms in the host response to E. coli-induced peritonitis and sepsis in vivo. For this purpose, we used a murine model of E. coli intraperitoneal infection, resembling the clinical condition commonly associated with septic peritonitis by this bacterium, in wild-type and gzmA-deficient (gzmA−/−), gzmB−/−, and gzmAxB−/−mice. GzmA and gzmB were predominantly expressed by natural killer cells, and during abdominal sepsis, the percentage of these cells expressing gzms in peritoneal lavage fluid decreased, while the amount of expression in the gzm+ cells increased. Deficiency of gzmA and/or gzmB was associated with increased bacterial loads, especially in the case of gzmB at the primary site of infection at late stage sepsis. While gzm deficiency did not impact neutrophil recruitment into the abdominal cavity, it was accompanied by enhanced nucleosome release at the primary site of infection, earlier hepatic necrosis, and more renal dysfunction. These results suggest that gzms influence bacterial growth and the host inflammatory response during abdominal sepsis caused by E. coli.
Collapse
|
39
|
Granzyme K‐deficient mice show no evidence of impaired antiviral immunity. Immunol Cell Biol 2017; 95:676-683. [DOI: 10.1038/icb.2017.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 01/16/2023]
|
40
|
Wattrang E, Magnusson SE, Näslund K, Thebo P, Hagström Å, Smith AL, Lundén A. Expression of perforin, granzyme A and Fas ligand mRNA in caecal tissues upon Eimeria tenella infection of naïve and immune chickens. Parasite Immunol 2017; 38:419-30. [PMID: 27136454 DOI: 10.1111/pim.12329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/22/2016] [Indexed: 01/10/2023]
Abstract
Cytotoxic cells of the immune system may kill infected or transformed host cells via the perforin/granzyme or the Fas ligand (FasL) pathways. The purpose of this study was to determine mRNA expression of perforin, granzyme A and FasL in Eimeria tenella-infected tissues at primary infection and infection of immune chickens as an indirect measure of cytotoxic cell activity. Chickens were rendered immune by repeated E. tenella infections, which were manifested as an absence of clinical signs or pathological lesions and significantly reduced oocyst production upon challenge infection. During primary E. tenella infection, perforin, granzyme A and FasL mRNA expression in caecal tissue was significantly increased at 10 days after infection, compared to uninfected birds. In contrast, at infection of immune birds, perforin and granzyme A mRNA expression in caecal tissue was significantly increased during the early stages of E. tenella challenge infection, days 1-4, which coincided with a substantial reduction of parasite replication in these birds. These results indicate the activation of cytotoxic pathways in immune birds and support a role for cytotoxic T cells in the protection against Eimeria infections.
Collapse
Affiliation(s)
- E Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - S E Magnusson
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - K Näslund
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - P Thebo
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Å Hagström
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - A L Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - A Lundén
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
41
|
Bengsch B, Ohtani T, Herati RS, Bovenschen N, Chang KM, Wherry EJ. Deep immune profiling by mass cytometry links human T and NK cell differentiation and cytotoxic molecule expression patterns. J Immunol Methods 2017; 453:3-10. [PMID: 28322863 DOI: 10.1016/j.jim.2017.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/15/2017] [Accepted: 03/16/2017] [Indexed: 12/24/2022]
Abstract
The elimination of infected or tumor cells by direct lysis is a key T and NK cell effector function. T and NK cells can kill target cells by coordinated secretion of cytotoxic granules containing one or both pore-forming proteins, perforin and granulysin and combinations of granzyme (Gzm) family effector proteases (in humans: Gzm A, B, K, M and H). Understanding the pattern of expression of cytotoxic molecules and the relationship to different states of T and NK cells may have direct relevance for immune responses in autoimmunity, infectious disease and cancer. Approaches capable of simultaneously evaluating expression of multiple cytotoxic molecules with detailed information on T and NK differentiation state, however, remain limited. Here, we established a high dimensional mass cytometry approach to comprehensively interrogate single cell proteomic expression of cytotoxic programs and lymphocyte differentiation. This assay identified a coordinated expression pattern of cytotoxic molecules linked to CD8 T cell differentiation stages. Coordinated high expression of perforin, granulysin, Gzm A, Gzm B and Gzm M was associated with markers of late effector memory differentiation and expression of chemokine receptor CX3CR1. However, classical gating and dimensionality reduction approaches also identified other discordant patterns of cytotoxic molecule expression in CD8 T cells, including reduced perforin, but high Gzm A, Gzm K and Gzm M expression. When applied to non-CD8 T cells, this assay identified different patterns of cytotoxic molecule co-expression by CD56hi versus CD56dim defined NK cell developmental stages; in CD4 T cells, low expression of cytotoxic molecules was found mainly in TH1 phenotype cells, but not in Tregs or T follicular helper cells (TFH). Thus, this comprehensive, single cell, proteomic assessment of cytotoxic protein co-expression patterns demonstrates specialized cytotoxic programs in T cells and NK cells linked to their differentiation stages. Such comprehensive cytotoxic profiling may identify distinct patterns of cytotoxic potential relevant for specific infections, autoimmunity or tumor settings.
Collapse
Affiliation(s)
- Bertram Bengsch
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Takuya Ohtani
- Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Ramin Sedaghat Herati
- Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Niels Bovenschen
- Department of Pathology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Kyong-Mi Chang
- Department of Medicine, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLoS Pathog 2017; 13:e1006155. [PMID: 28207896 PMCID: PMC5312928 DOI: 10.1371/journal.ppat.1006155] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus causing epidemics of acute and chronic arthritic disease. Herein we describe a comprehensive RNA-Seq analysis of feet and lymph nodes at peak viraemia (day 2 post infection), acute arthritis (day 7) and chronic disease (day 30) in the CHIKV adult wild-type mouse model. Genes previously shown to be up-regulated in CHIKV patients were also up-regulated in the mouse model. CHIKV sequence information was also obtained with up to ≈8% of the reads mapping to the viral genome; however, no adaptive viral genome changes were apparent. Although day 2, 7 and 30 represent distinct stages of infection and disease, there was a pronounced overlap in up-regulated host genes and pathways. Type I interferon response genes (IRGs) represented up to ≈50% of up-regulated genes, even after loss of type I interferon induction on days 7 and 30. Bioinformatic analyses suggested a number of interferon response factors were primarily responsible for maintaining type I IRG induction. A group of genes prominent in the RNA-Seq analysis and hitherto unexplored in viral arthropathies were granzymes A, B and K. Granzyme A-/- and to a lesser extent granzyme K-/-, but not granzyme B-/-, mice showed a pronounced reduction in foot swelling and arthritis, with analysis of granzyme A-/- mice showing no reductions in viral loads but reduced NK and T cell infiltrates post CHIKV infection. Treatment with Serpinb6b, a granzyme A inhibitor, also reduced arthritic inflammation in wild-type mice. In non-human primates circulating granzyme A levels were elevated after CHIKV infection, with the increase correlating with viral load. Elevated granzyme A levels were also seen in a small cohort of human CHIKV patients. Taken together these results suggest granzyme A is an important driver of arthritic inflammation and a potential target for therapy. Trial Registration: ClinicalTrials.gov NCT00281294 The largest chikungunya virus (CHIKV) epidemic ever recorded began in 2004 in Africa and spread across Asia reaching Europe and recently the Americas, with millions of cases reported. We undertook a detailed analysis of the mRNA expression profile during acute and chronic arthritis in an adult wild-type mouse model of CHIKV infection and disease. Gene induction profiles showed a high concordance with published human data, providing some validation of the mouse model. The host response was overwhelmingly dominated by type I interferon response genes, even after type I interferon induction was lost. The analysis also provided information on CHIKV RNA, with no adaptive viral genome changes identified. An important goal of the analysis was to identify new players in arthritic inflammation. Granzyme A was prominent in the RNA-Seq data and granzyme A deficient mice showed reduced arthritis, with no effects on viral loads. Arthritic disease could also be ameliorated in wild-type mice with a granzyme A inhibitor. Elevated circulating granzyme A levels were seen in non-human primates infected with CHIKV and in human CHIKV patients. Granzyme A thus emerges to be a major driver of CHIKV-mediated arthritic inflammation and a potential target for anti-inflammatory interventions.
Collapse
|
43
|
Chesson CB, Ekpo-Otu S, Endsley JJ, Rudra JS. Biomaterials-Based Vaccination Strategies for the Induction of CD8 +T Cell Responses. ACS Biomater Sci Eng 2016; 3:126-143. [PMID: 33450791 DOI: 10.1021/acsbiomaterials.6b00412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural and synthetic biomaterials are increasingly being used for the development of vaccines and immunotherapies as alternatives to traditional live-attenuated formulations due to their improved safety profiles and no risk of reversion to virulence. Polymeric materials in particular enjoy attention due to the ease of fabrication, control over physicochemical properties, and their wide range of immunogenicity. While the majority of studies focus on inducing protective antibody responses, in recent years, materials-based strategies for the delivery of antigens and immunomodulators to improve CD8+T cell immunity against infectious and non-infectious diseases have gained momentum. Notably, platforms based on polymeric nanoparticles, liposomes, micelles, virus-like particles, self-assembling peptides and peptidomimetics, and multilayer thin films show considerable promise in preclinical studies. In this Review, we first introduce the concepts of CD8+T cell activation, effector and memory functions, and cytotoxic activity, followed by vaccine design for eliciting robust and protective long-lived CD8+T cell immunity. We then discuss different materials-based vaccines developed in the past decade to elicit CD8+T cell responses based on molecular composition or fabrication methods and conclude with a summary and glimpse at the future trends in this area.
Collapse
Affiliation(s)
- Charles B Chesson
- Department of Pharmacology & Toxicology, ‡Department of Microbiology & Immunology, and §Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Shaunte Ekpo-Otu
- Department of Pharmacology & Toxicology, Department of Microbiology & Immunology, and §Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Janice J Endsley
- Department of Pharmacology & Toxicology, Department of Microbiology & Immunology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jai S Rudra
- Department of Pharmacology & Toxicology, Department of Microbiology & Immunology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
44
|
Uranga S, Marinova D, Martin C, Pardo J, Aguilo N. Granzyme A Is Expressed in Mouse Lungs during Mycobacterium tuberculosis Infection but Does Not Contribute to Protection In Vivo. PLoS One 2016; 11:e0153028. [PMID: 27055232 PMCID: PMC4824395 DOI: 10.1371/journal.pone.0153028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
Granzyme A, a serine protease expressed in the granules of cytotoxic T and Natural Killer cells, is involved in the generation of pro-inflammatory cytokines by macrophages. Granzyme A has been described to induce in macrophages in vitro the activation of pro-inflammatory pathways that impair intracellular mycobacterial replication. In the present study, we explored the physiological relevance of Granzyme A in the control of pulmonary Mycobacterium tuberculosis infection in vivo. Our results show that, even though Granzyme A is expressed by cytotoxic cells from mouse lungs during pulmonary infection, its deficiency in knockout mice does not have an effect in the control of M. tuberculosis infection. In addition our findings indicate that absence of Granzyme A does not affect the protection conferred by the live-attenuated M. tuberculosis vaccine MTBVAC. Altogether, our findings are in apparent contradiction with previously published in vitro results and suggest that Granzyme A does not have a crucial role in vivo in the protective response to tuberculosis.
Collapse
Affiliation(s)
- Santiago Uranga
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dessislava Marinova
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martin
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Paseo Isabel la Católica 1–3, 50009, Zaragoza, Spain
| | - Julián Pardo
- Immune Effector Cells Group (ICE), 3 Aragón Health Research Institute (IIS Aragón), Edificio CIBA, Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
- Fundación Aragón I+D (ARAID), Gobierno de Aragón, Zaragoza, Spain
| | - Nacho Aguilo
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
45
|
Wang H, Sun Q, Wu Y, Wang L, Zhou C, Ma W, Zhang Y, Wang S, Zhang S. Granzyme M expressed by tumor cells promotes chemoresistance and EMT in vitro and metastasis in vivo associated with STAT3 activation. Oncotarget 2016; 6:5818-31. [PMID: 25788270 PMCID: PMC4467404 DOI: 10.18632/oncotarget.3461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022] Open
Abstract
Granzyme M is a serine protease known to be often expressed by natural killer cells and induce target cells apoptosis in combination with perforin. However, we detected granzyme M expression in murine and human cancer cell lines and human tumor samples in our study. Granzyme M increased chemoresistance, colony-formation, cytokine secretion and invasiveness in vitro. Most importantly, granzyme M facilitated tumor growth and metastasis in vivo. Granzyme M induced the epithelial-mesenchymal transition (EMT) in cancer cells associated with STAT3 activation. Our study revealed the role of granzyme M expressed by tumor in chemoresistance, invasion, metastasis and EMT.
Collapse
Affiliation(s)
- Huiru Wang
- Department of Immunology, Cancer Hospital & Cancer Institute, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Sun
- Department of Parasitology, Capital Medical University, Beijing, China
| | - Yanhong Wu
- Department of Immunology, Cancer Hospital & Cancer Institute, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Wang
- Department of Pathology, Cancer Hospital & Cancer Institute, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Chunxia Zhou
- Department of Immunology, Cancer Hospital & Cancer Institute, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Wenbo Ma
- Department of Immunology, Cancer Hospital & Cancer Institute, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Youhui Zhang
- Department of Immunology, Cancer Hospital & Cancer Institute, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Shengdian Wang
- Center of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuren Zhang
- Department of Immunology, Cancer Hospital & Cancer Institute, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
46
|
García-Laorden MI, Stroo I, Blok DC, Florquin S, Medema JP, de Vos AF, van der Poll T. Granzymes A and B Regulate the Local Inflammatory Response during Klebsiella pneumoniae Pneumonia. J Innate Immun 2016; 8:258-68. [PMID: 26894590 DOI: 10.1159/000443401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/16/2015] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of hospital-acquired pneumonia. Granzymes (gzms), mainly found in cytotoxic lymphocytes, have been implicated as mediators of infection and inflammation. We here sought to investigate the role of gzmA and gzmB in the host response to K. pneumoniae-induced airway infection and sepsis. For this purpose, pneumonia was induced in wild-type (WT) and gzmA-deficient (gzmA-/-), gzmB-/- and gzmAxB-/- mice by intranasal infection with K. pneumoniae. In WT mice, gzmA and gzmB were mainly expressed by natural killer cells. Pneumonia was associated with reduced intracellular gzmA and increased intracellular gzmB levels. Gzm deficiency had little impact on antibacterial defence: gzmA-/- and gzmAxB-/- mice transiently showed modestly higher bacterial loads in the lungs but not in distant organs. GzmB-/- and, to a larger extent, gzmAxB-/- mice displayed transiently increased lung inflammation, reflected in the semi-quantitative histology scores and levels of pro-inflammatory cytokines and chemokines. Most differences between gzm-deficient and WT mice had disappeared during late-stage pneumonia. Gzm deficiency did not impact on distant organ injury or survival. These results suggest that gzmA and gzmB partly regulate local inflammation during early pneumonia but eventually play an insignificant role during pneumosepsis by the common human pathogen K. pneumoniae.
Collapse
Affiliation(s)
- M Isabel García-Laorden
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
D'Eliseo D, Di Rocco G, Loria R, Soddu S, Santoni A, Velotti F. Epitelial-to-mesenchimal transition and invasion are upmodulated by tumor-expressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells. J Exp Clin Cancer Res 2016; 35:24. [PMID: 26830472 PMCID: PMC4736710 DOI: 10.1186/s13046-016-0302-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Granzyme B (GrB) is a serine protease, traditionally known as expressed by cytotoxic lymphocytes to induce target cell apoptosis. However, it is emerging that GrB, being also produced by a variety of normal and neoplastic cells and potentially acting on multiple targets, might represent a powerful regulator of a wide range of fundamental biological processes. We have previously shown that GrB is expressed in urothelial carcinoma tissues and its expression is associated to both pathological tumor spreading and EMT. We have also shown that docosahexaenoic acid (DHA), a dietary ω-3 polyunsaturated fatty acid with anti-tumor activity, while inhibiting urothelial and pancreatic carcinoma cell invasion also inhibited their GrB expression in vitro. In this study, we characterized a panel of colorectal carcinoma (CRC) cells, with different invasive capabilities, for GrB expression and for the contribution of GrB to their EMT and invasive phenotype. In addition, we investigated the effect of DHA on CRC cell-associated GrB expression, EMT and invasion. METHODS The expression levels of GrB and EMT-related markers were evaluated by Western blotting. GrB knockdown was performed by Stealth RNAi small interfering RNA silencing and ectopic GrB expression by transfection of human GrB vector. Cell invasion was determined by the BioCoat Matrigel invasion chamber test. RESULTS GrB was produced in 57.1% CRC cell lines and 100% CRC-derived Cancer Stem Cells. Although GrB was constitutive expressed in both invasive and noninvasive CRC cells, GrB depletion in invasive CRC cells downmodulated their invasion in vitro, suggesting a contribution of GrB to CRC invasiveness. GrB loss or gain of function downmodulated or upmodulated EMT, respectively, according to the analysis of cancer cell expression of three EMT biomarkers (Snail1, E-cadherin, N-cadherin). Moreover, TGF-β1-driven EMT was associated to the enhancement of GrB expression in CRC cell lines, and GrB depletion led to downmodulation of TGF-β1-driven EMT. In addition, DHA inhibited GrB expression, EMT and invasion in CRC cells in vitro. CONCLUSIONS These findings present a novel role for GrB as upmodulator of EMT in CRC cells. Moreover, these results support the use of DHA, a dietary compound without toxic effects, as adjuvant in CRC therapy.
Collapse
Affiliation(s)
- Donatella D'Eliseo
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
- Department of Ecological and Biological Sciences (DEB), La Tuscia University, Largo dell'Università, 01100, Viterbo, Italy.
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Rossella Loria
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Silvia Soddu
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), La Tuscia University, Largo dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
48
|
Tew GW, Hackney JA, Gibbons D, Lamb CA, Luca D, Egen JG, Diehl L, Eastham Anderson J, Vermeire S, Mansfield JC, Feagan BG, Panes J, Baumgart DC, Schreiber S, Dotan I, Sandborn WJ, Kirby JA, Irving PM, De Hertogh G, Van Assche GA, Rutgeerts P, O'Byrne S, Hayday A, Keir ME. Association Between Response to Etrolizumab and Expression of Integrin αE and Granzyme A in Colon Biopsies of Patients With Ulcerative Colitis. Gastroenterology 2016; 150:477-87.e9. [PMID: 26522261 DOI: 10.1053/j.gastro.2015.10.041] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Etrolizumab is a humanized monoclonal antibody against the β7 integrin subunit that has shown efficacy vs placebo in patients with moderate to severely active ulcerative colitis (UC). Patients with colon tissues that expressed high levels of the integrin αE gene (ITGAE) appeared to have the best response. We compared differences in colonic expression of ITGAE and other genes between patients who achieved clinical remission with etrolizumab vs those who did. METHODS We performed a retrospective analysis of data collected from 110 patients with UC who participated in a phase 2 placebo-controlled trial of etrolizumab, as well as from 21 patients with UC or without inflammatory bowel disease (controls) enrolled in an observational study at a separate site. Colon biopsies were collected from patients in both studies and analyzed by immunohistochemistry and gene expression profiling. Mononuclear cells were isolated and analyzed by flow cytometry. We identified biomarkers associated with response to etrolizumab. In the placebo-controlled trial, clinical remission was defined as total Mayo Clinic Score ≤2, with no individual subscore >1, and mucosal healing was defined as endoscopic score ≤1. RESULTS Colon tissues collected at baseline from patients who had a clinical response to etrolizumab expressed higher levels of T-cell-associated genes than patients who did not respond (P < .05). Colonic CD4(+) integrin αE(+) cells from patients with UC expressed higher levels of granzyme A messenger RNA (GZMA mRNA) than CD4(+) αE(-) cells (P < .0001); granzyme A and integrin αE protein were detected in the same cells. Of patients receiving 100 mg etrolizumab, a higher proportion of those with high levels of GZMA mRNA (41%) or ITGAE mRNA (38%) than those with low levels of GZMA (6%) or ITGAE mRNA (13%) achieved clinical remission (P < .05) and mucosal healing (41% GZMA(high) vs 19% GZMA(low) and 44% ITGAE(high) vs 19% ITGAE(low)). Compared with ITGAE(low) and GZMA(low) patients, patients with ITGAE(high) and GZMA(high) had higher baseline numbers of epithelial crypt-associated integrin αE(+) cells (P < .01 for both), but a smaller number of crypt-associated integrin αE(+) cells after etrolizumab treatment (P < .05 for both). After 10 weeks of etrolizumab treatment, expression of genes associated with T-cell activation and genes encoding inflammatory cytokines decreased by 40%-80% from baseline (P < .05) in patients with colon tissues expressing high levels of GZMA at baseline. CONCLUSIONS Levels of GZMA and ITGAE mRNAs in colon tissues can identify patients with UC who are most likely to benefit from etrolizumab; expression levels decrease with etrolizumab administration in biomarker(high) patients. Larger, prospective studies of markers are needed to assess their clinical value.
Collapse
Affiliation(s)
- Gaik W Tew
- Genentech Research and Early Development, South San Francisco, California
| | - Jason A Hackney
- Genentech Research and Early Development, South San Francisco, California
| | | | | | - Diana Luca
- Genentech Research and Early Development, South San Francisco, California
| | - Jackson G Egen
- Genentech Research and Early Development, South San Francisco, California
| | - Lauri Diehl
- Genentech Research and Early Development, South San Francisco, California
| | | | | | | | | | - Julian Panes
- Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | | | - Stefan Schreiber
- Department of Medicine I, University Hospital Schleswig-Holstein, Christian Albrechts University, Kiel, Germany
| | - Iris Dotan
- Inflammatory Bowel Disease Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | | | - John A Kirby
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Gert A Van Assche
- University of Leuven, Leuven, Belgium; University of Toronto, Toronto, Ontario, Canada
| | | | - Sharon O'Byrne
- Genentech Research and Early Development, South San Francisco, California
| | | | - Mary E Keir
- Genentech Research and Early Development, South San Francisco, California.
| |
Collapse
|
49
|
|
50
|
Garcia-Laorden MI, Blok DC, Kager LM, Hoogendijk AJ, van Mierlo GJ, Lede IO, Rahman W, Afroz R, Ghose A, Visser CE, Md Zahed AS, Husain MA, Alam KM, Chandra Barua P, Hassan M, Hossain A, Tayab MA, Day N, Dondorp AM, de Vos AF, van der Poll T. Increased intra- and extracellular granzyme expression in patients with tuberculosis. Tuberculosis (Edinb) 2015; 95:575-80. [PMID: 26156785 DOI: 10.1016/j.tube.2015.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/31/2015] [Indexed: 01/28/2023]
Abstract
Tuberculosis (TB) is an important cause of morbidity and mortality worldwide. Granzymes (gzms) are proteases mainly found in cytotoxic lymphocytes, but also extracellularly. While the role of gzms in target cell death has been widely characterized, considerable evidence points towards broader roles related to infectious and inflammatory responses. To investigate the expression of the gzms in TB, intracellular gzms A, B and K were measured by flow cytometry in lymphocyte populations from peripheral blood mononuclear cells from 18 TB patients and 12 healthy donors from Bangladesh, and extracellular levels of gzmA and B were measured in serum from 58 TB patients and 31 healthy controls. TB patients showed increased expression of gzmA in CD8(+) T, CD4(+) T and CD56(+) T, but not NK, cells, and of gzmB in CD8(+) T cells, when compared to controls. GzmK expression was not altered in TB patients in any lymphocyte subset. The extracellular levels of gzmA and, to a lesser extent, of gzmB, were increased in TB patients, but did not correlate with intracellular gzm expression in lymphocyte subsets. Our results reveal enhanced intra- and extracellular expression of gzmA and B in patients with pulmonary TB, suggesting that gzms are part of the host response to tuberculosis.
Collapse
Affiliation(s)
- M Isabel Garcia-Laorden
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Dana C Blok
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Liesbeth M Kager
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Arie J Hoogendijk
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Gerard J van Mierlo
- Department of Immunopathology, Sanquin Research, Plesmanlaan 125, 1066CX Amsterdam, The Netherlands.
| | - Ivar O Lede
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Department of Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Wahid Rahman
- Department of Internal Medicine, Chittagong Medical College & Hospital (CMCH), Chittagong, Bangladesh.
| | - Rumana Afroz
- Department of Internal Medicine, Chittagong Medical College & Hospital (CMCH), Chittagong, Bangladesh.
| | - Aniruddha Ghose
- Department of Internal Medicine, Chittagong Medical College & Hospital (CMCH), Chittagong, Bangladesh.
| | - Caroline E Visser
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Department of Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Abu Shahed Md Zahed
- Department of Internal Medicine, Chittagong Medical College & Hospital (CMCH), Chittagong, Bangladesh
| | - Md Anwar Husain
- Department of Microbiology, Chittagong Medical College & Hospital (CMCH), Chittagong, Bangladesh
| | - Khan Mashrequl Alam
- Department of Microbiology, Chittagong Medical College & Hospital (CMCH), Chittagong, Bangladesh
| | | | - Mahtabuddin Hassan
- Department of Internal Medicine, Chittagong Medical College & Hospital (CMCH), Chittagong, Bangladesh
| | - Ahmed Hossain
- Chest Disease Clinic Chittagong (CDCC), Anderkilla, Chittagong, Bangladesh
| | - Md Abu Tayab
- Chittagong General Hospital, Arderkilla, Chittagong, Bangladesh
| | - Nick Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F 60th Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, 10400 Bangkok, Thailand.
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F 60th Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, 10400 Bangkok, Thailand.
| | - Alex F de Vos
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Tom van der Poll
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|