1
|
F. El-Orab N, H. Abd-Elk O, D. Schwart D. Differential Expression of Hippocampal Genes under Heat Stress. INT J PHARMACOL 2013. [DOI: 10.3923/ijp.2013.430.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Armogida M, Giustizieri M, Zona C, Piccirilli S, Nisticò R, Mercuri NB. N-ethyl lidocaine (QX-314) protects striatal neurons against ischemia: an in vitro electrophysiological study. Synapse 2010; 64:161-8. [PMID: 19852070 DOI: 10.1002/syn.20735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, we have investigated the neuroprotective actions of the membrane impermeable, lidocaine analog, N-ethyl lidocaine (QX-314) in the striatum. The effects of this drug were compared with those caused by the strictly-related-compound and sodium channel blocker lidocaine. To address this issue, electrophysiological recordings were performed in striatal slices, in control condition (normoxia) and during combined oxygen and glucose deprivation (in vitro ischemia). Either QX-314 or lidocaine induced, to some extent, a protection of the permanent electrophysiological alteration (field potential loss) caused by a period (12 min) of ischemia. Thus, both compounds permitted a partial recovery of the ischemic depression of the corticostriatal transmission and reduced the amplitude of the ischemic depolarization in medium spiny neurons. However, while QX-314, at the effective concentration of 100 microM, slightly reduced the amplitude of the excitatory field potential and did not affect the current-evoked spikes discharge of medium spiny striatal neurons, equimolar lidocaine depressed the field potential and eliminated repetitive spikes on a depolarizing step. On the basis of these observations, our results suggest the use of QX-314 as a neuroprotective agent in ischemic brain disorders.
Collapse
Affiliation(s)
- Marta Armogida
- Laboratory of Experimental Neurology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Guarnieri S, Pilla R, Morabito C, Sacchetti S, Mancinelli R, Fanò G, Mariggiò MA. Extracellular guanosine and GTP promote expression of differentiation markers and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells. Int J Dev Neurosci 2008; 27:135-47. [PMID: 19111604 DOI: 10.1016/j.ijdevneu.2008.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/04/2008] [Accepted: 11/29/2008] [Indexed: 01/09/2023] Open
Abstract
SH-SY5Y neuroblastoma cells, a model for studying neuronal differentiation, are able to differentiate into either cholinergic or dopaminergic/adrenergic phenotypes depending on media conditions. Using this system, we asked whether guanosine (Guo) or guanosine-5'-triphosphate (GTP) are able to drive differentiation towards one particular phenotype. Differentiation was determined by evaluating the frequency of cells bearing neurites and assessing neurite length after exposure to different concentrations of Guo or GTP for different durations. After 6 days, 0.3 mM Guo or GTP induced a significant increase in the number of cells bearing neurites and increased neurite length. Western blot analyses confirmed that purines induced differentiation; cells exposed to purines showed increases in the levels of GAP43, MAP2, and tyrosine hydroxylase. Proliferation assays and cytofluorimetric analyses indicated a significant anti-proliferative effect of purines, and a concentration-dependent accumulation of cells in S-phase, starting after 24 h of purine exposure and extending for up to 6 days. A transcriptional profile analysis using gene arrays showed that an up-regulation of cyclin E2/cdk2 evident after 24 h was responsible for S-phase entry, and a concurrent down-regulation of cell-cycle progression-promoting cyclin B1/B2 prevented S-phase exit. In addition, patch-clamp recordings revealed that 0.3 mM Guo or GTP, after 6 day incubation, significantly decreased Na(+) currents. In conclusion, we showed Guo- and GTP-induced cell-cycle arrest in neuroblastoma cells and suggest that this makes these cells more responsive to differentiation processes that favor the dopaminergic/adrenergic phenotype.
Collapse
Affiliation(s)
- S Guarnieri
- Dipartamento Scienze Mediche di Base ed Applicate Università G. d'Annunzio, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Toklu HZ, Uysal MK, Kabasakal L, Sirvanci S, Ercan F, Kaya M. The effects of riluzole on neurological, brain biochemical, and histological changes in early and late term of sepsis in rats. J Surg Res 2008; 152:238-48. [PMID: 18718604 DOI: 10.1016/j.jss.2008.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 02/04/2008] [Accepted: 03/03/2008] [Indexed: 11/19/2022]
Abstract
OBJECTIVE One of the underlying mechanisms of sepsis is thought to be the oxidative damage due to the generation of free radicals. Glutamate, the major excitatory amino acid in the brain, is known to play an important role in blood brain barrier (BBB) permeability, brain edema, and oxidative damage in pathological conditions. Riluzole, a glutamate release inhibitor, has been shown to have neuroprotective effects in several animal models. The aim of our study was to investigate the putative protective effect of riluzole against sepsis-induced brain injury. METHODS Sepsis was induced by cecal ligation and puncture in Wistar albino rats. Sham operated (control) and sepsis groups received either saline or riluzole (6 mg/kg, s.c.) 30 min after the surgical procedure, and every 12 h as continuing treatment. The effect of riluzole on the survival rate, weight loss, fever, leukocyte count, brain edema, BBB permeability, oxidative damage, and histological observations were evaluated for early (6 h) and late (48 h) phase of sepsis. RESULTS Riluzole, when administered 6 mg/kg s.c., diminishes the sepsis-induced augmentation in weight loss, body temperature, brain edema, increase in BBB permeability, oxidative damage, and brain injury that is observed histologically. Besides increasing the survival rate in sepsis, it has also improved neurological examination scores and the prognosis of the disease. CONCLUSION According to the results of this study, riluzole appears to have a protective effect for sepsis-induced encephalopathy.
Collapse
Affiliation(s)
- Hale Z Toklu
- Department of Pharmacology, Marmara University School of Pharmacy, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
5
|
Sun D, Vingrys AJ, Kalloniatis M. Metabolic and functional profiling of the ischemic/reperfused rat retina. J Comp Neurol 2008; 505:114-30. [PMID: 17729266 DOI: 10.1002/cne.21481] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We quantitatively tracked the recovery in amino acid labeling and cation channel functionality within distinct retinal elements for up to 2 weeks after an ischemic insult. Pattern recognition analysis of multiple amino acid and agmatine (a cation channel probe; 1-amino-4-guanidobutane; AGB) immunocytochemical patterns was used to classify all neural elements within the retina. This classification was spatially complete and with single-cell resolution. By 48 hours of reperfusion the amino acid labeling pattern of virtually all cell populations had returned to near preischemic levels, with the exception of glutamine and alanine levels, which remained significantly higher in many cell populations. Classification resulted in a total of 18 statistically separable theme classes (including neurons, glia, and extraretinal classes), a reduction of 10 theme classes from the normal retina (Sun et al. [ 2007a, b] J Comp Neurol, this issue). In addition to the known selective losses of amacrine cell types within the inner nuclear layer, we now demonstrate a selective loss of theme classes representing cone bipolar cells within the bipolar cell population. While there was a recovery in the amino acid labeling pattern, there were persistent cation channel gating anomalies (as reflected by AGB labeling) within several theme classes, including the theme class representing all the remaining rod bipolar cells, suggesting aberrant neuronal function secondary to metabolic insult.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, New Zealand
| | | | | |
Collapse
|
6
|
Osborne NN, Casson RJ, Wood JPM, Chidlow G, Graham M, Melena J. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 2004; 23:91-147. [PMID: 14766318 DOI: 10.1016/j.preteyeres.2003.12.001] [Citation(s) in RCA: 737] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinal ischemia is a common cause of visual impairment and blindness. At the cellular level, ischemic retinal injury consists of a self-reinforcing destructive cascade involving neuronal depolarisation, calcium influx and oxidative stress initiated by energy failure and increased glutamatergic stimulation. There is a cell-specific sensitivity to ischemic injury which may reflect variability in the balance of excitatory and inhibitory neurotransmitter receptors on a given cell. A number of animal models and analytical techniques have been used to study retinal ischemia, and an increasing number of treatments have been shown to interrupt the "ischemic cascade" and attenuate the detrimental effects of retinal ischemia. Thus far, however, success in the laboratory has not been translated to the clinic. Difficulties with the route of administration, dosage, and adverse effects may render certain experimental treatments clinically unusable. Furthermore, neuroprotection-based treatment strategies for stroke have so far been disappointing. However, compared to the brain, the retina exhibits a remarkable natural resistance to ischemic injury, which may reflect its peculiar metabolism and unique environment. Given the increasing understanding of the events involved in ischemic neuronal injury it is hoped that clinically effective treatments for retinal ischemia will soon be available.
Collapse
Affiliation(s)
- Neville N Osborne
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Pieri M, Gaetti C, Spalloni A, Cavalcanti S, Mercuri N, Bernardi G, Longone P, Zona C. α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptors in spinal cord motor neurons are altered in transgenic mice overexpressing human Cu,Zn superoxide dismutase (Gly93→Ala) mutation. Neuroscience 2003; 122:47-58. [PMID: 14596848 DOI: 10.1016/j.neuroscience.2003.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are many evidences implicating glutamatergic toxicity as a contributory factor in the selective neuronal injury occurring in amyotrophic lateral sclerosis (ALS). This neurodegenerative disorder is characterized by the progressive loss of motor neurons, whose pathogenesis is thought to involve Ca(2+) influx mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptors (AMPARs). In the present study we report alterations in the AMPARs function in a transgenic mouse-model of the human SOD1(G93A) familial ALS. Compared with those expressed in motor neurons carrying the human wild type gene, AMPAR-gated channels expressed in motor neurons carrying the human mutant gene exhibited modified permeability, altered agonist cooperativity between the sites involved in the process of channel opening and were responsible for slower spontaneous synaptic events. These observations demonstrate that the SOD1(G93A) mutation induces changes in AMPAR functions which may underlie the increased vulnerability of motor neurons to glutamatergic excitotoxicity in ALS.
Collapse
Affiliation(s)
- M Pieri
- Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier 1, 00133 Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Calabresi P, Marti M, Picconi B, Saulle E, Costa C, Centonze D, Pisani F, Bernardi G. Lamotrigine and remacemide protect striatal neurons against in vitro ischemia: an electrophysiological study. Exp Neurol 2003; 182:461-9. [PMID: 12895457 DOI: 10.1016/s0014-4886(03)00117-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we investigated the cellular and synaptic mechanisms underlying the neuroprotective action of lamotrigine and remacemide. Both drugs, in fact, have been reported to exert a neuroprotective action in in vivo animal models of ischemia. To address this issue, electrophysiological recordings and cell swelling measurements were performed from striatal neurons in control condition and during combined oxygen and glucose deprivation (in vitro ischemia) in a brain slice preparation. Lamotrigine, remacemide, and the active desglycinyl metabolite of remacemide, D-REMA, induced a concentration-dependent reduction of both repetitive firing discharge and excitatory postsynaptic potentials. However, while remacemide and D-REMA exerted their inhibitory action on glutamatergic transmission by blocking NMDA receptors, lamotrigine exerted a preferential presynaptic action, as indicated by its ability to increase paired-pulse facilitation. Both remacemide and lamotrigine were found to be neuroprotective against the irreversible field potential loss and cell swelling induced by in vitro ischemia, and coadministration of low concentrations of these drugs exerted an additive neuroprotective action. A combined use of lamotrigine and remacemide could be employed in clinical trials to enhance neuroprotection in neurological disorders involving an abnormal striatal glutamatergic transmission.
Collapse
Affiliation(s)
- P Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Alzheimer C. Na+ channels and Ca2+ channels of the cell membrane as targets of neuroprotective substances. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:161-81. [PMID: 12575820 DOI: 10.1007/978-1-4615-0123-7_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Christian Alzheimer
- Department of Physiology, University of Munich, Pettenkoferstr. 12, D-80336 Munich, Germany
| |
Collapse
|
10
|
Diem R, Hobom M, Grötsch P, Kramer B, Bähr M. Interleukin-1 beta protects neurons via the interleukin-1 (IL-1) receptor-mediated Akt pathway and by IL-1 receptor-independent decrease of transmembrane currents in vivo. Mol Cell Neurosci 2003; 22:487-500. [PMID: 12727445 DOI: 10.1016/s1044-7431(02)00042-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently, we have demonstrated that tumor necrosis factor-alpha (TNF-alpha) rescues retinal ganglion cells (RGCs) from retrograde cell death in vivo after axotomy of the optic nerve. The mechanism of RGC rescue was dependent on TNF-receptor I-mediated potassium current reduction and consecutive activation of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. Here, we present evidence that interleukin-1 beta (IL-1 beta) also promotes RGC survival, but shows distinct differences with respect to its neuroprotective mechanisms. Using whole-cell and outside-out patch-clamp techniques, we observed that IL-1 beta decreased both inward sodium current amplitudes and outward potassium current amplitudes. Counteracting these effects by sodium or potassium channel opening inhibited the survival-promoting effects of this cytokine. IL-1 beta-induced current reduction could not be abolished by the interleukin-1 receptor antagonist, indicating that the electrophysiological effects of IL-1 beta are independent of interleukin-1 receptor I (IL-1RI) activation. Western blot analysis revealed an IL-1 beta-induced IL-1RI-dependent upregulation of phospho-Akt. Antagonism of the survival-promoting effects of IL-1 beta by PI3-K inhibition revealed the functional relevance of the PI3-K/Akt pathway in IL-1 beta-induced signal transduction in vivo.
Collapse
Affiliation(s)
- Ricarda Diem
- Neurologische Universitätsklinik, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
11
|
Lado FA, Sankar R, Lowenstein D, Moshé SL. Age-dependent consequences of seizures: relationship to seizure frequency, brain damage, and circuitry reorganization. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2001; 6:242-52. [PMID: 11107189 DOI: 10.1002/1098-2779(2000)6:4<242::aid-mrdd3>3.0.co;2-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Seizures in the developing brain pose a challenge to the clinician. In addition to the acute effects of the seizure, there are questions regarding the impact of severe or recurrent seizures on the developing brain. Whether provoked seizures cause brain damage, synaptic reorganization, or epilepsy is of paramount importance to patients and physicians. Such questions are especially relevant in the decision to treat or not treat febrile seizures, a common occurrence in childhood. These clinical questions have been addressed using clinical and animal research. The largest prospective studies do not find a causal connection between febrile seizures and later temporal lobe epilepsy. The immature brain seems relatively resistant to the seizure-induced neuronal loss and new synapse formation seen in the mature brain. Laboratory investigations using a developmental rat model corresponding to human febrile seizures find that even though structural changes do not result from hyperthermic seizures, synaptic function may be chronically altered. The increased understanding of the cellular and synaptic mechanisms of seizure-induced damage may benefit patients and clinicians in the form of improved therapies to attenuate damage and changes induced by seizures and to prevent the development of epilepsy.
Collapse
Affiliation(s)
- F A Lado
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
12
|
Melena J, Chidlow G, Osborne NN. Blockade of voltage-sensitive Na(+) channels by the 5-HT(1A) receptor agonist 8-OH-DPAT: possible significance for neuroprotection. Eur J Pharmacol 2000; 406:319-24. [PMID: 11040337 DOI: 10.1016/s0014-2999(00)00688-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study was undertaken to determine whether 5-hydroxytryptamine(1A) (5-HT(1A)) receptor agonists interact with voltage-sensitive Na(+) or N- and P/Q-type Ca(2+) channels to reduce the influx of Na(+) and/or Ca(2+). The 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) inhibited both [3H]batrachotoxinin binding to neurotoxin site 2 of the Na(+) channel in rat cortical membranes (IC(50)=5.1 microM) and veratridine-stimulated Na(+) influx into rat synaptosomes (EC(50)=20. 8 microM). The 5-HT(1A) receptor agonist flesinoxan and the 5-HT(1A) receptor antagonist N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexanecarboxamide (WAY-100635) also displaced [3H]batrachotoxinin binding with similar affinities to 8-OH-DPAT, but were much less effective in reducing veratridine-stimulated Na(+) influx. All three serotonergic agents also increased [3H]saxitoxin binding to neurotoxin site 1 of the Na(+) channel. In contrast, none of these agents interacted with radioligand binding to N- or P/Q-type Ca(2+) channels. These data show that 8-OH-DPAT directly interacts with voltage-sensitive Na(+) channels to reduce Na(+) influx so providing an additional mechanism to explain how it functions as a neuroprotectant.
Collapse
Affiliation(s)
- J Melena
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, OX2 6AW, Oxford, UK
| | | | | |
Collapse
|
13
|
Bönöczk P, Gulyás B, Adam-Vizi V, Nemes A, Kárpáti E, Kiss B, Kapás M, Szántay C, Koncz I, Zelles T, Vas A. Role of sodium channel inhibition in neuroprotection: effect of vinpocetine. Brain Res Bull 2000; 53:245-54. [PMID: 11113577 DOI: 10.1016/s0361-9230(00)00354-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vinpocetine (ethyl apovincaminate) discovered during the late 1960s has successfully been used in the treatment of central nervous system disorders of cerebrovascular origin for decades. The increase in the regional cerebral blood flow in response to vinpocetine administration is well established and strengthened by new diagnostical techniques (transcranial Doppler, near infrared spectroscopy, positron emission tomography). The latest in vitro studies have revealed the effect of the compound on Ca(2+)/calmodulin dependent cyclic guanosine monophosphate-phosphodiesterase 1, voltage-operated Ca(2+) channels, glutamate receptors and voltage dependent Na(+)-channels; the latest being especially relevant to the neuroprotective action of vinpocetine. The good brain penetration profile and heterogenous brain distribution pattern (mainly in the thalamus, basal ganglia and visual cortex) of labelled vinpocetin were demonstrated by positron emission tomography in primates and man. Multicentric, randomized, placebo-controlled clinical studies proved the efficacy of orally administered vinpocetin in patients with organic psychosyndrome. Recently positron emission tomography studies have proved that vinpocetine is able to redistribute regional cerebral blood flow and enhance glucose supply of brain tissue in ischemic post-stroke patients.
Collapse
Affiliation(s)
- P Bönöczk
- Chemical Works of Gedeon Richter Ltd., Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chao HM, Chidlow G, Melena J, Wood JP, Osborne NN. An investigation into the potential mechanisms underlying the neuroprotective effect of clonidine in the retina. Brain Res 2000; 877:47-57. [PMID: 10980242 DOI: 10.1016/s0006-8993(00)02592-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
alpha(2)-adrenoceptor agonists, such as clonidine, attenuate hypoxia-induced damage to brain and retinal neurones by a mechanism of action which likely involves stimulation of alpha(2)-adrenoceptors. In addition, the neuroprotective effect of alpha(2)-adrenoceptor agonists in the retina may involve stimulation of bFGF production. The purpose of this study was to examine more thoroughly the neuroprotective properties of clonidine. In particular, studies were designed to ascertain whether clonidine acts as a free radical scavenger. It is thought that betaxolol, a beta(1)-adrenoceptor antagonist, acts as a neuroprotective agent by interacting with sodium and L-type calcium channels to reduce the influx of these ions into stressed neurones. Studies were therefore undertaken to determine whether clonidine has similar properties. In addition, studies were undertaken to determine whether i.p. injections of clonidine or betaxolol affect retinal bFGF mRNA levels. In vitro data were generally in agreement that clonidine and bFGF counteracted the effect of NMDA as would occur in hypoxia. No evidence could be found that clonidine interacts with sodium or L-type calcium channels, reduces calcium influx into neurones or acts as a free radical scavenger at concentrations below 100 microM. Moreover, i.p. injection of clonidine, but not betaxolol, elevated bFGF mRNA levels in the retina. The conclusion from this study is that the neuroprotective properties of alpha(2)-adrenoceptor agonists, like clonidine, are very different from betaxolol. The fact that both betaxolol and clonidine blunt hypoxia-induced death to retinal ganglion cells suggests that combining the two drugs may be a way forward to producing more effective neuroprotection.
Collapse
Affiliation(s)
- H M Chao
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, OX2 6AW, Oxford, UK
| | | | | | | | | |
Collapse
|
15
|
Bauer R, Brust P, Walter B, Vorwieger G, Bergmann R, Füchtner F, Steinbach J, el-Hallag E, Fritz A, Johannsen B, Zwiener U. Relation between brain tissue pO2 and dopamine synthesis of basal ganglia--a 18FDOPA-PET study in newborn piglets. J Perinat Med 2000; 28:54-60. [PMID: 10765515 DOI: 10.1515/jpm.2000.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Perinatal hypoxic-ischemic cerebral injury is a major determinant of neurologic morbidity and mortality in the neonatal period and later in childhood. There is evidence that the dopaminergic system is sensitive to oxygen deprivation. However, the respective enzyme activities have yet not been measured in the living neonatal brain. In this study, we have used 18F-labelled 6-fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) together with positron emission tomography (PET) to estimate the activity of the aromatic amino acid decarboxylase (AADC), the ultimate enzyme in the synthesis of dopamine, in the brain of newborn piglets under normoxic and moderate asphyxial conditions. The study was performed on 8 newborn piglets (2-5 days old). In each piglet PET studies were performed under control conditions and during 2-hour asphyxia. Simultaneously, brain tissue pO2 was recorded, cerebral blood flow (CBF) was measured with colored microspheres and cerebral metabolic rate of oxygen (CMRO2) was determined. Asphyxia was induced by lowering the inspired fraction of oxygen from 0.35 to 0.10 and adding about 6% CO2 to the inspired gas. Asphyxia elicited a more than 3-fold increase of the CBF (p < 0.01) so that CMRO2 remained unchanged throughout the asphyxial period. Despite this, brain tissue pO2 was reduced from 19 +/- 4 mm Hg to 6 +/- 3 mm Hg (p < 0.01). Blood-brain transfer of FDOPA as well as permeability-surface area product (PS) from striatum were unchanged. Striatal synthesis rate of fluoro-dopamine from FDOPA (k3) was, however, significantly increased (p < 0.01). This increase of the AADC activity is associated with reduced brain tissue pO2. Asphyxia-induced CBF increase impedes an alteration of brain oxidative metabolism.
Collapse
Affiliation(s)
- R Bauer
- Institut für Pathophysiologie, Klinikum der Friedrich-Schiller-Universität, Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chidlow G, Melena J, Osborne NN. Betaxolol, a beta(1)-adrenoceptor antagonist, reduces Na(+) influx into cortical synaptosomes by direct interaction with Na(+) channels: comparison with other beta-adrenoceptor antagonists. Br J Pharmacol 2000; 130:759-66. [PMID: 10864881 PMCID: PMC1572129 DOI: 10.1038/sj.bjp.0703369] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Betaxolol, a beta(1)-adrenoceptor antagonist used for the treatment of glaucoma, is known to be neuroprotective in paradigms of ischaemia/excitotoxicity. In this study, we examined whether betaxolol and other beta-adrenoceptor antagonists interact directly with neurotoxin binding to sites 1 and 2 of the voltage-sensitive sodium channel (Na(+) channel) in rat cerebrocortical synaptosomes. Betaxolol inhibited specific [(3)H]-batrachotoxinin-A 20-alpha-benzoate ([(3)H]-BTX-B) binding to neurotoxin site 2 in a concentration-dependent manner with an IC(50) value of 9.8 microM. Comparison of all the beta-adrenoceptor antagonists tested revealed a potency order of propranolol>betaxolol approximately levobetaxolol>levobunolol approximately carteolol>/=timolol>atenolol. None of the drugs caused a significant inhibition of [(3)H]-saxitoxin binding to neurotoxin receptor site 1, even at concentrations as high as 250 microM. Saturation experiments showed that betaxolol increased the K(D) of [(3)H]-BTX-B binding but had no effect on the B(max). The association kinetics of [(3)H]-BTX-B were unaffected by betaxolol, but the drug significantly accelerated the dissociation rate of the radioligand. These findings argue for a competitive, indirect, allosteric mode of inhibition of [(3)H]-BTX-B binding by betaxolol. Betaxolol inhibited veratridine-stimulated Na(+) influx in rat cortical synaptosomes with an IC(50) value of 28. 3 microM. Carteolol, levobunolol, timolol and atenolol were significantly less effective than betaxolol at reducing veratridine-evoked Na(+) influx. The ability of betaxolol to interact with neurotoxin site 2 of the Na(+) channel and inhibit Na(+) influx may have a role in its neuroprotective action in paradigms of excitotoxicity/ischaemia and in its therapeutic effect in glaucoma.
Collapse
Affiliation(s)
- Glyn Chidlow
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW
| | - José Melena
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW
| | - Neville N Osborne
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW
- Author for correspondence:
| |
Collapse
|
17
|
Maynard KI, Quiñones-Hinojosa A, Malek JY. Neuroprotection against ischemia by metabolic inhibition revisited. A comparison of hypothermia, a pharmacologic cocktail and magnesium plus mexiletine. Ann N Y Acad Sci 2000; 890:240-54. [PMID: 10668430 DOI: 10.1111/j.1749-6632.1999.tb07999.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have suggested that metabolic inhibition is neuroprotective, but little evidence has been provided to support this proposal. Using the in vitro rabbit retina preparation as an established model of the central nervous system (CNS), we measured the rate of glucose utilization and lactate production, and the light-evoked compound action potentials (CAPs) as indices of neuronal energy metabolism and electrophysiologic function, respectively. We examined the effect of three (3) treatments options: hypothermia (i.e., 33 degrees C and 30 degrees C), a six-member pharmacologic "cocktail" (tetrodotoxin (0.1 microM), 2-amino-4-phosphonobutyric acid (20 microM), 2-amino-5-phosphonovaleric acid (1 mM), amiloride (1 mM), magnesium (10 mM) and lithium (10 mM) and the combination of magnesium (Mg2+ 1 mM) and mexiletine (Mex, 300 microM) on in vitro rabbit retinas, to see if there is a correlation between neuronal energy metabolism during ischemia (simulated by the reduction of oxygen from 95% to 15% and glucose from 6 mM to 1 mM), and the subsequent recovery of function. Hypothermia and the "cocktail" significantly inhibited both the rate of glucose utilization and lactate production, whereas Mg2+ and/or Mex showed only a nonsignificant tendency toward a reduction, compared to control retinas. Recovery of light-evoked CAPs was significantly improved in hypothermia- and cocktail-treated retinas, as well as with retinas exposed to the combination of Mg2+ plus Mex, but not with Mg2+ or Mex alone, relative to control retinas. A linear regression analysis of the % recovery of function versus the % reduction in the rate of glucose utilization during ischemia showed a significant correlation (r2 = 0.80, correlation coefficient = 0.9, p < 0.05) between these two parameters. This and other data discussed provide convincing evidence that there is a correlation between metabolic inhibition, achieved during ischemia, and neuroprotection.
Collapse
Affiliation(s)
- K I Maynard
- Neurophysiology Laboratory, Massachusetts General Hospital, Boston, USA.
| | | | | |
Collapse
|