1
|
Kasana S, Kumar S, Patel P, Kurmi BD, Jain S, Sahu S, Vaidya A. Caspase inhibitors: a review on recently patented compounds (2016-2023). Expert Opin Ther Pat 2024; 34:1047-1072. [PMID: 39206873 DOI: 10.1080/13543776.2024.2397732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Caspases are a family of protease enzymes that play a crucial role in apoptosis. Dysregulation of caspase activity has been implicated in various pathological conditions, making caspases an important focus of research in understanding cell death mechanisms and developing therapeutic strategies for diseases associated with abnormal apoptosis. AREAS COVERED It is a comprehensive review of caspase inhibitors that have been comprising recently granted patents from 2016 to 2023. It includes peptide and non-peptide caspase inhibitors with their application for different diseases. EXPERT OPINION This review categorizes and analyses recently patented caspase inhibitors on various diseases. Diseases linked to caspase dysregulation, including neurodegenerative disorders, and autoimmune conditions, are highlighted to accentuate the therapeutic relevance of the patented caspase inhibitors. This paper serves as a valuable resource for researchers, clinicians, and pharmaceutical developers seeking an up-to-date understanding of recently patented caspase inhibitors. The integration of recent patented compounds, structural insights, and mechanistic details provides a holistic view of the progress in caspase inhibitor research and its potential impact on addressing various diseases.
Collapse
Affiliation(s)
- Shivani Kasana
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Shweta Jain
- Sir Madanlal Institute of Pharmacy, Etawah, India
| | - Sanjeev Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ankur Vaidya
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah, India
| |
Collapse
|
2
|
Liu Y, Li X, Sun T, Li T, Li Q. Pyroptosis in myocardial ischemia/reperfusion and its therapeutic implications. Eur J Pharmacol 2024; 971:176464. [PMID: 38461908 DOI: 10.1016/j.ejphar.2024.176464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Ischemic heart disease, a prevalent cardiovascular disease with global significance, is associated with substantial morbidity. Timely and successful reperfusion is crucial for reducing infarct size and enhancing clinical outcomes. However, reperfusion may induce additional myocardium injury, manifesting as myocardial ischemia/reperfusion (MI/R) injury. Pyroptosis is a regulated cell death pathway, the signaling pathway of which is activated during MI/R injury. In this process, the inflammasomes are triggered, initiating the cleavage of gasdermin proteins and pro-interleukins, which results in the formation of membrane pores and the maturation and secretion of inflammatory cytokines. Numerous preclinical evidence underscores the pivotal role of pyroptosis in MI/R injury. Inhibiting pyroptosis is cardioprotective against MI/R injury. Although certain agents exhibiting promise in preclinical studies for attenuating MI/R injury through inhibiting pyroptosis have been identified, the suitability of these compounds for clinical trials remains untested. This review comprehensively summarizes the recent developments in this field, with a specific emphasis on the impact of pyroptosis on MI/R injury. Deciphering these findings not only sheds light on new disease mechanisms but also paves the way for innovative treatments. And then the exploration of the latest advances in compounds that inhibit pyroptosis in MI/R is discussed, which aims to provide insights into potential therapeutic strategies and identify avenues for future research in the pursuit of effective clinical interventions.
Collapse
Affiliation(s)
- Yin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tingting Sun
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tao Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Mitochondria and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Modi P, Shah BM, Patel S. Interleukin-1β converting enzyme (ICE): A comprehensive review on discovery and development of caspase-1 inhibitors. Eur J Med Chem 2023; 261:115861. [PMID: 37857145 DOI: 10.1016/j.ejmech.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Caspase-1 is a critical mediator of the inflammatory process by activating various pro-inflammatory cytokines such as pro-IL-1β, IL-18 and IL-33. Uncontrolled activation of caspase-1 leads to various cytokines-mediated diseases. Thus, inhibition of Caspase-1 is considered therapeutically beneficial to halt the progression of such diseases. Currently, rilonacept, canakinumab and anakinra are in use for caspase-1-mediated autoinflammatory diseases. However, the poor pharmacokinetic profile of these peptides limits their use as therapeutic agents. Therefore, several peptidomimetic inhibitors have been developed, but only a few compounds (VX-740, VX-765) have advanced to clinical trials; because of their toxic profile. Several small molecule inhibitors have also been progressing based on the three-dimensional structure of caspase-1. However there is no successful candidate available clinically. In this perspective, we highlight the mechanism of caspase-1 activation, its therapeutic potential as a disease target and potential therapeutic strategies targeting caspase-1 with their limitations.
Collapse
Affiliation(s)
- Palmi Modi
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University Ahmedabad - 382 210, Gujarat, India
| | - Bhumi M Shah
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University Ahmedabad - 382 210, Gujarat, India
| | - Shivani Patel
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
4
|
Foiadelli T, Santangelo A, Costagliola G, Costa E, Scacciati M, Riva A, Volpedo G, Smaldone M, Bonuccelli A, Clemente AM, Ferretti A, Savasta S, Striano P, Orsini A. Neuroinflammation and status epilepticus: a narrative review unraveling a complex interplay. Front Pediatr 2023; 11:1251914. [PMID: 38078329 PMCID: PMC10703175 DOI: 10.3389/fped.2023.1251914] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 12/09/2024] Open
Abstract
Status epilepticus (SE) is a medical emergency resulting from the failure of the mechanisms involved in seizure termination or from the initiation of pathways involved in abnormally prolonged seizures, potentially leading to long-term consequences, including neuronal death and impaired neuronal networks. It can eventually evolve to refractory status epilepticus (RSE), in which the administration of a benzodiazepine and another anti-seizure medications (ASMs) had been ineffective, and super-refractory status epilepticus (SRSE), which persists for more than 24 h after the administration of general anesthesia. Objective of the present review is to highlight the link between inflammation and SE. Several preclinical and clinical studies have shown that neuroinflammation can contribute to seizure onset and recurrence by increasing neuronal excitability. Notably, microglia and astrocytes can promote neuroinflammation and seizure susceptibility. In fact, inflammatory mediators released by glial cells might enhance neuronal excitation and cause drug resistance and seizure recurrence. Understanding the molecular mechanisms of neuroinflammation could be crucial for improving SE treatment, wich is currently mainly addressed with benzodiazepines and eventually phenytoin, valproic acid, or levetiracetam. IL-1β signal blockade with Anakinra has shown promising results in avoiding seizure recurrence and generalization in inflammatory refractory epilepsy. Inhibiting the IL-1β converting enzyme (ICE)/caspase-1 is also being investigated as a possible target for managing drug-resistant epilepsies. Targeting the ATP-P2X7R signal, which activates the NLRP3 inflammasome and triggers inflammatory molecule release, is another avenue of research. Interestingly, astaxanthin has shown promise in attenuating neuroinflammation in SE by inhibiting the ATP-P2X7R signal. Furthermore, IL-6 blockade using tocilizumab has been effective in RSE and in reducing seizures in patients with febrile infection-related epilepsy syndrome (FIRES). Other potential approaches include the ketogenic diet, which may modulate pro-inflammatory cytokine production, and the use of cannabidiol (CBD), which has demonstrated antiepileptic, neuroprotective, and anti-inflammatory properties, and targeting HMGB1-TLR4 axis. Clinical experience with anti-cytokine agents such as Anakinra and Tocilizumab in SE is currently limited, although promising. Nonetheless, Etanercept and Rituximab have shown efficacy only in specific etiologies of SE, such as autoimmune encephalitis. Overall, targeting inflammatory pathways and cytokines shows potential as an innovative therapeutic option for drug-resistant epilepsies and SE, providing the chance of directly addressing its underlying mechanisms, rather than solely focusing on symptom control.
Collapse
Affiliation(s)
- T. Foiadelli
- Clinica Pediatrica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - A. Santangelo
- Pediatric Neurology, Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - G. Costagliola
- Pediatric Oncology, Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - E. Costa
- Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - M. Scacciati
- Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - A. Riva
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, IRCCS Istituto “G. Gaslini”, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - G. Volpedo
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, IRCCS Istituto “G. Gaslini”, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - M. Smaldone
- Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - A. Bonuccelli
- Pediatric Neurology, Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - A. M. Clemente
- Clinica Pediatrica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - A. Ferretti
- Pediatrics Unit, Neuroscience, Mental Health and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - S. Savasta
- Pediatric Clinic and Rare Disease Microcitemico Hospital, University of Cagliari, Cagliari, Italy
| | - P. Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, IRCCS Istituto “G. Gaslini”, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - A. Orsini
- Pediatric Neurology, Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| |
Collapse
|
5
|
Wang S, Zhang J, Wang Y, Jiang X, Guo M, Yang Z. NLRP3 inflammasome as a novel therapeutic target for heart failure. Anatol J Cardiol 2022; 26:15-22. [PMID: 35191381 PMCID: PMC8878950 DOI: 10.5152/anatoljcardiol.2021.580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 06/30/2024] Open
Abstract
Heart failure (HF) is a leading cause of mortality worldwide. The pathogenesis of HF is complex and has not yet been fully elucidated, which has slowed drug development and long-term treatments. Inflammasome-mediated responses occur during the progression of HF. It has been reported that energy metabolism and metabolites of intestinal flora are also involved in the process of HF, and they interact with each other to promote the progression of HF. NLR family pyrin domain containing 3 (NLRP3) inflammasome may be a key target in the relationship between inflammation-mediated energy metabolism and metabolites of intestinal flora. Elucidating the relationship among the above three factors may help to identify new molecular targets for the prevention and treatment of HF and ultimately affect the course of HF. In this study, we systematically summarize evidence regarding the relationship among NLRP3 inflammasome, energy metabolism, intestinal microflora metabolites, and inflammation, as well as highlight advantages of NLRP3 inflammasome in treating HF.
Collapse
Affiliation(s)
- Shuangcui Wang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Jiaqi Zhang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Yuli Wang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Xijuan Jiang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Maojuan Guo
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Zhen Yang
- Department of Chinese Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| |
Collapse
|
6
|
Nasser SA, Afify EA, Kobeissy F, Hamam B, Eid AH, El-Mas MM. Inflammatory Basis of Atherosclerosis: Modulation by Sex Hormones. Curr Pharm Des 2021; 27:2099-2111. [PMID: 33480335 DOI: 10.2174/1381612827666210122142811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis-related cardiovascular diseases (CVDs) are the leading cause of death globally. Several lines of evidence are supportive of the contributory role of vascular inflammation in atherosclerosis. Diverse immune cell types, including monocytes/macrophages, T-cells and neutrophils, as well as specialized proresolving lipid mediators, have been successfully characterized as key players in vascular inflammation. The increased prevalence of atherosclerotic CVD in men in comparison to age-matched premenopausal women and the abolition of sex differences in prevalence during menopause strongly suggest a pivotal role of sex hormones in the development of CVD. Indeed, many animal and human studies conclusively implicate sex hormones as a crucial component in driving the immune response. This is further corroborated by the effective identification of sex hormone receptors in vascular endothelial cells, vascular smooth muscle cells and immune cells. Collectively, these findings suggest a cellular communication between sex hormones and vascular or immune cells underlying the vascular inflammation in atherosclerosis. The aim of this review is to provide an overview of vascular inflammation as a causal cue underlying atherosclerotic CVDs within the context of the modulatory effects of sex hormones. Moreover, the cellular and molecular signaling pathways underlying the sex hormones- immune system interactions as potential culprits for vascular inflammation are highlighted with detailed and critical discussion. Finally, the review concludes by speculations on the potential sex-related efficacy of currently available immunotherapies in mitigating vascular inflammation. Conceivably, a deeper understanding of the immunoregulatory influence of sex hormones on vascular inflammation-mediated atherosclerosis permits sex-based management of atherosclerosis-related CVDs.
Collapse
Affiliation(s)
- Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Bassam Hamam
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, P.O. Box 146404, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Elmazoglu Z, Aydın Bek Z, Saribas SG, Özoğul C, Goker B, Bitik B, Aktekin CN, Karasu Ç. S-Allylcysteine Inhibits Chondrocyte Inflammation to Reduce Human Osteoarthritis via Targeting RAGE, TLR4, JNK and Nrf2 Signaling: Comparison with Colchicine. Biochem Cell Biol 2021; 99:645-654. [PMID: 33930279 DOI: 10.1139/bcb-2021-0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Discovery of new pharmacological agents is needed to control the progression of osteoarthritis (OA) characterized by progressive joint cartilage damage. Human OA chondrocyte cultures (OAC) were either applied to S-Allyl cysteine (SAC), a sulfur-containing amino acid derivative, or colchicine, an ancient anti-inflammatory therapeutic, for 24 hours. SAC or colchicine did not change viability at 1 nM-10 µM but inhibited p-JNK/pan-JNK. While SAC seems to be more effective, both agents inhibited reactive oxygen species (ROS), 3-nitrotyrosine (3-NT), lipid-hydroperoxides (LPO), advanced lipoxidation end-products (ALEs as 4-hydroxy-2-nonenal, HNE) and advanced glycation end-products (AGEs), and increased glutathione-peroxidase (GPx) and type-II-collagen (COL2). IL-1β, IL-6 and osteopontin (OPN) were more strongly inhibited by SAC than in colchicine. In contrast, TNF-α was inhibited only by SAC, and COX2 only by colchicine. Casp-1/ICE, GM-CSF, receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLR4) were inhibited by both agents, but bone morphogenetic protein 7 (BMP7) was partially inhibited by SAC while induced by colchicine. The nuclear factor erythroid 2-related factor 2 (Nrf2) was induced by SAC; in contrast it was inhibited by colchicine. Although exerting opposite effects on TNF-α, COX2, BMP7 and Nrf2, SAC and colchicine exhibit anti-osteoarthritic properties in OAC by modulating redox sensitive inflammatory signaling.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, Ankara, BEŞEVLER, Turkey;
| | - Zehra Aydın Bek
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, Ankara, BEŞEVLER, Turkey;
| | - Sanem Gulistan Saribas
- Kirsehir Ahi Evran University, 187470, Faculty of Medicine, Department of Histology and Embryology, Kirsehir, Kırşehir, Turkey;
| | - Candan Özoğul
- University of Kyrenia, 530180, Faculty of Medicine, Department of Histology and Embryology, Girne, Girne, Cyprus;
| | - Berna Goker
- Gazi University Faculty of Medicine, 64001, Department of Rheumatology, Ankara, BEŞEVLER, Turkey;
| | - Berivan Bitik
- Ankara Training and Research Hospital, 162301, Ankara, Ankara, Turkey;
| | - Cem Nuri Aktekin
- Yildirim Beyazit University Faculty of Medicine, 442146, Department of Orthopedics and Traumatology, Ankara, Ankara, Turkey;
| | - Çimen Karasu
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, GAZI UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF MEDICAL PHARMACOLOGY, ANKARA, Ankara, BEŞEVLER, Turkey, 06500;
| |
Collapse
|
8
|
Dey Sarkar R, Sinha S, Biswas N. Manipulation of Inflammasome: A Promising Approach Towards Immunotherapy of Lung Cancer. Int Rev Immunol 2021; 40:171-182. [PMID: 33508984 DOI: 10.1080/08830185.2021.1876044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammation has emerged as a key player at different stages of cancer development. A prominent signaling pathway for acute and chronic inflammation is the activation of the caspase-1 inflammasomes. These are complexes that assemble on activation of certain nucleotide-binding domain, leucine-rich repeat containing proteins (NLRs), AIM2-like receptors (ALRs), or pyrin due to activation via PAMPs or DAMPs. Of these, five complexes-NLRP1, NLRP3, NLRC4, Pyrin, and AIM2 are of importance in the context of cancer for their activities in modulating immune responses, cell proliferation, and apoptosis. Inflammasomes have emerged as clinically relevant in multiple forms of cancer making them highly promising targets for cancer therapy. As lungs are a tissue niche that is prone to inflammation owing to its exposure to external substances, inflammasomes play a vital role in the development and pathogenesis of lung cancer. Therefore, manipulation of inflammasome by various immunomodulatory means could prove a full-proof strategy for the treatment of lung cancer. Here, in this review, we tried to explore the various strategies to target the inflammasomes for the treatment of lung cancer.
Collapse
Affiliation(s)
- Rupak Dey Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Samraj Sinha
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
9
|
Weber ANR, Bittner ZA, Shankar S, Liu X, Chang TH, Jin T, Tapia-Abellán A. Recent insights into the regulatory networks of NLRP3 inflammasome activation. J Cell Sci 2020; 133:133/23/jcs248344. [PMID: 33273068 DOI: 10.1242/jcs.248344] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a fascinating cellular machinery endowed with the capacity for rapid proteolytic processing of the pro-inflammatory cytokine IL-1β and the cell death effector gasdermin D (GSDMD). Although its activity is essential to fight infection and support tissue homeostasis, the inflammasome complex, which consists of the danger sensor NLRP3, the adaptor apoptosis-associated speck-like protein containing a CARD (ASC; also known as PYCARD), caspase-1 and probably other regulatory proteins, also bears considerable potential for detrimental inflammation, as observed in human conditions such as gout, heart attack, stroke and Alzheimer's disease. Thus, multi-layered regulatory networks are required to ensure the fine balance between rapid responsiveness versus erroneous activation (sufficient and temporally restricted versus excessive and chronic activity) of the inflammasome. These involve multiple activation, secretion and cell death pathways, as well as modulation of the subcellular localization of NLRP3, and its structure and activity, owing to post-translational modification by other cellular proteins. Here, we discuss the exciting progress that has recently been made in deciphering the regulation of the NLRP3 inflammasome. Additionally, we highlight open questions and describe areas of research that warrant further exploration to obtain a more comprehensive molecular and cellular understanding of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Alexander N R Weber
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany .,iFIT - Cluster of Excellence (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University Hospital Tübingen - Internal Medicine VIII, Otfried-Müller-Str. 14, 72076 Tübingen, Germany
| | - Zsófia A Bittner
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Sangeetha Shankar
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Xiao Liu
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Tzu-Hsuan Chang
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Tengchuan Jin
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Ana Tapia-Abellán
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Elmazoglu Z, Bek ZA, Sarıbaş GS, Özoğul C, Goker B, Bitik B, Aktekin CN, Karasu Ç. TLR4, RAGE, and p-JNK/JNK mediated inflammatory aggression in osteoathritic human chondrocytes are counteracted by redox-sensitive phenolic olive compounds: Comparison with ibuprofen. J Tissue Eng Regen Med 2020; 14:1841-1857. [PMID: 33010113 DOI: 10.1002/term.3138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Osteoarthritic chondrocytes show an over-activity of inflammatory catabolic mediators, and olive products have attracted attention because they were discovered to have some benefits on osteoarthritis patients. We investigated the mechanisms of action of olive leaf polyphenolic compounds in osteoarthritic chondrocytes (OACs) using a standardized leaf extract, ZeyEX, and its main phenolic component, oleuropein, also compared with anti-inflammatory drug ibuprofen. OACs, isolated from joint-cartilages of Grade 4 OA patients, were found to express COMP and MMP-9 throughout their culture period. ZeyEX, oleuropein, and ibuprofen increased cell viability at concentrations of 1-100 nM, did not change at 500 nM-50 μM, but inhibited at ≥100 μM. The adherence profile of OACs increased with 1 μM of ibuprofen or ZeyEX and 10 nM-1 μM oleuropein. Although the markers for oxidative and nitrosative stresses (ROS and 3-NT) generally inhibited by three agents, the inhibitory effect of ZeyEX on 3-NT emerged dramatically (1 nM-10 μM). Lipid-hydroperoxides and HNE-adducts were also inhibited by each agent, but AGE-adducts unchanged by oleuropein while reduced by ZeyEX and ibuprofen. Inflammatory biomarkers, IL-1β, IL-6, Casp-1/ICE, and TNF-α, were inhibited by three agents, however osteopontin and GM-CSF by only ZeyEX and ibuprofen. A decreased COMP, TLR4, and RAGE expression levels were observed by three agents, but only the effects of ZeyEX was concentration-dependent. In particular, ZeyEX and oleuropein improved COL2, inhibited p-JNK/JNK, and increased GPx. COX2 was only inhibited by ibuprofen. The results indicate that polyphenolic-olive compounds counteract redox-sensitive inflammatory aggressions in osteoarthritic chondrocytes that may stop the progression of pathology and allow regeneration.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Faculty of Medicine, Department of Medical Pharmacology, Cellular Stress Response & Signal Transduction Research Laboratory, Gazi University, Ankara, Turkey
| | - Zehra Aydın Bek
- Faculty of Medicine, Department of Medical Pharmacology, Cellular Stress Response & Signal Transduction Research Laboratory, Gazi University, Ankara, Turkey
| | - Gülistan Sanem Sarıbaş
- Faculty of Medicine, Department of Histology and Embryology, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Candan Özoğul
- Faculty of Medicine, Department of Histology and Embryology, Kyrenia University, Kyrenia, Cyprus
| | - Berna Goker
- Faculty of Medicine, Department of Rheumatology, Gazi University, Ankara, Turkey
| | - Berivan Bitik
- Ankara Research and Education Hospital, Ankara, Turkey
| | - Cem Nuri Aktekin
- Faculty of Medicine, Department of Orthopedics and Traumatology, Yıldırım Beyazıt University, Ankara, Turkey
| | - Çimen Karasu
- Faculty of Medicine, Department of Medical Pharmacology, Cellular Stress Response & Signal Transduction Research Laboratory, Gazi University, Ankara, Turkey
| |
Collapse
|
11
|
Hamarsheh S, Zeiser R. NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword. Front Immunol 2020; 11:1444. [PMID: 32733479 PMCID: PMC7360837 DOI: 10.3389/fimmu.2020.01444] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is involved in tumor development and progression as well as antitumor response to therapy. In the past decade, the crosstalk between inflammation, immunity, and cancer has been investigated extensively, which led to the identification of several underlying mechanisms and cells involved. The formation of inflammasome complexes leads to the activation of caspase-1, production of interleukin (IL)-1β, and IL-18 and pyroptosis. Multiple studies have shown the involvement of NLRP3 inflammasome in tumorigenesis. Conversely, other reports have indicated a protective role in certain cancers. In this review, we summarize these contradictory roles of NLRP3 inflammasome in cancer, shed the light on oncogenic signaling leading to NLRP3 activation and IL-1β production and outline the current knowledge on therapeutic approaches.
Collapse
Affiliation(s)
- Shaima'a Hamarsheh
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Center for Biological Signalling Studies (BIOSS) and Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Xu S, Li X, Liu Y, Xia Y, Chang R, Zhang C. Inflammasome inhibitors: promising therapeutic approaches against cancer. J Hematol Oncol 2019; 12:64. [PMID: 31242947 PMCID: PMC6595574 DOI: 10.1186/s13045-019-0755-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation has long been accepted as a key component of carcinogenesis. During inflammation, inflammasomes are potent contributors to the activation of inflammatory cytokines that lead to an inflammatory cascade. Considering the contributing role of inflammasomes in cancer progression, inflammasome inhibitors seem to have a promising future in cancer treatment and prevention. Here, we summarize the structures and signaling pathways of inflammasomes and detail some inflammasome inhibitors used to treat various forms of cancer, which we expect to be used in novel anticancer approaches. However, the practical application of inflammasome inhibitors is limited in regard to specific types of cancer, and the associated clinical trials have not yet been completed. Therefore, additional studies are required to explore more innovative and effective medicines for future clinical treatment of cancer.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yuanqi Liu
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yu Xia
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Udjus C, Cero FT, Halvorsen B, Behmen D, Carlson CR, Bendiksen BA, Espe EKS, Sjaastad I, Løberg EM, Yndestad A, Aukrust P, Christensen G, Skjønsberg OH, Larsen KO. Caspase-1 induces smooth muscle cell growth in hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2019; 316:L999-L1012. [PMID: 30908936 DOI: 10.1152/ajplung.00322.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lung diseases with hypoxia are complicated by pulmonary hypertension, leading to heart failure and death. No pharmacological treatment exists. Increased proinflammatory cytokines are found in hypoxic patients, suggesting an inflammatory pathogenesis. Caspase-1, the effector of the inflammasome, mediates inflammation through activation of the proinflammatory cytokines interleukin (IL)-18 and IL-1β. Here, we investigate inflammasome-related mechanisms that can trigger hypoxia-induced pulmonary hypertension. Our aim was to examine whether caspase-1 induces development of hypoxia-related pulmonary hypertension and is a suitable target for therapy. Wild-type (WT) and caspase-1-/- mice were exposed to 10% oxygen for 14 days. Hypoxic caspase-1-/- mice showed lower pressure and reduced muscularization in pulmonary arteries, as well as reduced right ventricular remodeling compared with WT. Smooth muscle cell (SMC) proliferation was reduced in caspase-1-deficient pulmonary arteries and in WT arteries treated with a caspase-1 inhibitor. Impaired inflammation was shown in hypoxic caspase-1-/- mice by abolished pulmonary influx of immune cells and lower levels of IL-18, IL-1β, and IL-6, which were also reduced in the medium surrounding caspase-1 abrogated pulmonary arteries. By adding IL-18 or IL-1β to caspase-1-deficient pulmonary arteries, SMC proliferation was retained. Furthermore, inhibition of both IL-6 and phosphorylated STAT3 reduced proliferation of SMC in vitro, indicating IL-18, IL-6, and STAT3 as downstream mediators of caspase-1-induced SMC proliferation in pulmonary arteries. Caspase-1 induces SMC proliferation in pulmonary arteries through the caspase-1/IL-18/IL-6/STAT3 pathway, leading to pulmonary hypertension in mice exposed to hypoxia. We propose that caspase-1 inhibition is a potential target for treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Camilla Udjus
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Fadila T Cero
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo , Oslo , Norway
| | - Dina Behmen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Cathrine R Carlson
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Bård A Bendiksen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Emil K S Espe
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Else M Løberg
- Department of Pathology, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway
| | - Arne Yndestad
- K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo , Oslo , Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo , Oslo , Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet and University of Oslo , Oslo , Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Ole H Skjønsberg
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway
| | - Karl-Otto Larsen
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| |
Collapse
|
14
|
Patel S, Modi P, Ranjan V, Chhabria M. Structure-based design, synthesis and evaluation of 2,4-diaminopyrimidine derivatives as novel caspase-1 inhibitors. Bioorg Chem 2018; 78:258-268. [DOI: 10.1016/j.bioorg.2018.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
|
15
|
Patel S, Modi P, Chhabria M. Rational approach to identify newer caspase-1 inhibitors using pharmacophore based virtual screening, docking and molecular dynamic simulation studies. J Mol Graph Model 2018; 81:106-115. [DOI: 10.1016/j.jmgm.2018.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/11/2018] [Accepted: 02/18/2018] [Indexed: 10/17/2022]
|
16
|
Involvement of Nucleotide-Binding and Oligomerization Domain-Like Receptors in the Intestinal Injury of Severe Acute Pancreatitis in Rats. Pancreas 2018; 47:245-251. [PMID: 29303910 DOI: 10.1097/mpa.0000000000000977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of the study was to observe the role of nucleotide-binding and oligomerization domain (NOD)-like receptors (NLR) in intestinal injury of severe acute pancreatitis (SAP) in rats. METHODS Severe acute pancreatitis was induced by retrograde infusion of sodium taurocholate into the biliopancreatic duct. Rats were divided into the following 6 groups: sham operation, SAP treated with saline, and SAP treated with interleukin 1β (IL-1β)-converting enzyme inhibitor, killed at 6 or 12 hours after operation. Serum IL-18 and IL-1β concentrations were measured. mRNA expression and protein levels of NOD1, NOD2, and NLRP3 in the intestine were measured. RESULTS Severe acute pancreatitis resulted in significantly higher serum IL-18 and IL-1β concentration, higher mRNA expression, and protein levels of NOD1, NOD2, and NLRP3 in intestine in SAP treated with saline groups compared with sham operation groups. This effect was attenuated by administration of IL-1β-converting enzyme inhibitor. CONCLUSIONS The NLRs, including NOD1, NOD2, and NLRP3, were involved in the intestinal injury in SAP through a caspase-1 pathway.
Collapse
|
17
|
Adriaenssens Y, Jiménez Fernández D, Vande Walle L, Elvas F, Joossens J, Lambeir A, Augustyns K, Lamkanfi M, Van der Veken P. Carboxylate isosteres for caspase inhibitors: the acylsulfonamide case revisited. Org Biomol Chem 2017; 15:7456-7473. [PMID: 28837200 DOI: 10.1039/c7ob01403a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As part of an ongoing effort to discover inhibitors of caspase-1 with an optimized selectivity and biopharmaceutical profile, acylsulfonamides were explored as carboxylate isosteres for caspase inhibitors. Acylsulfonamide analogues of the clinically investigated caspase-1 inhibitor VRT-043198 and of the pan-caspase inhibitor Z-VAD-CHO were synthesized. The isostere-containing analogues with an aldehyde warhead had inhibitory potencies comparable to the carboxylate references. In addition, the conformational and tautomeric characteristics of these molecules were determined using 1H- and 13C-based NMR. The propensity of acylsulfonamides with an aldehyde warhead to occur in a ring-closed conformation at physiological pH significantly increases the sensitivity to hydrolysis of the acylsulfonamide moiety, yielding the parent carboxylate containing inhibitors. These results indicate that the acylsulfonamide analogues of the aldehyde-based inhibitor VRT-043198 might have potential as a novel type of prodrug for the latter. Finally, inhibition of caspase 1 and 11 mediated inflammation in mouse macrophages was found to correlate with the potencies of the compounds in enzymatic assays.
Collapse
Affiliation(s)
- Y Adriaenssens
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang S, Hottz P, Schechter M, Rong L. Modeling the Slow CD4+ T Cell Decline in HIV-Infected Individuals. PLoS Comput Biol 2015; 11:e1004665. [PMID: 26709961 PMCID: PMC4692447 DOI: 10.1371/journal.pcbi.1004665] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023] Open
Abstract
The progressive loss of CD4+ T cell population is the hallmark of HIV-1 infection but the mechanism underlying the slow T cell decline remains unclear. Some recent studies suggested that pyroptosis, a form of programmed cell death triggered during abortive HIV infection, is associated with the release of inflammatory cytokines, which can attract more CD4+ T cells to be infected. In this paper, we developed mathematical models to study whether this mechanism can explain the time scale of CD4+ T cell decline during HIV infection. Simulations of the models showed that cytokine induced T cell movement can explain the very slow decline of CD4+ T cells within untreated patients. The long-term CD4+ T cell dynamics predicted by the models were shown to be consistent with available data from patients in Rio de Janeiro, Brazil. Highly active antiretroviral therapy has the potential to restore the CD4+ T cell population but CD4+ response depends on the effectiveness of the therapy, when the therapy is initiated, and whether there are drug sanctuary sites. The model also showed that chronic inflammation induced by pyroptosis may facilitate persistence of the HIV latent reservoir by promoting homeostatic proliferation of memory CD4+ cells. These results improve our understanding of the long-term T cell dynamics in HIV-1 infection, and support that new treatment strategies, such as the use of caspase-1 inhibitors that inhibit pyroptosis, may maintain the CD4+ T cell population and reduce the latent reservoir size. The CD4+ T cell population within HIV-infected individuals declines slowly as disease progresses. When CD4+ cells drop to below 200 cells/ul, the infection is usually considered to enter the late stage, i.e., acquired immune deficiency syndrome (AIDS). CD4+ T cell depletion can take many years but the biological events underlying such slow decline are not well understood. Some studies showed that the majority of infected T cells in lymph nodes die by pyroptosis, a form of programmed cell death, which can release inflammatory signals attracting more CD4+ T cells to be infected. We developed mathematical models to describe this process and explored whether they can generate the long-term CD4+ T cell decline. We showed that pyroptosis induced cell movement can explain the slow time scale of CD4+ T cell depletion and that pyroptosis may also contribute to the persistence of latently infected cells, which represent a major obstacle to HIV eradication. The modeling prediction agrees with patient data in Rio de Janeiro, Brazil. These results suggest that a combination of current treatment regimens and caspase-1 inhibitor that can inhibit pyroptosis might provide a new way to maintain the CD4+ T cell population and eradicate the HIV latent reservoir.
Collapse
Affiliation(s)
- Sunpeng Wang
- Department of Biology, New York University, New York, New York, United States of America
| | - Patricia Hottz
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Schechter
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Projeto Praça Onze, Hospital Escola São Francisco de Assis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Libin Rong
- Department of Mathematics and Statistics, and Center for Biomedical Research, Oakland University, Rochester, Michigan, United States of America
- * E-mail:
| |
Collapse
|
19
|
Marcuzzi A, Piscianz E, Valencic E, Monasta L, Vecchi Brumatti L, Tommasini A. To Extinguish the Fire from Outside the Cell or to Shutdown the Gas Valve Inside? Novel Trends in Anti-Inflammatory Therapies. Int J Mol Sci 2015; 16:21277-93. [PMID: 26370962 PMCID: PMC4613252 DOI: 10.3390/ijms160921277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/31/2015] [Indexed: 12/26/2022] Open
Abstract
Cytokines are the most important soluble mediators of inflammation. Rare pediatric diseases provided exemplar conditions to study the anti-inflammatory efficacy of new generation therapies (biologics/biopharmaceuticals) selectively targeting single cytokines. Monoclonal antibodies and recombinant proteins have revolutionized anti-inflammatory therapies in the last two decades, allowing the specific targeting of single cytokines. They are very effective in extinguishing inflammation from outside the cell, even with the risk of an excessive and prolonged immunosuppression. Small molecules can enter the cell and shutdown the valve of inflammation by directly targeting signal proteins involved in cytokine release or in response to cytokines. They are orally-administrable drugs whose dosage can be easily adjusted to obtain the desired anti-inflammatory effect. This could make these drugs more suitable for a wide range of diseases as stroke, gout, or neurological impairment, where inflammatory activation plays a pivotal role as trigger. Autoinflammatory diseases, which have previously put anti-cytokine proteins in the limelight, can again provide a valuable model to measure the real potential of small inhibitors as anti-inflammatory agents.
Collapse
Affiliation(s)
- Annalisa Marcuzzi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazzale Europa 1, Trieste 34128, Italy.
| | - Elisa Piscianz
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" - , via dell'Istria, 65/1, Trieste 34137, Italy.
| | - Erica Valencic
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" - , via dell'Istria, 65/1, Trieste 34137, Italy.
| | - Lorenzo Monasta
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" - , via dell'Istria, 65/1, Trieste 34137, Italy.
| | - Liza Vecchi Brumatti
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" - , via dell'Istria, 65/1, Trieste 34137, Italy.
| | - Alberto Tommasini
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" - , via dell'Istria, 65/1, Trieste 34137, Italy.
| |
Collapse
|
20
|
Krishnan SM, Sobey CG, Latz E, Mansell A, Drummond GR. IL-1β and IL-18: inflammatory markers or mediators of hypertension? Br J Pharmacol 2015; 171:5589-602. [PMID: 25117218 PMCID: PMC4290704 DOI: 10.1111/bph.12876] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation in the kidneys and vascular wall is a major contributor to hypertension. However, the stimuli and cellular mechanisms responsible for such inflammatory responses remain poorly defined. Inflammasomes are crucial initiators of sterile inflammation in other diseases such as rheumatoid arthritis and gout. These pattern recognition receptors detect host-derived danger-associated molecular patterns (DAMPs), such as microcrystals and reactive oxygen species, and respond by inducing activation of caspase-1. Caspase-1 then processes the cytokines pro-IL-1β and pro-IL-18 into their active forms thus triggering inflammation. While IL-1β and IL-18 are known to be elevated in hypertensive patients, no studies have examined whether this occurs downstream of inflammasome activation or whether inhibition of inflammasome and/or IL-1β/IL-18 signalling prevents hypertension. In this review, we will discuss some known actions of IL-1β and IL-18 on leukocyte and vessel wall function that could potentially underlie a prohypertensive role for these cytokines. We will describe the major classes of inflammasome-activating DAMPs and present evidence that at least some of these are elevated in the setting of hypertension. Finally, we will provide information on drugs that are currently used to inhibit inflammasome/IL-1β/IL-18 signalling and how these might ultimately be used as therapeutic agents for the clinical management of hypertension.
Collapse
Affiliation(s)
- S M Krishnan
- Department of Pharmacology, Monash University, Clayton, Vic, Australia
| | | | | | | | | |
Collapse
|
21
|
Matin N, Tabatabaie O, Falsaperla R, Lubrano R, Pavone P, Mahmood F, Gullotta M, Serra A, Mauro PD, Cocuzza S, Vitaliti G. Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications. Hum Vaccin Immunother 2015; 11:2021-9. [PMID: 26260962 PMCID: PMC4635700 DOI: 10.1080/21645515.2015.1034921] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
Recent experimental studies and pathological analyses of patient brain tissue samples with refractory epilepsy suggest that inflammatory processes and neuroinflammation plays a key-role in the etiopathology of epilepsy and convulsive disorders. These inflammatory processes lead to the secretion of pro-inflammatory cytokines responsible for blood-brain-barrier disruption and involvement of resident immune cells in the inflammation pathway, occurring within the Central Nervous System (CNS). These elements are produced through activation of Toll-Like Receptors (TLRs) by exogenous and endogenous ligands thereby increasing expression of cytokines and co-stimulatory molecules through the activation of TLRs 2, 3, 4, and 9 as reported in murine studies.It has been demonstrated that IL-1β intracellular signaling and cascade is able to alter the neuronal excitability without cell loss. The activation of the IL-1β/ IL-1β R axis is strictly linked to the secretion of the intracellular protein MyD88, which interacts with other cell surface receptors, such as TLR4 during pathogenic recognition. Furthermore, TLR-signaling pathways are able to recognize molecules released from damaged tissues, such as damage-associated molecular patterns/proteins (DAMPs). Among these molecules, High-mobility group box-1 (HMGB1) is a component of chromatin that is passively released from necrotic cells and actively released by cells that are subject to profound stress. Moreover, recent studies have described models of epilepsy induced by the administration of bicuculline and kainic acid that highlight the nature of HMGB1-TLR4 interactions, their intracellular signaling pathway as well as their role in ictiogenesis and epileptic recurrence.The aim of our review is to focus on different branches of innate immunity and their role in epilepsy, emphasizing the role of immune related molecules in epileptogenesis and highlighting the research implications for novel therapeutic strategies.
Collapse
Affiliation(s)
- Nassim Matin
- Tehran University of Medical Sciences; Tehran, Iran
| | | | - Raffaele Falsaperla
- Pediatrics Operative Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Riccardo Lubrano
- Paediatric Department; Paediatric Nephrology Operative Unit of the Sapienza University of Rome; Rome, Italy
| | - Piero Pavone
- Pediatrics Operative Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Fahad Mahmood
- University Hospital of North Staffordshire; Stoke-on-Trent, UK
| | - Melissa Gullotta
- University of Medical Science; University of Catania; Catania, Italy
| | - Agostino Serra
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Paola Di Mauro
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Salvatore Cocuzza
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Giovanna Vitaliti
- Pediatrics Operative Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| |
Collapse
|
22
|
Prescimone T, D'Amico A, Caselli C, Cabiati M, Viglione F, Caruso R, Verde A, Del Ry S, Trivella MG, Giannessi D. Caspase-1 transcripts in failing human heart after mechanical unloading. Cardiovasc Pathol 2014; 24:11-8. [PMID: 25200478 DOI: 10.1016/j.carpath.2014.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Caspase (Casp)-1 has been indicated as a molecular target capable of preventing the progression of cardiovascular diseases, including heart failure (HF), due to its central role in promoting inflammation and cardiomyocyte loss. The aim of this study was to assess whether Left Ventricular Assist Device (LVAD) implantation modifies the inflammatory and apoptotic profile in the heart through the modulation of Casp-1 expression level. METHODS Cardiac tissue was collected from end-stage HF patients before LVAD implant (pre-LVAD group, n=22) and at LVAD removal (post-LVAD, n=6), and from stable HF patients on medical therapy without prior circulatory support (HTx, n=7) at heart transplantation, as control. The cardiac expression of Casp-1, of its inhibitors caspase recruitment domain (CARD) only protein (COP) and CARD family, member 18 (ICEBERG), was evaluated by real-time PCR in the three groups of patients. RESULTS Casp-1 was increased in the pre-LVAD group compared to HTx (p=0.006), while on the contrary the ICEBERG level was significantly decreased in pre-LVAD with respect to HTx patients (p<0.001); no difference in COP expression level was found. CONCLUSIONS This study describes a specific pattern of the Casp-1 system associated with inflammation and apoptosis markers in patients who require LVAD insertion. The inflammation could be the key process regulating, in a negative loop, Casp-1 signaling and its down-stream effects, apoptosis included.
Collapse
Affiliation(s)
- Tommaso Prescimone
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | | | - Chiara Caselli
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | - Manuela Cabiati
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | - Federica Viglione
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | - Raffaele Caruso
- CNR Institute of Clinical Physiology, Cardiovascular Department, Niguarda Cà Granda Hospital, Milan, Italy
| | - Alessandro Verde
- CardioThoracic and Vascular Department, "A. De Gasperis" Niguarda Ca' Granda Hospital, Milan, Italy
| | - Silvia Del Ry
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | - Maria Giovanna Trivella
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | - Daniela Giannessi
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy.
| |
Collapse
|
23
|
Vitaliti G, Pavone P, Mahmood F, Nunnari G, Falsaperla R. Targeting inflammation as a therapeutic strategy for drug-resistant epilepsies: an update of new immune-modulating approaches. Hum Vaccin Immunother 2014; 10:868-75. [PMID: 24609096 DOI: 10.4161/hv.28400] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An increasing body of literature data suggests that inflammation, and in particular neuroinflammation, is involved in the pathophysiology of particular forms of epilepsy and convulsive disorders. Animal models have been used to identify inflammatory triggers in epileptogenesis and inflammation has recently been shown to enhance seizures. For example, pharmacological blockade of the IL-1beta/IL-1 receptor type 1 axis during epileptogenesis has been demonstrated to provide neuroprotection in temporal lobe epilepsy. Furthermore, experimental models have suggested that neural damage and the onset of spontaneous recurrent seizures are modulated via complex interactions between innate and adaptive immunity. However, it has also been suggested that inflammation can occur as a result of epilepsy, since animal models have also shown that seizure activity can induce neuroinflammation, and that recurrent seizures maintain chronic inflammation, thereby perpetuating seizures. On the basis of these observations, it has been suggested that immune-mediated therapeutic strategies may be beneficial for treating some drug resistant epilepsies with an underlying demonstrable inflammatory process. Although the potential mechanisms of immunotherapeutic strategies in drug-resistant seizures have been extensively discussed, evidence on the efficacy of such therapy is limited. However, recent research efforts have been directed toward utilizing the potential therapeutic benefits of anti-inflammatory agents in neurological disease and these are now considered prime candidates in the ongoing search for novel anti-epileptic drugs. The objective of our review is to highlight the immunological features of the pathogenesis of seizures and to analyze possible immunotherapeutic approaches for drug resistant epilepsies that can alter the immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- Department of Paediatrics and Pediatric Acute and Emergency Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Piero Pavone
- Department of Paediatrics and Pediatric Acute and Emergency Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Fahad Mahmood
- University London College Medical School; University of London; London, UK
| | - Giuseppe Nunnari
- Department of Infectious Diseases; Garibaldi Nesima Hospital; University of Catania; Catania, Italy
| | - Raffaele Falsaperla
- Department of Paediatrics and Pediatric Acute and Emergency Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| |
Collapse
|
24
|
Doitsh G, Galloway NLK, Geng X, Yang Z, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Muñoz-Arias I, Greene WC. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014; 505:509-14. [PMID: 24356306 PMCID: PMC4047036 DOI: 10.1038/nature12940] [Citation(s) in RCA: 857] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022]
Abstract
The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood although apoptosis has been proposed as a key mechanism. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of CD4 T cells corresponding to those that are both activated and productively infected. The remaining over 95% of quiescent lymphoid CD4 T cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death in which cytoplasmic contents and pro-inflammatory cytokines, including IL-1β, are released. This death pathway thus links the two signature events in HIV infection-CD4 T-cell depletion and chronic inflammation-and creates a pathogenic vicious cycle in which dying CD4 T cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase 1 inhibitors shown to be safe in humans, raising the possibility of a new class of 'anti-AIDS' therapeutics targeting the host rather than the virus.
Collapse
Affiliation(s)
- Gilad Doitsh
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Nicole LK Galloway
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Xin Geng
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Zhiyuan Yang
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Kathryn M. Monroe
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Orlando Zepeda
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Peter W. Hunt
- the Department of Medicine and Immunology, University of California, San Francisco, CA 94143
| | - Hiroyu Hatano
- the Department of Medicine and Immunology, University of California, San Francisco, CA 94143
| | - Stefanie Sowinski
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Isa Muñoz-Arias
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
- the Department of Medicine and Immunology, University of California, San Francisco, CA 94143
- the Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| |
Collapse
|
25
|
Dinarello CA, Kaplanski G. Interleukin-18 treatment options for inflammatory diseases. Expert Rev Clin Immunol 2014; 1:619-32. [DOI: 10.1586/1744666x.1.4.619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Zhang Y, Wang L, Bai J, Guan M, Jiang R, Guo L, Wu J, Zhang R, Cheng G, Li Y. Anti-Inflammatory Effect of Ebosin on Rat Collagen-Induced Arthritis through Suppressing Production of Interleukin-1β, Interleukin-6 and Tumor Necrosis Factor-α. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reumatoid arthritis (RA) is an autoimmune disease which has been studied experimentally using a wide variety of animal models including collagen-induced arthritis (CIA). Using this CIA model we studied the therapeutic effects and mechanism of action of Ebosin, a novel exopolysaccharide produced by Streptomyces sp. 139, on arthritis. Ebosin at 200, 400 and 600 mg/kg/day was orally administered to rats respectively between day 10 and 30 after immunization with chicken type II collagen. With the treatment arthritic progression was remarkably suppressed. Levels of anti-type II collagen-specific antibody, IL-1β and TNF-α were significantly lower in the Ebosin-treated CIA rats compared with the untreated controls. In cultured fibroblast-like synoviocytes (FLS), remarkable suppression of IL-1β, TNF-α and IL-6 production was detected at both protein and mRNA levels after Ebosin administration. Ebosin also resulted in lower activities of IL-1β-converting enzyme and TNF-α-converting enzyme in FLS. Based on these results, it is concluded that development and progression of rat CIA can be significantly suppressed by orally-administrated Ebosin. The therapeutic effect may be attributed to its inhibition in the production of IL-1β, TNF-α and IL-6 in the CIA rats.
Collapse
Affiliation(s)
- Y. Zhang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - L.F. Wang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J.Y. Bai
- Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - M.Z. Guan
- Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R. Jiang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - L.H. Guo
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J.B. Wu
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R. Zhang
- School of Biological Sciences, University of Wollongong, NSW, Australia
| | - G.F. Cheng
- Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Y. Li
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Moll M, Kuemmerle-Deschner JB. Inflammasome and cytokine blocking strategies in autoinflammatory disorders. Clin Immunol 2013; 147:242-75. [DOI: 10.1016/j.clim.2013.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/07/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022]
|
28
|
Kast RE, Boockvar JA, Brüning A, Cappello F, Chang WW, Cvek B, Dou QP, Duenas-Gonzalez A, Efferth T, Focosi D, Ghaffari SH, Karpel-Massler G, Ketola K, Khoshnevisan A, Keizman D, Magné N, Marosi C, McDonald K, Muñoz M, Paranjpe A, Pourgholami MH, Sardi I, Sella A, Srivenugopal KS, Tuccori M, Wang W, Wirtz CR, Halatsch ME. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget 2013; 4:502-30. [PMID: 23594434 PMCID: PMC3720600 DOI: 10.18632/oncotarget.969] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 02/06/2023] Open
Abstract
To improve prognosis in recurrent glioblastoma we developed a treatment protocol based on a combination of drugs not traditionally thought of as cytotoxic chemotherapy agents but that have a robust history of being well-tolerated and are already marketed and used for other non-cancer indications. Focus was on adding drugs which met these criteria: a) were pharmacologically well characterized, b) had low likelihood of adding to patient side effect burden, c) had evidence for interfering with a recognized, well-characterized growth promoting element of glioblastoma, and d) were coordinated, as an ensemble had reasonable likelihood of concerted activity against key biological features of glioblastoma growth. We found nine drugs meeting these criteria and propose adding them to continuous low dose temozolomide, a currently accepted treatment for relapsed glioblastoma, in patients with recurrent disease after primary treatment with the Stupp Protocol. The nine adjuvant drug regimen, Coordinated Undermining of Survival Paths, CUSP9, then are aprepitant, artesunate, auranofin, captopril, copper gluconate, disulfiram, ketoconazole, nelfinavir, sertraline, to be added to continuous low dose temozolomide. We discuss each drug in turn and the specific rationale for use- how each drug is expected to retard glioblastoma growth and undermine glioblastoma's compensatory mechanisms engaged during temozolomide treatment. The risks of pharmacological interactions and why we believe this drug mix will increase both quality of life and overall survival are reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Wen-Wei Chang
- Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Boris Cvek
- Palacky University, Olomouc, Czech Republic
| | | | - Alfonso Duenas-Gonzalez
- Instituto de Investigaciones Biomedicas UNAM, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | | | | | - Kirsi Ketola
- University of British Columbia, Vancouver, Canada
| | | | - Daniel Keizman
- Oncology Department, Meir Medical Center, Tel Aviv University, Israel
| | - Nicolas Magné
- Institut de Cancérologie Lucien Neuwirth, Saint-Priest en Jarez, France
| | | | | | - Miguel Muñoz
- Virgen del Rocío University Hospital, Sevilla, Spain
| | - Ameya Paranjpe
- Texas Tech University Health Sciences Center, Amarillo, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tack CJ, Stienstra R, Joosten LAB, Netea MG. Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol Rev 2013; 249:239-52. [PMID: 22889226 DOI: 10.1111/j.1600-065x.2012.01145.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing body of evidence suggests that cytokines of the interleukin-1 (IL-1) family, particularly IL-1β but also IL-1Ra and IL-18, are involved in obesity-associated inflammation. IL-1β is produced via cleavage of pro-IL-1β by caspase-1, which in turn is activated by a multiprotein complex called the inflammasome. The components of the NLRP3 inflammasome are involved in sensing obesity-associated danger signals, both in mice and in human (obese) subjects, with caspase-1 seemingly the most crucial regulator. Autophagy is upregulated in obesity and may function as a mechanism to control IL-1β gene expression in adipose tissue to mitigate chronic inflammation. All these mechanisms are operative in human adipose tissue and appear to be more pronounced in human visceral compared to subcutaneous tissue. In animal studies, blocking caspase-1 activity results in decreased weight gain, decreased inflammation, and improved insulin sensitivity. Human intervention studies with IL-1Ra (anakinra) have reported beneficial effects in patients with diabetes, yet without significant changes in insulin sensitivity. Clearly, the IL-1 family of cytokines, especially IL-1β, plays an important role in obesity-associated inflammation and insulin resistance and may represent a therapeutic target to reverse the detrimental metabolic consequences of obesity.
Collapse
Affiliation(s)
- Cees J Tack
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Yin Y, Pastrana JL, Li X, Huang X, Mallilankaraman K, Choi ET, Madesh M, Wang H, Yang XF. Inflammasomes: sensors of metabolic stresses for vascular inflammation. Front Biosci (Landmark Ed) 2013; 18:638-49. [PMID: 23276949 DOI: 10.2741/4127] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metabolic syndrome is a major health issue in the western world. An elevated pro-inflammatory state is often found in patients with metabolic diseases such as type 2 diabetes and obesity. Atherosclerosis is one such clinical manifestation of pro-inflammatory state associated with the vasculature. The exact mechanism by which metabolic stress induces this pro-inflammatory status and promotes atherogenesis remained elusive until the discovery of the inflammasome protein complex. This complex is composed of pro-caspase-1 and pathogen sensors. Activation of inflammasome requires the transcriptional upregulation of inflammasome components and the post-translational assembly. Three models of inflammasome assembly have been proposed: 1) the ion channel model; 2) the reactive oxygen species (ROS) model; and 3) the lysosome model. In either case, inflammasome activation triggers the auto-activation of pro-caspase-1 into its mature form. Caspase-1, which was first discovered as the IL-1β converting enzyme, is known to be a major player in inflammatory and cell death pathways. Many endogenous metabolic ligands have been experimentally shown to activate inflammasome, and thus initiate the subsequent inflammation process. Further understanding of the distinct molecular mechanism by which metabolic ligands activates inflammasome could lead to developing novel therapeutic interventions for atherosclerosis and other clinical problems related to metabolic diseases.
Collapse
Affiliation(s)
- Ying Yin
- Department of Pharmacology and Cardiovascular Research Center, Temple University School of Medicine, 3500 North Broad Street, MERB 1059, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Inflammation and epilepsy: the foundations for a new therapeutic approach in epilepsy? Epilepsy Curr 2012; 12:8-12. [PMID: 22368518 DOI: 10.5698/1535-7511-12.1.8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emerging data from experimental epilepsy models and resected human brain tissue support the proposed involvement of innate immune system activation and consequent inflammation in epilepsy. Key mediators of this process include interleukin-1β, high-mobility group box protein 1 (HMGB1), and Toll-like receptor (TLR) signaling. These recent findings constitute the basis for a novel avenue of drug development in epilepsy, one that is not only distinct from previous approaches but uniquely based on sound neurobiological evidence.
Collapse
|
32
|
Charrier JD, Durrant SJ, Studley J, Lawes L, Weber P. Synthesis and evaluation of novel prodrugs of caspase inhibitors. Bioorg Med Chem Lett 2012; 22:485-8. [DOI: 10.1016/j.bmcl.2011.10.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 12/15/2022]
|
33
|
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy.
| | | | | |
Collapse
|
34
|
Akin D, Ravizza T, Maroso M, Carcak N, Eryigit T, Vanzulli I, Aker RG, Vezzani A, Onat FY. IL-1β is induced in reactive astrocytes in the somatosensory cortex of rats with genetic absence epilepsy at the onset of spike-and-wave discharges, and contributes to their occurrence. Neurobiol Dis 2011; 44:259-69. [DOI: 10.1016/j.nbd.2011.05.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 04/21/2011] [Accepted: 05/20/2011] [Indexed: 01/01/2023] Open
|
35
|
Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, Vezzani A. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 2011; 8:304-15. [PMID: 21431948 PMCID: PMC3101825 DOI: 10.1007/s13311-011-0039-z] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Experimental evidence and clinical observations indicate that brain inflammation is an important factor in epilepsy. In particular, induction of interleukin-converting enzyme (ICE)/caspase-1 and activation of interleukin (IL)-1β/IL-1 receptor type 1 axis both occur in human epilepsy, and contribute to experimentally induced acute seizures. In this study, the anticonvulsant activity of VX-765 (a selective ICE/caspase-1 inhibitor) was examined in a mouse model of chronic epilepsy with spontaneous recurrent epileptic activity refractory to some common anticonvulsant drugs. Moreover, the effects of this drug were studied in one acute model of seizures in mice, previously shown to involve activation of ICE/caspase-1. Quantitative analysis of electroencephalogram activity was done in mice exposed to acute seizures or those developing chronic epileptic activity after status epilepticus to assess the anticonvulsant effects of systemic administration of VX-765. Histological and immunohistochemical analysis of brain tissue was carried out at the end of pharmacological experiments in epileptic mice to evaluate neuropathology, glia activation and IL-1β expression, and the effect of treatment. Repeated systemic administration of VX-765 significantly reduced chronic epileptic activity in mice in a dose-dependent fashion (12.5-200 mg/kg). This effect was observed at doses ≥ 50 mg/kg, and was reversible with discontinuation of the drug. Maximal drug effect was associated with inhibition of IL-1β synthesis in activated astrocytes. The same dose regimen of VX-765 also reduced acute seizures in mice and delayed their onset time. These results support a new target system for anticonvulsant pharmacological intervention to control epileptic activity that does not respond to some common anticonvulsant drugs.
Collapse
Affiliation(s)
- Mattia Maroso
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, 20156 Italy
| | - Silvia Balosso
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, 20156 Italy
| | - Teresa Ravizza
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, 20156 Italy
| | - Valentina Iori
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, 20156 Italy
| | | | - Jacqueline French
- New York University Comprehensive Epilepsy Center, New York, New York 10016 USA
| | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, 20156 Italy
| |
Collapse
|
36
|
Galatsis P, Caprathe B, Downing D, Gilmore J, Harter W, Hays S, Kostlan C, Linn K, Lunney E, Para K, Thomas A, Warmus J, Allen H, Brady K, Talanian R, Walker N. Inhibition of interleukin-1beta converting enzyme (ICE or caspase 1) by aspartyl acyloxyalkyl ketones and aspartyl amidooxyalkyl ketones. Bioorg Med Chem Lett 2010; 20:5089-94. [PMID: 20674352 DOI: 10.1016/j.bmcl.2010.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 01/08/2023]
Abstract
A series of acyloxyalkyl and amidooxyalkyl ketones appended to a carbobenzyloxy aspartic acid core have been prepared. The most potent of these new inhibitors was 4i with a K(i) of 0.5 microM. These two series provide an improved understanding of the binding requirements for the hydrophobic prime side of ICE.
Collapse
Affiliation(s)
- Paul Galatsis
- Pfizer Global Research and Development, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Galatsis P, Caprathe B, Gilmore J, Thomas A, Linn K, Sheehan S, Harter W, Kostlan C, Lunney E, Stankovic C, Rubin J, Brady K, Allen H, Talanian R. Succinic acid amides as P2-P3 replacements for inhibitors of interleukin-1beta converting enzyme (ICE or caspase 1). Bioorg Med Chem Lett 2010; 20:5184-90. [PMID: 20656488 DOI: 10.1016/j.bmcl.2010.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/01/2010] [Accepted: 07/02/2010] [Indexed: 01/12/2023]
Abstract
Succinic acid amides have been found to be effective P2-P3 scaffold replacements for peptidic ICE inhibitors. Heteroarylalkyl fragments occupying the P4 position provided access to compounds with nM affinities. Utilization of an acylal prodrug moiety was required to overcome biopharmaceutical issues which led to the identification of 17f, a potential clinical candidate.
Collapse
|
38
|
Multimodality Imaging of IL-18–Binding Protein-Fc Therapy of Experimental Lung Metastasis. Clin Cancer Res 2008; 14:6137-45. [DOI: 10.1158/1078-0432.ccr-08-0049] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Zoukhri D, Ko S, Stark PC, Kublin CL. Roles of caspase 1 and extracellular signal-regulated kinase in inflammation-induced inhibition of lacrimal gland protein secretion. Invest Ophthalmol Vis Sci 2008; 49:4392-8. [PMID: 18566460 DOI: 10.1167/iovs.08-1830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The purpose of the present study was to investigate the roles of caspase 1 and extracellular signal-regulated kinase (ERK) in inflammation-induced inhibition of lacrimal gland secretion. METHODS Lacrimal gland inflammation was induced by injection of lipopolysaccharide (LPS; to study the role of caspase 1) or IL-1beta (to study the role of ERK). Lacrimal gland protein secretion was measured using a spectrofluorometric assay. Caspase 1 and ERK activities in the lacrimal gland were measured by immunohistochemistry, Western blotting, or both. Aqueous tear production was measured using phenol red-impregnated cotton threads. RESULTS Injection of LPS into the lacrimal gland inhibited neurally and adrenergic agonist-induced protein secretion by 77% and 54%, respectively, and activated caspase 1. The degree of inhibition achieved by LPS was similar to that obtained with injection of IL-1beta. Inhibition of caspase 1 alleviated the inhibitory effect of LPS on lacrimal gland secretion. IL-1beta activated ERK in the lacrimal gland in vitro and in vivo, and this effect was blocked by UO126, an inhibitor of MEK, the ERK-activating enzyme. IL-1beta injection into the lacrimal gland inhibited aqueous tear production by 52% and inhibited neurally and adrenergic agonist-induced protein secretion by 80% and 55%, respectively. UO126 alleviated the inhibitory effect of IL-1beta on aqueous tear production and lacrimal gland protein secretion. CONCLUSIONS LPS inhibits lacrimal gland secretion by activating caspase 1, and IL-1beta activates the ERK pathway to inhibit lacrimal gland protein secretion and aqueous tear production.
Collapse
Affiliation(s)
- Driss Zoukhri
- Department of General Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts 0211, USA.
| | | | | | | |
Collapse
|
40
|
Ravizza T, Noé F, Zardoni D, Vaghi V, Sifringer M, Vezzani A. Interleukin Converting Enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1beta production. Neurobiol Dis 2008; 31:327-33. [PMID: 18632279 DOI: 10.1016/j.nbd.2008.05.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/08/2008] [Accepted: 05/15/2008] [Indexed: 01/14/2023] Open
Abstract
An enhanced production of IL-1beta in glia is a typical feature of epileptogenic tissue in experimental models and in human drug-refractory epilepsy. We show here that the selective inhibition of Interleukin Converting Enzyme (ICE), which cleaves the biologically active form of IL-1beta using VX-765, blocks kindling development in rats by preventing IL-1beta increase in forebrain astrocytes, without interfering with glia activation. The average afterdischarge duration was not altered significantly by VX-765. Up to 24 h after kindling completion and drug washout, kindled seizures could not be evoked in treated rats. VX-765 did not affect seizures or afterdischarge duration in fully kindled rats. These data indicate an antiepileptogenic effect mediated by ICE inhibition and suggest that specific anti-IL-1beta pharmacological strategies can be envisaged to interfere with epileptogenic mechanisms.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Neuroscience, Laboratory of Experimental Neurology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Gemma C, Bickford PC. Interleukin-1beta and caspase-1: players in the regulation of age-related cognitive dysfunction. Rev Neurosci 2007; 18:137-48. [PMID: 17593876 DOI: 10.1515/revneuro.2007.18.2.137] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Scientific research on the unprecedented and growing number of older adults in the United States and other industrialized countries has focused much attention on the health consequences of aging. Over the last few decades, inflammation in the brain and its implication in the progression of aging and age-related cognitive dysfunction has been an area of increasing importance to neuroscientists and is now considered as one of the most interesting and promising topics for aging research. One of the critical aspects of inflammatory processes is that the activation of one upstream inflammatory molecule initiates a cascade of self-sustaining inflammatory events which leads to the activation of a number of different downstream functions. Recently, a great deal of attention has been given to the interplay between inflammatory and apoptotic processes and the regulation of these processes by the caspases. The caspase family of proteases can be divided into proapoptotic and pro-inflammatory members. The present review summarizes recent observations of the interactions between the inflammatory cytokine interleuldn-1 (IL-1) beta and the inflammatory/apoptotic caspase-1 and their involvement in age-related impairments in cognition. A comprehensive understanding of these mechanisms could potentially lead to the development of preventive or protective therapies that reduce or inhibit the cognitive decline associated with aging and age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Carmelina Gemma
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | |
Collapse
|
42
|
Westermann D, Van Linthout S, Dhayat S, Dhayat N, Escher F, Bücker-Gärtner C, Spillmann F, Noutsias M, Riad A, Schultheiss HP, Tschöpe C. Cardioprotective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes 2007; 56:1834-41. [PMID: 17473225 DOI: 10.2337/db06-1662] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We investigated the effect of pharmacological inhibition of the interleukin converting enzyme (ICE) on cardiac inflammation, apoptosis, fibrosis, and left ventricular function in an animal model of diabetes. RESEARCH DESIGN AND METHODS Diabetes was induced in 24 Sprague-Dawley rats by injection of streptozotozin (STZ) (70 mg/kg). Diabetic animals were treated with the interleukin converting enzyme (ICE) inhibitor (ICEI) (n = 12) or with a placebo (n = 12). Nondiabetic rats served as controls (n = 12). Left ventricular function was documented 6 weeks after induction of diabetes. Cardiac tissue was analyzed for the expression of cytokines, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, leukocyte and macrophage integrins, and collagen. Phosphorylation of Akt was analyzed by Western blot and apoptosis by Blc-2 and Bax measurements. RESULTS Left ventricular function was significantly impaired in diabetic animals. This was accompanied by a significant increase of cytokines, cell adhesion molecules, leukocytes and macrophages, and collagen content. In addition, the phosphorylation state of Akt was reduced. These changes were significantly attenuated in the diabetic group treated with ICEI. CONCLUSIONS Cardiac dysfunction is associated with cardiac inflammation in experimental diabetic cardiomyopathy. Both of these--cardiac dysfunction and inflammation--are attenuated after treatment with ICEI. These data suggest that anticytokine-based therapies might be beneficial in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dirk Westermann
- Department of Cardiology, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Several autoimmune diseases are thought to be mediated in part by interleukin (IL)-18. Many are those with associated increased interferon-gamma (IFNgamma) levels such as systemic lupus erythematosus, macrophage activation syndrome, rheumatoid arthritis, Crohn's disease, psoriasis, and graft-versus-host disease. In addition, ischemia, including acute renal failure in human beings, appears to involve IL-18. Animal studies also support the concept that IL-18 is a key player in models of lupus erythematosus, atherosclerosis, graft-versus-host disease, and hepatitis. Unexpectedly, IL-18 plays a role in appetite control and the development of obesity. IL-18 is a member of the IL-1 family; IL-1beta and IL-18 are related closely, and both require the intracellular cysteine protease caspase-1 for biological activity. The IL-18 binding protein, a naturally occurring and specific inhibitor of IL-18, neutralizes IL-18 activities and has been shown to be safe in patients. Other options for reducing IL-18 activities are inhibitors of caspase-1, human monoclonal antibodies to IL-18, soluble IL-18 receptors, and anti-IL-18 receptor monoclonal antibodies.
Collapse
Affiliation(s)
- Charles A Dinarello
- Department of Medicine, Division of Infectious Diseases, University of Colorado Health Sciences Center, Denver, CO, USA
| |
Collapse
|
44
|
Merkle S, Frantz S, Schön MP, Bauersachs J, Buitrago M, Frost RJA, Schmitteckert EM, Lohse MJ, Engelhardt S. A Role for Caspase-1 in Heart Failure. Circ Res 2007; 100:645-53. [PMID: 17303764 DOI: 10.1161/01.res.0000260203.55077.61] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Apoptosis of cardiomyocytes is increased in heart failure and has been implicated in disease progression. The activation of “proapoptotic” caspases represents a key step in cardiomyocyte apoptosis. In contrast, the role of “proinflammatory” caspases (caspases 1, 4, 5, 11, 12) is unclear. Here, we study the cardiac function of caspase-1. Gene array analysis in a murine heart failure model showed upregulation of myocardial caspase-1. In addition, we found increased expression of caspase-1 protein in murine and human heart failure. Mice with cardiomyocyte-specific overexpression of caspase-1 developed heart failure in the absence of detectable formation of interleukin (IL)-1β or IL-18 and inflammation. Transgenic caspase-1 induced primary cardiomyocyte apoptosis before structural and molecular signs of myocardial remodeling occurred. In contrast, deletion of endogenous caspase-1 was beneficial in the setting of myocardial infarction–induced heart failure. Furthermore, caspase-1–deficient mice were protected from ischemia/reperfusion-induced cardiomyocyte apoptosis. Studies in primary rat cardiomyocytes indicated that caspase-1 induces cardiomyocyte apoptosis primarily through activation of caspases-3 and -9. In contrast to previous findings, which imply a proinflammatory role of caspase-1, these data suggest a primary proapoptotic role for caspase-1 in cardiomyocytes. Our findings support a functional role for caspase-1–mediated myocardial apoptosis contributing to the progression of heart failure.
Collapse
Affiliation(s)
- Sabine Merkle
- Rudolf Virchow Center, Deutsche Forschungsgemeinschaft-Research Center for Experimental Biomedicine, Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kirkwood KL, Cirelli JA, Rogers JE, Giannobile WV. Novel host response therapeutic approaches to treat periodontal diseases. Periodontol 2000 2007; 43:294-315. [PMID: 17214846 PMCID: PMC2570321 DOI: 10.1111/j.1600-0757.2006.00166.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Keith L Kirkwood
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
46
|
Vincent JA, Mohr S. Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes 2007; 56:224-30. [PMID: 17192486 DOI: 10.2337/db06-0427] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The proinflammatory cytokine, interleukin (IL)-1beta, is known to induce vascular dysfunction and cell death. We investigated the role of IL-1beta and caspase-1 (the enzyme that produces it) in diabetes-induced degeneration of retinal capillaries. Caspase-1 activity is increased in retinas of diabetic and galactosemic mice and diabetic patients. First, we investigated the effect of agents known to inhibit caspase-1 (minocycline and tetracycline) on IL-1beta production and retinal capillary degeneration in diabetic and galactose-fed mice. Second, we examined the effect of genetic deletion of the IL-1beta receptor on diabetes-induced caspase activities and retinal capillary degeneration. Diabetic and galactose-fed mice were injected intraperitoneally with minocycline or tetracycline (5 mg/kg). At 2 months of diabetes, minocycline inhibited hyperglycemia-induced caspase-1 activity and IL-1beta production in the retina. Long-term administration of minocycline prevented retinal capillary degeneration in diabetic (6 months) and galactose-fed (13 months) mice. Tetracycline inhibited hyperglycemia-induced caspase-1 activity in vitro but not in vivo. Mice deficient in the IL-1beta receptor were protected from diabetes-induced caspase activation and retinal pathology at 7 months of diabetes. These results indicate that the caspase-1/IL-1beta signaling pathway plays an important role in diabetes-induced retinal pathology, and its inhibition might represent a new strategy to inhibit capillary degeneration in diabetic retinopathy.
Collapse
Affiliation(s)
- Jason A Vincent
- Case Western Reserve University, Department of Medicine, Division of Clinical and Molecular Endocrinology, Center for Diabetes Research, Cleveland, OH 44106, USA
| | | |
Collapse
|
47
|
Lewis AM, Varghese S, Xu H, Alexander HR. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med 2006; 4:48. [PMID: 17096856 PMCID: PMC1660548 DOI: 10.1186/1479-5876-4-48] [Citation(s) in RCA: 332] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 11/10/2006] [Indexed: 01/19/2023] Open
Abstract
The tumor microenvironment consists of tumor, immune, stromal, and inflammatory cells which produce cytokines, growth factors, and adhesion molecules that promote tumor progression and metastasis. Of particular interest in this setting is interleukin-1 (IL-1), a pleiotropic cytokine with numerous roles in both physiological and pathological states. It is known to be up regulated in many tumor types and has been implicated as a factor in tumor progression via the expression of metastatic and angiogenic genes and growth factors. A number of studies have reported that high IL-1 concentrations within the tumor microenvironment are associated with a more virulent tumor phenotype. Solid tumors in which IL-1 has been shown to be up regulated include breast, colon, lung, head and neck cancers, and melanomas, and patients with IL-1 producing tumors have generally bad prognoses. The exact mechanisms by which IL-1 promotes tumor growth remain unclear, though the protein is believed to act via induction of pro-metastatic genes such as matrix metalloproteinases and through the stimulation of adjacent cells to produce angiogenic proteins and growth factors such as VEGF, IL-8, IL-6, TNFα, and TGFβ. The IL-1 receptor antagonist (IL-1ra) is a naturally occurring inhibitor to IL-1 and acts by binding to the IL-1 receptor without activating it. The protein has been shown to decrease tumor growth, angiogenesis, and metastases in murine xenograft models. Our focus in this review is to summarize the known data on the role of IL-1 in tumor progression and metastasis and the use of IL-1 inhibition as a novel therapeutic approach in the treatment of solid organ malignancies.
Collapse
Affiliation(s)
- Anne M Lewis
- Surgical Metabolism Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Howard Hughes Medical Institute-National Institutes of Health Research Scholars Program, 4000 Jones Bridge Road, Chevy Chase, Maryland, USA
| | - Sheelu Varghese
- Surgical Metabolism Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Department of Surgery and The Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Hui Xu
- Surgical Metabolism Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - H Richard Alexander
- Surgical Metabolism Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Department of Surgery and The Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Ravizza T, Lucas SM, Balosso S, Bernardino L, Ku G, Noé F, Malva J, Randle JCR, Allan S, Vezzani A. Inactivation of caspase-1 in rodent brain: a novel anticonvulsive strategy. Epilepsia 2006; 47:1160-8. [PMID: 16886979 DOI: 10.1111/j.1528-1167.2006.00590.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Cytokines and related inflammatory mediators are rapidly synthesized in the brain during seizures. We previously found that intracerebral administration of interleukin-1 (IL-1)-beta has proconvulsant effects, whereas its endogenous receptor antagonist (IL-1Ra) mediates potent anticonvulsant actions in various models of limbic seizures. In this study, we investigated whether seizures can be effectively inhibited by blocking the brain production of IL-1beta, by using selective inhibitors of interleukin-converting enzyme (ICE/caspase-1) or through caspase-1 gene deletion. METHODS Caspase-1 was selectively blocked by using pralnacasan or VX-765. IL-1beta release was induced in mouse organotypic hippocampal slice cultures by proinflammatory stimuli [lipopolysaccharide (LPS) + adenosine triphosphate (ATP)] and measured with enzyme-linked immunosorbent assay (ELISA). IL-1beta production during seizures was measured in the rat hippocampus by Western blot. Seizures were induced in freely moving mice and rats by intrahippocampal injection of kainic acid and recorded by EEG analysis. RESULTS Caspase-1 inhibition reduced the release of IL-1beta in organotypic slices exposed to LPS+ATP. Administration of pralnacasan (intracerebroventricular, 50 microg) or VX-765 (intraperitoneal, 25-200 mg/kg) to rats blocked seizure-induced production of IL-1beta in the hippocampus, and resulted in a twofold delay in seizure onset and 50% reduction in seizure duration. Mice with caspase-1 gene deletion showed a 70% reduction in seizures and an approximate fourfold delay in their onset. CONCLUSIONS Inhibition of caspase-1 represents an effective and novel anticonvulsive strategy, which acts by selectively reducing the brain availability of IL-1beta.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dumont FJ. The interleukin-1 families of cytokines and receptors: therapeutic potential for immunomodulation and the treatment of inflammatory disorders. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.7.879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Abstract
Atherosclerosis is a chronic disease of the arterial wall where both innate and adaptive immunoinflammatory mechanisms are involved. Inflammation is central at all stages of atherosclerosis. It is implicated in the formation of early fatty streaks, when the endothelium is activated and expresses chemokines and adhesion molecules leading to monocyte/lymphocyte recruitment and infiltration into the subendothelium. It also acts at the onset of adverse clinical vascular events, when activated cells within the plaque secrete matrix proteases that degrade extracellular matrix proteins and weaken the fibrous cap, leading to rupture and thrombus formation. Cells involved in the atherosclerotic process secrete and are activated by soluble factors, known as cytokines. Important recent advances in the comprehension of the mechanisms of atherosclerosis provided evidence that the immunoinflammatory response in atherosclerosis is modulated by regulatory pathways, in which the two anti-inflammatory cytokines interleukin-10 and transforming growth factor-β play a critical role. The purpose of this review is to bring together the current information concerning the role of cytokines in the development, progression, and complications of atherosclerosis. Specific emphasis is placed on the contribution of pro- and anti-inflammatory cytokines to pathogenic (innate and adaptive) and regulatory immunity in the context of atherosclerosis. Based on our current knowledge of the role of cytokines in atherosclerosis, we propose some novel therapeutic strategies to combat this disease. In addition, we discuss the potential of circulating cytokine levels as biomarkers of coronary artery disease.
Collapse
Affiliation(s)
- Alain Tedgui
- Institut National de la Santé et de la Recherche Médicale U. 689, Cardiovascular Research Center Lariboisiere, and University Paris 7, Paris, France.
| | | |
Collapse
|