1
|
Doumar H, Mostafi HE, Elhessni A, Ebn Touhami M, Mesfioui A. Exploring the diversity of cannabis cannabinoid and non-cannabinoid compounds and their roles in Alzheimer's disease: A review. IBRO Neurosci Rep 2025; 18:96-119. [PMID: 39866750 PMCID: PMC11763173 DOI: 10.1016/j.ibneur.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Cannabis sativa is recognized for its chemical diversity and therapeutic potential, particularly in addressing neurodegenerative diseases such as Alzheimer's disease (AD). Given the complexity of AD, where single-target therapies often prove inadequate, a multi-target approach utilizing cannabis-derived compounds may offer promising alternatives. This review first highlights the chemical diversity of cannabis by categorizing its compounds into cannabinoids and non-cannabinoids. It then examines studies investigating the effects of these compounds on AD-related pathological features. By synthesizing existing knowledge, identifying research gaps, and facilitating comparative analysis, this review aims to advance future research and understanding. It underscores cannabis's potential as a multi-target therapeutic strategy for AD, contributing valuable insights to ongoing scientific discussions.
Collapse
Affiliation(s)
- Hanane Doumar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Hicham El Mostafi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Ebn Touhami
- Laboratory of Materials Engineering and Environment: Modeling and Application, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
2
|
Heydari M, Mehrbani H, Seyyedkazemi SM, Rustamzadeh A, Joghataei MT, Sadigh N, Charkhat Gorgich EA, Alizadeh-Otaghvar H. The bioactive compound of traditional herbal ointment accelerates wound closure, epithelialization, and angiogenesis in patients with second-degree burn wound: A randomized clinical trial. Tissue Cell 2025; 93:102787. [PMID: 39933410 DOI: 10.1016/j.tice.2025.102787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION This study endeavors to draw a comparative analysis between a traditional herbal ointment, specifically Swalin, and silver sulfadiazine ointment in the context of repairing deep second-degree burns. METHODS A randomized clinical trial was conducted at the Iran University of Medical Sciences. In this investigation, a cohort comprising eighty-two patients was stratified into two groups, namely Swalin (n = 41) and Silver sulfadiazine (SSD) (n = 41). Over 28 days, ointment applications were administered twice daily. The quantification of ointment compounds was conducted employing Gas Chromatography-Mass Spectrometry (GC-MS). The study encompassed a comprehensive assessment involving clinical examination, quantitative and qualitative histopathological evaluations, pain level determination, and scrutiny of wound closure. Statistical analyses, encompassing chi-square and Mann-Whitney U tests, were performed using SPSS software. RESULTS Our investigation revealed that the predominant compounds in the ointment were linoleic acid (41.37 %) and elaidic acid (37.45 %). On the 28th day, the Swalin group demonstrated a significantly higher rate of wound closure (81.52 ± 7.76) compared to the SSD group (69.91 ± 2.48) (p < 0.001). Furthermore, a statistically significant distinction was observed between the two groups concerning the degree of epithelialization (P = 0.048). Fibroblast density exhibited a notable discrepancy between the groups (P = 0.02). In terms of angiogenesis and collagen deposition, the Swalin group displayed a significant contrast with the SSD group (P = 0.008 and P = 0.007, respectively), while no statistical distinction was discerned in the number of immune cells (P > 0.05). Histological examination of SSD illustrated a pronounced infiltration of inflammatory cells in the dermis, predominantly lymphocytes. Conversely, the Swalin group exhibited well-formed dermal layers, minimal infiltration, and a profusion of vessels. CONCLUSION In conclusion, the findings of this study highlight the potential therapeutic benefits of Swalin ointment, attributed to its rich composition of fatty acids, particularly linoleic acid, and the presence of vitamins C and E.
Collapse
Affiliation(s)
- Mahdi Heydari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hajir Mehrbani
- Department of Dermatology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Nader Sadigh
- Department of Emergency Medicine, School of Medicine, Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hamidreza Alizadeh-Otaghvar
- Department of Plastic & Reconstructive Surgery, School of Medicine, Trauma and Injury Research Center, Shahid Motahari Burns Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Khan F, Rashan L. Phytochemical Analysis and Pharmaceutical Applications of Monoterpenoids Present in the Essential Oil of Boswellia sacra (Omani Luban). Adv Pharmacol Pharm Sci 2025; 2025:3536898. [PMID: 40040632 PMCID: PMC11876528 DOI: 10.1155/adpp/3536898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/28/2024] [Accepted: 01/18/2025] [Indexed: 03/06/2025] Open
Abstract
Due to its intricacy and long-term usefulness, traditional medicine continues to be practiced in several nations. Among the many medicinal plants found in the Dhofar region of Oman, the aromatic oleo-gum resin generated by Boswellia sacra, commonly referred to as frankincense, stands out for its medical and commercial significance. Resin-carrying ducts are unique to members of the Boswellia family. Boswellia sacra Flueck is one of the 29 species in the genus Boswellia (Burseraceae) and has long been cultivated for its aromatic gums and resins for use as incense. In addition to the resins (60%-80% alcohol soluble), gums (15%-20% water soluble), and essential oil (5%-7%), other components, including polysaccharides and polymeric compounds, also exist in smaller amounts. Physiochemical analyses indicate that Boswellia resin oil is made up of 42.5% diterpenes, 13.1% monoterpenes, and 1% sesquiterpenes. Traditional medicine makes extensive use of frankincense for the treatment of stomach diseases, Alzheimer's disease, and hepatic illnesses. The bioactive chemicals present in frankincense, particularly boswellic acids, are plentiful. The current review examines various compounds present in different species of Boswellia, especially Boswellia sacra, along with their structure.
Collapse
Affiliation(s)
- Foziya Khan
- Research Center, Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Luay Rashan
- Research Center, Biodiversity Unit, Dhofar University, Salalah, Oman
| |
Collapse
|
4
|
Ayed A, Caputo L, De Feo V, Nazzaro F, Fratianni F, Amri I, Hamrouni L, Mabrouk Y, Polito F. Essential Oils of Tunisian Tetraclinis articulata (Vahl) Mast.: Chemical and Biological Insights. Chem Biodivers 2025; 22:e202401618. [PMID: 39258455 PMCID: PMC11741151 DOI: 10.1002/cbdv.202401618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
Tetraclinis articulata (Vahl) Mast. is native to the Mediterranean area and belongs to Cupressaceae family. The aim of this study were: i) to determine the chemical composition of essential oils (EOs) of T. articulata obtained from its stems, leaves, and cones using GC coupled to GC/MS; II) to evaluate their antioxidant activity using non enzymatic (DPPH, ABTS and FRAP) and enzymatic methods (catalase activity); III) to evaluated their anti-enzymatic activity on enzyme involved in metabolism and Central Nervous System using spectrophotometric assays. α-Pinene, limonene, and bornyl acetate were the main components of the three EOs. Moreover, the EO from cones showed the best antioxidant activity and was also to increase of catalase activity. All EOs were active against α-amylase in similar way; the EO leaves was more active against α-glucosidase and the EO from cones was more active against cholinesterase. The EOs demonstrated significant inhibition of the mature biofilm of Gram-negative and Gram-positive strains. This highlight the potential uses of T. articulata EOs in the fields of health and agriculture.
Collapse
Affiliation(s)
- Amira Ayed
- Laboratory of Biotechnology and Nuclear TechnologyNational Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet TechnoparkSidi Thabet2020Tunisia
- Higher Institute of Biotechnology of Sidi Thabet (ISBST)University of ManoubaSidi Thabet2020Tunisia
- Laboratory of Management and Valorisation of Forest ResourcesNational Institute of Researches on Rural Engineering, Water and ForestsP.B. 10Ariana2080Tunisia
| | - Lucia Caputo
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II, 13284084FiscianoItaly
| | - Vincenzo De Feo
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II, 13284084FiscianoItaly
- Institute of Food ScienceISA-CNRvia Roma, 6483100AvellinoItaly
| | | | | | - Ismail Amri
- Laboratory of Biotechnology and Nuclear TechnologyNational Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet TechnoparkSidi Thabet2020Tunisia
- Higher Institute of Biotechnology of Sidi Thabet (ISBST)University of ManoubaSidi Thabet2020Tunisia
- Laboratory of Management and Valorisation of Forest ResourcesNational Institute of Researches on Rural Engineering, Water and ForestsP.B. 10Ariana2080Tunisia
| | - Lamia Hamrouni
- Laboratory of Management and Valorisation of Forest ResourcesNational Institute of Researches on Rural Engineering, Water and ForestsP.B. 10Ariana2080Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear TechnologyNational Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet TechnoparkSidi Thabet2020Tunisia
- Higher Institute of Biotechnology of Sidi Thabet (ISBST)University of ManoubaSidi Thabet2020Tunisia
| | - Flavio Polito
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II, 13284084FiscianoItaly
| |
Collapse
|
5
|
Nguyen Hoang T, Tran-Trung H, Giang LD, Triet NT, Tran Van C, C Vu D, Van Nguyen A, Nguyen Thanh To N, Nguyen KVA, Dang Nguyen K. Alpinia nelumboides Nob.Tanaka, T.T.K.Van & V.Hoang: phytochemical analysis and antioxidant activities of pseudo-stem and rhizome essential oils. Nat Prod Res 2025; 39:127-134. [PMID: 37715314 DOI: 10.1080/14786419.2023.2256021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023]
Abstract
Alpinia nelumboides Nob.Tanaka, T.T.K.Van & V.Hoang is the new Alpninia species discovered in Vietnam in 2023. Herein, we first hydrodistillated its pseudo-stems and rhizomes to obtain its essential oils, PS-EO and RH-EO. Their volatile compounds and total polyphenols were analysed by gas chromatography-mass spectrometry and the Folin-Ciocalteu method, respectively. Antioxidant activities were determined using four different approaches. The results showed that PS-EO and RH-EO contained 40 and 31 compounds, accounting for 99.78% and 99.45% of their compositions, respectively. The contents of polyphenols and monoterpenes in PS-EO were higher than in RH-EO. RH-EO displayed weaker scavenging activities (17.40-19.53%) than PS-EO (30.81-44.08%). PS-EO also showed higher ferric and cupric reducing powers, with EC50 values of 3.50-5.30 mg/mL smaller than RH-EO's EC50 values of 19.0-23.0 mg/mL. These results first revealed the phytochemical profile and antioxidant activities of EOs from A. nelumboides.
Collapse
Affiliation(s)
- Tuan Nguyen Hoang
- Faculty of Pharmacognosy and Traditional Medicine, Hanoi University of Pharmacy, Hoan Kiem, Hanoi, Vietnam
| | - Hieu Tran-Trung
- Department of Chemistry, Vinh University, Vinh City, Nghe An, Vietnam
| | - Le Duc Giang
- Department of Chemistry, Vinh University, Vinh City, Nghe An, Vietnam
| | - Nguyen Thanh Triet
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Chen Tran Van
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Danh C Vu
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong, Vietnam
| | - Anh Van Nguyen
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Vietnam
| | | | - Khoa V A Nguyen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Khoa Dang Nguyen
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong, Vietnam
| |
Collapse
|
6
|
Krishnan M, Kumaresan M, Ravi S, Martin LC, Duraisamy P, Manikandan B, Munusamy A, Ramar M. Therapeutic potential of monoterpene molecules acts against 7KCh-mediated oxidative stress and neuroinflammatory amyloidogenic signalling pathways. Prostaglandins Other Lipid Mediat 2024; 175:106910. [PMID: 39343044 DOI: 10.1016/j.prostaglandins.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Alzheimer's disease (AD) is a degenerative disorder characterised by amyloid-beta aggregates activated by the accumulation of lipid molecules and their derivatives, especially 7-ketocholesterol (7KCh), an oxidised lipid that plays a great part in the progression of AD. The current therapeutics need bio-potential molecules and their biomedical application preventing 7KCh-induced cytotoxicity. In this study, bornyl acetate (BA) and menthol (ME), the natural monoterpenes were investigated for their neuroprotective effects against 7KCh-induced SH-SY5Y cells and their effects were compared to the standard drug galantamine (GA). 7KCh-induced changes like lipid accumulation, amyloid generation, free radical generation, acetylcholinesterase levels, calcium accumulation and mitochondrial membrane integrity were analysed in SH-SY5Y cells with or without BA and ME treatment. Furthermore, various mediators involved in the amyloidogenic, inflammatory and apoptotic pathways were studied. In our results, the cells induced with 7KCh upon co-treatment with BA and ME significantly reduced lipid accumulation and amyloid generation through toll-like receptor (TLR) 4 suppression and enhanced ATP binding cassette (ABCA) 1-mediated clearance. Co-treatment with BA and ME concurrently regulated oxidative stress, acetylcholinesterase activity, mitochondrial membrane potential and intracellular calcification altered by 7KCh-induced SH-SY5Y cells. Moreover, 7KCh-induced cells showed elevated mRNA levels of misfolded protein markers and apoptotic mediators which were significantly downregulated by BA and ME co-treatment. In addition, the protein expression of amyloidogenic, proinflammatory as well as pro-apoptotic markers was decreased by BA and ME co-treatment in 7KCh-induced cells. Overall, BA and ME mediated inhibition of amyloidogenic activation and cell survival against 7KCh-induced inflammation, thereby preventing the onset and progression of AD in comparison to GA.
Collapse
Affiliation(s)
- Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Arumugam Munusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
7
|
Adibifard A, Bozorgi M, Kolangi F, Enayati A, Daneshfard B, Gorji N, Memariani Z. Effects of Pistacia genus on gastrointestinal tract disorders: A systematic and comprehensive review. Fitoterapia 2024; 176:106038. [PMID: 38801894 DOI: 10.1016/j.fitote.2024.106038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Gastrointestinal (GI) disorders characterized by persistent and recurrence gastrointestinal symptoms are prevalent. The genus Pistacia is widely emphasized as the relief of gastrointestinal diseases in traditional medicine. This review aimed to investigate the latest evidence on the effect of the Pistacia genus on GI tract disorders. The systematic search was performed following to PRISMA guidelines. The databases PubMed and Scopus were searched from 1980 to 2022 with restrictions to the original studies. Electronic databases were searched in title/abstract, using the keywords relevant to GI tract disorders. Forty-eight studies were included in this review following the inclusion criteria. Fifteen and 22 studies were clinical and animal studies, respectively, of which 6 clinical and 13 animal studies were on Inflammatory Bowel diseases. Seven clinical studies were on functional GI disorders. The most pieces of evidence from animal and clinical studies were on the intestinal inflammation and peptic ulcer affecting the inflammation as well as oxidative stress through different mechanistic pathways. The most referred active phytochemicals seem to be terpenoid compounds. Various in vitro studies have also shown the inhibitory activity of the different plant parts of Pistacia herbs on several GI tract cancer cells. Available scientific evidence supports the effects of various components of Pistacia genus plants in the field of GI tract diseases, especially digestive inflammations. Further studies are required to systematically evaluate the natural products of the genus Pistacia, particularly in the context of digestive disorders.
Collapse
Affiliation(s)
- Amir Adibifard
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahbubeh Bozorgi
- Department of Traditional Medicine, School of Persian Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Kolangi
- Counseling and Reproductive Health Research Centre, Department of Persian Medicine, School of Persian Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Babak Daneshfard
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Persian Medicine Network (PMN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Canadian College of Integrative Medicine, Montreal, Quebec, Canada
| | - Narjes Gorji
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Memariani
- Pharmaceutical Sciences Research Center, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
8
|
Hajizadeh Moghaddam A, Malekzadeh Estalkhi F, Khanjani Jelodar S, Ahmed Hasan T, Farhadi-Pahnedari S, Karimian M. Neuroprotective effects of alpha-pinene against behavioral deficits in ketamine-induced mice model of schizophrenia: Focusing on oxidative stress status. IBRO Neurosci Rep 2024; 16:182-189. [PMID: 38318342 PMCID: PMC10839590 DOI: 10.1016/j.ibneur.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 02/07/2024] Open
Abstract
Schizophrenia (SCZ) is a profound neurological disorder that affects approximately 1% of the global population. Alpha-pinene (α-pinene) is a natural and active monoterpene found in coniferous tree oil, primarily pine, with diverse pharmacological characteristics, including antioxidative, anxiolytic, and antidepressant properties. This research study delves into the neuroprotective effects of α-pinene on oxidative stress, memory deficits, and depressive and anxiety-like behaviors in a ketamine-induced mice model of SCZ using male mice. The mice were randomly divided into six groups: vehicle, control, positive control, ketamine, α-pinene at 50 mg/kg, and α-pinene at 100 mg/kg. Treatment of the ketamine-induced mice model of SCZ with α-pinene yielded significant improvements in depressive and anxiety-like behaviors and cognitive impairments. Furthermore, it significantly elevated glutathione (GSH) levels, total antioxidant capacity (TAC), dopamine levels, catalase (CAT), and superoxide dismutase (SOD) activities while markedly reducing malondialdehyde (MDA) levels. The current study establishes that α-pinene treatment effectively mitigates oxidative damage, cognitive deficits, and depressive and anxiogenic-like behaviors in the brains of ketamine-treated mice. Therefore, α-pinene treatment is an efficacious approach to forestall the neurobehavioral and neurobiochemical adverse effects of the ketamine-induced SCZ model of mice.
Collapse
Affiliation(s)
| | | | | | - Tabarek Ahmed Hasan
- Department of Animal Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
9
|
Azevedo VAN, De Assis EIT, Silva AWB, Costa FDC, Souza LF, Silva JRV. α-Pinene Improves Follicle Morphology and Increases the Expression of mRNA for Nuclear Factor Erythroid 2-Related Factor 2 and Peroxiredoxin 6 in Bovine Ovarian Tissues Cultured In Vitro. Animals (Basel) 2024; 14:1443. [PMID: 38791661 PMCID: PMC11117312 DOI: 10.3390/ani14101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress during in vitro of ovarian tissues has adverse effects on follicle survival. α-pinene is a monoterpenoid molecule with antioxidant activity that has great potential to maintain cell survival in vitro. This study investigated the effect of α-pinene (1.25, 2.5, 5.0, 10.0, or 20.0 μg/mL) on primordial follicle growth and morphology, as well as on stromal cells and collagen fibers in bovine ovarian slices cultured for six days. The effect of α-pinene on transcripts of catalase (CAT), superoxide dismutase (SOD), peroxiredoxin 6 (PRDX6), glutathione peroxidase (GPX1), and nuclear factor erythroid 2-related factor 2 (NRF2) was investigated by real-time PCR. The tissues were processed for histological analysis to evaluate follicular growth, morphology, stromal cell density, and collagen fibers. The results showed that 2.5, 5.0, or 10.0 µg/mL α-pinene increased the percentages of normal follicles but did not influence follicular growth. The α-pinene (10.0 µg/mL) kept the stromal cell density and collagen levels in cultured bovine ovarian tissue like uncultured tissues. Ovarian tissues cultured in control medium had reduced expression of mRNA for NRF2, SOD, CAT, GPX1, and PRDX6, but α-pinene (10.0 µg/mL) increased mRNA levels for NRF2 and PRDX6. In conclusion, 10.0 µg/mL α-pinene improves the follicular survival, preserves stromal cell density and collagen levels, and increases transcripts of NRF2 and PRDX6 after in vitro culture of bovine ovarian tissue.
Collapse
Affiliation(s)
| | - Ernando Igo Teixeira De Assis
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| | - Anderson Weiny Barbalho Silva
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| | - Francisco Das Chagas Costa
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| | - Layana Freitas Souza
- Laboratory of Biochemistry and Gene Expression, State University of Ceara, Fortaleza 60714-903, CE, Brazil
| | - José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| |
Collapse
|
10
|
Akcakavak G, Kazak F, Karatas O, Alakus H, Alakus I, Kirgiz O, Celik Z, Yilmaz Deveci MZ, Ozdemir O, Tuzcu M. Eucalyptol regulates Nrf2 and NF-kB signaling and alleviates gentamicin-induced kidney injury in rats by downregulating oxidative stress, oxidative DNA damage, inflammation, and apoptosis. Toxicol Mech Methods 2024; 34:413-422. [PMID: 38115227 DOI: 10.1080/15376516.2023.2297234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Gentamicin, an aminoglycoside antibiotic, is nowadays widely used in the treatment of gram-negative microorganisms. The antimicrobial, anti-inflammatory, and antioxidant activities of eucalyptol, a type of saturated monoterpene, have been reported in many studies. The aim of this study was to examine the possible effects of eucalyptol on gentamicin-induced renal toxicity. A total of 32 rats were divided into 4 groups; Control (C), Eucalyptol (EUC), Gentamicin (GEN), and Gentamicin + Eucalyptol (GEN + EUC). In order to induce renal toxicity, 100 mg/kg gentamicin was administered intraperitoneally (i.p.) for 10 consecutive days in the GEN and GEN + EUC groups. EUC and GEN + EUC groups were given 100 mg/kg orally of eucalyptol for 10 consecutive days. Afterwards, rats were euthanized and samples were taken and subjected to histopathological, biochemical, immunohistochemical, and real-time PCR examinations. The blood urea nitrogen (BUN) and creatinine (CRE) levels were significantly decreased in the GEN + EUC group (0.76 and 0.69-fold, respectively) compared to the GEN group. The glutathione peroxidase (GPx) and catalase (CAT) activities were significantly increased in the GEN + EUC group (1.35 and 2.67-fold, respectively) compared to the GEN group. In GEN group, Nuclear factor kappa B (NF-kB), Interleukin 1-beta (IL-1β), Inducible nitric oxide synthase (iNOS), Tumor necrosis factor-α (TNF-α), Caspase-3, 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and Nuclear factor erythroid 2-related factor (Nrf2) expression levels were found to be quite irregular. GEN + EUC group decreased the expressions of NF-kB, IL-1β, iNOS, TNF-α, Caspase-3, and 8-OHdG (0.55, 0.67, 0.54, 0.54, 0.63 and 0.67-fold, respectively), while it caused increased expression of Nrf2 (3.1 fold). In addition, eucalyptol treatment ameliorated the histopathological changes that occurred with gentamicin. The results of our study show that eucalyptol has anti-inflammatory, antioxidative, antiapoptotic, nephroprotective, and curative effects on gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Gokhan Akcakavak
- Department of Pathology, Yozgat Bozok University, Yozgat, Turkey
| | - Filiz Kazak
- Department of Biochemistry, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ozhan Karatas
- Department of Pathology, Cumhuriyet University, Sivas, Turkey
| | - Halil Alakus
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ibrahim Alakus
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Omer Kirgiz
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Zeynep Celik
- Department of Pathology, Selcuk University, Konya, Turkey
| | | | - Ozgur Ozdemir
- Department of Pathology, Selcuk University, Konya, Turkey
| | - Mehmet Tuzcu
- Department of Pathology, Selcuk University, Konya, Turkey
| |
Collapse
|
11
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
12
|
Demir S, Mentese A, Usta ZT, Alemdar NT, Demir EA, Aliyazicioglu Y. Alpha-pinene neutralizes cisplatin-induced reproductive toxicity in male rats through activation of Nrf2 pathway. Int Urol Nephrol 2024; 56:527-537. [PMID: 37789204 DOI: 10.1007/s11255-023-03817-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE Testicular toxicity is one of the most important side effects of cisplatin (CP) therapy. Alpha-pinene (AP) is a naturally occurring monoterpene with antioxidant character in plants. Here, we aimed to evaluate the therapeutic activity of AP against CP-induced testicular toxicity by including the nuclear factor erythroid 2-associated factor 2 (Nrf2) pathway in rats. METHODS Thirty male rats were divided into 5 groups: control, CP, CP + AP (5 and 10 mg/kg) and only AP (10 mg/kg). CP was administered intraperitoneally at a dose of 5 mg/kg on the first day, followed by three consecutive injections of AP. Serum reproductive hormone levels were evaluated using ELISA kits. Oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers in testicular tissue were also determined colorimetrically. In addition, how CP affects Nrf2 pathway and the effect of AP on this situation were also addressed. RESULTS Treatment with CP significantly increased OS, inflammation, ERS and apoptosis in testicular tissue. Administrations of AP resulted in an amelioration of these altered parameters. The mechanism of therapeutic effect of AP appeared to involve induction of Nrf2. Furthermore, these results were also confirmed by histological data. CONCLUSION Results suggest that AP can exhibit therapeutic effects against CP-induced testicular toxicity. It can be concluded that AP may be a potential molecule to abolish reproductive toxicity after chemotherapy.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Zeynep Turkmen Usta
- Department of Medical Pathology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750, Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
13
|
Costa WK, Guimarães VB, da Fonsêca BMB, Ferreira MRA, Soares LAL, Napoleão TH, Paiva PMG, Dos Santos Correia MT, Dos Santos FAB, de Oliveira AM, da Silva MV. Development of gel containing Psidium glaziovianum essential oil has in vitro antimicrobial activity and improves healing of excisional wounds in mice. Inflammopharmacology 2024; 32:595-602. [PMID: 37823930 DOI: 10.1007/s10787-023-01351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 10/13/2023]
Abstract
Wounds encompass physical, chemical, biological, induced damages to the skin or mucous membranes. In wound treatment, combating infections is a critical challenge due to their potential to impede recovery and inflict systemic harm on patients. Previously, the essential oil extracted from Psidium glaziovianum (PgEO) demonstrated antinociceptive and anti-inflammatory attributes, along with negligible oral toxicity. Hence, our study aimed to assess the effects of topically applying a gel formulation containing PgEO to excisional wounds in mice. Additionally, an in vitro antimicrobial assessment was conducted. The formulated gel underwent characterization and toxicological evaluation on erythrocytes, as well as a dermal irritation test. Its antimicrobial activity was tested against both gram-positive and gram-negative bacteria, as well as fungi. Subsequently, an assessment of its efficacy in excisional wound healing was conducted in mice. The findings of this investigation highlight the gel's efficacy against both gram-positive and gram-negative bacteria, as well as fungi. Moreover, this study underscores that the PgEO-gel treatment enhances skin wound healing, potentially due to its capacity to trigger antioxidant enzymes and suppress pro-inflammatory cytokines. Furthermore, the gel exhibited minimal toxicity to erythrocytes and skin irritation. These findings hold promise for prospective preclinical and clinical trials across diverse wound types. In conclusion, this study sheds light on the potential therapeutic applications of the gel formulation containing essential oil from P. glaziovianum in the context of wound healing.
Collapse
Affiliation(s)
- Wêndeo Kennedy Costa
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE,, 50670-901, Brazil.
| | | | | | | | - Luiz Alberto Lira Soares
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | | | | | | | | | | | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE,, 50670-901, Brazil
| |
Collapse
|
14
|
Dhiman P, Malik N. Curcumin Derivatives Linked to a Reduction of Oxidative Stress in Mental Dysfunctions and Inflammatory Disorders. Curr Med Chem 2024; 31:6826-6841. [PMID: 37605400 DOI: 10.2174/0929867331666230821102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Stress is a critical factor in the etiology of inflammation and neurodegeneration. The risk factor for the majority of psychiatric disorders is oxidative stress-induced depression. Mitochondrial damage and oxidative stress are associated with the development of neurodegenerative disorders. During aging, the brain and associated regions become more susceptible due to oxidative stress. The leading cause of oxidative stress is the continuous generation of ROS (reactive oxygen species) and RNS (Reactive nitrogen species) endogenously or exogenously. In this review, discussion on a potent antioxidant natural constituent "curcumin" has been made to alleviate many pathological and neurological disorders. A focused compilation of vast and informative research on the potential of curcumin as a magical moiety used therapeutically has been done in search of its role in controlling the neurological and similar disorders induced by oxidative stress.
Collapse
Affiliation(s)
- Priyanka Dhiman
- Department of Pharmaceutical Sciences, Chandigarh Group of Colleges (CGC), Landran, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140307, India
| | - Neelam Malik
- Department of Pharmaceutical Sciences, Panipat Institute of Engineering & Technology (PIET), Samalkha, Haryana 132102, India
| |
Collapse
|
15
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
16
|
Staton Laws III J, Smid SD. Sesquiterpene-evoked phytochemical toxicity in PC12 neuronal cells reveals a variable degree of oxidative stress and alpha-tocopherol and glutathione-dependent protection. Curr Res Toxicol 2023; 6:100144. [PMID: 38193034 PMCID: PMC10772400 DOI: 10.1016/j.crtox.2023.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Phytochemicals are often promoted generally as antioxidants and demonstrate variable levels of reactive oxygen species (ROS) sequestration in vitro, which attributes to their neuroprotective bioactivity. Sesquiterpenes from cannabis and essential oils may demonstrate bifunctional properties towards cellular oxidative stress, possessing pro-oxidant activities by generating ROS or scavenging ROS directly. Sesquiterpenes can also oxidize forming sesquiterpene oxides, however the relative contribution they make to the bioactivity or cytotoxicity of complex botanical extracts more generally is unclear, while selected cannabis-prevalent terpenes such as β-caryophyllene may also activate cannabinoid receptors as part of their biological activity. In the present study, we investigated selected sesquiterpenes β-caryophyllene and humulene and their oxidized forms (β-caryophyllene oxide and zerumbone, respectively) against established antioxidants (ascorbic acid, α-tocopherol, and glutathione) and in the presence of cannabinoid receptor 1 and cannabinoid receptor 2 antagonists, to gain a better understanding of the molecular and cellular mechanisms of neuroprotection versus neurotoxicity in semi-differentiated rat neuronal phaeochromocytoma (PC12) cells. Our results demonstrate that the sesquiterpenes β-caryophyllene, humulene and zerumbone possess concentration-dependent neurotoxic effects in PC12 cells. Both β-caryophyllene- and humulene-evoked toxicity was unaffected by CB1 or CB2 receptor antagonism, demonstrating this occurred independently of cannabinoid receptors. Both glutathione and α-tocopherol were variably able to alleviate the concentration-dependent loss of PC12 cell viability from exposure to β-caryophyllene, humulene and zerumbone. During 4-hour exposure to sesquiterpenes only modest increases in ROS levels were noted in PC12 cells, with glutathione co-incubation significantly inhibiting intracellular ROS production. However, significant increases in ROS levels in PC12 cells were demonstrated during 24-hour incubation with either antioxidants or sesquiterpenes individually, and with additive toxicity exhibited in combination. Overall, the results highlight a concentration-dependent profile of sesquiterpene neurotoxicity independent of cannabinoid receptors and dissociated from the formation of reactive oxygen species as a marker or correlate to the loss of cell viability.
Collapse
Affiliation(s)
- John Staton Laws III
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Scott D. Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
17
|
Rahimi K, Shirvani N, Sanaie P, Javadi A, Khademi M. The effects of alpha-pinene on the Nrf2-HO1 signaling pathway in gastric damage in rats. Mol Biol Rep 2023; 50:8615-8622. [PMID: 37648947 DOI: 10.1007/s11033-023-08765-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Alpha-pinene (α-pinene) is a monoterpene with gastroprotective activity. We evaluated the gastroprotective effect of α-pinene in the gastric damage model with ethanol. METHODS We evaluated the macroscopic evaluation of the stomach cavity, alteration in pH, mRNA expression of nuclear factor erythroid 2- related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), total antioxidant capacity (TAC) levels, and histopathological changes. RESULTS Pretreatment with α-pinene (10, 50 and 100 mg/kg i.p.) before oral administration of ethanol reduced gastric mucosal damage by increasing the percentage of ulcer inhibition. Alpha-pinene also increased gastric pH similar to omeprazole. In addition, the histopathological examination showed that in the groups pretreated with α-pinene 50 and 100 mg/kg, and omeprazole20 mg/kg, the lesions were less than the control group. Moreover, α- pinene 10, 50, 100, and omeprazole 20 mg/kg upregulated the NRF2 and HO1. CONCLUSIONS Our results show that pretreatment with α-pinene is effective in reducing ethanol-induced gastric damage through regulation of Nrf2/HO-1.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Negin Shirvani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Parham Sanaie
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Arian Javadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahsa Khademi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
18
|
Okey SA, Waddell JT, Shah RV, Kennedy GM, Frangos MP, Corbin WR. An Ecological Examination of Indica Versus Sativa and Primary Terpenes on the Subjective Effects of Smoked Cannabis: A Preliminary Investigation. Cannabis Cannabinoid Res 2023; 8:857-866. [PMID: 36648357 DOI: 10.1089/can.2022.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: The legal cannabis landscape has greatly outpaced scientific knowledge. Many popular cannabis claims, such as cultivar (colloquially referred to as strain) classification and terpene content producing different subjective effects, are unsubstantiated. This study examined, for the first time, whether cultivar classification (sativa/indica) and terpene content (caryophyllene, limonene, myrcene, pinene, and terpinolene) were associated with subjective cannabis effects (i.e., pain levels, low-arousal ["indica-like"] effects, high-arousal ["sativa-like"] effects, and negative effects). Methods: Regular cannabis users (n=101) took part in a 2-week long ecological momentary assessment study in which they responded to questions about their cannabis use, stated their preference for sativa versus indica, and reported their in-the-moment subjective effects within 30 min of smoking cannabis. Cultivars were coded for sativa versus indica classification and primary terpene content using Leafly, a popular search engine. Linear mixed-effect models then examined subjective response by sativa/indica and primary terpene. Covariates included demographics (age, sex, race, income), cannabis use (medical use, cannabis use frequency, stated preference for sativa/indica, global expected cannabis effects), morning pain ratings, and specific smoked cannabis occasions (hour of day, minutes since use, context, number of hits, and tetrahydrocannabinol). Results: The majority of participants (78.3%) had a preference for either sativa or indica and reported reasons for their preference that aligned with industry claims. After controlling for covariates, findings revealed that cultivars classified as indica dominant were associated with greater low-arousal (e.g., sluggish, slow) effects relative to the unweighted mean of all cannabis cultivars (b = 0.44, SE=0.16, p=0.01). Cultivars with primary caryophyllene were associated with greater pain ratings (b = 0.53, SE=0.24, p=0.03) and negative effects (b = 0.22, SE=0.08, p=0.01) relative to the mean of all other terpene types. Cultivars with primary pinene were associated with less negative effects (b = -0.35, SE=0.18, p=0.04). Conclusions: Cultivars classified as indica dominant were associated with greater low-arousal effects in models that accounted for both within- and between-person variation, despite the scientific challenges distinguishing between sativa and indica. Preliminary findings also suggest terpenes may play a role in subjective effects. These results emphasize the need for further research, particularly controlled lab studies.
Collapse
Affiliation(s)
- Sarah A Okey
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Jack T Waddell
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Rishika V Shah
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Gillian M Kennedy
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Maria P Frangos
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - William R Corbin
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
19
|
Liu Z, Wang J, Jin X, Gao P, Zhao Y, Yin M, Ma X, Xin Z, Zhao Y, Zhou X, Gao W. 1,8-Cineole Alleviates OGD/R-Induced Oxidative Damage and Restores Mitochondrial Function by Promoting the Nrf2 Pathway. Biol Pharm Bull 2023; 46:1371-1384. [PMID: 37532524 DOI: 10.1248/bpb.b23-00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
This study examined the effects of 1,8-cineole on reducing oxidative stress injury and restoring mitochondrial function in oxygen-glucose deprivation and reoxygenation (OGD/R) HT22 cells via the nuclear factor erythrocyte 2 related factor 2 (Nrf2) pathway. The optimal concentration of 1,8-cineole to reduce OGD/R injury was screened via cell morphology, cell survival rate, and lactate dehydrogenase (LDH) leakage rate. Oxidative damage was observed by measuring superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) activities, and reactive oxygen species (ROS), glutathione (GSH), protein carbonyl, malondialdehyde (MDA), lipid peroxidation (LPO) content, and 8-hydroxy-2 deoxyguanosine (8-OHDG) expression. Mitochondrial function was observed by mitochondrial membrane potential (MMP) and ATPase activity. Nrf2 pathways were observed by the expression levels of total Nrf2, nucleus Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H): quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), the mRNA levels of HO-1 and NQO1. Among different concentrations of 1,8-cineole for promoting HT22 cell proliferation and attenuated OGD/R injury, 10 µmol/L 1,8-cineole was the best. After 1,8-cineole treatment, SOD, GSH-PX, and CAT activities and GSH content increased, while ROS, MDA, LPO, protein carbonyl, and 8-OHDG levels decreased. 1,8-Cineole could restore MMP and increase mitochondrial enzyme activity. It could also increase the total Nrf2, nucleus Nrf2, NQO1, and HO-1, and Nrf2 inhibitor brusatol reduced the effect of 1,8-cineole. Immunofluorescence assay showed that 1,8-cineole could facilitate the transfer of Nrf2 into the nucleus. 1,8-cineole increased the mRNA levels of NQO1 and HO-1. The above results showed that 1,8-cineole could alleviate OGD/R-induced oxidative damage and restores mitochondrial function by activating the Nrf2 signal pathway.
Collapse
Affiliation(s)
- Zhenyi Liu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Jing Wang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xiaofei Jin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Ping Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Yanmeng Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Meijuan Yin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xian Ma
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Ziyuan Xin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Yuemou Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xiaohong Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Weijuan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| |
Collapse
|
20
|
Li W, Sang H, Xu X, Zhang Y, Meng X, Chen B. Protective effect of dihydromyricetin on vascular smooth muscle cell apoptosis induced by hydrogen peroxide in rats. Perfusion 2023; 38:491-500. [PMID: 34979825 DOI: 10.1177/02676591211059901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Dihydromyricetin (DMY), also called Ampelopsin, which was extracted from Ampelopsis grossedentata, has been demonstrated to have a protective effect against cell oxidative injury and cell apoptosis in vitro. In the present study, we tried to study the role of DMY on apoptosis of vascular smooth muscle cells (VSMCs) induced by hydrogen peroxide (H2O2) and explore the underlying mechanisms. METHODS Apoptotic cells were detected by Hematoxylin and Eosin (H.E.) staining, Hoechst 33342 staining, and Annexin V-fluorescein isothiocyanate binding assay. The intracellular reactive oxygen species (ROS) level was estimated through fluorescence assay. The mRNA and protein expression of Caspase-3, Caspase-9, Bcl-2, and Bax were determined by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. RESULTS The results showed that the pretreatment of VSMCs with DMY not only significantly increased cell viability, reduced intracellular ROS release, alleviated the morphological changes of apoptosis, and decreased the apoptosis rate, but also upregulated Bcl-2 expression and downregulated Caspase-3, Caspase-9, Bax expression, and ultimately attenuated the H2O2-stimulated apoptosis. CONCLUSION The inhibition of DMY on VSMC apoptosis may be mediated by ROS scavenging and the activation of the mitochondrial apoptotic signaling pathway.
Collapse
Affiliation(s)
- Wenling Li
- Department of Pharmacy, 74567Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Sang
- Department of Pharmacy, 74567Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Xu
- Department of Pharmacy, 74567Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanyuan Zhang
- Department of Neurology, 74567Affiliated Hospital of Nantong University, Nantong, China
| | - Xiangying Meng
- Department of Pharmacy, 74567Affiliated Hospital of Nantong University, Nantong, China
| | - Bohua Chen
- Department of Pharmacy, 74567Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
21
|
Bahrami T, Yaghmaei P, Yousofvand N. The effects of Ibuprofen and 1, 8- cineol on anxiety and spatial memory in hyperammonemic rats. Metab Brain Dis 2023; 38:613-620. [PMID: 36346500 DOI: 10.1007/s11011-022-01093-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
In hepatic encephalopathy, hyperammonemia (HA) causes cognitive impairment and anxiety by causing neuroinflammation. Ibuprofen and 1,8- cineol have anti-inflammatory and antioxidant properties, respectively. The aim of this study was to evaluate the effects of ibuprofen alone and in combination with 1,8- cineol on anxiety and oxidative stress in a HA rat animal model. For this purpose, 36 rats were divided into six groups (n = 6) including the HA (received intraperitoneally (IP) ammonium acetate 2.5 mg/kg for four week), ibuprofen (induced HA rats that received 15 mg/kg, IP), cineol (induced HA rats that received 5 and 10 mg/kg, IP), Ib + cineol (induced HA rats that received 15 and 10 mg/kg, respectively, IP), and the control groups (received normal saline, IP). Except the HA group, all other groups received the aforementioned treatment for two weeks.. The Morris water maze and elevated plus maze were used to assess cognitive function and anxiety in the animals, respectively. Superoxide dismutase (SOD) activity was measured to evaluate oxidative stress. The mRNA expression levels of interleukin (IL)-6 and IL-1β was assessed by real-time PCR in the animal's brain. The results showed a significant improvement in spatial memory and anxiety of the Ib group compared to the HA group (P < 0.01), but no significant change was observed in SOD activity (P > 0.05). There was a significant improvement in spatial memory and anxiety as well as a significant increase in SOD activity in the Ib + cineol group (P < 0.01) compared to the HA group. These results indicate that the Ib + cineol, not only improve cognitive function and reduce anxiety, also reduce oxidative stress, therefore, the simultaneous use of these two compounds may be useful in improving HA-induced cognitive disorders and anxiety.
Collapse
Affiliation(s)
- Tayebeh Bahrami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Namdar Yousofvand
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| |
Collapse
|
22
|
Rahmani H, Moloudi MR, Hashemi P, Hassanzadeh K, Izadpanah E. Alpha-Pinene Alleviates Motor Activity in Animal Model of Huntington's Disease via Enhancing Antioxidant Capacity. Neurochem Res 2023; 48:1775-1782. [PMID: 36689085 DOI: 10.1007/s11064-023-03860-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Huntington's disease (HD) is a progressive, neurodegenerative, and inherited disease. Antioxidants have been shown to be effective in slowing disease progression in animal models of HD and are under investigation in human clinical trials. α-pinene, a member of the monoterpene class, has been shown to exert antioxidant activity. Therefore, this study aimed to investigate the impact of α-pinene on animal model of HD. Thirty-two male Wistar rats received 3-Nitropropionic acid (3-NP) for induction of the disease model or treated with α-pinene + 3-NP in different groups. Motor skill, and biochemical evaluations to detect oxidant/antioxidant markers in rat cortex and striatum were performed in all groups. We found that α-pinene significantly improved 3-NP-induced changes in the body weight, rotarod activity, time taken to cross the narrow beam, and locomotor activity. Biochemical analysis revealed that α-pinene significantly decreased the 3NP-induced elevation in oxidant markers, nitrite, and malondialdehyde in both cortex and striatum. In addition, α-pinene counteracted the 3-NP-induced fall in antioxidant enzymes, including superoxide dismutase, catalase, and glutathione in the cortex and striatum. In conclusion, we found that α-pinene prevented the motor dysfunction induced by 3-NP in the animal model of Huntington's disease. Oxidants-antioxidant balance might be involved in the protective effect of α-pinene.
Collapse
Affiliation(s)
- Helia Rahmani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Neurosciences Research Center, research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Paria Hashemi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Pasdaran Avenue, Sanandaj, Kurdistan Province, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Pasdaran Avenue, Sanandaj, Kurdistan Province, Iran. .,Fondazione Pisana per la Scienza, Pisa, Italy.
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Pasdaran Avenue, Sanandaj, Kurdistan Province, Iran.
| |
Collapse
|
23
|
Laws JS, Smid SD. Evaluating Cannabis sativa L.'s neuroprotection potential: From bench to bedside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154485. [PMID: 36209703 DOI: 10.1016/j.phymed.2022.154485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neurodegenerative diseases and dementia pose a global health challenge in an aging population, exemplified by the increasing incidence and prevalence of its most common form, Alzheimer's disease. Although several approved treatments exist for Alzheimer's disease, they only afford transient symptomatic improvements and are not considered disease-modifying. The psychoactive properties of Cannabis sativa L. have been recognized for thousands of years and now with burgeoning access to medicinal formulations globally, research has turned to re-evaluate cannabis and its myriad phytochemicals as a potential treatment and adjunctive agent for neurodegenerative diseases. PURPOSE This review evaluated the neuroprotective potential of C. sativa's active constituents for potential therapeutic use in dementia and Alzheimer's disease, based on published studies demonstrating efficacy in experimental preclinical settings associated with neurodegeneration. STUDY DESIGN Relevant information on the neuroprotective potential of the C. sativa's phytoconstituents in preclinical studies (in vitro, in vivo) were included. The collated information on C. sativa's component bioactivity was organized for therapeutic applications against neurodegenerative diseases. METHODS The therapeutic use of C. sativa related to Alzheimer's disease relative to known phytocannabinoids and other phytochemical constituents were derived from online databases, including PubMed, Elsevier, The Plant List (TPL, www.theplantlist.org), Science Direct, as well as relevant information on the known pharmacological actions of the listed phytochemicals. RESULTS Numerous C. sativa -prevalent phytochemicals were evidenced in the body of literature as having efficacy in the treatment of neurodegenerative conditions exemplified by Alzheimer's disease. Several phytocannabinoids, terpenes and select flavonoids demonstrated neuroprotection through a myriad of cellular and molecular pathways, including cannabinoid receptor-mediated, antioxidant and direct anti-aggregatory actions against the pathological toxic hallmark protein in Alzheimer's disease, amyloid β. CONCLUSIONS These findings provide strong evidence for a role of cannabis constituents, individually or in combination, as potential neuroprotectants timely to the emergent use of medicinal cannabis as a novel treatment for neurodegenerative diseases. Future randomized and controlled clinical studies are required to substantiate the bioactivities of phytocannabinoids and terpenes and their likely synergies.
Collapse
Affiliation(s)
- John Staton Laws
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Scott D Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
24
|
Karimkhani MM, Nasrollahzadeh M, Maham M, Jamshidi A, Kharazmi MS, Dehnad D, Jafari SM. Extraction and purification of α-pinene; a comprehensive review. Crit Rev Food Sci Nutr 2022; 64:4286-4311. [PMID: 36384372 DOI: 10.1080/10408398.2022.2140331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extensive use of α-pinene in cosmetics, and medicine, especially for its antioxidant/antibacterial, and anti-cancer properties, and also as a flavoring agent, has made it a versatile product. α-Pinene (one of the two pinene isomers) is the most abundant terpene in nature. When extracting α-pinene from plants and, to a lesser extent, fruits, given that its purity is essential, purification methods should also be used as described in this study. Also, an attempt has been made to describe the extraction techniques of α-pinene, carried out by conventional and novel methods. Some disadvantages of conventional methods (such as hydrodistillation or solvent extraction) are being time consuming, low capacity per batch and being labor intensive and the requirement of trained operators. Most novel methods, such as supercritical fluid extraction and microwave-assisted extraction, can reduce the extraction time, cost, and energy compared to conventional methods, and, in fact, the extraction and preservation efficiency of α-pinene in these methods is higher than conventional methods. Although the above-mentioned extraction methods are effective, they still require rather long extraction times. In fact, advanced methods such as green and solvent-free ultrasonic-microwave-assisted extraction are much more efficient than microwave-assisted extraction and ultrasound-assisted extraction because the extraction efficiency and separation of α-pinene in these methods are higher; furthermore, no solvent consumption and maximum extraction efficiency are some crucial advantages of these techniques. However, the application of some novel methods, such as ultrasound-assisted extraction, in industry scale is still problematic because of their intricate design data.
Collapse
Affiliation(s)
- Mohammad Mahdi Karimkhani
- Department of Food Hygiene and Aquaculture, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmoud Nasrollahzadeh
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Mehdi Maham
- Department of Chemistry, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
| | - Abdollah Jamshidi
- Department of Food Hygiene and Aquaculture, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Danial Dehnad
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
25
|
Mechanistic Insights into the Neuroprotective Potential of Sacred Ficus Trees. Nutrients 2022; 14:nu14224731. [PMID: 36432418 PMCID: PMC9695857 DOI: 10.3390/nu14224731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Ficus religiosa (Bo tree or sacred fig) and Ficus benghalensis (Indian banyan) are of immense spiritual and therapeutic importance. Various parts of these trees have been investigated for their antioxidant, antimicrobial, anticonvulsant, antidiabetic, anti-inflammatory, analgesic, hepatoprotective, dermoprotective, and nephroprotective properties. Previous reviews of Ficus mostly discussed traditional usages, photochemistry, and pharmacological activities, though comprehensive reviews of the neuroprotective potential of these Ficus species extracts and/or their important phytocompounds are lacking. The interesting phytocompounds from these trees include many bengalenosides, carotenoids, flavonoids (leucopelargonidin-3-O-β-d-glucopyranoside, leucopelargonidin-3-O-α-l-rhamnopyranoside, lupeol, cetyl behenate, and α-amyrin acetate), flavonols (kaempferol, quercetin, myricetin), leucocyanidin, phytosterols (bergapten, bergaptol, lanosterol, β-sitosterol, stigmasterol), terpenes (α-thujene, α-pinene, β-pinene, α-terpinene, limonene, β-ocimene, β-bourbonene, β-caryophyllene, α-trans-bergamotene, α-copaene, aromadendrene, α-humulene, alloaromadendrene, germacrene, γ-cadinene, and δ-cadinene), and diverse polyphenols (tannin, wax, saponin, leucoanthocyanin), contributing significantly to their pharmacological effects, ranging from antimicrobial action to neuroprotection. This review presents extensive mechanistic insights into the neuroprotective potential, especially important phytochemicals from F. religiosa and F. benghalensis. Owing to the complex pathophysiology of neurodegenerative disorders (NDDs), the currently existing drugs merely alleviate the symptoms. Hence, bioactive compounds with potent neuroprotective effects through a multitarget approach would be of great interest in developing pharmacophores for the treatment of NDDs.
Collapse
|
26
|
Zamani E, Ahmadi Shad A, Fatemi H, Mahboubi S, Motavallian A, Evazalipour M. Assessment of Protective Effects of Carvacrol on Haloperidol-Induced Oxidative Stress and Genotoxicity in Human Peripheral Blood Lymphocytes. J Toxicol 2022; 2022:9565881. [PMID: 36329925 PMCID: PMC9626238 DOI: 10.1155/2022/9565881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 08/24/2023] Open
Abstract
Haloperidol is a first-generation antipsychotic drug that has several indications in a wide range of mental conditions. The extensive prescription of haloperidol is correlated with some less-known adverse effects such as genotoxicity. Carvacrol is a monoterpenoid mainly found in oregano and thyme. It has the potential to scavenge free radicals in addition to increasing antioxidant defense enzyme activities and glutathione levels. In this study, we attempted to explore the possible potential of haloperidol in inducing genotoxicity in human peripheral lymphocytes as well as the protective role of carvacrol against this effect. The lymphocytes were divided into separate groups as follows: control group (cosolvent and NS); carvacrol group (5 μM); haloperidol group (25, 50, and 100 ng/ml); haloperidol (25, 50, and 100 ng/ml) + carvacrol (5 μM); positive control (0.8 μg/ml Cisplatin). After 24 hours of treatment, we conducted a cytokinesis-Block micronucleus test and an alkaline comet assay in order to determine genetic damage. Additionally, we measured glutathione and MDA levels as the biomarkers associated with oxidative stress. Significant increases in the levels of genotoxicity biomarkers (micronucleus frequency, DNA percentage in tail and tail moment) were observed in haloperidol-treated cells. The result of our oxidative stress tests also demonstrated that haloperidol had the potential to induce oxidative stress via reducing the levels of glutathione and increasing lipid peroxidation. Treatment with carvacrol significantly decreased the genotoxic events. It can be presumed that the induction of oxidative stress by haloperidol is the critical event associated with haloperidol-mediated genotoxicity. Therefore, using carvacrol as a natural antioxidant protected human lymphocytes against haloperidol genetic damage.
Collapse
Affiliation(s)
- Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Ahmadi Shad
- Student Research Committee, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Hediye Fatemi
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Saba Mahboubi
- Student Research Committee, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Azadeh Motavallian
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
27
|
Di Y, Cao A, Zhang Y, Li J, Sun Y, Geng S, Li Y, Zhang L. Effects of Dietary 1,8-Cineole Supplementation on Growth Performance, Antioxidant Capacity, Immunity, and Intestine Health of Broilers. Animals (Basel) 2022; 12:ani12182415. [PMID: 36139274 PMCID: PMC9495220 DOI: 10.3390/ani12182415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to investigate the effects of 1,8-cineole on antioxidant capacity, immunity, and intestinal health of broilers. A total of 540 1-day-old Arbor Acres (AA) male broilers were randomly divided into five treatments with six replicates per treatment, and 18 broilers per replicate for 42 days. Dietary treatments were a corn−soybean meal basal diet supplemented with 0, and 10, 20, 30, and 40 mg/kg 1,8-cineole, respectively. Dietary supplementation with 20~30 mg/kg of 1,8-cineole increased the ADG from d 22 to 42 and d 1 to 42 (p < 0.05), and decreased the FCR (p < 0.05). Dietary supplementation of 10~40 mg/kg of 1,8-cineole increased total antioxidant capacity (TAOC) in serum (p < 0.05), and decreased malondialdehyde (MDA) level in the liver on day 21 (p < 0.05). The supplementation of 20~30 mg/kg of 1,8-cineole increased the activity of total superoxide dismutase (T-SOD) in the serum and liver and TAOC in the serum and the liver (p < 0.05), and decreased the level of MDA in the serum and the liver (p < 0.05) on day 42. Dietary supplementation with 20~30 mg/kg of 1,8-cineole increased serum immunoglobulin A, immunoglobulin G, and immunoglobulin M contents on day 21 (p < 0.05). On day 21, dietary supplementation of 20~30 mg/kg of 1,8-cineole increased the VH and VH/CD (p < 0.05) in the jejunum and ileum. The supplementation of 20~30 mg/kg of 1,8-cineole increased the content of secretory immunoglobulin A in the duodenum and ileum mucosa on d 42 (p < 0.05). In conclusion, dietary supplementation of 1,8-cineole improves the growth performance of broilers by enhancing antioxidant capacity, immunity, and intestinal morphology.
Collapse
|
28
|
A Modeling Approach for Quantifying Human-Beneficial Terpene Emission in the Forest: A Pilot Study Applying to a Recreational Forest in South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148278. [PMID: 35886129 PMCID: PMC9324495 DOI: 10.3390/ijerph19148278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
(1) Background: Recent economic developments in South Korea have shifted people’s interest in forests from provisioning to cultural services such as forest healing. Although policymakers have attempted to designate more forests for healing purposes, there are few established standards for carrying out such designations based on the quantified estimation. (2) Methods: We suggest a modeling approach to estimate and analyze the emission rate of human-beneficial terpenes. For this purpose, we adopted and modified the Model of Emissions of Gases and Aerosols from Nature (MEGAN), a commonly used biogenic volatile organic compounds (BVOCs) estimation model which was suitable for estimating the study site’s terpene emissions. We estimated the terpene emission rate for the whole year and analyzed the diurnal and seasonal patterns. (3) Results: The results from our model correspond well with other studies upon comparing temporal patterns and ranges of values. According to our study, the emission rate of terpenes varies significantly temporally and spatially. The model effectively predicted spatiotemporal patterns of terpene emission in the study site. (4) Conclusions: The modeling approach in our study is suitable for quantifying human-beneficial terpene emission and helping policymakers and forest managers plan the efficient therapeutic use of forests.
Collapse
|
29
|
1,8-Cineole Ameliorates Advanced Glycation End Products-Induced Alzheimer's Disease-like Pathology In Vitro and In Vivo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123913. [PMID: 35745036 PMCID: PMC9229467 DOI: 10.3390/molecules27123913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
Advanced glycation end products (AGEs) are stable products produced by the reaction of macromolecules such as proteins, lipids or nucleic acids with glucose or other reducing monosaccharides, which can be identified by immunohistochemistry in the senile plaques and neurofibrillary tangles of Alzheimer’s disease (AD) patients. Growing evidence suggests that AGEs are important risk factors for the development and progression of AD. 1,8-cineole (CIN) is a monoterpenoid compound which exists in many plant essential oils and has been proven to have neuroprotective activity, but its specific effect and molecular mechanisms are not clear. In this study, AGEs-induced neuronal injury and intracerebroventricular-AGE animals as the possible models for AD were employed to investigate the effects of CIN on AD pathology as well as the molecular mechanisms involved both in vivo and in vitro. Our study demonstrated that CIN could ameliorate tau phosphorylation by down-regulating the activity of GSK-3β and reducing Aβ production by inhibiting the activity of BACE-1 both in vivo and in vitro. It is suggested that CIN has certain therapeutic value in the treatment of AD.
Collapse
|
30
|
Alicandri E, Covino S, Sebastiani B, Paolacci AR, Badiani M, Sorgonà A, Ciaffi M. Monoterpene Synthase Genes and Monoterpene Profiles in Pinus nigra subsp. laricio. PLANTS (BASEL, SWITZERLAND) 2022; 11:449. [PMID: 35161430 PMCID: PMC8838282 DOI: 10.3390/plants11030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 05/09/2023]
Abstract
In the present study, we carried out a quantitative analysis of the monoterpenes composition in different tissues of the non-model conifer Pinus nigra J.F. Arnold subsp. laricio Palib. ex Maire (P. laricio, in short). All the P. laricio tissues examined showed the presence of the same fourteen monoterpenes, among which the most abundant were β-phellandrene, α-pinene, and β-pinene, whose distribution was markedly tissue-specific. In parallel, from the same plant tissues, we isolated seven full-length cDNA transcripts coding for as many monoterpene synthases, each of which was found to be attributable to one of the seven phylogenetic groups in which the d1-clade of the canonical classification of plants' terpene synthases can be subdivided. The amino acid sequences deduced from the above cDNA transcripts allowed to predict their putative involvement in the biosynthesis of five of the monoterpenes identified. Transcripts profiling revealed a differential gene expression across the different tissues examined, and was found to be consistent with the corresponding metabolites profiles. The genomic organization of the seven isolated monoterpene synthase genes was also determined.
Collapse
Affiliation(s)
- Enrica Alicandri
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Stefano Covino
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c, I-01100 Viterbo, Italy; (S.C.); (A.R.P.)
| | - Bartolomeo Sebastiani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, I-06123 Perugia, Italy;
| | - Anna Rita Paolacci
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c, I-01100 Viterbo, Italy; (S.C.); (A.R.P.)
| | - Maurizio Badiani
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Agostino Sorgonà
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Mario Ciaffi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c, I-01100 Viterbo, Italy; (S.C.); (A.R.P.)
| |
Collapse
|
31
|
Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010313. [PMID: 35011546 PMCID: PMC8746929 DOI: 10.3390/molecules27010313] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: "stress-affected plants," "plant secondary metabolites, "abiotic stress," "climatic influence," "pharmacological activities," "bioactive compounds," "drug discovery," and "medicinal plants" and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.
Collapse
|
32
|
Cai ZM, Peng JQ, Chen Y, Tao L, Zhang YY, Fu LY, Long QD, Shen XC. 1,8-Cineole: a review of source, biological activities, and application. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:938-954. [PMID: 33111547 DOI: 10.1080/10286020.2020.1839432] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
1,8-Cineole (also known as eucalyptol) is mostly extracted from the essential oils of plants, which showed extensively pharmacological properties including anti-inflammatory and antioxidant mainly via the regulation on NF-κB and Nrf2, and was used for the treatment of respiratory diseases and cardiovascular, etc. Although various administration routes have been used in the application of 1.8-cineole, few formulations have been developed to improve its stability and bioavailability. This review retrospects the researches on the source, biological activities, mechanisms, and application of 1,8-cineole since 2000, which provides a view for the further studies on the application and formulations of 1,8-cineole.
Collapse
Affiliation(s)
- Zi-Min Cai
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jian-Qing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ling Tao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yan-Yan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ling-Yun Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qing-De Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
33
|
Allenspach M, Steuer C. α-Pinene: A never-ending story. PHYTOCHEMISTRY 2021; 190:112857. [PMID: 34365295 DOI: 10.1016/j.phytochem.2021.112857] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 05/12/2023]
Abstract
α-Pinene represents a member of the monoterpene class and is highly distributed in higher plants like conifers, Juniper ssp. and Cannabis ssp. α-Pinene has been used to treat respiratory tract infections for centuries. Furthermore, it plays a crucial role in the fragrance and flavor industry. In vitro assays have shown an enantioselective profile of (+)- and (-)-α-pinene for antibacterial and insecticidal activity, respectively. Recent research has used pre-validated biological structures to synthesize new chemical entities with pharmacological and herbicidal activities. In summary, this review focuses on recent literature covering synthetic pathways of flavor compounds and scaffold hopping based on the α-pinene core domaine, as well as the (enantioselective) activities of α-pinene. Recent approaches for authenticity control of essential oils based on their enantiomeric profile are also presented.
Collapse
Affiliation(s)
- Martina Allenspach
- Institute of Pharmaceutical Sciences, ETH Zürich, 8092, Zürich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, ETH Zürich, 8092, Zürich, Switzerland.
| |
Collapse
|
34
|
Wang Y, Zhen D, Fu D, Fu Y, Zhang X, Gong G, Wei C. 1, 8-cineole attenuates cardiac hypertrophy in heart failure by inhibiting the miR-206-3p/SERP1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153672. [PMID: 34385094 DOI: 10.1016/j.phymed.2021.153672] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/06/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 1,8-Cineole (1,8-CIN) is a monoterpene found in diverse dietary and medicinal herbs that has been reported to be effective against cardiovascular diseases. PURPOSE The present research was designed to elucidate the treatment effects and the underlying mechanism of 1,8-CIN on heart failure (HF). METHOD An in vitro cardiac hypertrophy model and an in vivo heart failure (HF) model induced by isoprenaline (ISO) were established and treated with or without 1,8-CIN. In vitro miR-206-3p mimic or inhibitors were created. MiR-206-3p, SERP1 and related mRNAs or proteins were detected using qPCR or western blotting. Cell viability was tested by MTT assay, and apoptosis was measured using TUNEL assay, AO/EB assay and flow cytometry. Actin was stained with FITC-phalloidin. MiR-206-3p and related mRNAs or proteins in cardiac muscle tissues were measured using qPCR or western blotting, HE staining, Masson staining. RESULTS ISO subcutaneous injection increased cardiac hypertrophy, cytoplasmic vacuole formation, myofiber loss and fibrosis and decreased cardiomyocyte viability. 1,8-CIN treatment improved cardiomyocyte viability and reduced cardiac hypertrophy, cytoplasmic vacuole formation, myofibre loss and fibrosis. We found that 1,8-CIN attenuated apoptosis. We observed that expression of miR-206-3p was dramatically increased in ISO-exposed cardiomyocytes or ISO-treated rat hearts. MiR-206-3p was identified to target the 3'UTR of SERP1, resulting in the accumulation of un- or misfolded proteins, leading to endoplasmic reticulum (ER) stress. CONCLUSION These results suggest that 1,8-CIN reduces the apoptosis induced by ER stress through inhibiting miR-206-3p, which inhibits the expression of SERP1.
Collapse
Affiliation(s)
- Yu Wang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China., Tongliao, Inner Mongolia, PR China
| | - Dong Zhen
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China., Tongliao, Inner Mongolia, PR China
| | - Danni Fu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China., Tongliao, Inner Mongolia, PR China
| | - Yao Fu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China., Tongliao, Inner Mongolia, PR China
| | - Xuan Zhang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China., Tongliao, Inner Mongolia, PR China
| | - Guohua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China., Tongliao, Inner Mongolia, PR China; Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China.
| | - Chengxi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China., Tongliao, Inner Mongolia, PR China.
| |
Collapse
|
35
|
Screening of the Honey Aroma as a Potential Essence for the Aromachology. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of the study was to determine the aroma profiles of four kinds of Slovak honey (sunflower, honeydew, acacia, and linden) by a qualitative and quantitative screening of their volatile compounds and by gas chromatography for the potential use in the aromachology and the business sphere. The results showed that several unique volatiles were identified in one kind of honey, while they were not identified in the remaining ones. The acacia honey had the unique volatile linalool oxide (1.13–3.9%); linden honey had the unique volatiles nerol oxide (0.6–1.6%), ethyl esters (0.41–8.78%), lilac aldehyde D (6.6%), and acetophenone (0.37%). The honeydew honey had the unique volatiles santene (0.28%) and cyclofenchene (0.59–1.39%), whereas 2-bornene (0.43–0.81%) was typical for sunflower honey. While linden honey was characterized by fruity ethyl esters, honeydew honey had more monoterpenoid compounds. In the principal component analysis model, the four kinds of honey could not be differentiated by aroma volatiles. However, it was possible to classify the linden and sunflower honey using the LDA. In conclusion, the current study provided experimental evidence that the marker compounds from different kinds of honey might be promising candidates for production of inhaling aromas.
Collapse
|
36
|
Srivastava R, Choudhury PK, Dev SK, Rathore V. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-Parkinson's effect. J Biochem Mol Toxicol 2021; 35:e22902. [PMID: 34464010 DOI: 10.1002/jbt.22902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022]
Abstract
Oxidative stress (OS) is involved in the multifaceted pathogenic paradigm of neurodegenerative diseases like Parkinson's disease (PD). Monoterpenes like α-pinene (ALP) is considered to be a therapeutically potent antioxidant agent able to attenuate and scavenge various reactive oxygen species and reactive nitrogen species. The present study aimed to evaluate the in vitro and in vivo neuroprotective effect of α-pinene self-emulsifying nanoformulation (ALP-SENF) for PD. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was done to evaluate the neurotoxic dose of the ALP-SENF; however, the neuroprotective effect was assessed by 6-hydroxydopamine (6-OHDA) induced neurotoxicity model on SH-SY5Y taking NAC (N-acetyl-l-cysteine) as standard. The in vivo anti-Parkinson's activity of the ALP-SENF was compared with that of the plain ALP suspension by using reserpine antagonism and haloperidol-induced Parkinsonism model in rats. Various behavioral tests and biochemical antioxidant enzymes were estimated. The in vitro results revealed that treatment with ALP-SENF at a concentration of 100 and 200 µM was found to show significant neuronal SH-SY5Y cell viability against 50 µM 6-OHDA. ALP-SENF treated animals have seen significant neurobehavioral improvement. Furthermore, the levels of antioxidative enzymes in biochemical test reveals a marked enhancement in the expression of antioxidant enzymes that significantly attenuated the OS induced neurodegeneration. Due to the mechanisms of their antioxidant action, it was probably due to the scavenging of free radicals and the expression of antioxidant enzymes. It also improved neurobehavioral changes induced by reserpine and haloperidol.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Pratim K Choudhury
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Suresh K Dev
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Vaibhav Rathore
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
37
|
Bhardwaj K, Silva AS, Atanassova M, Sharma R, Nepovimova E, Musilek K, Sharma R, Alghuthaymi MA, Dhanjal DS, Nicoletti M, Sharma B, Upadhyay NK, Cruz-Martins N, Bhardwaj P, Kuča K. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules 2021; 26:3005. [PMID: 34070179 PMCID: PMC8158490 DOI: 10.3390/molecules26103005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers' phytochemicals and illustrates their potential role as drugs.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, 4485-655 Vila do Conde, Portugal;
- Center for Study in Animal Science (CECA), ICETA, University of Porto, 4051-401 Porto, Portugal
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11971, Saudi Arabia;
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Square Aldo Moro, 5, 00185 Rome, Italy;
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India;
| | - Navneet Kumar Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Prerna Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| |
Collapse
|
38
|
Xanthis V, Fitsiou E, Voulgaridou GP, Bogadakis A, Chlichlia K, Galanis A, Pappa A. Antioxidant and Cytoprotective Potential of the Essential Oil Pistacia lentiscus var . chia and Its Major Components Myrcene and α-Pinene. Antioxidants (Basel) 2021; 10:antiox10010127. [PMID: 33477450 PMCID: PMC7830477 DOI: 10.3390/antiox10010127] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
The antioxidant, cytoprotective, and wound-healing potential of the essential oil from the resin of Pistacia lentiscus var. chia (mastic oil) was evaluated, along with that of its major components, myrcene and α-pinene. Antioxidant potential was monitored as: (i) direct antioxidant activity as assessed by 2,2-di-phenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ABTS assays; (ii) DNA damage protection activity; and (iii) cytoprotective activity as assessed via induction of transcription of genes related to the antioxidant response in human keratinocyte cells (HaCaT). The cytoprotective potential of the test substances was further evaluated against ultraviolet radiation B (UVB)- or H2O2-induced oxidative damage, whereas their regenerative capability was accessed by monitoring the wound closure rate in HaCaT. Μastic oil and major components did not show significant direct antioxidant activity, however they increased the mRNA levels of antioxidant response genes, suggesting indirect antioxidant activity. Treatment of HaCaT with the test substances before and after UVB irradiation resulted in increased cell viability in the cases of pre-treatment with mastic oil or post-treatment with myrcene. Increased cytoprotection was also observed in the case of cell treatment with mastic oil or its major components prior to H2O2 exposure. Finally, mastic oil and myrcene demonstrated a favorable dose-dependent effect for cell migration and wound closure. Collectively, mastic essential oil may exert its promising cytoprotective properties through indirect antioxidant mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Alex Galanis
- Correspondence: (A.G.); (A.P.); Tel.: +30-25510-30634 (A.G.); +30-25510-30625 (A.P.)
| | - Aglaia Pappa
- Correspondence: (A.G.); (A.P.); Tel.: +30-25510-30634 (A.G.); +30-25510-30625 (A.P.)
| |
Collapse
|
39
|
Franco GDRR, Smid S, Viegas C. Phytocannabinoids: General Aspects and Pharmacological Potential in Neurodegenerative Diseases. Curr Neuropharmacol 2021; 19:449-464. [PMID: 32691712 PMCID: PMC8206465 DOI: 10.2174/1570159x18666200720172624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 11/22/2022] Open
Abstract
In the last few years research into Cannabis and its constituent phytocannabinoids has burgeoned, particularly in the potential application of novel cannabis phytochemicals for the treatment of diverse illnesses related to neurodegeneration and dementia, including Alzheimer's (AD), Parkinson's (PD) and Huntington's disease (HD). To date, these neurological diseases have mostly relied on symptomatological management. However, with an aging population globally, the search for more efficient and disease-modifying treatments that could delay or mitigate disease progression is imperative. In this context, this review aims to present state of the art in the research with cannabinoids and novel cannabinoid-based drug candidates that have been emerged as novel promising alternatives for drug development and innovation in the therapeutics of a number of diseases, especially those related to CNS-disturbance and impairment.
Collapse
Affiliation(s)
| | | | - Cláudio Viegas
- Address correspondence to this author at the PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil; Tel/Fax: +55 35 3701-1880; E-mail:
| |
Collapse
|
40
|
Cui Y, Zhang Q, Yin K, Song N, Wang B, Lin H. DEHP-induce damage in grass carp hepatocytes and the remedy of Eucalyptol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111151. [PMID: 32858329 DOI: 10.1016/j.ecoenv.2020.111151] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
The wide application of plastic products led to the wide exposure of plasticizer in environment. As a new environmental pollutant, plasticizers' toxicity researches were far from enough in fish. In order to further explore these mechanisms, we used Diethylhexyl phthalate (DEHP), a common plasticizer, treated the grass carp hepatocytes, and selected Eucalyptol (EUC) to study its antagonistic effect on DEHP. The results showed that after DEHP exposure, oxidative stress level and inflammation in grass carp hepatocytes were increased, and then mRNA and protein expression of apoptosis related markers were increased significantly, leading to hepatocytes apoptosis. Moreover, AO/EB staining and Hoethst staining also showed that the number of apoptotic cells increased after DEHP exposure. It should be noted that both EUC pretreatment and EUC simultaneous treatment could alleviate the oxidative stress, levels of inflammatory factors and apoptosis induced by DEHP. In comparison, the effect of EUC simultaneous treatment was better. Our results showed that DEHP induced apoptosis in grass carp hepatocytes through oxidative stress and inflammation, while EUC could alleviate apoptosis by reducing oxidative stress and inflammation caused by DEHP. The innovation of this study was to explore the interaction between DEHP and EUC for the first time. This study found that DEHP could cause apoptosis in grass carp hepatocytes through oxidative stress and inflammation; EUC had a good antagonistic effect on a series of damage in grass carp hepatocytes caused by DEHP, and EUC pretreatment and simultaneous treatment had a certain effect, among which, simultaneous treatment had a better effect. This study enriched the theoretical mechanism of DEHP toxicity in fish hepatocytes, and put forward the methods to solve the toxicity of DEHP.
Collapse
Affiliation(s)
- Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bing Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
41
|
Patel MK, Kumar M, Li W, Luo Y, Burritt DJ, Alkan N, Tran LSP. Enhancing Salt Tolerance of Plants: From Metabolic Reprogramming to Exogenous Chemical Treatments and Molecular Approaches. Cells 2020; 9:E2492. [PMID: 33212751 PMCID: PMC7697626 DOI: 10.3390/cells9112492] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022] Open
Abstract
Plants grow on soils that not only provide support for root anchorage but also act as a reservoir of water and nutrients important for plant growth and development. However, environmental factors, such as high salinity, hinder the uptake of nutrients and water from the soil and reduce the quality and productivity of plants. Under high salinity, plants attempt to maintain cellular homeostasis through the production of numerous stress-associated endogenous metabolites that can help mitigate the stress. Both primary and secondary metabolites can significantly contribute to survival and the maintenance of growth and development of plants on saline soils. Existing studies have suggested that seed/plant-priming with exogenous metabolites is a promising approach to increase crop tolerance to salt stress without manipulation of the genome. Recent advancements have also been made in genetic engineering of various metabolic genes involved in regulation of plant responses and protection of the cells during salinity, which have therefore resulted in many more basic and applied studies in both model and crop plants. In this review, we discuss the recent findings of metabolic reprogramming, exogenous treatments with metabolites and genetic engineering of metabolic genes for the improvement of plant salt tolerance.
Collapse
Affiliation(s)
- Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Weiqiang Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China;
- Joint International Laboratory for Multi-Omics Research, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yin Luo
- School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - David J. Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand;
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
42
|
Fakhri S, Pesce M, Patruno A, Moradi SZ, Iranpanah A, Farzaei MH, Sobarzo-Sánchez E. Attenuation of Nrf2/Keap1/ARE in Alzheimer's Disease by Plant Secondary Metabolites: A Mechanistic Review. Molecules 2020; 25:molecules25214926. [PMID: 33114450 PMCID: PMC7663041 DOI: 10.3390/molecules25214926] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neuronal/cognitional dysfunction, leading to disability and death. Despite advances in revealing the pathophysiological mechanisms behind AD, no effective treatment has yet been provided. It urges the need for finding novel multi-target agents in combating the complex dysregulated mechanisms in AD. Amongst the dysregulated pathophysiological pathways in AD, oxidative stress seems to play a critical role in the pathogenesis progression of AD, with a dominant role of nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)/antioxidant responsive elements (ARE) pathway. In the present study, a comprehensive review was conducted using the existing electronic databases, including PubMed, Medline, Web of Science, and Scopus, as well as related articles in the field. Nrf2/Keap1/ARE has shown to be the upstream orchestrate of oxidative pathways, which also ameliorates various inflammatory and apoptotic pathways. So, developing multi-target agents with higher efficacy and lower side effects could pave the road in the prevention/management of AD. The plant kingdom is now a great source of natural secondary metabolites in targeting Nrf2/Keap1/ARE. Among natural entities, phenolic compounds, alkaloids, terpene/terpenoids, carotenoids, sulfur-compounds, as well as some other miscellaneous plant-derived compounds have shown promising future accordingly. Prevailing evidence has shown that activating Nrf2/ARE and downstream antioxidant enzymes, as well as inhibiting Keap1 could play hopeful roles in overcoming AD. The current review highlights the neuroprotective effects of plant secondary metabolites through targeting Nrf2/Keap1/ARE and downstream interconnected mediators in combating AD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
- Correspondence: (A.P.); (M.H.F.)
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Correspondence: (A.P.); (M.H.F.)
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| |
Collapse
|
43
|
Croton argyrophyllus Kunth Essential Oil-Loaded Solid Lipid Nanoparticles: Evaluation of Release Profile, Antioxidant Activity and Cytotoxicity in a Neuroblastoma Cell Line. SUSTAINABILITY 2020. [DOI: 10.3390/su12187697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The essential oil from Croton argyrophyllus Kunth is known for its antiproliferative, anti-inflammatory, antinociceptive, and anticancer activities, and is recognized as a source of phytochemicals for potential use in pharmaceutic and food sectors. Solid lipid nanoparticles (SLN) have been produced to load Croton argyrophyllus (CA) Kunth essential oil (CAEO) and its antioxidant properties evaluated in vitro as a new approach for the treatment of neurodegenerative diseases. Cetyl palmitate SLN loading CAEO (CAEO-SLN) with a mean particle size of 201.4 ± 2.3 nm (polydispersity index 0.211) have been produced by hot high-pressure homogenisation. The release of the oil followed the Korsmeyers-Peppas model. The risk of lipid peroxidation has been determined by applying the production of thiobarbituric acid-reactive substances (TBARS) standard assay. The antioxidant activity was determined by the capacity of the antioxidants existing in CAEO to scavenge the stable radical DPPH•. The cytotoxicity of CA Kunth essential oil-loaded SLN (CAEO-SLN) was evaluated in a human cell line SH-SY5Y (derived from human neuroblastoma) by determining the reduction of the yellow dye 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT). Both free essential oil (fEO) and loaded essential oil (CAEO-SLN) were demonstrated to inhibit the Fenton reaction. CAEO-SLN showed DPPH• radical scavenging capacity. The loading of the oil into cetyl palmitate SLN reduced the risk of cytotoxicity.
Collapse
|
44
|
Santana RC, Rosa ADS, Mateus MHDS, Soares DC, Atella G, Guimarães AC, Siani AC, Ramos MFS, Saraiva EM, Pinto-da-Silva LH. In vitro leishmanicidal activity of monoterpenes present in two species of Protium (Burseraceae) on Leishmania amazonensis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112981. [PMID: 32442591 DOI: 10.1016/j.jep.2020.112981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leishmaniasis is a neglected disease that affects millions of people around the world. Parasite resistance and the toxicity to the current treatments lead to the search for new effective molecules. Plants are widely used in traditional and indigenous medicine to treat different diseases. The oleoresin of the genus Protium, which is rich in volatile compounds active against different microorganisms, is among these plants. AIM The aim of this study was to evaluate the leishmanicidal potential of Protium altsonii (PaEO) and P. hebetatum (PhEO) (Burseraceae) oleoresins, as well as of three representative monoterpenes in their constitution: α-pinene, p-cymene and 1,8-cineole. MATERIALS AND METHODS Protium altsonii (PaEO) and P. hebetatum (PhEO) oleoresins and three of their constituents were tested in vitro on promastigotes and amastigotes-infected macrophages in different concentrations. Their toxicity for macrophages was analyzed by XTT assay and phagocytic ability. It was evaluated the ability of the compounds to induce NO production on treated-macrophages using Griess reaction and the effect of them in lipid profile on treated-parasite through Thin Layer Chromatography. RESULTS Our data showed that both essential oils have toxic effect on promastigotes and amastigotes of L. amazonensis in vitro in a dose-dependent manner. PaEO IC50 were 14.8 μg/mL and 7.8 μg/mL and PhEO IC50s were 0.46 μg/mL and 30.5 μg/m for promastigotes and amastigotes, respectively. Toxicity to macrophages was not observed at 50 μg/mL with both EOs. The compounds 1,8- cineole, α-pinene, and p-cymene inhibited amastigotes survival in a dose-dependent manner with IC50s of 48.4 μg/mL, 37 μg/mL, 46 μg/mL, respectively. Macrophage viability was around 90% even at 200 μg/mL and the phagocytic capacity was not altered in the treated-macrophages to up 50 μg/mL. The compounds were not able to modulate the nitric oxide production either at rest or LPS-activated macrophages. In addition, treated promastigote revealed an important change in their lipid profile after 48 h at 50 μg/mL in the presence of the compounds. CONCLUSIONS The results indicate that oleoresins of Protium genus are potent against Leishmania and α-pinene, p-cymene and 1,8-cineole have anti-Leishmania properties that could be explored in synergistic assays in order to develop new drug candidates.
Collapse
Affiliation(s)
- Raissa Couto Santana
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Alice Dos Santos Rosa
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | | | - Deivid Costa Soares
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Georgia Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | - Monica Freiman S Ramos
- Faculdade de Farmácia, Departamento de Medicamentos, Universidade Federal do Rio de Janeiro, Brazil
| | - Elvira Maria Saraiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Lucia H Pinto-da-Silva
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
45
|
Antonelli M, Donelli D, Barbieri G, Valussi M, Maggini V, Firenzuoli F. Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186506. [PMID: 32906736 PMCID: PMC7559006 DOI: 10.3390/ijerph17186506] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
The aim of this research work is to analyze the chemistry and diversity of forest VOCs (volatile organic compounds) and to outline their evidence-based effects on health. This research work was designed as a narrative overview of the scientific literature. Inhaling forest VOCs like limonene and pinene can result in useful antioxidant and anti-inflammatory effects on the airways, and the pharmacological activity of some terpenes absorbed through inhalation may be also beneficial to promote brain functions by decreasing mental fatigue, inducing relaxation, and improving cognitive performance and mood. The tree composition can markedly influence the concentration of specific VOCs in the forest air, which also exhibits cyclic diurnal variations. Moreover, beneficial psychological and physiological effects of visiting a forest cannot be solely attributed to VOC inhalation but are due to a global and integrated stimulation of the five senses, induced by all specific characteristics of the natural environment, with the visual component probably playing a fundamental role in the overall effect. Globally, these findings can have useful implications for individual wellbeing, public health, and landscape design. Further clinical and environmental studies are advised, since the majority of the existing evidence is derived from laboratory findings.
Collapse
Affiliation(s)
- Michele Antonelli
- Terme di Monticelli, 43022 Monticelli Terme PR, Italy
- Institute of Public Health, University of Parma, 43125 Parma PR, Italy
- Correspondence:
| | - Davide Donelli
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
- AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia RE, Italy
| | - Grazia Barbieri
- Binini Partners S.r.l. Engineering and Architecture, 42121 Reggio Emilia RE, Italy;
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association (EHTPA), Norwich NR3 1HG, UK;
| | - Valentina Maggini
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
| | - Fabio Firenzuoli
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
| |
Collapse
|
46
|
Zhang B, Wang H, Yang Z, Cao M, Wang K, Wang G, Zhao Y. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway. Hum Exp Toxicol 2020; 39:1596-1606. [PMID: 32602371 DOI: 10.1177/0960327120934537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Monoterpenes present in the essential oils exhibit anti-inflammatory properties. In this study, we investigated the preventive effect of alpha-pinene (AP), a monoterpene, against isoproterenol (ISO)-induced myocardial infarction and inflammation in Wistar rats. Male Wistar rats were pretreated with AP (50 mg/kg body weight (bw)) administration for 21 days and ISO (85 mg/kg bw) was administered subcutaneously for last two consecutive days (20th day and 21st day). We noticed that there was an increased activity of cardiac marker enzymes in ISO-treated rats. We also observed that elevated levels of lipid peroxidative indices decreased activities of antioxidant status in plasma, erythrocyte, and heart tissue in ISO-induced rats. Furthermore, ISO-treated rats showed an increase in the levels of inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum. Besides, we confirmed the upregulated expression of TNF-α, IL-6, and nuclear factor kappa-light-chain-enhancer of activated B cells in ISO-induced rat heart tissue. Conversely, we found that AP pretreatment significantly decreased levels of cardiac markers like serum cardiac troponin T and cardiac troponin I, lipid peroxidative markers, and restored antioxidants status in ISO-treated rats. Besides, AP administration attenuated ISO-induced inflammatory marker expression. The present findings demonstrated that AP significantly protects the myocardium and exerts cardioprotective and anti-inflammatory effects in experimental rats.
Collapse
Affiliation(s)
- B Zhang
- Department of Health Care Center, Beijing Friendship Hospital Medical, 12517Capital Medical University, Beijing, China
| | - H Wang
- Department of Pharmacy, 34706The First Affiliated Hospital of Nanhua University, Hengyang City, Hunan Province, China
| | - Z Yang
- Department of ICU, 381901The First People's Hospital of Huaihua, Huaihua City, Hunan Province, China
| | - M Cao
- Department of Cardiovascular, 232831The People's Hospital of Tianjin, Tianjin City, China
| | - K Wang
- Department of Endocrinology, 12476Tianyou Hospital Affiliated to Tongji University, Shanghai, China
| | - G Wang
- Department of Endocrinology, 12476The Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Y Zhao
- Department of Cardiovascular Biology, 12418Changsha Central Hospital, Changsha City, Hunan Province, China
| |
Collapse
|
47
|
Alpha-terpinyl acetate: A natural monoterpenoid from Elettaria cardamomum as multi-target directed ligand in Alzheimer’s disease. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
48
|
Arazi E, Blecher G, Zilberberg N. A regulatory domain in the K 2P2.1 (TREK-1) carboxyl-terminal allows for channel activation by monoterpenes. Mol Cell Neurosci 2020; 105:103496. [PMID: 32320829 DOI: 10.1016/j.mcn.2020.103496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022] Open
Abstract
Potassium K2P ('leak') channels conduct current across the entire physiological voltage range and carry leak or 'background' currents that are, in part, time- and voltage-independent. K2P2.1 channels (i.e., TREK-1, KCNK2) are highly expressed in excitable tissues, where they play a key role in the cellular mechanisms of neuroprotection, anesthesia, pain perception, and depression. Here, we report for the first time that human K2P2.1 channel activity is regulated by monoterpenes (MTs). We found that cyclic, aromatic monoterpenes containing a phenol moiety, such as carvacrol, thymol and 4-IPP had the most profound effect on current flowing through the channel (up to a 6-fold increase). By performing sequential truncation of the carboxyl-terminal domain of the channel and testing the activity of several channel regulators, we identified two distinct regulatory domains within this portion of the protein. One domain, as previously reported, was needed for regulation by arachidonic acid, anionic phospholipids, and temperature changes. Within a second domain, a triple arginine residue motif (R344-346), an apparent PIP2-binding site, was found to be essential for regulation by holding potential changes and important for regulation by monoterpenes.
Collapse
Affiliation(s)
- Eden Arazi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Galit Blecher
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
| | - Noam Zilberberg
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
49
|
Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases. Int J Mol Sci 2020; 21:ijms21062187. [PMID: 32235725 PMCID: PMC7139849 DOI: 10.3390/ijms21062187] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Forest trees are a major source of biogenic volatile organic compounds (BVOCs). Terpenes and terpenoids are known as the main BVOCs of forest aerosols. These compounds have been shown to display a broad range of biological activities in various human disease models, thus implying that forest aerosols containing these compounds may be related to beneficial effects of forest bathing. In this review, we surveyed studies analyzing BVOCs and selected the most abundant 23 terpenes and terpenoids emitted in forested areas of the Northern Hemisphere, which were reported to display anti-inflammatory activities. We categorized anti-inflammatory processes related to the functions of these compounds into six groups and summarized their molecular mechanisms of action. Finally, among the major 23 compounds, we examined the therapeutic potentials of 12 compounds known to be effective against respiratory inflammation, atopic dermatitis, arthritis, and neuroinflammation among various inflammatory diseases. In conclusion, the updated studies support the beneficial effects of forest aerosols and propose their potential use as chemopreventive and therapeutic agents for treating various inflammatory diseases.
Collapse
|
50
|
Howes MR, Perry NS, Vásquez‐Londoño C, Perry EK. Role of phytochemicals as nutraceuticals for cognitive functions affected in ageing. Br J Pharmacol 2020; 177:1294-1315. [PMID: 31650528 PMCID: PMC7056459 DOI: 10.1111/bph.14898] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cognitive decline can occur with normal ageing and in age-related brain disorders, such as mild cognitive impairment and dementia, including Alzheimer's disease, with limited pharmacological therapies available. Other approaches to reduce cognitive decline are urgently needed, and so, the role of dietary interventions or nutraceuticals has received much attention in this respect. In this review, we examine the evidence for dietary plants and their chemical constituents as nutraceuticals, relevant to both cognitive decline in normal ageing and in dementia. Pharmacological (in vitro and in vivo), clinical and epidemiological evidence is assessed for both frequently consumed plants and their dietary forms, including tea, coffee, cocoa (chocolate), red wine, grapes, citrus and other fruits; in addition to plants used less frequently in certain diets and those that cross the blurred boundaries between foods, nutraceuticals and medicinal plants. For the latter, turmeric, saffron, sage, rosemary and lemon balm are examples of those discussed. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Melanie‐Jayne R. Howes
- Natural Capital and Plant Health DepartmentRoyal Botanic Gardens, KewSurreyUK
- Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | | | | | - Elaine K. Perry
- Dilston Physic GardenCorbridgeUK
- Institute for Ageing and HealthNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|