1
|
Rezaie N, Aghamohammad S, Gholizadeh Khiavi EHA, Pourshafie MR, Talebi M, Rohani M. Comparison of novel native probiotics and paraprobiotics in modulating oxidative stress and inflammation in DSS-induced colitis: implications for enhanced therapeutic strategies in high fat diet. BMC Immunol 2024; 25:85. [PMID: 39707206 DOI: 10.1186/s12865-024-00678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
AIM IBD is a condition that may result from the presence of oxidative stress. The objective of this research is to evaluate and compare the potency of probiotics and paraprobiotics to modulate oxidative stress and inflammation. METHODS AND RESULTS In the initial phase, the antioxidant capabilities of 88 strains from Lactobacillus and Bifidobacterium were evaluated. In the subsequent phase, during the in-vivo stage, four experimental groups were established, consisting of a high-fat diet (HFD) + PBS, HFD + DSS, HFD + DSS + 10^9 cfu/ml of 6 selected native probiotic, and HFD + DSS + 10^9 cfu/ml of paraprobiotic (from 6 selected strains), with male wild-type C57BL/6 mice being assigned to these groups. The phenotypical indices and pathological scores along with the evaluation of the expression of genes associated with the NF-kB and Nrf2 signaling pathways, as well as enzymes linked to oxidant/anti-oxidant activities, and proinflammatory/inflammatory cytokines were performed. A significant difference was noted among the groups exposed to DSS and groups that given our native agents. The mice receiving a blend of probiotics and paraprobiotics alongside DSS demonstrated a mitigation of the harmful impacts caused by DSS, both regarding phenotypic traits, including pathological scores and also the level of cytokines and antioxidant markers and also molecular indicators like the Nrf2 and NF-kB associated genes. Also, there was no notable difference between our native probiotic and paraprobiotic. CONCLUSION The study's findings provide evidence that the expression of inflammation can be successfully alleviated by utilizing our native probiotics and paraprobiotics, with a greater emphasis on the latter due to its inherent safety. IMPACT STATEMENTS This study highlighted the anti-inflammatory and antioxidant properties of probiotic and paraprobiotic that could be useful for patients with inflammatory status.
Collapse
Affiliation(s)
- Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Wang P, Song J, Du M, Wen C, Zhou Y. Storage causes protein oxidation of soybean meal and affects antioxidant status, digestive performance and meat quality of broilers. Anim Biosci 2024; 37:2126-2136. [PMID: 39210822 PMCID: PMC11541012 DOI: 10.5713/ab.24.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE This study investigated the protein oxidation of soybean meal (SBM) stored in a warehouse and the effects of SBM on growth performance, antioxidant status, digestive performance, intestinal morphology, and breast muscle quality of broilers. METHODS In total, 160 one-day-old Arbor Acres Plus broilers (half male and half female) were randomly divided into two groups with ten replicates of eight birds each: The control group was served with a basal diet including SBM stored at -20°C (FSBM), and the experimental group was served with a basal diet including SBM stored in a warehouse at room temperature for 45 days (RSBM). RESULTS Compared with FSBM, the protein carbonyl level in RSBM was increased, the free and total thiol levels and in vitro digestibility of protein were decreased. The RSBM decreased the serum glutathione (GSH) level and the hepatic total superoxide dismutase (T-SOD) activity at days 21 and 42 when compared with FSBM. Further, RSBM reduced the duodenal T-SOD activity, jejunal catalase (CAT), and T-SOD activities at day 21, and decreased the duodenal CAT and T-SOD activities, jejunal T-SOD activity, and ileal GSH level and T-SOD activity at days 21 and 42 when compared with FSBM. Besides, the trypsin activity and the ratio of villus height to crypt depth in small intestines of broilers at days 21 and 42 were reduced when fed with a RSBM-contained diet. Compared with FSBM, the 24-h drip loss, shear force, and 24- and 48-h cooking loss of breast muscle were increased of RSBM group, the opposite result was observed for muscle lightness at 48 h. CONCLUSION Room temperature storage for 45 days led a protein oxidation and decreased in vitro digestibility in SBM, and fed RSBM impaired growth performance, antioxidant status, and meat quality, reduced trypsin activity, and affected the small intestine morphology in broilers.
Collapse
Affiliation(s)
- Peng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Juanjuan Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Mingfang Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| |
Collapse
|
3
|
Tratenšek A, Locatelli I, Grabnar I, Drobne D, Vovk T. Oxidative stress-related biomarkers as promising indicators of inflammatory bowel disease activity: A systematic review and meta-analysis. Redox Biol 2024; 77:103380. [PMID: 39368456 PMCID: PMC11490685 DOI: 10.1016/j.redox.2024.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Oxidative stress is believed to play an important role in the pathogenesis of inflammatory bowel disease (IBD), specifically Crohn's disease (CD) and ulcerative colitis (UC). This meta-analysis aimed to identify and quantify the oxidative stress-related biomarkers in IBD and their associations with disease activity. We systematically searched Ovid MEDLINE, Ovid Embase, and Web of Science databases, identifying 54 studies for inclusion. Comparisons included: (i) active IBD versus healthy controls; (ii) inactive IBD versus healthy controls; (iii) active CD versus inactive CD; and (iv) active UC versus inactive UC. Our analysis revealed a significant accumulation of biomarkers of oxidative damage to biomacromolecules, coupled with reductions in various antioxidants, in both patients with active and inactive IBD compared to healthy controls. Additionally, we identified biomarkers that differentiate between active and inactive CD, including malondialdehyde, Paraoxonase 1, catalase, albumin, transferrin, and total antioxidant capacity. Similarly, levels of Paraoxonase 1, erythrocyte glutathione peroxidase, catalase, albumin, transferrin, and free thiols differed between active and inactive UC. Vitamins and carotenoids also emerged as potential disease activity biomarkers for CD and UC, but their intake should be monitored to obtain meaningful results. These findings emphasize the involvement of oxidative stress in the pathogenesis of IBD and highlight the potential of oxidative stress-related biomarkers as a minimally invasive and additional tool for monitoring the activity of IBD.
Collapse
Affiliation(s)
- Armando Tratenšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Igor Locatelli
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Iztok Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - David Drobne
- University Medical Centre Ljubljana, Department of Gastroenterology, Japljeva ulica 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Tomaž Vovk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Shaban SF, Abdel-Fattah EA, Ali MM, Dessouky AA. The therapeutic efficacy of adipose mesenchymal stem cell-derived microvesicles versus infliximab in a dextran sodium sulfate induced ulcerative colitis rat model. Ultrastruct Pathol 2024; 48:526-549. [PMID: 39545690 DOI: 10.1080/01913123.2024.2426566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Ulcerative colitis (UC) is a chronic relapsing intestinal inflammation that is becoming of increasing incidence worldwide and has insufficient treatment. Therefore, finding effective therapies remains a priority. A dextran sodium sulfate colitis model was established to elucidate colonic layers alterations and compare adipose mesenchymal stem cell-derived microvesicles (MSC-MVs) versus infliximab (IFX) efficacy through biochemical, light, and electron microscope studies. Fifty-four rats were allocated to 4 groups: Control (Con), UC, UC+IFX, and UC+MSC-MVs groups. End body weights (BW) and serum malondialdehyde (MDA) levels were recorded. Colitis severity was estimated by disease activity index (DAI). Colonic specimens were processed to evaluate the histological structure, collagen content, surface mucous and goblet cells, CD44, TNF-α, and GFAP immune expression. Morphometric and statistical analyses were performed. The UC group revealed congested, stenosed colons, a significant decline in end BW, and a significant increase in serum MDA and DAI. Furthermore, disturbed histoarchitecture, inflammatory infiltration, depletion of surface mucous and goblet cells, increased collagen, and TNF-α expression and decreased GFAP expression were observed. Alterations were partially attenuated by IFX therapy, whereas MSC-MVs significantly improved all parameters. In conclusion, MSC-MVs were a superior therapeutic option, via attenuating oxidative stress and inflammatory infiltration, in addition to restoring intestinal epithelial integrity and mucosal barrier.
Collapse
Affiliation(s)
- Sahar F Shaban
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Eman A Abdel-Fattah
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Manar M Ali
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| |
Collapse
|
5
|
Paydaş Hataysal E, Körez MK, Guler EM, Vatansev H, Bozalı K, Basaranoglu M, Vatansev H. Impaired Kynurenine Pathway in Inflammatory Bowel Disease. J Clin Med 2024; 13:6147. [PMID: 39458097 PMCID: PMC11508637 DOI: 10.3390/jcm13206147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Inflammatory bowel diseases primarily encompass Crohn's disease and ulcerative colitis. Insufficient levels of tryptophan cause an imbalance in the gut microbiota, leading to inflammation in the gastrointestinal tract. The main catabolic pathway of tryptophan is the kynurenine pathway. Our study aims to evaluate serum tryptophan, the kynurenine pathway, and oxidative stress parameters, including total oxidant status and total antioxidant capacity, in patients with Crohn's disease and ulcerative colitis. Methods: The study included 80 follow-up patients in remission diagnosed with Crohn's disease and ulcerative colitis who attended the Gastroenterology Outpatient Clinic, as well as 78 healthy controls. Serum tryptophan, kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid, and kynurenic acid levels were measured with liquid chromatography and tandem mass spectrometry (LC-MS/MS). All statistical analysis was performed using R version 4.2.1. Statistical Language. Results: Serum tryptophan, 3-hydroxyanthranilic acid, and total antioxidant capacity were lower in patients with ulcerative colitis and Crohn's disease compared to those in the control group. The serum total oxidant status in the control group was significantly lower than in patients with Crohn's disease and ulcerative colitis. Conclusions: The results of our research indicate that tryptophan and kynurenine pathway metabolites could potentially contribute to the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Esra Paydaş Hataysal
- Department of Biochemistry, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, 34722 Istanbul, Türkiye
| | - Muslu Kazım Körez
- Department of Biostatistics, Faculty of Medicine, Selcuk University, 42250 Konya, Türkiye
| | - Eray Metin Guler
- Department of Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences, 34480 Istanbul, Türkiye
| | - Hakan Vatansev
- Department of Food Processing, Meram Vocational School, Necmettin Erbakan University, 42092 Konya, Türkiye
| | - Kubra Bozalı
- Department of Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences, 34480 Istanbul, Türkiye
| | - Metin Basaranoglu
- Department of Gastroenterology, Faculty of Medicine, Bezmialem University, 34093 Istanbul, Türkiye
| | - Husamettin Vatansev
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42250 Konya, Türkiye
| |
Collapse
|
6
|
Cristóbal JI, Duque FJ, Usón-Casaús J, Martínez MS, Míguez MP, Pérez-Merino EM. Oxidative stress in dogs with chronic inflammatory enteropathy treated with allogeneic mesenchymal stem cells. Vet Res Commun 2024; 48:901-910. [PMID: 38012473 PMCID: PMC10998773 DOI: 10.1007/s11259-023-10265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
The search for new biomarkers in patients with chronic inflammatory enteropathy (CIE) is ongoing in the human and veterinary medicine fields. Oxidative stress biomarkers (malondialdehyde [MDA], reduced glutathione [GSH], and albumin) have been studied in humans with chronic enteropathies, but among them, only albumin has been studied in dogs with CIE. Moreover, the effect of mesenchymal stem cell (MSCs) treatment with or without prednisone on these parameters has never been studied in dogs with CIE. These parameters were compared between healthy dogs (n = 12) and dogs with CIE, and before and 1, 3, 6, and 12 months after the treatment with MSCs alone (n = 9) or together with prednisone (n = 11). The relationship between the Canine Inflammatory Bowel Disease Activity Index (CIBDAI) and oxidative stress was evaluated. Albumin was the only parameter that significantly differed between dogs with CIE and healthy dogs (p = 0,037). Differences were observed only in albumin values after combined treatment with MSCs and prednisone. No differences were observed in MDA and GSH after treatment with MSCs with or without prednisone. Albumin could help stage canine CIE, as well as its prognosis, as has already been demonstrated, although it is essential to evaluate this parameter for its antioxidant capacity, and therefore it could be a good biomarker of oxidative stress in this pathology. However, the treatment with MSCs seems unable to modify any of the analyzed oxidative stress parameters.
Collapse
Affiliation(s)
- José Ignacio Cristóbal
- Departamento de Medicina Animal, Unidad de Cirugía, Facultad de Veterinaria, Universidad de Extremadura, Veterinaria UEx. Avenida de La Universidad S/N, 10003, Cáceres, Spain
| | - Francisco Javier Duque
- Departamento de Medicina Animal, Unidad de Cirugía, Facultad de Veterinaria, Universidad de Extremadura, Veterinaria UEx. Avenida de La Universidad S/N, 10003, Cáceres, Spain
| | - Jesús Usón-Casaús
- Departamento de Medicina Animal, Unidad de Cirugía, Facultad de Veterinaria, Universidad de Extremadura, Veterinaria UEx. Avenida de La Universidad S/N, 10003, Cáceres, Spain
| | - María Salomé Martínez
- Unidad de Toxicología, Facultad de Veterinaria, Universidad de Extremadura, 10003, Cáceres, Spain
| | - María Prado Míguez
- Unidad de Toxicología, Facultad de Veterinaria, Universidad de Extremadura, 10003, Cáceres, Spain
| | - Eva María Pérez-Merino
- Departamento de Medicina Animal, Unidad de Cirugía, Facultad de Veterinaria, Universidad de Extremadura, Veterinaria UEx. Avenida de La Universidad S/N, 10003, Cáceres, Spain.
| |
Collapse
|
7
|
Zhang K, Ji J, Li N, Yin Z, Fan G. Integrated Metabolomics and Gut Microbiome Analysis Reveals the Efficacy of a Phytochemical Constituent in the Management of Ulcerative Colitis. Mol Nutr Food Res 2024; 68:e2200578. [PMID: 38012477 DOI: 10.1002/mnfr.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/09/2023] [Indexed: 11/29/2023]
Abstract
SCOPE Cinnamaldehyde (CAH), a phytochemical constituent isolated from cinnamon, is gaining attention due to its nutritional and medicinal benefits. This study aimed to investigate the potential role of CAH in the treatment of ulcerative colitis (UC). METHODS AND RESULTS Integrated metabolomics and gut microbiome analysis are performed for 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced UC rats. The effect of CAH on colonic inflammation, lipid peroxidation, metabolic profiles, and gut microbiota is systematically explored. It finds that CAH improves the colitis-related symptoms, decreases disease activity index, increases the colon length and body weight, and alleviates histologic inflammation of UC rats. These therapeutic effects of CAH are due to suppression of inflammation and lipid peroxidation. Moreover, multi-omics analysis reveals that CAH treatment cause changes in plasma metabolome and gut microbiome in UC rats. CAH regulates lipid metabolic processes, especially phosphatidylcholines, lysophosphatidylcholines, and polyunsaturated fatty acids. Meanwhile, CAH modulates the gut microbial structure by restraining pathogenic bacteria (such as Helicobacter) and increasing probiotic bacteria (such as Bifidobacterium and Lactobacillus). CONCLUSIONS These results indicate that CAH exerts a beneficial role in UC by synergistic modulating the balance in gut microbiota and the associated metabolites, and highlights the nutritional and medicinal value of CAH in UC management.
Collapse
Affiliation(s)
- Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Nana Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, People's Republic of China
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| |
Collapse
|
8
|
Li Q, Zheng T, Ding H, Chen J, Li B, Zhang Q, Yang S, Zhang S, Guan W. Exploring the Benefits of Probiotics in Gut Inflammation and Diarrhea-From an Antioxidant Perspective. Antioxidants (Basel) 2023; 12:1342. [PMID: 37507882 PMCID: PMC10376667 DOI: 10.3390/antiox12071342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory bowel disease (IBD), characterized by an abnormal immune response, includes two distinct types: Crohn's disease (CD) and ulcerative colitis (UC). Extensive research has revealed that the pathogeny of IBD encompasses genetic factors, environmental factors, immune dysfunction, dysbiosis, and lifestyle choices. Furthermore, patients with IBD exhibit both local and systemic oxidative damage caused by the excessive presence of reactive oxygen species. This oxidative damage exacerbates immune response imbalances, intestinal mucosal damage, and dysbiosis in IBD patients. Meanwhile, the weaning period represents a crucial phase for pigs, during which they experience pronounced intestinal immune and inflammatory responses, leading to severe diarrhea and increased mortality rates. Pigs are highly similar to humans in terms of physiology and anatomy, making them a potential choice for simulating human IBD. Although the exact mechanism behind IBD and post-weaning diarrhea remains unclear, the oxidative damage, in its progression and pathogenesis, is well acknowledged. Besides conventional anti-inflammatory drugs, certain probiotics, particularly Lactobacillus and Bifidobacteria strains, have been found to possess antioxidant properties. These include the scavenging of reactive oxygen species, chelating metal ions to inhibit the Fenton reaction, and the regulation of host antioxidant enzymes. Consequently, numerous studies in the last two decades have committed to exploring the role of probiotics in alleviating IBD. Here, we sequentially discuss the oxidative damage in IBD and post-weaning diarrhea pathogenesis, the negative consequences of oxidative stress on IBD, the effectiveness of probiotics in IBD treatment, the application of probiotics in weaned piglets, and the potential antioxidant mechanisms of probiotics.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanting Ding
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Zhou Y, Wang D, Duan H, Zhou S, Guo J, Yan W. The Potential of Natural Oils to Improve Inflammatory Bowel Disease. Nutrients 2023; 15:nu15112606. [PMID: 37299569 DOI: 10.3390/nu15112606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disorder that includes ulcerative colitis (UC) and Crohn's disease (CD), the exact cause of which is still unknown. Numerous studies have confirmed that diet is one of the major environmental factors associated with IBD, as it can regulate the gut microbiota and reduce inflammation and oxidative stress. Since the consumption of oil is essential in the diet, improving IBD through oil has potential. In this article, we first briefly reviewed the current treatment methods for IBD and introduce the role of natural oils in improving inflammatory diseases. We then focused on the recent discovery of the role of natural oils in the prevention and treatment of IBD and summarized their main mechanisms of action. The results showed that the anti-inflammatory activity of oils derived from different plants and animals has been validated in various experimental animal models. These oils are capable of improving the intestinal homeostasis in IBD animal models through multiple mechanisms, including modulation of the gut microbiota, protection of the intestinal barrier, reduction in colonic inflammation, improvement in oxidative stress levels in the intestine, and regulation of immune homeostasis. Therefore, dietary or topical use of natural oils may have potential therapeutic effects on IBD. However, currently, only a few clinical trials support the aforementioned conclusions. This review emphasized the positive effects of natural oils on IBD and encouraged more clinical trials to provide more reliable evidence on the improvement of human IBD by natural oils as functional substances.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
10
|
Török S, Almási N, Veszelka M, Börzsei D, Szabó R, Varga C. Protective Effects of H 2S Donor Treatment in Experimental Colitis: A Focus on Antioxidants. Antioxidants (Basel) 2023; 12:antiox12051025. [PMID: 37237891 DOI: 10.3390/antiox12051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, inflammatory disorders of the gastrointestinal (GI) system, which have become a global disease over the past few decades. It has become increasingly clear that oxidative stress plays a role in the pathogenesis of IBD. Even though several effective therapies exist against IBD, these might have serious side effects. It has been proposed that hydrogen sulfide (H2S), as a novel gasotransmitter, has several physiological and pathological effects on the body. Our present study aimed to investigate the effects of H2S administration on antioxidant molecules in experimental rat colitis. As a model of IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used intracolonically (i.c.) to induce colitis in male Wistar-Hannover rats. Animals were orally treated (2 times/day) with H2S donor Lawesson's reagent (LR). Our results showed that H2S administration significantly decreased the severity of inflammation in the colons. Furthermore, LR significantly suppressed the level of oxidative stress marker 3-nitrotyrosine (3-NT) and caused a significant elevation in the levels of antioxidant GSH, Prdx1, Prdx6, and the activity of SOD compared to TNBS. In conclusion, our results suggest that these antioxidants may offer potential therapeutic targets and H2S treatment through the activation of antioxidant defense mechanisms and may provide a promising strategy against IBD.
Collapse
Affiliation(s)
- Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
11
|
Sharma S, Bhatia R, Devi K, Rawat A, Singh S, Bhadada SK, Bishnoi M, Sharma SS, Kondepudi KK. A synbiotic combination of Bifidobacterium longum Bif10 and Bifidobacterium breve Bif11, isomaltooligosaccharides and finger millet arabinoxylan prevents dextran sodium sulphate induced ulcerative colitis in mice. Int J Biol Macromol 2023; 231:123326. [PMID: 36681226 DOI: 10.1016/j.ijbiomac.2023.123326] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/23/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Decreased bifidobacterial abundance, disrupted gut barrier function, dysregulated immune response and ulceration have been reported in the gut microbiota of IBD patients. Non-digestible carbohydrates with bifidogenic effect enrich the gut microbiota with Bifidobacterium spp. and could help in overcoming inflammatory gut conditions. In this study, the protective effect of Bifidobacterium longum Bif10 and Bifidobacterium breve Bif11; isomaltooligosaccharides (IMOS); Finger millet arabinoxylan (FM-AX) and their Synbiotic mix were evaluated against dextran sodium sulphate (DSS) induced UC in male Balb/c mice for 25 days. All the interventions ameliorated symptoms of colitis such as disease activity index (DAI), histological damage to the colon, gut-bacterial dysbiosis and inflammation. However, the synbiotic mix was more potent in amelioration of some of the parameters such as decreased TNF-α and lipocalin levels; increased anti-inflammatory markers (IL-10 and IL-22), and improved short chain fatty acids (SCFAs) levels in the cecum content. Furthermore, mouse colitis histological scoring (MCHI) also suggested the preventive role of synbiotic mix. All the dietary interventions aid in improving the DAI and immune parameters; restoration or regeneration of the altered selected gut bacteria, enhances the SCFA production, strengthens gut barrier, prevents gut inflammation and decreases the colonic MCHI score in DSS fed mice.
Collapse
Affiliation(s)
- Shikha Sharma
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Ruchika Bhatia
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Kirti Devi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Anita Rawat
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Regional Center for Biotechnology, Faridabad, Haryana 121001, India
| | - Shashank Singh
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India; Regional Center for Biotechnology, Faridabad, Haryana 121001, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food & Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India; Regional Center for Biotechnology, Faridabad, Haryana 121001, India.
| |
Collapse
|
12
|
Arangia A, Marino Y, Impellizzeri D, D’Amico R, Cuzzocrea S, Di Paola R. Hydroxytyrosol and Its Potential Uses on Intestinal and Gastrointestinal Disease. Int J Mol Sci 2023; 24:ijms24043111. [PMID: 36834520 PMCID: PMC9964144 DOI: 10.3390/ijms24043111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the phytoconstituents of foods in the Mediterranean diet (MD) have been the subject of several studies for their beneficial effects on human health. The traditional MD is described as a diet heavy in vegetable oils, fruits, nuts, and fish. The most studied element of MD is undoubtedly olive oil due precisely to its beneficial properties that make it an object of interest. Several studies have attributed these protective effects to hydroxytyrosol (HT), the main polyphenol contained in olive oil and leaves. HT has been shown to be able to modulate the oxidative and inflammatory process in numerous chronic disorders, including intestinal and gastrointestinal pathologies. To date, there is no paper that summarizes the role of HT in these disorders. This review provides an overview of the anti-inflammatory and antioxidant proprieties of HT against intestinal and gastrointestinal diseases.
Collapse
Affiliation(s)
- Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
13
|
Muacevic A, Adler JR. The Accuracy of Neutrophil-to-Lymphocyte Ratio and Abdominal Computed Tomography to Predict the Severity of Acute Cholecystitis. Cureus 2022; 14:e32243. [PMID: 36620833 PMCID: PMC9813872 DOI: 10.7759/cureus.32243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Background In this study, we evaluated neutrophil-to-lymphocyte ratio (NLR) values and abdominal computed tomography (CT) scans in preoperative patients of acute cholecystitis (AC) and their significance in differentiating between severe and non-severe conditions. This study will help further in-depth investigation on both of these diagnostic modalities and timely assess severe AC to avoid the worst prognosis. Methodology This single-center, cross-sectional study was conducted at Government Villupuram Medical College from July 2021 to January 2022. We enrolled patients aged >18 years diagnosed with AC. The demographic variables and clinical features of the enrolled patients were collected. All enrolled patients were divided into two categories (severe or non-severe AC) based on the pathological and clinical findings. The data were collected and entered in SPSS Statistics version 26 (IBM Corp., Armonk, NY, USA). The variation between the severe and non-severe AC groups was compared using Student's t-test to analyze continuous variables. The chi-square test was used to evaluate the association between the categorical variables. A p-value of <0.05 was considered significant. Results Among patients with severe AC, 29 (72.5%) were female, 29 (72.5%) were aged >50 years, 34 (85%) were alcoholics, and 26 (65%) were smokers. In patients with severe AC, the mean for NLR was 18.6500 ± 2.32655. On CT scans, 29 (72.5%) patients showed gallbladder distension, 31 (77.5%) showed increased pericholecystic fat stranding, and 18 (45%) showed pericholecystic fluid collection. CT scan findings and NLR values were significantly associated. Conclusions Gallbladder distension, increased pericholecystic fat stranding, and pericholecystic fluid collection on abdominal CT scan along with raised NLR are significant findings associated with assessing the severity of AC. Therefore, both testing modalities (CT scan and NLR) should be utilized together in hospitals to achieve better outcomes for AC and avoid complications.
Collapse
|
14
|
Broz M, Furlan V, Lešnik S, Jukič M, Bren U. The Effect of the Ala16Val Mutation on the Secondary Structure of the Manganese Superoxide Dismutase Mitochondrial Targeting Sequence. Antioxidants (Basel) 2022; 11:antiox11122348. [PMID: 36552556 PMCID: PMC9774195 DOI: 10.3390/antiox11122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Manganese Superoxide Dismutase (MnSOD) represents a mitochondrial protein that scavenges reactive oxygen species (ROS) responsible for oxidative stress. A known single nucleotide polymorphism (SNP) rs4880 on the SOD2 gene, causing a mutation from alanine to valine (Ala16Val) in the primary structure of immature MnSOD, has been associated with several types of cancer and other autoimmune diseases. However, no conclusive correlation has been established yet. This study aims to determine the effect of the alanine to valine mutation on the secondary structure of the MnSOD mitochondrial targeting sequence (MTS). A model for each variant of the MTS was prepared and extensively simulated with molecular dynamics simulations using the CHARMM36m force field. The results indicate that the alanine variant of the MTS preserves a uniform α-helical secondary structure favorable for the protein transport into mitochondria, whereas the valine variant quickly breaks down its α-helix. Thus, the alanine MTS represents the more active MnSOD variant, the benefits of which have yet to be determined experimentally.
Collapse
Affiliation(s)
- Matic Broz
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Samo Lešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Marko Jukič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Correspondence:
| |
Collapse
|
15
|
Goudie L, Mancini NL, Shutt TE, Holloway GP, Mu C, Wang A, McKay DM, Shearer J. Impact of experimental colitis on mitochondrial bioenergetics in intestinal epithelial cells. Sci Rep 2022; 12:7453. [PMID: 35523978 PMCID: PMC9076608 DOI: 10.1038/s41598-022-11123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Intestinal homeostasis is highly dependent on optimal epithelial barrier function and permeability. Intestinal epithelial cells (IEC) regulate these properties acting as cellular gatekeepers by selectively absorbing nutrients and controlling the passage of luminal bacteria. These functions are energy demanding processes that are presumably met through mitochondrial-based processes. Routine methods for examining IEC mitochondrial function remain sparse, hence, our objective is to present standardized methods for quantifying mitochondrial energetics in an immortalized IEC line. Employing the murine IEC4.1 cell line, we present adapted methods and protocols to examine mitochondrial function using two well-known platforms: the Seahorse Extracellular Flux Analyzer and Oxygraph-2 k. To demonstrate the applicability of these protocols and instruments, IEC were treated with and without the murine colitogenic agent, dextran sulfate sodium (DSS, 2% w/v). Profound impairments with DSS treatment were found with both platforms, however, the Oxygraph-2 k allowed greater resolution of affected pathways including short-chain fatty acid metabolism. Mitochondrial functional analysis is a novel tool to explore the relationship between IEC energetics and functional consequences within the contexts of health and disease. The outlined methods offer an introductory starting point for such assessment and provide the investigator with insights into platform-specific capabilities.
Collapse
Affiliation(s)
- Luke Goudie
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Nicole L Mancini
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Timothy E Shutt
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Departments of Medical Genetics and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, HMRB 228, Alberta, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Chunlong Mu
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Departments of Medical Genetics and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, HMRB 228, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada. .,Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Departments of Medical Genetics and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, HMRB 228, Alberta, Canada.
| |
Collapse
|
16
|
Short-Chain and Total Fatty Acid Profile of Faeces or Plasma as Predictors of Food-Responsive Enteropathy in Dogs: A Preliminary Study. Animals (Basel) 2021; 12:ani12010089. [PMID: 35011195 PMCID: PMC8749849 DOI: 10.3390/ani12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Food-responsive enteropathy is the most common diagnosis given for dogs with chronic enteropathy, and there are no tests that can replace treatment trials. Furthermore, there is a lack of information on the specific nutritional status of these patients regarding the lipid profile that could relate them to the state of health/disease. This study evaluated differences in short-chain fatty acids and the total fatty acid profile of faeces and plasma as possible indicators of food-responsive enteropathy (FRE), as well as its relationship with body condition and the chronic enteropathy activity index. Changes in the long-chain fatty acid of plasma, and short-chain, branched and odd-chain fatty acids of faeces were detected in sick dogs, and high correlations were observed between some of these compounds and the existing calculated indices. Abstract The aim of this study was to evaluate differences in short-chain fatty acids (SCFAs) and the total fatty acid profile of faeces or plasma as possible indicators of FRE in comparison with healthy dogs. FRE dogs had a lower concentration (p = 0.026) of plasma α-tocopherol as an indicator of the oxidative status of the animal, and lower C20:5n-3 (p = 0.033), C22:5n-3 (p = 0.005), polyunsaturated fatty acids (PUFA) (p = 0.021) and n-6 (p = 0.041) when compared with the control dogs; furthermore, sick dogs had higher proportions of plasma C20:3n-6 (p = 0.0056). The dogs with FRE showed a decrease in the production of faecal levels of SCFAs, mainly propionic acid (C3) (p = 0.0001) and isovaleric acid (iC5) (p = 0.014). FRE dogs also had a lower proportion of C15:0 (p = 0.0003), C16:1n-9 (p = 0.0095), C16:1n-7 (p = 0.0001), C20:5n-3 (p = 0.0034) and monounsaturated fatty acids (p = 0.0315), and tended to have lower n-3 (p = 0.058) and a reduced desaturase activity index in the stool when compared with the control group. However, the dogs with chronic enteropathy tended to have greater C20:4n-6 (p = 0.065) in their faeces as signs of damage at the intestinal level. The faecal parameters were better predictors than plasma. The highest correlations between faecal odd-chain, medium- or long-chain fatty acids and SCFAs were observed for C15:0 that correlated positively with faecal acetic acid (C2) (r = 0.72, p = 0.004), propionic acid (r = 0.95, p = 0.0001), isobutyric acid (iC4) (r = 0.59, p = 0.027) and isovaleric acid (r = 0.64, p = 0.0136), as well as with total SCFAs (r = 0.61, p = 0.02). Conversely, faecal C20:4n-6 showed a high inverse correlation (r = −0.83, p = 0.0002) with C2 and C3 (r = −0.59, p = 0.027). Canine inflammatory bowel disease (IBD) activity (CIBDAI) index correlated negatively mainly with faecal measurements, such as C3 (r = −0.869, p = 0.0005) and C15:0 (r = −0.825, p = 0.0018), followed by C16:1/C16:0 (r = −0.66, p= 0.0374) and iC5 (r = −0.648, p = 0.0310), which would indicate that these fatty acids could be good non-invasive indicators of the chronic inflammatory status, specifically FRE.
Collapse
|
17
|
Gardenia jasminoides Ellis Fruit Extracts Attenuated Colitis in 2,4,6-Trinitrobenzenesulfonic Acid-Induced Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9920379. [PMID: 34956390 PMCID: PMC8694976 DOI: 10.1155/2021/9920379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022]
Abstract
Ulcerative colitis (UC) is a relapsing inflammatory disease with an unknown precise etiology. The purpose of this study is to investigate the protective effects of Gardenia jasminoides Ellis fruit extracts (GFE) on 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. GFE (50 mg/kg, 100 mg/kg) were administered orally for 7 days after induction. Meanwhile, the chemical components of GFE were performed by UPLC-QTOF-MS/MS. GFE significantly decreased DAI scores and ameliorated macroscopic and histologic damage. It also reduced the levels of MPO, NO, MDA, IL-1β, TNF-α, and IL-6, while increasing the level of SOD. Moreover, 56 components were identified in GFE using a UPLC-QTOF-MS/MS method, which can be categorized into six structural groups. Our results indicated that GFE has an ameliorative effect on TNBS-induced colitis in rats, which may further verify its anti-inflammatory and antioxidative properties. Therefore, GFE can be a promising protective agent of colitis that deserves further investigation.
Collapse
|
18
|
Pekgöz S, Asci H, Erzurumlu Y, Savran M, Ilhan I, Hasseyid N, Ciris M. Nebivolol alleviates liver damage caused by methotrexate via AKT1/Hif1α/eNOS signaling. Drug Chem Toxicol 2021; 45:2153-2159. [PMID: 34693844 DOI: 10.1080/01480545.2021.1908759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Despite the wide clinical indications, methotrexate (MTX) use is limited because of serious side effects including liver toxicity. MTX was shown to cause tissue damage by mainly oxidative stress and also inflammation and apoptosis. Thus, Nebivolol (NEB) which has antioxidant and antiapoptotic properties were thought to be effective against MTX-induced injury. This study aimed to evaluate the effects of NEB on MTX-induced liver toxicity via AKT/Hypoxia-Inducible Factor 1 Alpha (HIF1α)/Endothelial Nitric Oxide Synthase (eNOS) signaling pathways. Rats were divided into three groups as control, MTX, and NEB. A single dose of MTX (20 mg/kg intraperitoneally) was given to the rats on the first day of the experiment and NEB (10 mg/kg, daily by oral gavage) was given to the treatment group for a week. At the end of the experiment, bloods were taken for aspartate transaminase (AST), alanine aminotransferase (ALT), and total bilirubin (T-BIL) analyses. Liver tissues were harvested for biochemical (total oxidant status (TOS) and total antioxidant status (TAS), genetic (PCR analyses for AKT1, eNOS, and HIF1a), and histological (Hemotoxylin-Eosin, Masson Trichome, Periodic Acid Schiff-Asien Blue, reticulin for histological, and CD3 for immunohistochemical staining) analyses. MTX increased the levels of TOS values, AST, ALT, T-BIL levels and decreased the expressions of AKT/HIF1α/eNOS. NEB treatment reversed all these changes markedly via decreasing inflammation by nitric oxid (NO) production. In conclusion, NEB treatment significantly preserves the liver by decreasing oxidant levels and inflammatory parameters through HIF1α/eNOS signaling. Due to the antioxidant properties of NEB, it can be used in other liver injury models sharing the same pathway.
Collapse
Affiliation(s)
- Sakir Pekgöz
- Department of Bioengineering, School of Engineering, Suleyman Demirel University, Isparta, Turkey
| | - Halil Asci
- Department of Bioengineering, School of Engineering, Suleyman Demirel University, Isparta, Turkey.,Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey.,Laboratory of Bioengineering, Innovative Technologies Application and Research Center, Suleyman Demirel University, Isparta, Turkey
| | - Mehtap Savran
- Department of Bioengineering, School of Engineering, Suleyman Demirel University, Isparta, Turkey.,Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ilter Ilhan
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Nursel Hasseyid
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Metin Ciris
- Department of Pathology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
19
|
Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Front Physiol 2021; 12:715506. [PMID: 34646151 PMCID: PMC8502967 DOI: 10.3389/fphys.2021.715506] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic medical disorders characterized by recurrent gastrointestinal inflammation. While the etiology of IBD is still unknown, the pathogenesis of the disease results from perturbations in both gut microbiota and the host immune system. Gut microbiota dysbiosis in IBD is characterized by depleted diversity, reduced abundance of short chain fatty acids (SCFAs) producers and enriched proinflammatory microbes such as adherent/invasive E. coli and H2S producers. This dysbiosis may contribute to the inflammation through affecting either the immune system or a metabolic pathway. The immune responses to gut microbiota in IBD are extensively discussed. In this review, we highlight the main metabolic pathways that regulate the host-microbiota interaction. We also discuss the reported findings indicating that the microbial dysbiosis during IBD has a potential metabolic impact on colonocytes and this may underlie the disease progression. Moreover, we present the host metabolic defectiveness that adds to the impact of symbiont dysbiosis on the disease progression. This will raise the possibility that gut microbiota dysbiosis associated with IBD results in functional perturbations of host-microbiota interactions, and consequently modulates the disease development. Finally, we shed light on the possible therapeutic approaches of IBD through targeting gut microbiome.
Collapse
Affiliation(s)
- Salma Sultan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Tamer A E Ahmed
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Oxidative Stress Does Not Influence Subjective Pain Sensation in Inflammatory Bowel Disease Patients. Antioxidants (Basel) 2021; 10:antiox10081237. [PMID: 34439485 PMCID: PMC8389030 DOI: 10.3390/antiox10081237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) has been proposed as a significant causative and propagating factor in inflammatory bowel diseases (IBDs). Modulation of OS is possible through antioxidants and inhibition of oxidizing enzymes. Thirty-one IBD patients and thirty-two controls were included in the study. The aim was to examine the levels of OS in colonic tissue of IBD requiring surgical intervention and control group, and their association with pain intensity. Total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase (CAT) activity, glutathione (GSH) and oxidized glutathione (GSSG) levels, and glutathione peroxidase (GPX) activity as markers of antioxidant defense were determined. Cyclooxygenases activities (Total COX, COX-1 and COX-2) were measured as prooxidant enzymes. Thiobarbituric acid reactive substances (TBARS) concentrations were measured to evaluate lipid peroxidation. Disease activity was assessed, and each subject filled out VAS and Laitinen's pain assessment scales. Correlation between the OS, pain intensity, disease activity parameters, C-reactive protein (CRP), number of stools passed daily, disease duration, and dietary habits was investigated. No TAC differences were found between the groups. A significant decrease of SOD activity and GSH and GSSG levels was seen in IBD patients vs. controls, while GPX activity was diminished significantly only in CD patients. CAT and COX-1 activity was increased, and COX-2 significantly decreased in IBD. TBARS were significantly higher in CD patients compared to control group. No correlation was found between pain scores, inflammatory status, disease activity, disease duration, or dietary habits and OS markers. In our study, OS did not influence pain sensation reported by IBD patients.
Collapse
|
21
|
Metallothioneins in Inflammatory Bowel Diseases: Importance in Pathogenesis and Potential Therapy Target. Can J Gastroenterol Hepatol 2021; 2021:6665697. [PMID: 33987146 PMCID: PMC8093040 DOI: 10.1155/2021/6665697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Immunological disorders, increased oxidative stress, and damage to the epithelial barrier play an important role in the pathogenesis of inflammatory bowel diseases (IBDs). In the treatment of patients with Crohn's disease (CD) and ulcerative colitis (UC), it is increasingly common to use biological drugs that selectively affect individual components of the inflammatory cascade. However, administering the medicines currently available does not always result in obtaining and maintaining remission, and it may also lead to the development of resistance to a given agent over time. Metallothioneins (MTs) belong to the group of low molecular weight proteins, which, among others, regulate the inflammation and homeostasis of heavy metals as well as participating in the regulation of the intensity of oxidative stress. The results of the studies conducted so far do not clearly indicate the role of MTs in the process of inflammation in patients with IBD. However, there are reports that suggest the possibility of using MTs as a potential target in the treatment of this group of patients.
Collapse
|
22
|
Oxidative Stress in the Pathogenesis of Crohn's Disease and the Interconnection with Immunological Response, Microbiota, External Environmental Factors, and Epigenetics. Antioxidants (Basel) 2021; 10:antiox10010064. [PMID: 33430227 PMCID: PMC7825667 DOI: 10.3390/antiox10010064] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial disorder in which external and environmental factors have a large influence on its onset and development, especially in genetically susceptible individuals. Crohn’s disease (CD), one of the two types of IBD, is characterized by transmural inflammation, which is most frequently located in the region of the terminal ileum. Oxidative stress, caused by an overabundance of reactive oxygen species, is present locally and systemically in patients with CD and appears to be associated with the well-described imbalanced immune response and dysbiosis in the disease. Oxidative stress could also underlie some of the environmental risk factors proposed for CD. Although the exact etiopathology of CD remains unknown, the key role of oxidative stress in the pathogenesis of CD is extensively recognized. Epigenetics can provide a link between environmental factors and genetics, and numerous epigenetic changes associated with certain environmental risk factors, microbiota, and inflammation are reported in CD. Further attention needs to be focused on whether these epigenetic changes also have a primary role in the pathogenesis of CD, along with oxidative stress.
Collapse
|
23
|
Lasconi C, Pahl MC, Cousminer DL, Doege CA, Chesi A, Hodge KM, Leonard ME, Lu S, Johnson ME, Su C, Hammond RK, Pippin JA, Terry NA, Ghanem LR, Leibel RL, Wells AD, Grant SFA. Variant-to-Gene-Mapping Analyses Reveal a Role for the Hypothalamus in Genetic Susceptibility to Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2020; 11:667-682. [PMID: 33069917 PMCID: PMC7843407 DOI: 10.1016/j.jcmgh.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) is a polygenic disorder characterized principally by dysregulated inflammation impacting the gastrointestinal tract. However, there also is increasing evidence for a clinical association with stress and depression. Given the role of the hypothalamus in stress responses and in the pathogenesis of depression, useful insights could be gleaned from understanding its genetic role in IBD. METHODS We conducted genetic correlation analyses on publicly available genome-wide association study summary statistics for depression and IBD traits to identify genetic commonalities. We used partitioned linkage disequilibrium score regression, leveraging our ATAC sequencing and promoter-focused Capture C data, to measure enrichment of IBD single-nucleotide polymorphisms within promoter-interacting open chromatin regions of human embryonic stem cell-derived hypothalamic-like neurons (HNs). Using the same data sets, we performed variant-to-gene mapping to implicate putative IBD effector genes in HNs. To contrast these results, we similarly analyzed 3-dimensional genomic data generated in epithelium-derived colonoids from rectal biopsy specimens from donors without pathologic disease noted at the time of colonoscopy. Finally, we conducted enrichment pathway analyses on the implicated genes to identify putative IBD dysfunctional pathways. RESULTS We found significant genetic correlations (rg) of 0.122 with an adjusted P (Padj) = 1.4 × 10-4 for IBD: rg = 0.122; Padj = 2.5 × 10-3 for ulcerative colitis and genetic correlation (rg) = 0.094; Padj = 2.5 × 10-3 for Crohn's disease, and significant approximately 4-fold (P = .005) and approximately 7-fold (P = .03) enrichment of IBD single-nucleotide polymorphisms in HNs and colonoids, respectively. We implicated 25 associated genes in HNs, among which CREM, CNTF, and RHOA encode key regulators of stress. Seven genes also additionally were implicated in the colonoids. We observed an overall enrichment for immune and hormonal signaling pathways, and a colonoid-specific enrichment for microbiota-relevant terms. CONCLUSIONS Our results suggest that the hypothalamus warrants further study in the context of IBD pathogenesis.
Collapse
Affiliation(s)
- Chiara Lasconi
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Diana L Cousminer
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Claudia A Doege
- Division of Molecular Genetics (Pediatrics), Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Chun Su
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Reza K Hammond
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - James A Pippin
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | | | | | - Rudolph L Leibel
- Division of Molecular Genetics (Pediatrics), Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Department of Pathology, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania; Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
24
|
Krzystek-Korpacka M, Kempiński R, Bromke MA, Neubauer K. Oxidative Stress Markers in Inflammatory Bowel Diseases: Systematic Review. Diagnostics (Basel) 2020; 10:E601. [PMID: 32824619 PMCID: PMC7459713 DOI: 10.3390/diagnostics10080601] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Precise diagnostic biomarker in inflammatory bowel diseases (IBD) is still missing. We conducted a comprehensive overview of oxidative stress markers (OSMs) as potential diagnostic, differential, progression, and prognostic markers in IBD. A Pubmed, Web of Knowledge, and Scopus search of original articles on OSMs in IBD, published between January 2000 and April 2020, was conducted. Out of 874 articles, 79 eligible studies were identified and used to prepare the interpretative synthesis. Antioxidants followed by lipid peroxidation markers were the most popular and markers of oxidative DNA damage the least popular. There was a disparity in the number of retrieved papers evaluating biomarkers in the adult and pediatric population (n = 6). Of the reviewed OSMs, a promising performance has been reported for serum total antioxidant status as a mucosal healing marker, mucosal 8-OHdG as a progression marker, and for multi-analyte panels of lipid peroxidation products assessed non-invasively in breath as diagnostic and differential markers in the pediatric population. Bilirubin, in turn, was the only validated marker. There is a desperate need for non-invasive biomarkers in IBD which, however, will not be met in the near future by oxidative stress markers as they are promising but mostly at the early research phase of discovery.
Collapse
Affiliation(s)
| | - Radosław Kempiński
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Mariusz A. Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wroclaw, Poland;
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
25
|
Formiga RDO, Alves Júnior EB, Vasconcelos RC, Guerra GCB, Antunes de Araújo A, de Carvalho TG, Garcia VB, de Araújo Junior RF, Gadelha FAAF, Vieira GC, Sobral MV, Barbosa Filho JM, Spiller F, Batista LM. p-Cymene and Rosmarinic Acid Ameliorate TNBS-Induced Intestinal Inflammation Upkeeping ZO-1 and MUC-2: Role of Antioxidant System and Immunomodulation. Int J Mol Sci 2020; 21:E5870. [PMID: 32824269 PMCID: PMC7461622 DOI: 10.3390/ijms21165870] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
p-Cymene (p-C) and rosmarinic acid (RA) are secondary metabolites that are present in medicinal herbs and Mediterranean spices that have promising anti-inflammatory properties. This study aimed to evaluate their intestinal anti-inflammatory activity in the trinitrobenzene sulphonic acid (TNBS)-induced colitis model in rats. p-C and RA (25-200 mg/kg) oral administration reduced the macroscopic lesion score, ulcerative area, intestinal weight/length ratio, and diarrheal index in TNBS-treated animals. Both compounds (200 mg/kg) decreased malondialdehyde (MDA) and myeloperoxidase (MPO), restored glutathione (GSH) levels, and enhanced fluorescence intensity of superoxide dismutase (SOD). They also decreased interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and maintained IL-10 basal levels. Furthermore, they modulated T cell populations (cluster of differentiation (CD)4+, CD8+, or CD3+CD4+CD25+) analyzed from the spleen, mesenteric lymph nodes, and colon samples, and also decreased cyclooxigenase 2 (COX-2), interferon (IFN)-γ, inducible nitric oxide synthase (iNOS), and nuclear transcription factor kappa B subunit p65 (NFκB-p65) mRNA transcription, but only p-C interfered in the suppressor of cytokine signaling 3 (SOCS3) expression in inflamed colons. An increase in gene expression and positive cells immunostained for mucin type 2 (MUC-2) and zonula occludens 1 (ZO-1) was observed. Altogether, these results indicate intestinal anti-inflammatory activity of p-C and RA involving the cytoprotection of the intestinal barrier, maintaining the mucus layer, and preserving communicating junctions, as well as through modulation of the antioxidant and immunomodulatory systems.
Collapse
Affiliation(s)
- Rodrigo de Oliveira Formiga
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Roseane Carvalho Vasconcelos
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (R.C.V); (G.C.B.G.); (A.A.d.A.)
| | - Gerlane Coelho Bernardo Guerra
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (R.C.V); (G.C.B.G.); (A.A.d.A.)
| | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (R.C.V); (G.C.B.G.); (A.A.d.A.)
| | - Thaís Gomes de Carvalho
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (T.G.d.C.); (V.B.G.); (R.F.d.A.J.)
| | - Vinícius Barreto Garcia
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (T.G.d.C.); (V.B.G.); (R.F.d.A.J.)
| | - Raimundo Fernandes de Araújo Junior
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (T.G.d.C.); (V.B.G.); (R.F.d.A.J.)
| | - Francisco Allysson Assis Ferreira Gadelha
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Giciane Carvalho Vieira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - José Maria Barbosa Filho
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis 88037-000, Brazil;
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| |
Collapse
|
26
|
Luceri C, Bigagli E, Agostiniani S, Giudici F, Zambonin D, Scaringi S, Ficari F, Lodovici M, Malentacchi C. Analysis of Oxidative Stress-Related Markers in Crohn's Disease Patients at Surgery and Correlations with Clinical Findings. Antioxidants (Basel) 2019; 8:antiox8090378. [PMID: 31489956 PMCID: PMC6771139 DOI: 10.3390/antiox8090378] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Crohn' disease (CD) patients are at high risk of postoperative recurrence and new tools for the assessment of disease activity are needed to prevent long-term complications. In these patients, the over-production of ROS generated by inflamed bowel tissue and inflammatory cells activates a pathogenic cascade that further exacerbates inflammation and leads to increased oxidative damage to DNA, proteins, and lipids. We measured the products of protein/lipid oxidation and the total antioxidant capacity (ferric reducing ability of plasma, FRAP) in the serum of CD patients with severe disease activity requiring surgery with the aim to characterize their redox status and identify associations between oxidative stress-related markers and their clinical characteristics. At the systemic level, CD was associated with increased levels of protein and lipid oxidation products when compared to healthy volunteers, even though the FRAP values were similar. Advanced oxidation protein product (AOPP) levels showed the highest difference between patients and the controls (11.25, 5.02-15.15, vs. 1.36, 0.75-2.70, median, interquartile range; p < 0.0001) and the analysis of receiver operating characteristic (ROC) curves, indicated for AOPP, the best area under the curve (AUC) value for CD prediction. Advanced glycated end-products (AGEs) were also significantly higher in CD patients (p < 0.01), which is of interest since AOPP and AGEs are both able to activate the membrane receptor for advanced glycation end products (RAGE) involved in inflammatory diseases. Thiobarbituric acid reactive substance (TBARS) levels were significantly higher in CD patients with ileal localization and aggressive disease behavior, in smokers, and in patients suffering from allergies. In conclusion, our data indicate that circulating oxidative stress biomarkers may be attractive candidates as disease predictors as well as for clinical or therapeutic monitoring of CD. Our results also suggest that AOPP/AGEs and RAGE signaling may represent a pathogenic factor and a potential therapeutic target in CD.
Collapse
Affiliation(s)
- Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.
| | - Elisabetta Bigagli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.
| | - Sara Agostiniani
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Daniela Zambonin
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Stefano Scaringi
- Department of Experimental and Clinical Medicine, Surgery Unit IBD, Careggi-University Hospital (AOUC), 50139 Florence, Italy
| | - Ferdinando Ficari
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maura Lodovici
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Cecilia Malentacchi
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
27
|
Bourgonje AR, Gabriëls RY, de Borst MH, Bulthuis MLC, Faber KN, van Goor H, Dijkstra G. Serum Free Thiols Are Superior to Fecal Calprotectin in Reflecting Endoscopic Disease Activity in Inflammatory Bowel Disease. Antioxidants (Basel) 2019. [PMID: 31480545 DOI: 10.3390/antiox8090351.pmid:31480545;pmcid:pmc6769968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of inflammatory bowel diseases (IBD). Serum free thiols (R-SH) reliably reflect systemic oxidative stress, since they are readily oxidized by reactive species. Here, we aimed to establish concentrations of serum free thiols in IBD and assessed their discriminating capacity regarding endoscopic disease activity. Albumin-adjusted serum free thiol concentrations were measured in 78 IBD patients (31 Crohn's disease (CD) and 47 ulcerative colitis (UC) patients) and 50 healthy controls and analyzed for associations with disease parameters and their discriminative value regarding endoscopic disease activity (n = 54) or fecal calprotectin (n = 36) in patients for which those data were available. Mean serum free thiol concentrations were significantly lower in both CD and UC as compared to healthy controls (19.4 ± 3.1 and 17.8 ± 3.4 vs. 21.1 ± 1.9 µmol/g albumin, P < 0.001). Free thiols highly accurately discriminated between mild and moderate-to-severe disease activity, better than fecal calprotectin (FC) levels (AUC = 0.87, P < 0.001 vs. AUC = 0.76, P < 0.05, respectively) and this was maintained after cross-validation (AUC = 0.89, P < 0.001). Serum free thiols are reduced in IBD as compared to healthy controls and strongly correlate with the degree of endoscopic disease activity. Quantifying systemic redox status in IBD may be a promising, minimally invasive strategy to monitor IBD disease activity.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands.
| | - Ruben Y Gabriëls
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Marian L C Bulthuis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
28
|
Serum Free Thiols Are Superior to Fecal Calprotectin in Reflecting Endoscopic Disease Activity in Inflammatory Bowel Disease. Antioxidants (Basel) 2019; 8:antiox8090351. [PMID: 31480545 PMCID: PMC6769968 DOI: 10.3390/antiox8090351] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of inflammatory bowel diseases (IBD). Serum free thiols (R-SH) reliably reflect systemic oxidative stress, since they are readily oxidized by reactive species. Here, we aimed to establish concentrations of serum free thiols in IBD and assessed their discriminating capacity regarding endoscopic disease activity. Albumin-adjusted serum free thiol concentrations were measured in 78 IBD patients (31 Crohn's disease (CD) and 47 ulcerative colitis (UC) patients) and 50 healthy controls and analyzed for associations with disease parameters and their discriminative value regarding endoscopic disease activity (n = 54) or fecal calprotectin (n = 36) in patients for which those data were available. Mean serum free thiol concentrations were significantly lower in both CD and UC as compared to healthy controls (19.4 ± 3.1 and 17.8 ± 3.4 vs. 21.1 ± 1.9 µmol/g albumin, P < 0.001). Free thiols highly accurately discriminated between mild and moderate-to-severe disease activity, better than fecal calprotectin (FC) levels (AUC = 0.87, P < 0.001 vs. AUC = 0.76, P < 0.05, respectively) and this was maintained after cross-validation (AUC = 0.89, P < 0.001). Serum free thiols are reduced in IBD as compared to healthy controls and strongly correlate with the degree of endoscopic disease activity. Quantifying systemic redox status in IBD may be a promising, minimally invasive strategy to monitor IBD disease activity.
Collapse
|
29
|
Cota D, Mishra S, Shengule S. Beneficial role of Terminalia arjuna hydro-alcoholic extract in colitis and its possible mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2019; 230:117-125. [PMID: 30367989 DOI: 10.1016/j.jep.2018.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia arjuna Roxb. (Combretaceae) is traditionally used in Ayurveda medicine and holds ethnomedicinal importance for treatment of gastrointestinal disorders. In view of its anti-inflammatory, antidiarrheal and antioxidant potential, it could be beneficial for the treatment of inflammatory bowel disease (IBD), which is associated with interaction between genetic, environmental factors and intestinal microbiome leading to dysregulated immune responses. This study evaluates the effect of hydroalcoholic extract of Terminalia arjuna bark (TAHA) in trinitrobenzenesulfonic acid (TNBS) model of rat colitis which resembles human IBD. MATERIALS AND METHODS TAHA (500, 250, 125 mg/kg) was administered orally for 28 days in TNBS induced rats. Response to treatment was assessed by comparing observations in diseased and treated groups using disease activity index (DAI); macroscopic/histological damage; determining oxidative stress indicators: myeloperoxidase, malondialdehyde, nitric oxide, catalase, superoxide dismutase, and reduced glutathione; gene expression of pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α and chemokine: MCP-1. Furthermore, the role of TAHA in altering the gut microbiota profile in rat feces and plasma zinc was also studied. RESULTS TAHA treatment in colitic rats directed decreased DAI scores, macroscopic and histologic damage. It also reduced myeloperoxidase, malondialdehyde and nitric oxide level. Whereas, prevented depletion of plasma catalase, superoxide dismutase and glutathione level. In addition, TAHA treatment down-regulated the gene expression of pro-inflammatory mediators and displayed altered beneficial effect on fecal microbiota. Furthermore, enhanced plasma zinc level supported the beneficial effect of TAHA in colitic rats. The dose of TAHA that produced most significant beneficial effect was 500 mg/kg. CONCLUSION TAHA administration relieved the disease activity in TNBS induced colitis by reducing expression of pro-inflammatory cytokines and chemokine, decreasing oxidative stress, and improving plasma zinc level and structure of gut microbiota.
Collapse
Affiliation(s)
- Damita Cota
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research (KLE University), Belagavi 590010, Karnataka, India.
| | - Sanjay Mishra
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research (KLE University), Belagavi 590010, Karnataka, India.
| | - Sushant Shengule
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research (KLE University), Belagavi 590010, Karnataka, India.
| |
Collapse
|
30
|
Al-Batayneh KM, Zoubi MSA, Shehab M, Al-Trad B, Bodoor K, Khateeb WA, Aljabali AAA, Hamad MA, Eaton G. Association between MTHFR 677C>T Polymorphism and Vitamin B12 Deficiency: A Case-control Study. J Med Biochem 2018; 37:141-147. [PMID: 30581350 PMCID: PMC6294092 DOI: 10.1515/jomb-2017-0051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/10/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Vitamin B12 (cobalamin) deficiency is a prevalent worldwide health concern. Several factors are associated with vitamin B12 deficiency including lifestyle, genetic predisposition, and malfunctions in the absorption and transport of vitamin B12. In the current case-control study, we aimed at investigating the association between MTHFR polymorphisms and vitamin B12 deficiency in a Jordanian population. METHODS Two polymorphic sites of the MTHFR gene (c.677C>T, rs1801133 and c.1286A>C, rs1801131) were analyzed using RFLP and DNA sequencing in a group of vitamin B12 deficient individuals (45 males and 55 females). As a control, 100 matching individuals (age and sex) with vitamin B12 levels > 200 ng/mL were also recruited for this study. RESULTS The MTHFR c.677C>T variant was significantly associated with vitamin B12 deficiency in individuals from northern Jordan. The frequency of the homozygous MTHFR c.677C>T genotype was significantly higher in B12 deficient individuals in comparison with the control group (X2 = 8.397, p = 0.0150). The T allele frequency showed significant association with vitamin B12 deficiency in the study population (OR= 1.684, 95% CI: 1.116 to 2.542, p = 0.017). On the other hand, the MTHFR c.1286A>C variant did not show significant association with vitamin B12 deficiency in the selected population. CONCLUSIONS Our results showed a significant association between homozygous MTHFR c.677C>T variant and T allele frequencies and vitamin B12 deficiency in the Jordanian population.
Collapse
Affiliation(s)
- Khalid M. Al-Batayneh
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Mazhar Salim Al Zoubi
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Murad Shehab
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Khaldon Bodoor
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Wesam Al Khateeb
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | | | - Mohammad Al Hamad
- Department of Pathology, Faculty of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia
| | - Greg Eaton
- Department of Biology, Rowan University, New Jersey, USA
| |
Collapse
|
31
|
Jolanta B, Joanna B, Diana HZ, Krystyna S. Composition and Concentration of Serum Fatty Acids of Phospholipids Depend on Tumour Location and Disease Progression in Colorectal Patients. J Med Biochem 2018; 37:39-45. [PMID: 30581340 PMCID: PMC6294105 DOI: 10.1515/jomb-2017-0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFAs) play a role in the development/progression of colon cancer. The aim of the study was to assess the relation between serum phospholipids PUFAs, colorectal tumour localization and disease progression. METHODS A total of 67 patients (18 with proximal colon, 17 with distal colon and 32 with rectal tumour localization) as well as 16 controls were studied. One year after surgery, 33 patients had disease progression. Serum levels of C16:1(n-7), C18:1(n-9), C18:3(n-3), C20:5(n-3), C22:6(n- 3), C18:2(n-6), C20:2(n-6), C20:4(n-6) fatty acids of se - rum phospholipids were quantitatively measured before surgery by gas-chromatography. RESULTS Significantly higher mean value of C18:2, as compared to control, has been noted only for patients with proximal (p<0.05) and distal tumour (p<0.03) localization. The lower mean level of C20:5 and unsaturation index (UI) were observed in colorectal cancer patients regardless the tumour localization, but the statistical difference was noted only for patients with proximal tumours (p<0.05, p<0.03). In patients with proximal tumours, significantly lower mean level of C20:4 and UI were noted in patients with disease progression, as compared to patients with proximal tumours without disease progression (p<0.05). CONCLUSION The evaluation of PUFAs as a risk/prognostic factor in colorectal cancer patients should take into account tumour localization as a dependent variable.
Collapse
Affiliation(s)
- Bugajska Jolanta
- Clinical Biochemistry Department, IP, Jagiellonian University College of Medicine, Krakow, Poland
| | - Berska Joanna
- Clinical Biochemistry Department, IP, Jagiellonian University College of Medicine, Krakow, Poland
| | | | - Sztefko Krystyna
- Clinical Biochemistry Department, IP, Jagiellonian University College of Medicine, Krakow, Poland
| |
Collapse
|