1
|
Shaffer Z, Romero R, Tarca AL, Galaz J, Arenas-Hernandez M, Gudicha DW, Chaiworapongsa T, Jung E, Suksai M, Theis KR, Gomez-Lopez N. The vaginal immunoproteome for the prediction of spontaneous preterm birth: A retrospective longitudinal study. eLife 2024; 13:e90943. [PMID: 38913421 PMCID: PMC11196114 DOI: 10.7554/elife.90943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB. Methods Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations. Results Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB. Conclusions The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes. Funding This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.
Collapse
Affiliation(s)
- Zachary Shaffer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, University of MichiganAnn ArborUnited States
- Department of Epidemiology and Biostatistics, Michigan State UniversityEast LansingUnited States
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Computer Science, Wayne State University College of EngineeringDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiagoChile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
2
|
Hu Y, Ye Z, Obore N, Guo X, Yu H. Non-invasive prediction model of histologic chorioamnionitis with preterm prelabour rupture of membranes. Eur J Obstet Gynecol Reprod Biol 2024; 296:299-306. [PMID: 38508104 DOI: 10.1016/j.ejogrb.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The aim of this study is to identify risk factors associated with histological chorioamnionitis (HCA) and develop a predictive model for antepartum assessment of the risk of PPROM with HCA. METHODS This study retrospectively analyzed pregnant women who experienced PPROM between 25 + 0 and 35 + 0 weeks of gestational age. The women were divided into two groups based on the presence or absence of HCA. Univariate and multivariate logistic regression analyses were conducted to identify maternal risk factors and develop a clinical prediction model for HCA. The model's discrimination and consistency were evaluated using receiver operating characteristic (ROC) and calibration curves. RESULTS Seventeen thousand one hundred forty-six (17,146) pregnant women were screened, and 726 (4.23 %) had PPROM. Out of the 286 subjects with PPROM, 160 developed HCA. The maternal age of these subjects ranged from 18 to 43 years (30.0 ± 5.4), while their gestational age (GA) ranged from 25 + 0 to 35 + 0 weeks (31.6 ± 2.0). The average GA at delivery was 32.2 ± 2.0 (weeks).Compared with the non-HCA group, the expectant time > 48 h, GA at delivery > 32 weeks, twin pregnancy, HGB (<110 g/Lg/L), degree of LGB (IIb-III), and WBC (>9.5 × 109 /L) were significantly more than in the PPROM with HCA group. The results show that the best model was obtained by leave-one-out logistic regression (AUC = 0.785, CA = 0.741, F1 = 0.739, Precision = 0.740, Recall = 0.741). In the validation set, logistic regression also achieved good results (AUC = 0.710, CA = 0.671, F1 = 0.654, Precision = 0.683, Recall = 0.671). Combining the previous analysis, we found that the prognostic model constructed using the core six features had the best predictive effect. CONCLUSIONS Six features were associated with the occurrence of chorioamnionitis. These features were used to construct a diagnostic model that can accurately predict the probability of chorioamnionitis occurrence and provide a beneficial tool for the prevention and management of PPROM with HCA.
Collapse
Affiliation(s)
- Yan Hu
- Department of Obstetrics and Gynecology, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, China.
| | - Zheng Ye
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210006, China
| | - Nathan Obore
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaojun Guo
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Hong Yu
- Department of Obstetrics and Gynecology, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, China.
| |
Collapse
|
3
|
Jung E, Romero R, Suksai M, Gotsch F, Chaemsaithong P, Erez O, Conde-Agudelo A, Gomez-Lopez N, Berry SM, Meyyazhagan A, Yoon BH. Clinical chorioamnionitis at term: definition, pathogenesis, microbiology, diagnosis, and treatment. Am J Obstet Gynecol 2024; 230:S807-S840. [PMID: 38233317 PMCID: PMC11288098 DOI: 10.1016/j.ajog.2023.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 04/05/2023]
Abstract
Clinical chorioamnionitis, the most common infection-related diagnosis in labor and delivery units, is an antecedent of puerperal infection and neonatal sepsis. The condition is suspected when intrapartum fever is associated with two other maternal and fetal signs of local or systemic inflammation (eg, maternal tachycardia, uterine tenderness, maternal leukocytosis, malodorous vaginal discharge or amniotic fluid, and fetal tachycardia). Clinical chorioamnionitis is a syndrome caused by intraamniotic infection, sterile intraamniotic inflammation (inflammation without bacteria), or systemic maternal inflammation induced by epidural analgesia. In cases of uncertainty, a definitive diagnosis can be made by analyzing amniotic fluid with methods to detect bacteria (Gram stain, culture, or microbial nucleic acid) and inflammation (white blood cell count, glucose concentration, interleukin-6, interleukin-8, matrix metalloproteinase-8). The most common microorganisms are Ureaplasma species, and polymicrobial infections occur in 70% of cases. The fetal attack rate is low, and the rate of positive neonatal blood cultures ranges between 0.2% and 4%. Intrapartum antibiotic administration is the standard treatment to reduce neonatal sepsis. Treatment with ampicillin and gentamicin have been recommended by professional societies, although other antibiotic regimens, eg, cephalosporins, have been used. Given the importance of Ureaplasma species as a cause of intraamniotic infection, consideration needs to be given to the administration of antimicrobial agents effective against these microorganisms such as azithromycin or clarithromycin. We have used the combination of ceftriaxone, clarithromycin, and metronidazole, which has been shown to eradicate intraamniotic infection with microbiologic studies. Routine testing of neonates born to affected mothers for genital mycoplasmas could improve the detection of neonatal sepsis. Clinical chorioamnionitis is associated with decreased uterine activity, failure to progress in labor, and postpartum hemorrhage; however, clinical chorioamnionitis by itself is not an indication for cesarean delivery. Oxytocin is often administered for labor augmentation, and it is prudent to have uterotonic agents at hand to manage postpartum hemorrhage. Infants born to mothers with clinical chorioamnionitis near term are at risk for early-onset neonatal sepsis and for long-term disability such as cerebral palsy. A frontier is the noninvasive assessment of amniotic fluid to diagnose intraamniotic inflammation with a transcervical amniotic fluid collector and a rapid bedside test for IL-8 for patients with ruptured membranes. This approach promises to improve diagnostic accuracy and to provide a basis for antimicrobial administration.
Collapse
Affiliation(s)
- Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI.
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Mahidol University, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand
| | - Offer Erez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Agustin Conde-Agudelo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Stanley M Berry
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Bo Hyun Yoon
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
4
|
Shen HH, Zhang YY, Wang XY, Wang CJ, Wang Y, Ye JF, Li MQ. Potential Causal Association between Plasma Metabolites, Immunophenotypes, and Female Reproductive Disorders: A Two-Sample Mendelian Randomization Analysis. Biomolecules 2024; 14:116. [PMID: 38254716 PMCID: PMC10813709 DOI: 10.3390/biom14010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND While extensive research highlighted the involvement of metabolism and immune cells in female reproductive diseases, causality remains unestablished. METHODS Instrumental variables for 486 circulating metabolites (N = 7824) and 731 immunophenotypes (N = 3757) were derived from a genome-wide association study (GWAS) meta-analysis. FinnGen contributed data on 14 female reproductive disorders. A bidirectional two-sample Mendelian randomization study was performed to determine the relationships between exposures and outcomes. The robustness of results, potential heterogeneity, and horizontal pleiotropy were examined through sensitivity analysis. RESULTS High levels of mannose were found to be causally associated with increased risks of gestational diabetes (GDM) (OR [95% CI], 6.02 [2.85-12.73], p = 2.55 × 10-6). A genetically predicted elevation in the relative count of circulating CD28-CD25++CD8+ T cells was causally related to increased female infertility risk (OR [95% CI], 1.26 [1.14-1.40], p = 1.07 × 10-5), whereas a high absolute count of NKT cells reduced the risk of ectopic pregnancy (OR [95% CI], 0.87 [0.82-0.93], p = 5.94 × 10-6). These results remained consistent in sensitivity analyses. CONCLUSIONS Our study supports mannose as a promising GDM biomarker and intervention target by integrating metabolomics and genomics.
Collapse
Affiliation(s)
- Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| | - Yang-Yang Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuan-Yu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanpo Xinchengxi District, Jinghai District, Tianjin 301617, China
| | - Cheng-Jie Wang
- Department of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
| | - Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji’nan 250012, China
| | - Jiang-Feng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
5
|
Xu Y, Miller D, Galaz J, Gomez-Lopez N. Immunophenotyping of Leukocytes in Amniotic Fluid. Methods Mol Biol 2024; 2781:155-162. [PMID: 38502451 DOI: 10.1007/978-1-0716-3746-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Immunophenotyping allows for the deep characterization of leukocytes present in biological samples. Here, we describe a complete procedure for the immunophenotyping of amniotic fluid, which can provide information into the immune processes taking place in the amniotic cavity. The protocol describes amniotic fluid cell count determination, processing, and the use of viability, extracellular antibody, and intracellular/intranuclear antibody staining prior to flow cytometer acquisition.
Collapse
Affiliation(s)
- Yi Xu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA
| | - Jose Galaz
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nardhy Gomez-Lopez
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
6
|
Uehre GM, Tchaikovski S, Ignatov A, Zenclussen AC, Busse M. B Cells Induce Early-Onset Maternal Inflammation to Protect against LPS-Induced Fetal Rejection. Int J Mol Sci 2023; 24:16091. [PMID: 38003279 PMCID: PMC10671511 DOI: 10.3390/ijms242216091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
The maternal balance between B regulatory (Breg) cells and inflammatory B cells is of central importance for protection against preterm birth (PTB). However, the impact of B cell signaling in early maternal and fetal immune responses on inflammatory insults remains underinvestigated. To understand which role B cells and B-cell-specific signaling play in the pathogenesis of PTB, the later was induced by an injection of LPS in B cell-sufficient WT mice, CD19-/-, BMyD88-/- and µMT murine dams at gestational day 16 (gd 16). WT dams developed a strong inflammatory response in their peritoneal cavity (PC), with an increased infiltration of granulocytes and enhanced IL-6, TNF-α, IL-17 and MCP-1 levels. However, they demonstrated a reduced NOS2 expression of PC macrophages 4 h after the LPS injection. Simultaneously, LPS-challenged WT dams upregulated pregnancy-protective factors like IL-10 and TARC. The concentrations of inflammatory mediators in the placental supernatants, amniotic fluids, fetal serums and gestational tissues were lower in LPS-challenged WT dams compared to CD19-/-, BMyD88-/- and µMT dams, thereby protecting WT fetuses from being born preterm. B cell deficiency, or the loss of B-cell-specific CD19 or MyD88 expression, resulted in an early shift from immune regulation towards inflammation at the fetomaternal interface and fetuses, resulting in PTB.
Collapse
Affiliation(s)
- Gina Marie Uehre
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany;
- University Hospital for Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany; (S.T.); (A.I.)
| | - Svetlana Tchaikovski
- University Hospital for Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany; (S.T.); (A.I.)
| | - Atanas Ignatov
- University Hospital for Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany; (S.T.); (A.I.)
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany;
- Saxonian Incubator for Translation Research, Leipzig University, 04103 Leipzig, Germany
| | - Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany;
- University Hospital for Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany; (S.T.); (A.I.)
| |
Collapse
|
7
|
Kanninen T, Tao L, Romero R, Xu Y, Arenas-Hernandez M, Galaz J, Liu Z, Miller D, Levenson D, Greenberg JM, Panzer J, Padron J, Theis KR, Gomez-Lopez N. Thymic stromal lymphopoietin participates in the host response to intra-amniotic inflammation leading to preterm labor and birth. Hum Immunol 2023; 84:450-463. [PMID: 37422429 PMCID: PMC10530449 DOI: 10.1016/j.humimm.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
The aim of this study was to establish the role of thymic stromal lymphopoietin (TSLP) in the intra-amniotic host response of women with spontaneous preterm labor (sPTL) and birth. Amniotic fluid and chorioamniotic membranes (CAM) were collected from women with sPTL who delivered at term (n = 30) or preterm without intra-amniotic inflammation (n = 34), with sterile intra-amniotic inflammation (SIAI, n = 27), or with intra-amniotic infection (IAI, n = 17). Amnion epithelial cells (AEC), Ureaplasma parvum, and Sneathia spp. were also utilized. The expression of TSLP, TSLPR, and IL-7Rα was evaluated in amniotic fluid or CAM by RT-qPCR and/or immunoassays. AEC co-cultured with Ureaplasma parvum or Sneathia spp. were evaluated for TSLP expression by immunofluorescence and/or RT-qPCR. Our data show that TSLP was elevated in amniotic fluid of women with SIAI or IAI and expressed by the CAM. TSLPR and IL-7Rα had detectable gene and protein expression in the CAM; yet, CRLF2 was specifically elevated with IAI. While TSLP localized to all layers of the CAM and increased with SIAI or IAI, TSLPR and IL-7Rα were minimal and became most apparent with IAI. Co-culture experiments indicated that Ureaplasma parvum and Sneathia spp. differentially upregulated TSLP expression in AEC. Together, these findings indicate that TSLP is a central component of the intra-amniotic host response during sPTL.
Collapse
Affiliation(s)
- Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Li Tao
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Dustyn Levenson
- Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jonathan M Greenberg
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jonathan Panzer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Justin Padron
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
8
|
Gervasi MT, Romero R, Cainelli E, Veronese P, Tran MR, Jung E, Suksai M, Bosco M, Gotsch F. Intra-amniotic inflammation in the mid-trimester of pregnancy is a risk factor for neuropsychological disorders in childhood. J Perinat Med 2023; 51:363-378. [PMID: 36173676 PMCID: PMC10010737 DOI: 10.1515/jpm-2022-0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Intra-amniotic inflammation is a subclinical condition frequently caused by either microbial invasion of the amniotic cavity or sterile inflammatory stimuli, e.g., alarmins. An accumulating body of evidence supports a role for maternal immune activation in the genesis of fetal neuroinflammation and the occurrence of neurodevelopmental disorders such as cerebral palsy, schizophrenia, and autism. The objective of this study was to determine whether fetal exposure to mid-trimester intra-amniotic inflammation is associated with neurodevelopmental disorders in children eight to 12 years of age. METHODS This is a retrospective case-control study comprising 20 children with evidence of prenatal exposure to intra-amniotic inflammation in the mid-trimester and 20 controls matched for gestational age at amniocentesis and at delivery. Amniotic fluid samples were tested for concentrations of interleukin-6 and C-X-C motif chemokine ligand 10, for bacteria by culture and molecular microbiologic methods as well as by polymerase chain reaction for eight viruses. Neuropsychological testing of children, performed by two experienced psychologists, assessed cognitive and behavioral domains. Neuropsychological dysfunction was defined as the presence of an abnormal score (<2 standard deviations) on at least two cognitive tasks. RESULTS Neuropsychological dysfunction was present in 45% (9/20) of children exposed to intra-amniotic inflammation but in only 10% (2/20) of those in the control group (p=0.03). The relative risk (RR) of neuropsychological dysfunction conferred by amniotic fluid inflammation remained significant after adjusting for gestational age at delivery [aRR=4.5 (1.07-16.7)]. Of the 11 children diagnosed with neuropsychological dysfunction, nine were delivered at term and eight of them had mothers with intra-amniotic inflammation. Children exposed to intra-amniotic inflammation were found to have abnormalities in neuropsychological tasks evaluating complex skills, e.g., auditory attention, executive functions, and social skills, whereas the domains of reasoning, language, and memory were not affected in the cases and controls. CONCLUSIONS Asymptomatic sterile intra-amniotic inflammation in the mid-trimester of pregnancy, followed by a term birth, can still confer to the offspring a substantial risk for neurodevelopmental disorders in childhood. Early recognition and treatment of maternal immune activation in pregnancy may be a strategy for the prevention of subsequent neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Maria Teresa Gervasi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Elisa Cainelli
- Department of General Psychology, University of Padova, Padova, Italy
| | - Paola Veronese
- Maternal-Fetal Medicine Unit, Department of Women’s and Children’s Health, AOPD, Padua, Italy
| | - Maria Rosa Tran
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
9
|
Garcia-Flores V, Romero R, Peyvandipour A, Galaz J, Pusod E, Panaitescu B, Miller D, Xu Y, Tao L, Liu Z, Tarca AL, Pique-Regi R, Gomez-Lopez N. A single-cell atlas of murine reproductive tissues during preterm labor. Cell Rep 2023; 42:111846. [PMID: 36599348 PMCID: PMC9946687 DOI: 10.1016/j.celrep.2022.111846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 11/24/2022] [Indexed: 01/05/2023] Open
Abstract
Preterm birth, the leading cause of perinatal morbidity and mortality worldwide, frequently results from the syndrome of preterm labor. The best-established causal link to preterm labor is intra-amniotic infection, which involves premature activation of the parturition cascade in the reproductive tissues. Herein, we utilize single-cell RNA sequencing (scRNA-seq) to generate a single-cell atlas of the murine uterus, decidua, and cervix in a model of infection-induced preterm labor. We show that preterm labor affects the transcriptomic profiles of specific immune and non-immune cell subsets. Shared and tissue-specific gene expression signatures are identified among affected cells. Determination of intercellular communications implicates specific cell types in preterm labor-associated signaling pathways across tissues. In silico comparison of murine and human uterine cell-cell interactions reveals conserved signaling pathways implicated in labor. Thus, our scRNA-seq data provide insights into the preterm labor-driven cellular landscape and communications in reproductive tissues.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Detroit Medical Center, Detroit, MI 48201, USA.
| | - Azam Peyvandipour
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA,Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhenjie Liu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA.
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
10
|
Oh KJ, Romero R, Kim HJ, Lee J, Hong JS, Yoon BH. Preterm labor with intact membranes: a simple noninvasive method to identify patients at risk for intra-amniotic infection and/or inflammation. J Matern Fetal Neonatal Med 2022; 35:10514-10529. [PMID: 36229038 PMCID: PMC10544756 DOI: 10.1080/14767058.2022.2131388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 09/28/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To develop a noninvasive scoring system to identify patients at high risk for intra-amniotic infection and/or inflammation, which would reduce the need for amniocentesis. METHODS This prospective cohort study comprised patients admitted with preterm labor and intact membranes (20-34 weeks of gestation) who underwent a transabdominal amniocentesis and for whom concentrations of quantitative cervical fetal fibronectin and of maternal serum C-reactive protein (CRP) were determined. Intra-amniotic infection was defined as a positive amniotic fluid culture for microorganisms. Intra-amniotic inflammation was defined as an amniotic fluid matrix metalloproteinase-8 concentration >23 ng/mL. Multivariate logistic regression analysis was performed to identify intra-amniotic infection/inflammtion with noninvasive parameters that had a significant relationship with univariate analysis. With four parameters identified by multivariate analysis, we generated a noninvasive risk scoring system. RESULTS Of the study population consisting of 138 singleton pregnant women, (1) the overall rate of intra-amniotic infection/inflammation was 28.3% (39/138); (2) four parameters were used to develop a noninvasive risk scoring system [i.e. cervical fetal fibronectin concentration (score 0-2), maternal serum CRP concentration (score 0-2), cervical dilatation (score 0-2), and gestational age at presentation (score 0-1)]; the total score ranges from 0 to 7; 3) the area under the curve of the risk score was 0.96 (95% confidence interval (CI), 0.92-0.99), significantly higher than that of each predictor in the identification of intra-amniotic infection/inflammation (p < .001, for all); 4) the risk score with a cutoff of 4 had a sensitivity of 94.9% (37/39), a specificity of 90.9% (90/99), a positive predictive value of 80.4% (37/46), a negative predictive value of 97.8% (90/92), a positive likelihood ratio of 10.4 (95% CI, 5.6-19.5), and a negative likelihood ratio of 0.06 (95% CI, 0.15-0.22) in the identification of intra-amniotic infection/inflammation. CONCLUSIONS (1) The combination of four parameters (concentrations of cervical fetal fibronectin and maternal serum CRP, cervical dilatation, and gestational age) was independently associated with intra-amniotic infection and/or inflammation; and (2) the risk scoring system comprised of the combination of 4 noninvasive parameters was sensitive and specific to identify the patients at risk for intra-amniotic infection and/or inflammation.
Collapse
Affiliation(s)
- Kyung Joon Oh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Hyeon Ji Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - JoonHo Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Seok Hong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Motomura K, Romero R, Galaz J, Tao L, Garcia-Flores V, Xu Y, Done B, Arenas-Hernandez M, Miller D, Gutierrez-Contreras P, Farias-Jofre M, Aras S, Grossman LI, Tarca AL, Gomez-Lopez N. Fetal and maternal NLRP3 signaling is required for preterm labor and birth. JCI Insight 2022; 7:158238. [PMID: 35993366 PMCID: PMC9462488 DOI: 10.1172/jci.insight.158238] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pedro Gutierrez-Contreras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Siddhesh Aras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Lawrence I. Grossman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
12
|
Gomez-Lopez N, Galaz J, Miller D, Farias-Jofre M, Liu Z, Arenas-Hernandez M, Garcia-Flores V, Shaffer Z, Greenberg J, Theis KR, Romero R. The immunobiology of preterm labor and birth: intra-amniotic inflammation or breakdown of maternal-fetal homeostasis. Reproduction 2022; 164:R11-R45. [PMID: 35559791 PMCID: PMC9233101 DOI: 10.1530/rep-22-0046] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
In brief The syndrome of preterm labor comprises multiple established and novel etiologies. This review summarizes the distinct immune mechanisms implicated in preterm labor and birth and highlights potential strategies for its prevention. Abstract Preterm birth, the leading cause of neonatal morbidity and mortality worldwide, results from preterm labor, a syndrome that includes multiple etiologies. In this review, we have summarized the immune mechanisms implicated in intra-amniotic inflammation, the best-characterized cause of preterm labor and birth, as well as novel etiologies non-associated with intra-amniotic inflammation (i.e. formally known as idiopathic). While the intra-amniotic inflammatory responses driven by microbes (infection) or alarmins (sterile) have some overlap in the participating cellular and molecular processes, the distinct natures of these two conditions necessitate the implementation of specific approaches to prevent adverse pregnancy and neonatal outcomes. Intra-amniotic infection can be treated with the correct antibiotics, whereas sterile intra-amniotic inflammation could potentially be treated by administering a combination of anti-inflammatory drugs (e.g. betamethasone, inflammasome inhibitors, etc.). Recent evidence also supports the role of fetal T-cell activation as a newly described trigger for preterm labor and birth in a subset of cases diagnosed as idiopathic. Moreover, herein we also provide evidence of two maternally-driven immune mechanisms responsible for preterm births formerly considered to be idiopathic. First, the impairment of maternal Tregs can lead to preterm birth, likely due to the loss of immunosuppressive activity resulting in unleashed effector T-cell responses. Secondly, homeostatic macrophages were shown to be essential for maintaining pregnancy and promoting fetal development, and the adoptive transfer of homeostatic M2-polarized macrophages shows great promise for preventing inflammation-induced preterm birth. Collectively, in this review, we discuss the established and novel immune mechanisms responsible for preterm birth and highlight the potential targets for novel strategies aimed at preventing the multi-etiological syndrome of preterm labor leading to preterm birth.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zhenjie Liu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zachary Shaffer
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Jonathan Greenberg
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201, USA
- Detroit Medical Center, Detroit, Michigan, 48201, USA
| |
Collapse
|
13
|
Devvanshi H, Kachhwaha R, Manhswita A, Bhatnagar S, Kshetrapal P. Immunological Changes in Pregnancy and Prospects of Therapeutic Pla-Xosomes in Adverse Pregnancy Outcomes. Front Pharmacol 2022; 13:895254. [PMID: 35517798 PMCID: PMC9065684 DOI: 10.3389/fphar.2022.895254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stringent balance of the immune system is a key regulatory factor in defining successful implantation, fetal development, and timely parturition. Interference in these primary regulatory mechanisms, either at adolescence or prenatal state led to adverse pregnancy outcomes. Fertility restoration with the help of injectable gonadotrophins/progesterone, ovulation-inducing drugs, immunomodulatory drugs (corticosteroids), and reproductive surgeries provides inadequate responses, which manifest its own side effects. The development of a potential diagnostic biomarker and an effectual treatment for adverse pregnancy outcomes is a prerequisite to maternal and child health. Parent cell originated bi-layered-intraluminal nano-vesicles (30-150 nm) also known as exosomes are detected in all types of bodily fluids like blood, saliva, breast milk, urine, etc. Exosomes being the most biological residual structures with the least cytotoxicity are loaded with cargo in the form of RNAs (miRNAs), proteins (cytokines), hormones (estrogen, progesterone, etc.), cDNAs, and metabolites making them chief molecules of cell-cell communication. Their keen involvement in the regulation of biological processes has portrayed them as the power shots of cues to understand the disease's pathophysiology and progression. Recent studies have demonstrated the role of immunexosomes (immunomodulating exosomes) in maintaining unwavering immune homeostasis between the mother and developing fetus for a healthy pregnancy. Moreover, the concentration and size of the exosomes are extensively studied in adverse pregnancies like preeclampsia, gestational diabetes mellitus (GDM), and preterm premature rupture of membrane (pPROMs) as an early diagnostic marker, thus giving in-depth information about their pathophysiology. Exosomes have also been engineered physically as well as genetically to enhance their encapsulation efficiency and specificity in therapy for cancer and adverse pregnancies. Successful bench to bedside discoveries and interventions in cancer has motivated developmental biologists to investigate the role of immunexosomes and their active components. Our review summarizes the pre-clinical studies for the use of these power-shots as therapeutic agents. We envisage that these studies will pave the path for the use of immunexosomes in clinical settings for reproductive problems that arise due to immune perturbance in homeostasis either at adolescence or prenatal state.
Collapse
Affiliation(s)
- Himadri Devvanshi
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Rohit Kachhwaha
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Anima Manhswita
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Shinjini Bhatnagar
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Pallavi Kshetrapal
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
14
|
Aberšek N, Tsiartas P, Jonsson D, Grankvist A, Barman M, Hallingström M, Kacerovsky M, Jacobsson B. Calprotectin levels in amniotic fluid in relation to intra-amniotic inflammation and infection in women with preterm labor with intact membranes: A retrospective cohort study. Eur J Obstet Gynecol Reprod Biol 2022; 272:24-29. [PMID: 35278925 DOI: 10.1016/j.ejogrb.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/01/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the concentrations of calprotectin in amniotic fluid with respect to intra-amniotic inflammation and infection and to assess the presence or absence of bacteria in the amnio-chorionic niche with respect to presence or absence of intra-amniotic inflammation. STUDY DESIGN Seventy-nine women with singleton pregnancies and preterm labor with intact membranes (PTL) were included in the study. Amniotic fluid was collected at the time of admission by amniocentesis and calprotectin levels were analyzed from frozen/thawed samples using ELISA. Interleukin (IL)-6 concentration was measured by point-of-care test. Samples from amniotic fluid and the amnio-chorionic niche (space between amniotic and chorionic membranes) were microbiologically analyzed. Microbial invasion of the amniotic cavity (MIAC) was diagnosed based on a positive PCR result for Ureaplasma species, Mycoplasma hominis, 16S rRNA or positive culture. Intra-amniotic inflammation (IAI) was defined as amniotic fluid point-of-care IL-6 concentration ≥ 745 pg/mL. The cohort of included women was divided into 4 subgroups based on the presence or absence of IAI/MIAC; i) intra-amniotic infection, ii) sterile IAI, iii) intra-amniotic colonization and iv) neither MIAC nor IAI. RESULTS Women with intra-amniotic infection had a significantly higher intra-amniotic calprotectin concentration (median; 101.6 µg/mL) compared with women with sterile IAI (median; 9.2 µg/mL), women with intra-amniotic colonization (median; 2.6 µg/mL) and women with neither MIAC nor IAI (median 4.6 µg/mL) (p = 0.001). Moreover, significantly higher amniotic fluid calprotectin concentration was seen in women who delivered within 7 days (p = 0.003). A significant negative correlation was found between amniotic fluid calprotectin and gestational age at delivery (rho = 0.32, p = 0.003). Relatively more bacteria in the amnio-chorionic niche were found in the sterile IAI group compared with the other groups. CONCLUSIONS Calprotectin concentrations in amniotic fluid were significantly higher in the intra-amniotic infection group compared with the other groups. Moreover, the bacterial presence in the amnio-chorionic niche was higher in IAI group.
Collapse
Affiliation(s)
- Nina Aberšek
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Panagiotis Tsiartas
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Daniel Jonsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Grankvist
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Barman
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Maria Hallingström
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marian Kacerovsky
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Department of Obstetrics and Gynecology, Charles University in Prague, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Institute of Public Health, Oslo, Norway.
| |
Collapse
|
15
|
Gershater M, Romero R, Arenas-Hernandez M, Galaz J, Motomura K, Tao L, Xu Y, Miller D, Pique-Regi R, Martinez G, Liu Y, Jung E, Para R, Gomez-Lopez N. IL-22 Plays a Dual Role in the Amniotic Cavity: Tissue Injury and Host Defense against Microbes in Preterm Labor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1595-1615. [PMID: 35304419 PMCID: PMC8976826 DOI: 10.4049/jimmunol.2100439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
IL-22 is a multifaceted cytokine with both pro- and anti-inflammatory functions that is implicated in multiple pathologies. However, the role of IL-22 in maternal-fetal immunity in late gestation is poorly understood. In this study, we first showed that IL-22+ T cells coexpressing retinoic acid-related orphan receptor γt (ROR-γt) are enriched at the human maternal-fetal interface of women with preterm labor and birth, which was confirmed by in silico analysis of single-cell RNA sequencing data. T cell activation leading to preterm birth in mice was preceded by a surge in IL-22 in the maternal circulation and amniotic cavity; however, systemic administration of IL-22 in mice did not induce adverse perinatal outcomes. Next, using an ex vivo human system, we showed that IL-22 can cross from the choriodecidua to the intra-amniotic space, where its receptors (Il22ra1, Il10rb, and Il22ra2) are highly expressed by murine gestational and fetal tissues in late pregnancy. Importantly, amniotic fluid concentrations of IL-22 were elevated in women with sterile or microbial intra-amniotic inflammation, suggesting a dual role for this cytokine. The intra-amniotic administration of IL-22 alone shortened gestation and caused neonatal death in mice, with the latter outcome involving lung maturation and inflammation. IL-22 plays a role in host response by participating in the intra-amniotic inflammatory milieu preceding Ureaplasma parvum-induced preterm birth in mice, which was rescued by the deficiency of IL-22. Collectively, these data show that IL-22 alone is capable of causing fetal injury leading to neonatal death and can participate in host defense against microbial invasion of the amniotic cavity leading to preterm labor and birth.
Collapse
Affiliation(s)
- Meyer Gershater
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI; and
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Li Tao
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
| | - Gregorio Martinez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yesong Liu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Eunjung Jung
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Robert Para
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
16
|
Kacerovsky M, Stranik J, Matulova J, Chalupska M, Mls J, Faist T, Hornychova H, Kukla R, Bolehovska R, Bostik P, Jacobsson B, Musilova I. Clinical characteristics of colonization of the amniotic cavity in women with preterm prelabor rupture of membranes, a retrospective study. Sci Rep 2022; 12:5062. [PMID: 35332204 PMCID: PMC8948248 DOI: 10.1038/s41598-022-09042-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
To determine the main clinical characteristics of preterm prelabor rupture of membranes (PPROM) complicated by colonization of the amniotic cavity (microbial invasion of the amniotic cavity without intra-amniotic inflammation). A total of 302 women with PPROM were included. Transabdominal amniocentesis was performed and amniotic fluid was assessed. Based of microbial invasion of the amniotic cavity and intra-amniotic inflammation (interleukin-6 ≥ 3000 pg/mL), the women were divided into following groups: intra-amniotic infection, sterile intra-amniotic inflammation, colonization of the amniotic cavity, and negative amniotic fluid. Colonization was found in 11% (32/302) of the women. The most common bacteria identified in the amniotic fluid were Ureaplasma spp. with a lower burden than those with intra-amniotic infection (p = 0.03). The intensity of intra-amniotic inflammatory response measured by interleukin-6 was higher in women with colonization than in those with negative amniotic fluid (medians: 961 pg/mL vs. 616 pg/mL; p = 0.04). Women with colonization had higher rates of acute inflammatory placental lesions than those with negative amniotic fluid. In PPROM, colonization, caused mainly by microorganisms from the lower genital tract, might represent an early stage of microbial invasion of the amniotic cavity with a weak intra-amniotic inflammatory response.
Collapse
Affiliation(s)
- Marian Kacerovsky
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Jaroslav Stranik
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jana Matulova
- Department of Non-Medical Studies, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Martina Chalupska
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jan Mls
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Tomáš Faist
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Helena Hornychova
- Faculty of Medicine in Hradec Kralove, Fingerland's Institute of Pathology, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rudolf Kukla
- Faculty of Medicine in Hradec Kralove, Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Faculty of Medicine in Hradec Kralove, Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Pavel Bostik
- Faculty of Medicine in Hradec Kralove, Institute of Clinical Microbiology, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
17
|
Winters AD, Romero R, Greenberg JM, Galaz J, Shaffer ZD, Garcia-Flores V, Kracht DJ, Gomez-Lopez N, Theis KR. Does the Amniotic Fluid of Mice Contain a Viable Microbiota? Front Immunol 2022; 13:820366. [PMID: 35296083 PMCID: PMC8920496 DOI: 10.3389/fimmu.2022.820366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The existence of an amniotic fluid microbiota (i.e., a viable microbial community) in mammals is controversial. Its existence would require a fundamental reconsideration of fetal in utero exposure to and colonization by microorganisms and the role of intra-amniotic microorganisms in fetal immune development as well as in pregnancy outcomes. In this study, we determined whether the amniotic fluid of mice harbors a microbiota in late gestation. The profiles of the amniotic fluids of pups located proximally or distally to the cervix were characterized through quantitative real-time PCR, 16S rRNA gene sequencing, and culture (N = 21 dams). These profiles were compared to those of technical controls for bacterial and DNA contamination. The load of 16S rRNA genes in the amniotic fluid exceeded that in controls. Additionally, the 16S rRNA gene profiles of the amniotic fluid differed from those of controls, with Corynebacterium tuberculostearicum being differentially more abundant in amniotic fluid profiles; however, this bacterium was not cultured from amniotic fluid. Of the 42 attempted bacterial cultures of amniotic fluids, only one yielded bacterial growth – Lactobacillus murinus. The 16S rRNA gene of this common murine-associated bacterium was not detected in any amniotic fluid sample, suggesting it did not originate from the amniotic fluid. No differences in the 16S rRNA gene load, 16S rRNA gene profile, or bacterial culture were observed between the amniotic fluids located Proximally and distally to the cervix. Collectively, these data indicate that, although there is a modest DNA signal of bacteria in murine amniotic fluid, there is no evidence that this signal represents a viable microbiota. While this means that amniotic fluid is not a source of microorganisms for in utero colonization in mice, it may nevertheless contribute to fetal exposure to microbial components. The developmental consequences of this observation warrant further investigation.
Collapse
Affiliation(s)
- Andrew D. Winters
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Detroit Medical Center, Detroit, MI, United States
| | - Jonathan M. Greenberg
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zachary D. Shaffer
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- MD/PhD Combined Degree Program, Wayne State University School of Medicine, Detroit, MI, United States
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - David J. Kracht
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Kevin R. Theis, ; Nardhy Gomez-Lopez,
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Kevin R. Theis, ; Nardhy Gomez-Lopez,
| |
Collapse
|
18
|
Jung E, Romero R, Yoon BH, Theis KR, Gudicha DW, Tarca AL, Diaz-Primera R, Winters AD, Gomez-Lopez N, Yeo L, Hsu CD. Bacteria in the amniotic fluid without inflammation: early colonization vs. contamination. J Perinat Med 2021; 49:1103-1121. [PMID: 34229367 PMCID: PMC8570988 DOI: 10.1515/jpm-2021-0191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Intra-amniotic infection, defined by the presence of microorganisms in the amniotic cavity, is often accompanied by intra-amniotic inflammation. Occasionally, laboratories report the growth of bacteria or the presence of microbial nucleic acids in amniotic fluid in the absence of intra-amniotic inflammation. This study was conducted to determine the clinical significance of the presence of bacteria in amniotic fluid samples in the absence of intra-amniotic inflammation. METHODS A retrospective cross-sectional study included 360 patients with preterm labor and intact membranes who underwent transabdominal amniocentesis for evaluation of the microbial state of the amniotic cavity as well as intra-amniotic inflammation. Cultivation techniques were used to isolate microorganisms, and broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) was utilized to detect the nucleic acids of bacteria, viruses, and fungi. RESULTS Patients whose amniotic fluid samples evinced microorganisms but did not indicate inflammation had a similar perinatal outcome to those without microorganisms or inflammation [amniocentesis-to-delivery interval (p=0.31), spontaneous preterm birth before 34 weeks (p=0.83), acute placental inflammatory lesions (p=1), and composite neonatal morbidity (p=0.8)]. CONCLUSIONS The isolation of microorganisms from a sample of amniotic fluid in the absence of intra-amniotic inflammation is indicative of a benign condition, which most likely represents contamination of the specimen during the collection procedure or laboratory processing rather than early colonization or infection.
Collapse
Affiliation(s)
- Eunjung Jung
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, University of Michigan Health System, Ann Arbor, Michigan, USA,Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA,Detroit Medical Center, Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Bo Hyun Yoon
- BioMedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kevin R. Theis
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dereje W. Gudicha
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Computer Science, College of Engineering, Wayne State University, Detroit, Michigan, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Andrew D. Winters
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
19
|
Šket T, Ramuta TŽ, Starčič Erjavec M, Kreft ME. The Role of Innate Immune System in the Human Amniotic Membrane and Human Amniotic Fluid in Protection Against Intra-Amniotic Infections and Inflammation. Front Immunol 2021; 12:735324. [PMID: 34745106 PMCID: PMC8566738 DOI: 10.3389/fimmu.2021.735324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Intra-amniotic infection and inflammation (IAI) affect fetal development and are highly associated with preterm labor and premature rupture of membranes, which often lead to adverse neonatal outcomes. Human amniotic membrane (hAM), the inner part of the amnio-chorionic membrane, protects the embryo/fetus from environmental dangers, including microbial infection. However, weakened amnio-chorionic membrane may be breached or pathogens may enter through a different route, leading to IAI. The hAM and human amniotic fluid (hAF) respond by activation of all components of the innate immune system. This includes changes in 1) hAM structure, 2) presence of immune cells, 3) pattern recognition receptors, 4) cytokines, 5) antimicrobial peptides, 6) lipid derivatives, and 7) complement system. Herein we provide a comprehensive and integrative review of the current understanding of the innate immune response in the hAM and hAF, which will aid in design of novel studies that may lead to breakthroughs in how we perceive the IAI.
Collapse
Affiliation(s)
- Tina Šket
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
Choltus H, Lavergne M, De Sousa Do Outeiro C, Coste K, Belville C, Blanchon L, Sapin V. Pathophysiological Implication of Pattern Recognition Receptors in Fetal Membranes Rupture: RAGE and NLRP Inflammasome. Biomedicines 2021; 9:biomedicines9091123. [PMID: 34572309 PMCID: PMC8466405 DOI: 10.3390/biomedicines9091123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called “alarmins” or “damage-associated molecular patterns” (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome.
Collapse
Affiliation(s)
- Helena Choltus
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Marilyne Lavergne
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Coraline De Sousa Do Outeiro
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Karen Coste
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Corinne Belville
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Loïc Blanchon
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Vincent Sapin
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
- CHU de Clermont-Ferrand, Biochemistry and Molecular Genetic Department, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-178-174
| |
Collapse
|
21
|
Ramuta TŽ, Šket T, Starčič Erjavec M, Kreft ME. Antimicrobial Activity of Human Fetal Membranes: From Biological Function to Clinical Use. Front Bioeng Biotechnol 2021; 9:691522. [PMID: 34136474 PMCID: PMC8201995 DOI: 10.3389/fbioe.2021.691522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The fetal membranes provide a supportive environment for the growing embryo and later fetus. Due to their versatile properties, the use of fetal membranes in tissue engineering and regenerative medicine is increasing in recent years. Moreover, as microbial infections present a crucial complication in various treatments, their antimicrobial properties are gaining more attention. The antimicrobial peptides (AMPs) are secreted by cells from various perinatal derivatives, including human amnio-chorionic membrane (hACM), human amniotic membrane (hAM), and human chorionic membrane (hCM). By exhibiting antibacterial, antifungal, antiviral, and antiprotozoal activities and immunomodulatory activities, they contribute to ensuring a healthy pregnancy and preventing complications. Several research groups investigated the antimicrobial properties of hACM, hAM, and hCM and their derivatives. These studies advanced basic knowledge of antimicrobial properties of perinatal derivatives and also provided an important insight into the potential of utilizing their antimicrobial properties in a clinical setting. After surveying the studies presenting assays on antimicrobial activity of hACM, hAM, and hCM, we identified several considerations to be taken into account when planning future studies and eventual translation of fetal membranes and their derivatives as antimicrobial agents from bench to bedside. Namely, (1) the standardization of hACM, hAM, and hCM preparation to guarantee rigorous antimicrobial activity, (2) standardization of the antimicrobial susceptibility testing methods to enable comparison of results between various studies, (3) investigation of the antimicrobial properties of fetal membranes and their derivatives in the in vivo setting, and (4) designation of donor criteria that enable the optimal donor selection. By taking these considerations into account, future studies will provide crucial information that will enable reaching the optimal treatment outcomes using the fetal membranes and their derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Šket
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
Soucek O, Kacerovsky M, Stranik J, Musilova I, Pliskova L, Bolehovska R, Matulova J, Andrys C. Macrophage inflammatory protein-1α in amniotic and cervical fluids in spontaneous preterm labor with intact membranes with respect to intra-amniotic inflammation. J Matern Fetal Neonatal Med 2021; 35:6770-6778. [PMID: 33969779 DOI: 10.1080/14767058.2021.1922381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Macrophage inflammatory protein 1α is a chemokine produced by various immune, epithelial, mesothelial, and fibroblast cells after exposure to bacterial lipopolysaccharide or pro-inflammatory molecules. The primary aim of this study was to determine MIP-1α concentrations in amniotic and cervical fluids from pregnancy with spontaneous preterm labor with intact membranes (PTL) with respect to the presence of intra-amniotic infection (both microbial invasion of the amniotic cavity and intra-amniotic inflammation) and sterile intra-amniotic inflammation (intra-amniotic inflammation alone). The secondary aim was to assess the diagnostic indices of MIP-1α in predicting intra-amniotic infection. MATERIALS AND METHODS Seventy-four women with PTL were included in this study. Paired amniotic and cervical fluid samples were obtained using transabdominal amniocentesis and a Dacron polyester swab, respectively. Microbial invasion of the amniotic cavity was diagnosed based on a combination of culture and molecular biology methods. The concentration of IL-6 in the amniotic and cervical fluids was measured using an automated electrochemiluminescence immunoassay method. Intra-amniotic inflammation was defined as an amniotic fluid IL-6 concentration of ≥3000 pg/mL. The MIP-1α concentrations in the samples were assessed using an enzyme-linked immunosorbent assay. RESULTS A difference in amniotic fluid MIP-1α was observed among women with intra-amniotic infection, sterile intra-amniotic inflammation, and negative amniotic fluid (infection: median 1779.0 pg/mL; sterile, median 102.7 pg/mL; negative, median 19.9 pg/mL; p < .0001). No difference in the concentrations of MIP-1α was identified in cervical fluid after adjustment for gestational age at sampling (infection: median 77.7 pg/mL, sterile: median 152.7 pg/mL, negative: median 18.0 pg/mL; p = .30). The presence of intra-amniotic infection was associated with elevated MIP-1α concentrations in amniotic fluid (presence: 1779.0 pg/mL vs. absence: 26.3 pg/mL, p < .0001, area under receiver operating characteristic curve = 0.87). CONCLUSIONS In PTL pregnancies with the presence of intra-amniotic infection, the concentration of MIP-1α is elevated in amniotic fluid but not in cervical fluid. Amniotic fluid MIP-1α may provide a useful marker for intra-amniotic infection in women with PTL.
Collapse
Affiliation(s)
- Ondrej Soucek
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jaroslav Stranik
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jana Matulova
- Department of non-medical studies, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
23
|
RNA Sequencing Reveals Distinct Immune Responses in the Chorioamniotic Membranes of Women with Preterm Labor and Microbial or Sterile Intra-amniotic Inflammation. Infect Immun 2021; 89:IAI.00819-20. [PMID: 33558326 DOI: 10.1128/iai.00819-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Preterm labor precedes premature birth, the leading cause of neonatal morbidity and mortality worldwide. Preterm labor can occur in the context of either microbe-associated intra-amniotic inflammation (i.e., intra-amniotic infection) or intra-amniotic inflammation in the absence of detectable microorganisms (i.e., sterile intra-amniotic inflammation). Both intra-amniotic infection and sterile intra-amniotic inflammation trigger local immune responses that have deleterious effects on fetal life. Yet, the extent of such immune responses in the fetal tissues surrounding the amniotic cavity (i.e., the chorioamniotic membranes) is poorly understood. By using RNA sequencing (RNA seq) as a discovery approach, we found that there were significant transcriptomic differences involving host response to pathogens in the chorioamniotic membranes of women with intra-amniotic infection compared to those from women without inflammation. In addition, the sterile or microbial nature of intra-amniotic inflammation was associated with distinct transcriptomic profiles in the chorioamniotic membranes. Moreover, the immune response in the chorioamniotic membranes of women with sterile intra-amniotic inflammation was milder in nature than that induced by microbes and involved the upregulation of alarmins and inflammasome-related molecules. Lastly, the presence of maternal and fetal inflammatory responses in the placenta was associated with the upregulation of immune processes in the chorioamniotic membranes. Collectively, these findings provide insight into the immune responses against microbes or alarmins that take place in the fetal tissues surrounding the amniotic cavity, shedding light on the immunobiology of preterm labor and birth.
Collapse
|
24
|
Theis KR, Florova V, Romero R, Borisov AB, Winters AD, Galaz J, Gomez-Lopez N. Sneathia: an emerging pathogen in female reproductive disease and adverse perinatal outcomes. Crit Rev Microbiol 2021; 47:517-542. [PMID: 33823747 DOI: 10.1080/1040841x.2021.1905606] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sneathia is an emerging pathogen implicated in adverse reproductive and perinatal outcomes. Although scarce, recent data suggest that vaginally residing Sneathia becomes pathogenic following its ascension into the upper urogenital tract, amniotic fluid, placenta, and foetal membranes. The role of Sneathia in women's health and disease is generally underappreciated because the cultivation of these bacteria is limited by their complex nutritional requirements, slow growth patterns, and anaerobic nature. For this reason, molecular methods are typically required for the detection and differential diagnosis of Sneathia infections. Here, we review the laboratory methods used for the diagnosis of Sneathia infections, the molecular mechanisms underlying its virulence, and its sensitivity to antibiotics. We further review the evidence of Sneathia's contributions to the pathogenesis of bacterial vaginosis, chorioamnionitis, preterm prelabour rupture of membranes, spontaneous preterm labour, stillbirth, maternal and neonatal sepsis, HIV infection, and cervical cancer. Collectively, growing evidence indicates that Sneathia represents an important yet underappreciated pathogen affecting the development and progression of several adverse clinical conditions diagnosed in pregnant women and their neonates, as well as in non-pregnant women.
Collapse
Affiliation(s)
- Kevin R Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Violetta Florova
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Andrei B Borisov
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrew D Winters
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
25
|
Romero R, Pacora P, Kusanovic JP, Jung E, Panaitescu B, Maymon E, Erez O, Berman S, Bryant DR, Gomez-Lopez N, Theis KR, Bhatti G, Kim CJ, Yoon BH, Hassan SS, Hsu CD, Yeo L, Diaz-Primera R, Marin-Concha J, Lannaman K, Alhousseini A, Gomez-Roberts H, Varrey A, Garcia-Sanchez A, Gervasi MT. Clinical chorioamnionitis at term X: microbiology, clinical signs, placental pathology, and neonatal bacteremia - implications for clinical care. J Perinat Med 2021; 49:275-298. [PMID: 33544519 PMCID: PMC8324070 DOI: 10.1515/jpm-2020-0297] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Clinical chorioamnionitis at term is considered the most common infection-related diagnosis in labor and delivery units worldwide. The syndrome affects 5-12% of all term pregnancies and is a leading cause of maternal morbidity and mortality as well as neonatal death and sepsis. The objectives of this study were to determine the (1) amniotic fluid microbiology using cultivation and molecular microbiologic techniques; (2) diagnostic accuracy of the clinical criteria used to identify patients with intra-amniotic infection; (3) relationship between acute inflammatory lesions of the placenta (maternal and fetal inflammatory responses) and amniotic fluid microbiology and inflammatory markers; and (4) frequency of neonatal bacteremia. METHODS This retrospective cross-sectional study included 43 women with the diagnosis of clinical chorioamnionitis at term. The presence of microorganisms in the amniotic cavity was determined through the analysis of amniotic fluid samples by cultivation for aerobes, anaerobes, and genital mycoplasmas. A broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry was also used to detect bacteria, select viruses, and fungi. Intra-amniotic inflammation was defined as an elevated amniotic fluid interleukin-6 (IL-6) concentration ≥2.6 ng/mL. RESULTS (1) Intra-amniotic infection (defined as the combination of microorganisms detected in amniotic fluid and an elevated IL-6 concentration) was present in 63% (27/43) of cases; (2) the most common microorganisms found in the amniotic fluid samples were Ureaplasma species, followed by Gardnerella vaginalis; (3) sterile intra-amniotic inflammation (elevated IL-6 in amniotic fluid but without detectable microorganisms) was present in 5% (2/43) of cases; (4) 26% of patients with the diagnosis of clinical chorioamnionitis had no evidence of intra-amniotic infection or intra-amniotic inflammation; (5) intra-amniotic infection was more common when the membranes were ruptured than when they were intact (78% [21/27] vs. 38% [6/16]; p=0.01); (6) the traditional criteria for the diagnosis of clinical chorioamnionitis had poor diagnostic performance in identifying proven intra-amniotic infection (overall accuracy, 40-58%); (7) neonatal bacteremia was diagnosed in 4.9% (2/41) of cases; and (8) a fetal inflammatory response defined as the presence of severe acute funisitis was observed in 33% (9/27) of cases. CONCLUSIONS Clinical chorioamnionitis at term, a syndrome that can result from intra-amniotic infection, was diagnosed in approximately 63% of cases and sterile intra-amniotic inflammation in 5% of cases. However, a substantial number of patients had no evidence of intra-amniotic infection or intra-amniotic inflammation. Evidence of the fetal inflammatory response syndrome was frequently present, but microorganisms were detected in only 4.9% of cases based on cultures of aerobic and anaerobic bacteria in neonatal blood.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eli Maymon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Susan Berman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - David R. Bryant
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Bo Hyun Yoon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Office of Women’s Health, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julio Marin-Concha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kia Lannaman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ali Alhousseini
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Hunter Gomez-Roberts
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aneesha Varrey
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Angel Garcia-Sanchez
- Department of Obstetrics, Gynecology, and Pediatrics, University of Salamanca, Salamanca, Spain
| | - Maria Teresa Gervasi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| |
Collapse
|
26
|
Human amniotic membrane as a delivery vehicle for stem cell-based therapies. Life Sci 2021; 272:119157. [PMID: 33524418 DOI: 10.1016/j.lfs.2021.119157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Stem cell-based therapy is known as a regenerative approach for a variety of diseases and tissue injuries. These cells exert their therapeutic effects through paracrine secretions namely extracellular vesicles. To achieve higher therapeutic potential, a variety of delivery routes have been tested in clinical and preclinical studies. Direct cell injection, intra-venous administration, and intra-arterial infusion are widely used methods of stem cells delivery but these methods are associated with several complications. As one of the most popular biological delivery systems, amniotic membrane has been widely utilized to support cell proliferation and differentiation therefore facilitating tissue regeneration without endangering the stem cells' viability. It is composed of several extracellular matrix components and growth factors. Due to these characteristics, amniotic membrane can mimic the stem cell's niche and can be an ideal carrier for stem cell transplantation. Here, we provide an overview of the recent progress, challenges, and future perspectives in the use of amniotic membrane as a delivery platform for stem cells.
Collapse
|
27
|
Cappelletti M, Doll JR, Stankiewicz TE, Lawson MJ, Sauer V, Wen B, Kalinichenko VV, Sun X, Tilburgs T, Divanovic S. Maternal regulation of inflammatory cues is required for induction of preterm birth. JCI Insight 2020; 5:138812. [PMID: 33208552 PMCID: PMC7710297 DOI: 10.1172/jci.insight.138812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Infection-driven inflammation in pregnancy is a major cause of spontaneous preterm birth (PTB). Both systemic infection and bacterial ascension through the vagina/cervix to the amniotic cavity are strongly associated with PTB. However, the contribution of maternal or fetal inflammatory responses in the context of systemic or localized models of infection-driven PTB is not well defined. Here, using intraperitoneal or intraamniotic LPS challenge, we examined the necessity and sufficiency of maternal and fetal Toll-like receptor (TLR) 4 signaling in induction of inflammatory vigor and PTB. Both systemic and local LPS challenge promoted induction of inflammatory pathways in uteroplacental tissues and induced PTB. Restriction of TLR4 expression to the maternal compartment was sufficient for induction of LPS-driven PTB in either systemic or intraamniotic challenge models. In contrast, restriction of TLR4 expression to the fetal compartment failed to induce LPS-driven PTB. Vav1-Cre-mediated genetic deletion of TLR4 suggested a critical role for maternal immune cells in inflammation-driven PTB. Further, passive transfer of WT in vitro-derived macrophages and dendritic cells to TLR4-null gravid females was sufficient to induce an inflammatory response and drive PTB. Cumulatively, these findings highlight the critical role for maternal regulation of inflammatory cues in induction of inflammation-driven parturition.
Collapse
Affiliation(s)
- Monica Cappelletti
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jessica R. Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Traci E. Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew J. Lawson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Vivien Sauer
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bingqiang Wen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Lung Regenerative Medicine
| | - Vladimir V. Kalinichenko
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Lung Regenerative Medicine
| | | | - Tamara Tilburgs
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
28
|
Di Paola M, Seravalli V, Paccosi S, Linari C, Parenti A, De Filippo C, Tanturli M, Vitali F, Torcia MG, Di Tommaso M. Identification of Vaginal Microbial Communities Associated with Extreme Cervical Shortening in Pregnant Women. J Clin Med 2020; 9:jcm9113621. [PMID: 33182750 PMCID: PMC7698214 DOI: 10.3390/jcm9113621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022] Open
Abstract
The vaginal microbiota plays a critical role in pregnancy. Bacteria from Lactobacillus spp. are thought to maintain immune homeostasis and modulate the inflammatory responses against pathogens implicated in cervical shortening, one of the risk factors for spontaneous preterm birth. We studied vaginal microbiota in 46 pregnant women of predominantly Caucasian ethnicity diagnosed with short cervix (<25 mm), and identified microbial communities associated with extreme cervical shortening (≤10 mm). Vaginal microbiota was defined by 16S rRNA gene sequencing and clustered into community state types (CSTs), based on dominance or depletion of Lactobacillus spp. No correlation between CSTs distribution and maternal age or gestational age was revealed. CST-IV, dominated by aerobic and anaerobic bacteria different than Lactobacilli, was associated with extreme cervical shortening (odds ratio (OR) = 15.0, 95% confidence interval (CI) = 1.56–14.21; p = 0.019). CST-III (L. iners-dominated) was also associated with extreme cervical shortening (OR = 6.4, 95% CI = 1.32–31.03; p = 0.02). Gestational diabetes mellitus (GDM) was diagnosed in 10/46 women. Bacterial richness was significantly higher in women experiencing this metabolic disorder, but no association with cervical shortening was revealed by statistical analysis. Our study confirms that Lactobacillus-depleted microbiota is significantly associated with an extremely short cervix in women of predominantly Caucasian ethnicity, and also suggests an association between L. iners-dominated microbiota (CST III) and cervical shortening.
Collapse
Affiliation(s)
- Monica Di Paola
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy;
| | - Viola Seravalli
- Department of Health Sciences, Division of Obstetrics & Gynecology, University of Florence, 50139 Florence, Italy; (V.S.); (C.L.); (M.D.T.); (S.P.); (A.P.)
| | - Sara Paccosi
- Department of Health Sciences, Division of Obstetrics & Gynecology, University of Florence, 50139 Florence, Italy; (V.S.); (C.L.); (M.D.T.); (S.P.); (A.P.)
| | - Carlotta Linari
- Department of Health Sciences, Division of Obstetrics & Gynecology, University of Florence, 50139 Florence, Italy; (V.S.); (C.L.); (M.D.T.); (S.P.); (A.P.)
| | - Astrid Parenti
- Department of Health Sciences, Division of Obstetrics & Gynecology, University of Florence, 50139 Florence, Italy; (V.S.); (C.L.); (M.D.T.); (S.P.); (A.P.)
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (C.D.F.); (F.V.)
| | - Michele Tanturli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy;
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (C.D.F.); (F.V.)
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy;
- Correspondence:
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Division of Obstetrics & Gynecology, University of Florence, 50139 Florence, Italy; (V.S.); (C.L.); (M.D.T.); (S.P.); (A.P.)
| |
Collapse
|
29
|
Gomez-Lopez N, Romero R, Varrey A, Leng Y, Miller D, Done B, Xu Y, Bhatti G, Motomura K, Gershater M, Pique-Regi R, Tarca AL. RNA Sequencing Reveals Diverse Functions of Amniotic Fluid Neutrophils and Monocytes/Macrophages in Intra-Amniotic Infection. J Innate Immun 2020; 13:63-82. [PMID: 33152737 DOI: 10.1159/000509718] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Intra-amniotic infection, the invasion of microbes into the amniotic cavity resulting in inflammation, is a clinical condition that can lead to adverse pregnancy outcomes for the mother and fetus as well as severe long-term neonatal morbidities. Despite much research focused on the consequences of intra-amniotic infection, there remains little knowledge about the innate immune cells that respond to invading microbes. We performed RNA-seq of sorted amniotic fluid neutrophils and monocytes/macrophages from women with intra-amniotic infection to determine the transcriptomic differences between these innate immune cells. Further, we sought to identify specific transcriptomic pathways that were significantly altered by the maternal or fetal origin of amniotic fluid neutrophils and monocytes/macrophages, the presence of a severe fetal inflammatory response, and pregnancy outcome (i.e., preterm or term delivery). We show that significant transcriptomic differences exist between amniotic fluid neutrophils and monocytes/macrophages from women with intra-amniotic infection, indicating the distinct roles these cells play. The transcriptome of amniotic fluid immune cells varies based on their maternal or fetal origin, and the significant transcriptomic differences between fetal and maternal monocytes/macrophages imply that those of fetal origin exhibit impaired functions. Notably, transcriptomic changes in amniotic fluid monocytes/macrophages suggest that these immune cells collaborate with neutrophils in the trafficking of fetal leukocytes throughout the umbilical cord (i.e., funisitis). Finally, amniotic fluid neutrophils and monocytes/macrophages from preterm deliveries display enhanced transcriptional activity compared to those from term deliveries, highlighting the protective role of these cells during this vulnerable period. Collectively, these findings demonstrate the underlying complexity of local innate immune responses in women with intra-amniotic infection and provide new insights into the functions of neutrophils and monocytes/macrophages in the amniotic cavity.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA, .,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA, .,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA,
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.,Detroit Medical Center, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Aneesha Varrey
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
30
|
Galaz J, Romero R, Xu Y, Miller D, Levenson D, Para R, Varrey A, Hsu R, Tong A, Hassan SS, Hsu CD, Gomez-Lopez N. Cellular immune responses in amniotic fluid of women with a sonographic short cervix. J Perinat Med 2020; 48:665-676. [PMID: 32716907 PMCID: PMC8272936 DOI: 10.1515/jpm-2020-0037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/27/2020] [Indexed: 11/15/2022]
Abstract
Objectives A sonographic short cervix is one of the strongest predictors of preterm delivery. However, the cellular immune composition of amniotic fluid in women with a short cervix has not yet been described. Herein, we determined cellular and soluble immune responses in amniotic fluid from pregnant women with a mid-trimester asymptomatic short cervix. Methods Amniotic fluid samples (n=77) were collected from asymptomatic women with a cervical length between 15 and 25 mm (n=36, short cervix) or ≤15 mm (n=41, severely short cervix) diagnosed by ultrasound. Flow cytometry and multiplex measurement of cytokines/chemokines were performed. Results (1) The cellular immune composition of amniotic fluid did not differ between women with a severely short cervix (≤15 mm) and those with a short cervix 15-25 mm; (2) amniotic fluid concentrations of multiple cytokines/chemokines were higher in women with a severely short cervix (≤15 mm) than in those with a short cervix 15-25 mm; (3) the cellular immune composition of amniotic fluid did not differ between women with a severely short cervix (≤15 mm) who ultimately underwent preterm delivery and those who delivered at term; and (4) amniotic fluid concentrations of IL-2, but not other immune mediators, were increased in women with a severely short cervix (≤15 mm) who ultimately delivered preterm compared to those who delivered at term. Conclusions Women with a severely short cervix (≤15 mm) have increased concentrations of pro-inflammatory mediators in the amniotic cavity; yet, these do not translate to changes in the cellular immune response.
Collapse
Affiliation(s)
- Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dustyn Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aneesha Varrey
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Richard Hsu
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Anna Tong
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S. Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Immunology, Microbiology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
31
|
Spacek R, Musilova I, Andrys C, Soucek O, Burckova H, Pavlicek J, Pliskova L, Bolehovska R, Kacerovsky M. Extracellular granzyme A in amniotic fluid is elevated in the presence of sterile intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2020; 35:3244-3253. [PMID: 32912008 DOI: 10.1080/14767058.2020.1817895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION To determine the levels of granzyme A in amniotic fluid in pregnancies complicated by preterm prelabor rupture of membranes (PPROM), based on the presence of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). METHODS OF STUDY A total of 166 women with singleton pregnancies complicated by PPROM were included. Amniocentesis was performed at the time of admission and assessments of MIAC (using both cultivation and non-cultivation techniques) and IAI (interleukin-6 in amniotic fluid) were performed on all subjects. Based on the presence/absence of MIAC and IAI, the women were further divided into the following subgroups: intra-amniotic infection, sterile IAI, colonization, and absence of both MIAC and IAI. Amniotic fluid granzyme A levels were assessed using ELISA. RESULTS Women with MIAC had lower levels of granzyme A in the amniotic fluid than women without this condition (with MIAC: median 15.9 pg/mL vs. without MIAC: median 19.9 pg/mL, p = .03). Women with sterile IAI had higher amniotic fluid granzyme A levels than women with intra-amniotic infection, colonization and women with the absence of either MIAC or IAI (intra-amniotic infection: median 15.6 pg/mL; sterile IAI: median 31.8 pg/mL; colonization: median 16.9 pg/mL; absence of both MIAC and IAI: median 18.8 pg/mL; p = .02). CONCLUSIONS The presence of sterile IAI was associated with elevated levels of granzyme A in amniotic fluid.
Collapse
Affiliation(s)
- Richard Spacek
- Department of Obstetrics and Gynecology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soucek
- Department of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Hana Burckova
- Department of Neonatology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jan Pavlicek
- Department of Pediatrics and Prenatal Cardiology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Lenka Pliskova
- Faculty of Medicine, Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Faculty of Medicine, Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
32
|
Kacerovsky M, Holeckova M, Stepan M, Gregor M, Vescicik P, Lesko D, Burckova H, Pliskova L, Bolehovska R, Andrys C, Jacobsson B, Musilova I. Amniotic fluid glucose level in PPROM pregnancies: a glance at the old friend. J Matern Fetal Neonatal Med 2020; 35:2247-2259. [PMID: 32580603 DOI: 10.1080/14767058.2020.1783232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: To determine the amniotic fluid glucose levels in pregnancies complicated by preterm prelabor rupture of membranes (PPROM) based on the presence of microbial invasion of the amniotic cavity and/or intra-amniotic inflammation.Methods of Study: A total of 142 women with singleton pregnancies complicated by PPROM between gestational ages 24 + 0 and 36 + 6 weeks were included. Amniocentesis was performed at the time of admission. The assessments of microbial invasion of the amniotic cavity (using both cultivation and non-cultivation techniques) and intra-amniotic inflammation (amniotic fluid interleukin-6 levels ≥ 3000 pg/mL) were performed on all the women. Based on the presence of microbial invasion of the amniotic cavity and/or intra-amniotic inflammation, the women were further categorized into the subgroups: (i) intra-amniotic infection (the presence of both microbial invasion of the amniotic cavity and intra-amniotic inflammation); (ii) sterile intra-amniotic inflammation (the presence of intra-amniotic inflammation without microbial invasion of the amniotic cavity); (iii) colonization (the presence of microbial invasion of the amniotic cavity without intra-amniotic inflammation); and (iv) negative amniotic fluid (the absence of either microbial invasion of the amniotic cavity or intra-amniotic inflammation). Amniotic fluid glucose levels were assessed using enzymatic reference method with hexokinase.Results: There was a difference in the amniotic fluid glucose levels among the women with intra-amniotic infection, sterile intra-amniotic inflammation, colonization, and those with negative amniotic fluid (p < .0001). No difference was found in the amniotic fluid glucose levels between women with intra-amniotic infection and those with sterile intra-amniotic inflammation [infection: median 11.6 mg/dL (0.7 mmol/L) vs. sterile: median 6.3 mg/dL (0.4 mmol/L); p = .41] and between women with colonization and negative amniotic fluid [colonization: median 21.6 mg/dL (1.2 mmol/L) vs. negative: median 23.4 mg/dL (1.3 mmol/L; p = .67]. Women with intra-amniotic infection and sterile intra-amniotic inflammation had lower amniotic fluid glucose levels than women with colonization and with negative amniotic fluid in crude analysis as well as after adjustment for gestational age at sampling. Amniotic fluid glucose level of 10 mg/dL (0.56 mmol/L) was the optimal concentration for the identification of intra-amniotic inflammation in women with PPROM.Conclusions: The presence of intra-amniotic inflammation was associated with lower amniotic fluid glucose levels in singleton pregnancies complicated with PPROM. An amniotic fluid glucose level of 10 mg/dL (0.56 mmol/L) was the optimal concentration for the identification of intra-amniotic inflammation in PPROM pregnancies. In the absence of better amniotic fluid markers, amniotic glucose could be used as a marker of intra-amniotic inflammation, with very good specificity in PPROM pregnancies.
Collapse
Affiliation(s)
- Marian Kacerovsky
- The Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Magdalena Holeckova
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Martin Stepan
- The Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Miroslav Gregor
- The Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Peter Vescicik
- The Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Daniel Lesko
- The Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Hana Burckova
- Department of Neonatology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Ivana Musilova
- The Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
33
|
Maternal and fetal T cells in term pregnancy and preterm labor. Cell Mol Immunol 2020; 17:693-704. [PMID: 32467619 DOI: 10.1038/s41423-020-0471-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Pregnancy is a state of immunological balance during which the mother and the developing fetus must tolerate each other while maintaining sufficient immunocompetence to ward off potential threats. The site of closest contact between the mother and fetus is the decidua, which represents the maternal-fetal interface. Many of the immune cell subsets present at the maternal-fetal interface have been well described; however, the importance of the maternal T cells in this compartment during late gestation and its complications, such as preterm labor and birth, has only recently been established. Moreover, pioneer and recent studies have indicated that fetal T cells are activated in different subsets of preterm labor and may elicit distinct inflammatory responses in the amniotic cavity, leading to preterm birth. In this review, we describe the established and proposed roles for maternal T cells at the maternal-fetal interface in normal term parturition, as well as the demonstrated contributions of such cells to the pathological process of preterm labor and birth. We also summarize the current knowledge of and proposed roles for fetal T cells in the pathophysiology of the preterm labor syndrome. It is our hope that this review provides a solid conceptual framework highlighting the importance of maternal and fetal T cells in late gestation and catalyzes new research questions that can further scientific understanding of these cells and their role in preterm labor and birth, the leading cause of neonatal mortality and morbidity worldwide.
Collapse
|