1
|
Chansoria P, Chaudhari A, Etter EL, Bonacquisti EE, Heavey MK, Le J, Maruthamuthu MK, Kussatz CC, Blackwell J, Jasiewicz NE, Sellers RS, Maile R, Wallet SM, Egan TM, Nguyen J. Instantly adhesive and ultra-elastic patches for dynamic organ and wound repair. Nat Commun 2024; 15:4720. [PMID: 38830847 PMCID: PMC11148085 DOI: 10.1038/s41467-024-48980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here, we present a translational patch material that exhibits instant adhesion to tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), ultra-stretchability (stretching to >300% its original length without losing elasticity), compatibility with rapid photo-projection (<2 min fabrication time/patch), and ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we created next-generation patches for instant attachment to tissues while conforming to a broad range of organ mechanics ex vivo and in vivo. Patches coated with extracellular vesicles derived from mesenchymal stem cells demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds.
Collapse
Affiliation(s)
- Parth Chansoria
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ameya Chaudhari
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emma L Etter
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily E Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mairead K Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiayan Le
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Murali Kannan Maruthamuthu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caden C Kussatz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John Blackwell
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalie E Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rani S Sellers
- Pathology and Laboratory Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert Maile
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shannon M Wallet
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas M Egan
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- North Carolina State University, Raleigh, NC, 27695, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Zheng Z, Tang W, Li Y, Ai Y, Tu Z, Yang J, Fan C. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Fail Rev 2024; 29:599-613. [PMID: 37943420 DOI: 10.1007/s10741-023-10367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Cardiovascular diseases (CVDs) represent a paramount global mortality concern, and their prevalence is on a relentless ascent. Despite the effectiveness of contemporary medical interventions in mitigating CVD-related fatality rates and complications, their efficacy remains curtailed by an array of limitations. These include the suboptimal efficiency of direct cell injection and an inherent disequilibrium between the demand and availability of heart transplantations. Consequently, the imperative to formulate innovative strategies for cardiac regeneration therapy becomes unmistakable. Within this context, 3D bioprinting technology emerges as a vanguard contender, occupying a pivotal niche in the realm of tissue engineering and regenerative medicine. This state-of-the-art methodology holds the potential to fabricate intricate heart tissues endowed with multifaceted structures and functionalities, thereby engendering substantial promise. By harnessing the prowess of 3D bioprinting, it becomes plausible to synthesize functional cardiac architectures seamlessly enmeshed with the host tissue, affording a viable avenue for the restitution of infarcted domains and, by extension, mitigating the onerous yoke of CVDs. In this review, we encapsulate the myriad applications of 3D bioprinting technology in the domain of heart tissue regeneration. Furthermore, we usher in the latest advancements in printing methodologies and bioinks, culminating in an exploration of the extant challenges and the vista of possibilities inherent to a diverse array of approaches.
Collapse
Affiliation(s)
- Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yichen Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yinze Ai
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Zhi Tu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
3
|
Ryu H, Wang X, Xie Z, Kim J, Liu Y, Bai W, Song Z, Song JW, Zhao Z, Kim J, Yang Q, Xie JJ, Keate R, Wang H, Huang Y, Efimov IR, Ameer GA, Rogers JA. Materials and Design Approaches for a Fully Bioresorbable, Electrically Conductive and Mechanically Compliant Cardiac Patch Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303429. [PMID: 37518771 PMCID: PMC10520666 DOI: 10.1002/advs.202303429] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of death and disability. Recently developed cardiac patches provide mechanical support and additional conductive paths to promote electrical signal propagation in the MI area to synchronize cardiac excitation and contraction. Cardiac patches based on conductive polymers offer attractive features; however, the modest levels of elasticity and high impedance interfaces limit their mechanical and electrical performance. These structures also operate as permanent implants, even in cases where their utility is limited to the healing period of tissue damaged by the MI. The work presented here introduces a highly conductive cardiac patch that combines bioresorbable metals and polymers together in a hybrid material structure configured in a thin serpentine geometry that yields elastic mechanical properties. Finite element analysis guides optimized choices of layouts in these systems. Regular and synchronous contraction of human induced pluripotent stem cell-derived cardiomyocytes on the cardiac patch and ex vivo studies offer insights into the essential properties and the bio-interface. These results provide additional options in the design of cardiac patches to treat MI and other cardiac disorders.
Collapse
|
4
|
El-Husseiny HM, Mady EA, Kaneda M, Shimada K, Nakazawa Y, Usui T, Elbadawy M, Ishihara Y, Hirose M, Kamei Y, Doghish AS, El-Mahdy HA, El-Dakroury WA, Tanaka R. Comparison of Bovine- and Porcine-Derived Decellularized Biomaterials: Promising Platforms for Tissue Engineering Applications. Pharmaceutics 2023; 15:1906. [PMID: 37514092 PMCID: PMC10384422 DOI: 10.3390/pharmaceutics15071906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Animal-derived xenogeneic biomaterials utilized in different surgeries are promising for various applications in tissue engineering. However, tissue decellularization is necessary to attain a bioactive extracellular matrix (ECM) that can be safely transplanted. The main objective of the present study is to assess the structural integrity, biocompatibility, and potential use of various acellular biomaterials for tissue engineering applications. Hence, a bovine pericardium (BP), porcine pericardium (PP), and porcine tunica vaginalis (PTV) were decellularized using a Trypsin, Triton X (TX), and sodium dodecyl sulfate (SDS) (Trypsin + TX + SDS) protocol. The results reveal effective elimination of the cellular antigens with preservation of the ECM integrity confirmed via staining and electron microscopy. The elasticity of the decellularized PP (DPP) was markedly (p < 0.0001) increased. The tensile strength of DBP, and DPP was not affected after decellularization. All decellularized tissues were biocompatible with persistent growth of the adipose stem cells over 30 days. The staining confirmed cell adherence either to the peripheries of the materials or within their matrices. Moreover, the in vivo investigation confirmed the biocompatibility and degradability of the decellularized scaffolds. Conclusively, Trypsin + TX + SDS is a successful new protocol for tissue decellularization. Moreover, decellularized pericardia and tunica vaginalis are promising scaffolds for the engineering of different tissues with higher potential for the use of DPP in cardiovascular applications and DBP and DPTV in the reconstruction of higher-stress-bearing abdominal walls.
Collapse
Affiliation(s)
- Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Sciences, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Yasumoto Nakazawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Moeko Hirose
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan
| | - Yohei Kamei
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt
- Department of Biochemistry, and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11651, Cairo, Egypt
| | - Hesham A El-Mahdy
- Department of Biochemistry, and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11651, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City 11829, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
5
|
Budharaju H, Sundaramurthi D, Sethuraman S. Efficient dual crosslinking of protein-in-polysaccharide bioink for biofabrication of cardiac tissue constructs. BIOMATERIALS ADVANCES 2023; 152:213486. [PMID: 37302210 DOI: 10.1016/j.bioadv.2023.213486] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
Myocardial infarction (MI) is a lethal cardiac disease that causes most of the mortality across the world. MI is a consequence of plaque in the arterial walls of heart, which eventually result in occlusion and ischemia to the myocardial tissues due to inadequate nutrient and oxygen supply. As an efficient alternative to the existing treatment strategies for MI, 3D bioprinting has evolved as an advanced tissue fabrication technique where the cell-laden bioinks are printed layer-by-layer to create functional cardiac patches. In this study, a dual crosslinking strategy has been utilized towards 3D bioprinting of myocardial constructs by using a combination of alginate and fibrinogen. Herein, pre-crosslinking of the physically blended alginate-fibrinogen bioinks with CaCl2 enhanced the shape fidelity and printability of the printed structures. Physicochemical properties of the bioinks such as rheology, fibrin distribution, swelling ratio and degradation behaviour, were determined post-printing for only ionically crosslinked & dual crosslinked constructs and found to be ideal for bioprinting of cardiac constructs. Human ventricular cardiomyocytes (AC 16) exhibited a significant increase in cell proliferation on day 7 and 14 in AF-DMEM-20 mM CaCl2 bioink when compared to A-DMEM-20 mM CaCl2 (p < 0.05). Furthermore, myocardial patches containing neonatal ventricular rat myocytes (NVRM) showed >80 % viability and also expressed sarcomeric alpha actinin & connexin 43. These results indicate that the dual crosslinking strategy was cytocompatible and also possess the potential to be used for biofabrication of thick myocardial constructs for regenerative medicine applications.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
6
|
Sigaroodi F, Rahmani M, Parandakh A, Boroumand S, Rabbani S, Khani MM. Designing cardiac patches for myocardial regeneration–a review. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2180510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Mollajavadi MY, Saadatmand M, Ghobadi F. Effect of calcium peroxide particles as oxygen-releasing materials on cell growth and mechanical properties of scaffolds for tissue engineering. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
Hunter JD, Hancko A, Shakya P, Hill R, Saviola AJ, Hansen KC, Davis ME, Christman KL. Characterization of decellularized left and right ventricular myocardial matrix hydrogels and their effects on cardiac progenitor cells. J Mol Cell Cardiol 2022; 171:45-55. [PMID: 35780862 PMCID: PMC11091826 DOI: 10.1016/j.yjmcc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 05/15/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Congenital heart defects are the leading cause of right heart failure in pediatric patients. Implantation of c-kit+ cardiac-derived progenitor cells (CPCs) is being clinically evaluated to treat the failing right ventricle (RV), but faces limitations due to reduced transplant cell survival, low engraftment rates, and low retention. These limitations have been exacerbated due to the nature of cell delivery (narrow needles) and the non-optimal recipient microenvironment (reactive oxygen species (ROS)). Extracellular matrix (ECM) hydrogels derived from porcine left ventricular (LV) myocardium have emerged as a potential therapy to treat the ischemic LV and have shown promise as a vehicle to deliver cells to injured myocardium. However, no studies have evaluated the combination of an injectable biomaterial, such as an ECM hydrogel, in combination with cell therapy for treating RV failure. In this study we characterized LV and RV myocardial matrix (MM) hydrogels and performed in vitro evaluations of their potential to enhance CPC delivery, including resistance to forces experienced during injection and exposure to ROS, as well as their potential to enhance angiogenic paracrine signaling. While physical properties of the two hydrogels are similar, the decellularized LV and RV have distinct protein signatures. Both materials were equally effective in protecting CPCs against needle forces and ROS. CPCs encapsulated in either the LV MM or RV MM exhibited similar enhanced potential for angiogenic paracrine signaling when compared to CPCs in collagen. The RV MM without cells, however, likewise improved tube formation, suggesting it should also be evaluated as a potential standalone treatment.
Collapse
Affiliation(s)
- Jervaughn D Hunter
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, UC San Diego, USA
| | - Arielle Hancko
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, UC San Diego, USA
| | - Preety Shakya
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, USA
| | - Ryan Hill
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, USA
| | - Karen L Christman
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, UC San Diego, USA.
| |
Collapse
|
9
|
Khanna A, Ayan B, Undieh AA, Yang YP, Huang NF. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration. J Mol Cell Cardiol 2022; 169:13-27. [PMID: 35569213 PMCID: PMC9385403 DOI: 10.1016/j.yjmcc.2022.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Three-dimensional (3D) bioprinting of cellular or biological components are an emerging field to develop tissue structures that mimic the spatial, mechanochemical and temporal characteristics of cardiovascular tissues. 3D multi-cellular and multi-domain organotypic biological constructs can better recapitulate in vivo physiology and can be utilized in a variety of applications. Such applications include in vitro cellular studies, high-throughput drug screening, disease modeling, biocompatibility analysis, drug testing and regenerative medicine. A major challenge of 3D bioprinting strategies is the inability of matrix molecules to reconstitute the complexity of the extracellular matrix and the intrinsic cellular morphologies and functions. An important factor is the inclusion of a vascular network to facilitate oxygen and nutrient perfusion in scalable and patterned 3D bioprinted tissues to promote cell viability and functionality. In this review, we summarize the new generation of 3D bioprinting techniques, the kinds of bioinks and printing materials employed for 3D bioprinting, along with the current state-of-the-art in engineered cardiovascular tissue models. We also highlight the translational applications of 3D bioprinting in engineering the myocardium cardiac valves, and vascular grafts. Finally, we discuss current challenges and perspectives of designing effective 3D bioprinted constructs with native vasculature, architecture and functionality for clinical translation and cardiovascular regeneration.
Collapse
|
10
|
Ge ZD, Boyd RM, Lantz C, Thorp EB, Forbess JM. Cardio-omentopexy requires a cardioprotective innate immune response to promote myocardial angiogenesis in mice. JTCVS OPEN 2022; 10:222-242. [PMID: 36004249 PMCID: PMC9390370 DOI: 10.1016/j.xjon.2022.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/17/2022] [Indexed: 11/09/2022]
Abstract
Objective The pedicled greater omentum, when applied onto stressed hearts using omentopexy, has been shown to be protective in humans and animals. The mechanisms underlying cardioprotection using omentopexy remain elusive. This study examined whether macrophage-mediated angiogenesis accounts for the cardioprotective effect of omentopexy in mice. Methods C57BL/6 mice were subjected to minimally invasive transverse aortic constriction for 6 weeks and subsequent cardio-omentopexy for 8 weeks. Control mice underwent the same surgical procedures without aortic constriction or cardio-omentopexy. Results Transverse aortic constriction led to left ventricular concentric hypertrophy, reduced mitral E/A ratio, increased cardiomyocyte size, and myocardial fibrosis in the mice that underwent sham cardio-omentopexy surgery. The negative effects of transverse aortic constriction were prevented by cardio-omentopexy. Myocardial microvessel density was elevated in the mice that underwent aortic constriction and sham cardio-omentopexy surgery, and cardio-omentopexy further enhanced angiogenesis. Nanostring gene array analysis uncovered the activation of angiogenesis gene networks by cardio-omentopexy. Flow cytometric analysis revealed that cardio-omentopexy triggered the accumulation of cardiac MHCIIloLyve1+TimD4+ (Major histocompatibility complex class IIlow lymphatic vessel endothelial hyaluronan receptor 1+ T cell immunoglobulin and mucin domain conataining 4+) resident macrophages at the omental-cardiac interface. Intriguingly, the depletion of macrophages with clodronate-liposome resulted in the failure of cardio-omentopexy to protect the heart and promote angiogenesis. Conclusions Cardio-omentopexy protects the heart from pressure overload-elicited left ventricular hypertrophy and dysfunction by promoting myocardial angiogenesis. Cardiac MHCIIloLyve1+TimD4+ resident macrophages play a critical role in the cardioprotective effect and angiogenesis of cardio-omentopexy. Video Abstract
Collapse
Key Words
- AXL, AXL receptor tyrosine kinase
- Akt, protein kinase B
- CD45, lymphocyte common antigen
- CD64, cluster of differentiation 64
- COP, cardio-omentopexy
- Calm1, calmodulin 1
- Cdh5, cadherin 5
- Clodro, clodronate-liposomes
- Crk, proto-oncogene c-Crk
- Ctnnb1, catenin β1
- Ctnnd1, catenin delta 1
- Cybb, cytochrome B-245 beta chain
- Cyfip1, cytoplasmic FMR1 interacting protein 1
- ECM, extracellular matrix
- F4/80, F4/80 antigen
- HCM, hypertrophic cardiomyopathy
- HSP89aa1, heat shock protein 89aa1
- Hippo, hippocampal
- Itpr2, inositol 1,4,5-trisphosphate receptor type 2
- Kdr, kinase insert domain receptor
- Kras, kirsten rat sarcoma virus
- LV, left ventricle
- Ly6Clo, lymphocyte antigen-6Clow
- Ly6G, lymphocyte antigen 6 complex locus G6D
- Lyve1, lymphatic vessel endothelial hyaluronan receptor 1
- MHCIIlo, major histocompatibility complex class IIlow
- Ncf1, neutrophil cytosolic factor 1
- Nck2, NCK adaptor protein 2
- Nckap1H, NCK-associated protein 1H
- Nos3, nitric oxide synthase 3
- PBS, phosphate-buffered saline
- PDGF, platelet-derived growth factor
- PI3K, phosphoinositide-3-kinase
- Plcg1, phospholipase Cγ1
- Plcg2, 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase γ2
- Prkaca, protein kinase cAMP-activated catalytic subunit α
- Prkacb, protein kinase cAMP-activated catalytic subunit β
- Prkca, protein kinase Cα
- Ptk2, protein tyrosine kinase 2
- Ptk2b, protein tyrosine kinase 2β
- Rac1, Rac family small GTPase 1
- Rock2, Rho associated coiled-coil containing protein kinase 2
- Src, proto-oncogene tyrosine-protein kinase Src
- TAC, transverse aortic constriction
- TGF, transforming growth factor
- TimD4, T cell immunoglobulin and mucin domain conataining 4
- VEGF-A, vascular endothelial growth factor A
- Vav1, Vav guanine nucleotide exchange factor 1
- WGA, wheat germ agglutinin
- angiogenesis
- cardiac hypertrophy
- cardio-omentopexy
- iB4, biotinylated-isolectin B4
- mTOR, mammalian target of rapamycin
- macrophages
Collapse
Affiliation(s)
- Zhi-Dong Ge
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Riley M. Boyd
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Connor Lantz
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Edward B. Thorp
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Joseph M. Forbess
- Department of Surgery, University of Maryland School of Medicine and The Children's Heart Program, University of Maryland Children's Hospital, Baltimore, Md
| |
Collapse
|
11
|
Chansoria P, Etter EL, Nguyen J. Regenerating dynamic organs using biomimetic patches. Trends Biotechnol 2022; 40:338-353. [PMID: 34412924 PMCID: PMC8831394 DOI: 10.1016/j.tibtech.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The regeneration of dynamic organs remains challenging because they are intrinsically anisotropic and undergo large volumetric deformation during normal or pathological function. This hampers the durability and applicability of regenerative medicine approaches. To address the challenges of organ dynamics, a new class of patches have emerged with anisotropic and auxetic properties that mimic native tissue biomechanics and accommodate volumetric deformation. Here, we outline the critical design, materials, and processing considerations for achieving optimal patch biomechanics according to target pathology and summarize recent advances in biomimetic patches for dynamic organ regeneration. Furthermore, we discuss the challenges and opportunities which, if overcome, would open up new applications in organ regeneration and expedite the clinical translation of patch-based therapeutics.
Collapse
Affiliation(s)
- Parth Chansoria
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emma L Etter
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Goonoo N. Tunable Biomaterials for Myocardial Tissue Regeneration: Promising New Strategies for Advanced Biointerface Control and Improved Therapeutic Outcomes. Biomater Sci 2022; 10:1626-1646. [DOI: 10.1039/d1bm01641e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following myocardial infarction (MI) and the natural healing process, the cardiac mechanostructure changes significantly leading to reduced contractile ability and putting additional pressure on the heart muscle thereby increasing the...
Collapse
|
13
|
Khalighi S, Saadatmand M. Bioprinting a thick and cell-laden partially oxidized alginate-gelatin scaffold with embedded micro-channels as future soft tissue platform. Int J Biol Macromol 2021; 193:2153-2164. [PMID: 34800519 DOI: 10.1016/j.ijbiomac.2021.11.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022]
Abstract
Despite all the advancements in tissue engineering, one of the unsolved challenges is the mass transfer limitation. Therefore, the subject of pre-vascularization in the engineered tissues gets more attention to avoid necrotic core formation. In this study, we considered a design for interconnected channels with a muscle tissue-like structure, in silico and in vitro. A sequence of simple steps make it possible for us to use the same material, gelatin, as both a sacrificial material and one of the main components of the scaffold simultaneously. We defined a new approach to quantify the repeatability of a new combination of hydrogels (Partially Oxidized Alginate + Gelatin) for extrusion-based bioprinting. Additionally, the mechanical properties, hydrogel porosity, degradation time, and swelling ratio were also evaluated. Based on all these test results, the scaffold with the optimum properties was chosen for the bioprinting of adipose derived mesenchymal stem cells (ADMSCs) in the scaffolds with and without the channels. This bioprinted scaffold with microchannels showed promising mimicry of the microenvironment, leading to higher survival and proliferation rates of the cells by up to 250%. Based on these results, it has the potential to serve as a platform for further research in vascularization, healthy/disease modelling, and stem cell differentiation.
Collapse
Affiliation(s)
- Sadaf Khalighi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
14
|
Chitosan as Functional Biomaterial for Designing Delivery Systems in Cardiac Therapies. Gels 2021; 7:gels7040253. [PMID: 34940314 PMCID: PMC8702013 DOI: 10.3390/gels7040253] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are a leading cause of mortality across the globe, and transplant surgeries are not always successful since it is not always possible to replace most of the damaged heart tissues, for example in myocardial infarction. Chitosan, a natural polysaccharide, is an important biomaterial for many biomedical and pharmaceutical industries. Based on the origin, degree of deacetylation, structure, and biological functions, chitosan has emerged for vital tissue engineering applications. Recent studies reported that chitosan coupled with innovative technologies helped to load or deliver drugs or stem cells to repair the damaged heart tissue not just in a myocardial infarction but even in other cardiac therapies. Herein, we outlined the latest advances in cardiac tissue engineering mediated by chitosan overcoming the barriers in cardiac diseases. We reviewed in vitro and in vivo data reported dealing with drug delivery systems, scaffolds, or carriers fabricated using chitosan for stem cell therapy essential in cardiac tissue engineering. This comprehensive review also summarizes the properties of chitosan as a biomaterial substrate having sufficient mechanical stability that can stimulate the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering.
Collapse
|
15
|
Tran RDH, Morris TA, Gonzalez D, Hetta AHSHA, Grosberg A. Quantitative Evaluation of Cardiac Cell Interactions and Responses to Cyclic Strain. Cells 2021; 10:3199. [PMID: 34831422 PMCID: PMC8625419 DOI: 10.3390/cells10113199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The heart has a dynamic mechanical environment contributed by its unique cellular composition and the resultant complex tissue structure. In pathological heart tissue, both the mechanics and cell composition can change and influence each other. As a result, the interplay between the cell phenotype and mechanical stimulation needs to be considered to understand the biophysical cell interactions and organization in healthy and diseased myocardium. In this work, we hypothesized that the overall tissue organization is controlled by varying densities of cardiomyocytes and fibroblasts in the heart. In order to test this hypothesis, we utilized a combination of mechanical strain, co-cultures of different cell types, and inhibitory drugs that block intercellular junction formation. To accomplish this, an image analysis pipeline was developed to automatically measure cell type-specific organization relative to the stretch direction. The results indicated that cardiac cell type-specific densities influence the overall organization of heart tissue such that it is possible to model healthy and fibrotic heart tissue in vitro. This study provides insight into how to mimic the dynamic mechanical environment of the heart in engineered tissue as well as providing valuable information about the process of cardiac remodeling and repair in diseased hearts.
Collapse
Affiliation(s)
- Richard Duc Hien Tran
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92617-2700, USA; (R.D.H.T.); (T.A.M.); (D.G.); (A.H.S.H.A.H.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Tessa Altair Morris
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92617-2700, USA; (R.D.H.T.); (T.A.M.); (D.G.); (A.H.S.H.A.H.)
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| | - Daniela Gonzalez
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92617-2700, USA; (R.D.H.T.); (T.A.M.); (D.G.); (A.H.S.H.A.H.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Ali Hatem Salaheldin Hassan Ahmed Hetta
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92617-2700, USA; (R.D.H.T.); (T.A.M.); (D.G.); (A.H.S.H.A.H.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Anna Grosberg
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92617-2700, USA; (R.D.H.T.); (T.A.M.); (D.G.); (A.H.S.H.A.H.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92617, USA
| |
Collapse
|
16
|
Ullah I, Wang W, Ma N, Lendlein A. Multiblock copolymers type PDC- a family of multifunctional biomaterials for regenerative medicine1. Clin Hemorheol Microcirc 2021; 80:327-341. [PMID: 34542065 DOI: 10.3233/ch-211264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiblock copolymers type PDC are polyetheresterurethanes composed of poly(ɛ-caprolactone) and poly(p-dioxanone) segments. They were designed as degradadable shape-memory polymers for medical devices, which can be implanted minimally-invasively. While providing structural support in the initial phase after implantation, they are capable to modulate soft tissue regeneration while degradation. In this perspective, we elucidate cell-material interactions, compatibility both in-vitro and in-vivo and biofunctionality of PDC, which represents a promising candidate biomaterial family especially for cardiovascular applications.
Collapse
Affiliation(s)
- Imram Ullah
- Institute of Active Polymers and Berlin Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Nan Ma
- Institute of Active Polymers and Berlin Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| |
Collapse
|
17
|
Anandhan SV, Krishnan UM. Boron nitride nanotube scaffolds: emergence of a new era in regenerative medicine. Biomed Mater 2021; 16. [PMID: 33770776 DOI: 10.1088/1748-605x/abf27d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022]
Abstract
Tissue engineering scaffolds have transformed from passive geometrical supports for cell adhesion, extension and proliferation to active, dynamic systems that can in addition, trigger functional maturation of the cells in response to external stimuli. Such 'smart' scaffolds require the incorporation of active response elements that can respond to internal or external stimuli. One of the key elements that direct the cell fate processes is mechanical stress. Different cells respond to various types and magnitudes of mechanical stresses. The incorporation of a pressure-sensitive element in the tissue engineering scaffold therefore, will aid in tuning the cell response to the desired levels. Boron nitride nanotubes (BNNTs) are analogous to carbon nanotubes and have attracted considerable attention due to their unique amalgamation of chemical inertness, piezoelectric property, biocompatibility and, thermal and mechanical stability. Incorporation of BNNTs in scaffolds confers them with piezoelectric property that can be used to stimulate the cells seeded on them. Biorecognition and solubilization of BNNTs can be engineered through surface functionalization with different biomolecules. Over the years, the importance of BNNT has grown in the realm of healthcare nanotechnology. This review discusses the salient properties of BNNTs, the influence of functionalization on theirin vitroandin vivobiocompatibility, and the uniqueness of BNNT-incorporated tissue engineering scaffolds.
Collapse
Affiliation(s)
- Sathyan Vivekanand Anandhan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.,School of Arts, Science and Humanities, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
18
|
Zeinali R, del Valle LJ, Torras J, Puiggalí J. Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS). Int J Mol Sci 2021; 22:ijms22073504. [PMID: 33800709 PMCID: PMC8036748 DOI: 10.3390/ijms22073504] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Porous biodegradable scaffolds provide a physical substrate for cells allowing them to attach, proliferate and guide the formation of new tissues. A variety of techniques have been developed to fabricate tissue engineering (TE) scaffolds, among them the most relevant is the thermally-induced phase separation (TIPS). This technique has been widely used in recent years to fabricate three-dimensional (3D) TE scaffolds. Low production cost, simple experimental procedure and easy processability together with the capability to produce highly porous scaffolds with controllable architecture justify the popularity of TIPS. This paper provides a general overview of the TIPS methodology applied for the preparation of 3D porous TE scaffolds. The recent advances in the fabrication of porous scaffolds through this technique, in terms of technology and material selection, have been reviewed. In addition, how properties can be effectively modified to serve as ideal substrates for specific target cells has been specifically addressed. Additionally, examples are offered with respect to changes of TIPS procedure parameters, the combination of TIPS with other techniques and innovations in polymer or filler selection.
Collapse
Affiliation(s)
- Reza Zeinali
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
- Correspondence: (R.Z.); (J.P.); Tel.: +34-93-401-1620 (R.Z.); +34-93-401-5649 (J.P.)
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
| | - Joan Torras
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain; (L.J.d.V.); (J.T.)
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Correspondence: (R.Z.); (J.P.); Tel.: +34-93-401-1620 (R.Z.); +34-93-401-5649 (J.P.)
| |
Collapse
|
19
|
Engineered resveratrol-loaded fibrous scaffolds promotes functional cardiac repair and regeneration through Thioredoxin-1 mediated VEGF pathway. Int J Pharm 2021; 597:120236. [PMID: 33539996 DOI: 10.1016/j.ijpharm.2021.120236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
Despite recent advancements, mortality due to coronary heart disease (CHD) remains high. Recently, the use of tissue-engineered grafts and scaffolds has emerged as a candidate for supporting the myocardium after an ischemic event. Resveratrol is a naturally occurring plant-based non-flavonoid polyphenolic compound found in many natural foods, including grapes and red wine. We embedded resveratrol in a polycaprolactone (PCL) scaffold and evaluated the cardio-therapeutic effects in a murine model of myocardial infarction (MI), with animals being grouped into Sham (S), Myocardial Infarction (MI), MI + PCL, and MI + PCL-Resveratrol (MI + PCL-R). After 4 and 8 weeks, echocardiography was performed to assess ejection fraction (EF) and fractional shortening (FS), which was followed by immunohistochemistry and immunofluorescence analysis at 8 weeks. The MI + PCL-R group showed a significant improvement in EF and FS compared with the MI + PCL group at 4 and 8-weeks post-surgery. PCL-R scaffolds treated hearts revealed decreased inflammatory cell infiltration, improved collagen extracellular matrix (ECM) secretion and blood vessel network formation following MI. The immunofluorescence analysis revealed resveratrol-loaded scaffolds promote increased expression of cTnT, Cx-43, Trx-1, and VEGF proteins. This study reports resveratrol-mediated rescue of ischemic myocardium when delivered through a biodegradable polymeric scaffold system after MI.
Collapse
|
20
|
You Y, Kobayashi K, Colak B, Luo P, Cozens E, Fields L, Suzuki K, Gautrot J. Engineered cell-degradable poly(2-alkyl-2-oxazoline) hydrogel for epicardial placement of mesenchymal stem cells for myocardial repair. Biomaterials 2021; 269:120356. [PMID: 33189358 PMCID: PMC7884911 DOI: 10.1016/j.biomaterials.2020.120356] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
Epicardial placement of mesenchymal stromal cells (MSCs) is a promising strategy for cardiac repair post-myocardial infarction, but requires the design of biomaterials to maximise the retention of donor cells on the heart surface and control their phenotype. To this end, we propose the use of a poly(2-alkyl-2-oxazoline) (POx) derivative, based on 2-ethyl-2-oxazoline and 2-butenyl-2-oxazoline. This POx polymer can be cured rapidly (less than 2 min) via photo-irradiation due to the use of di-cysteine cell degradable peptides. We report that the cell-degradable properties of the resulting POx hydrogels enables the regulation of cell protrusion in corresponding 3D matrices and that this, in turn, regulates the secretory phenotype of MSCs. In particular, the expression of pro-angiogenic genes was upregulated in partially cell-degradable POx hydrogels. Improved angiogenesis was confirmed in an in vitro microfluidic assay. Finally, we confirmed that, owing to the excellent tissue adhesive properties of thiol-ene crosslinked hydrogels, the epicardial placement of MSC-loaded POx hydrogels promoted the recovery of cardiac function and structure with reduced interstitial fibrosis and improved neovascular formation in a rat myocardial infarction model. This report demonstrates that engineered synthetic hydrogels displaying controlled mechanical, cell degradable and bioactive properties are particularly attractive candidates for the epicardial placement of stem cells to promote cardiac repair post myocardial infarction.
Collapse
Affiliation(s)
- Yaqi You
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK; William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, UK
| | - Kazuya Kobayashi
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, UK
| | - Burcu Colak
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Piaopiao Luo
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Edward Cozens
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Laura Fields
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, UK
| | - Ken Suzuki
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK; William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, UK.
| | - Julien Gautrot
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
21
|
Surface-Modified Highly Biocompatible Bacterial-poly(3-hydroxybutyrate- co-4-hydroxybutyrate): A Review on the Promising Next-Generation Biomaterial. Polymers (Basel) 2020; 13:polym13010051. [PMID: 33375622 PMCID: PMC7795663 DOI: 10.3390/polym13010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/01/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are bacteria derived bio-based polymers that are synthesised under limited conditions of nutritional elements with excess carbon sources. Among the members of PHAs, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] emerges as an attractive biomaterial to be applied in medical applications owing to its desirable mechanical and physical properties, non-genotoxicity and biocompatibility eliciting appropriate host tissue responses. The tailorable physical and chemical properties and easy surface functionalisation of P(3HB-co-4HB) increase its practicality to be developed as functional medical substitutes. However, its applicability is sometimes limited due to its hydrophobic nature due to fewer bio-recognition sites. In this review, we demonstrate how surface modifications of PHAs, mainly P(3HB-co-4HB), will overcome these limitations and facilitate their use in diverse medical applications. The integration of nanotechnology has drastically enhanced the functionality of P(3HB-co-4HB) biomaterials for application in complex biological environments of the human body. The design of versatile P(3HB-co-4HB) materials with surface modifications promise a non-cytotoxic and biocompatible material without inducing severe inflammatory responses for enhanced effective alternatives in healthcare biotechnology. The enticing work carried out with P(3HB-co-4HB) promises to be one of the next-generation materials in biomedicines which will facilitate translation into the clinic in the future.
Collapse
|
22
|
Song Y, Wang H, Yue F, Lv Q, Cai B, Dong N, Wang Z, Wang L. Silk-Based Biomaterials for Cardiac Tissue Engineering. Adv Healthc Mater 2020; 9:e2000735. [PMID: 32939999 DOI: 10.1002/adhm.202000735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/29/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases are one of the leading causes of death globally. Among various cardiovascular diseases, myocardial infarction is an important one. Compared with conventional treatments, cardiac tissue engineering provides an alternative to repair and regenerate the injured tissue. Among various types of materials used for tissue engineering applications, silk biomaterials have been increasingly utilized due to their biocompatibility, biological functions, and many favorable physical/chemical properties. Silk biomaterials are often used alone or in combination with other materials in the forms of patches or hydrogels, and serve as promising delivery systems for bioactive compounds in tissue engineering repair scenarios. This review focuses primarily on the promising characteristics of silk biomaterials and their recent advances in cardiac tissue engineering.
Collapse
Affiliation(s)
- Yu Song
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huifang Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Yue
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
23
|
A Review of Zein as a Potential Biopolymer for Tissue Engineering and Nanotechnological Applications. Processes (Basel) 2020. [DOI: 10.3390/pr8111376] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue engineering (TE) is one of the most challenging fields of research since it provides current alternative protocols and materials for the regeneration of damaged tissue. The success of TE has been mainly related to the right selection of nano-sized biocompatible materials for the development of matrixes, which can display excellent anatomical structure, functionality, mechanical properties, and histocompatibility. Today, the research community has paid particular attention to zein as a potential biomaterial for TE applications and nanotechnological approaches. Considering the properties of zein and the advances in the field, there is a need to reviewing the current state of the art of using this natural origin material for TE and nanotechnological applications. Therefore, the goal of this review paper is to elucidate the latest (over the last five years) applications and development works in the field, including TE, encapsulations of drugs, food, pesticides and bandaging for external wounds. In particular, attention has been focused on studies proving new breakthroughs and findings. Also, a complete background of zein’s properties and features are addressed.
Collapse
|
24
|
Vigneswari S, Chai JM, Kamarudin KH, Amirul AAA, Focarete ML, Ramakrishna S. Elucidating the Surface Functionality of Biomimetic RGD Peptides Immobilized on Nano-P(3HB- co-4HB) for H9c2 Myoblast Cell Proliferation. Front Bioeng Biotechnol 2020; 8:567693. [PMID: 33195129 PMCID: PMC7653028 DOI: 10.3389/fbioe.2020.567693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Biomaterial scaffolds play crucial role to promote cell proliferation and foster the regeneration of new tissues. The progress in material science has paved the way for the generation of ingenious biomaterials. However, these biomaterials require further optimization to be effectively used in existing clinical treatments. It is crucial to develop biomaterials which mimics structure that can be actively involved in delivering signals to cells for the formation of the regenerated tissue. In this research we nanoengineered a functional scaffold to support the proliferation of myoblast cells. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is chosen as scaffold material owing to its desirable mechanical and physical properties combined with good biocompatibility, thus eliciting appropriate host tissue responses. In this study P(3HB-co-4HB) copolymer was biosynthesized using Cupriavidus malaysiensis USMAA1020 transformant harboring additional PHA synthase gene, and the viability of a novel P(3HB-co-4HB) electrospun nanofiber scaffold, surface functionalized with RGD peptides, was explored. In order to immobilize RGD peptides molecules onto the P(3HB-co-4HB) nanofibers surface, an aminolysis reaction was performed. The nanoengineered scaffolds were characterized using SEM, organic elemental analysis (CHN analysis), FTIR, surface wettability and their in vitro degradation behavior was evaluated. The cell culture study using H9c2 myoblast cells was conducted to assess the in vitro cellular response of the engineered scaffold. Our results demonstrated that nano-P(3HB-co-4HB)-RGD scaffold possessed an average fiber diameter distribution between 200 and 300 nm, closely biomimicking, from a morphological point of view, the structural ECM components, thus acting as potential ECM analogs. This study indicates that the surface conjugation of biomimetic RGD peptide to the nano-P(3HB-co-4HB) fibers increased the surface wettability (15 ± 2°) and enhanced H9c2 myoblast cells attachment and proliferation. In summary, the study reveals that nano-P(3HB-co-4HB)-RGD scaffold can be considered a promising candidate to be further explored as cardiac construct for building cardiac construct.
Collapse
Affiliation(s)
- Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jun Meng Chai
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Khadijah Hilmun Kamarudin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, George Town, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Maria Letizia Focarete
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano Emilia, Italy
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Lee JM, Suen SKQ, Ng WL, Ma WC, Yeong WY. Bioprinting of Collagen: Considerations, Potentials, and Applications. Macromol Biosci 2020; 21:e2000280. [PMID: 33073537 DOI: 10.1002/mabi.202000280] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Collagen is the most abundant extracellular matrix protein that is widely used in tissue engineering (TE). There is little research done on printing pure collagen. To understand the bottlenecks in printing pure collagen, it is imperative to understand collagen from a bottom-up approach. Here it is aimed to provide a comprehensive overview of collagen printing, where collagen assembly in vivo and the various sources of collagen available for TE application are first understood. Next, the current printing technologies and strategy for printing collagen-based materials are highlighted. Considerations and key challenges faced in collagen printing are identified. Finally, the key research areas that would enhance the functionality of printed collagen are presented.
Collapse
Affiliation(s)
- Jia Min Lee
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sean Kang Qiang Suen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wei Long Ng
- HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wai Cheung Ma
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.,HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
26
|
Abstract
The extracellular matrix (ECM) is needed to maintain the structural integrity of tissues and to mediate cellular dynamics. Its main components are fibrous proteins and glycosaminoglycans, which provide a suitable environment for biological functions. Thus, biomaterials with ECM-like properties have been extensively developed by modulating their key components and properties. In the field of cardiac tissue engineering, the use of biomaterials offers several advantages in that biophysical and biochemical cues can be designed to mediate cardiac cells, which is critical for maturation and regeneration. This suggests that understanding biomaterials and their use in vivo and in vitro is beneficial in terms of advancing cardiac engineering. The current review provides an overview of both natural and synthetic biomaterials and their use in cardiac engineering. In addition, we focus on different strategies to recapitulate the cardiac tissue in 2D and 3D approaches, which is an important step for the maturation of cardiac tissues toward regeneration of the adult heart.
Collapse
|
27
|
Lee JM, Yeong WY. Engineering macroscale cell alignment through coordinated toolpath design using support-assisted 3D bioprinting. J R Soc Interface 2020; 17:20200294. [PMID: 32674709 DOI: 10.1098/rsif.2020.0294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aligned cells provide direction-dependent mechanical properties that influence biological and mechanical function in native tissues. Alignment techniques such as casting and uniaxial stretching cannot fully replicate the complex fibre orientation of native tissue such as the heart. In this study, bioprinting is used to direct the orientation of cell alignment. A 0°-90° grid structure was printed to assess the robustness of the support-assisted bioprinting technique. The variation in the angles of the grid pattern is designed to mimic the differences in fibril orientation of native tissues, where angles of cell alignment vary across the different layers. Through bioprinting of a cell-hydrogel mixture, C2C12 cells displayed directed alignment along the longitudinal axis of printed struts. Cell alignment is induced through firstly establishing structurally stable constructs (i.e. distinct 0°-90° structures) and secondly, allowing cells to dynamically remodel the bioprinted construct. Herein reports a method of inducing a macroscale level of controlled cell alignment with angle variation. This was not achievable both in terms of methods (i.e. conventional alignment techniques such as stretching and electrical stimulation) and magnitude (i.e. hydrogel features with less than 100 µm features).
Collapse
Affiliation(s)
- Jia Min Lee
- Singapore Centre for 3D Printing (SC3DP), Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing (SC3DP), Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
28
|
Mostafavi E, Medina-Cruz D, Kalantari K, Taymoori A, Soltantabar P, Webster TJ. Electroconductive Nanobiomaterials for Tissue Engineering and Regenerative Medicine. Bioelectricity 2020; 2:120-149. [PMID: 34471843 PMCID: PMC8370325 DOI: 10.1089/bioe.2020.0021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine aims to engineer tissue constructs that can recapitulate the functional and structural properties of native organs. Most novel regenerative therapies are based on the recreation of a three-dimensional environment that can provide essential guidance for cell organization, survival, and function, which leads to adequate tissue growth. The primary motivation in the use of conductive nanomaterials in tissue engineering has been to develop biomimetic scaffolds to recapitulate the electrical properties of the natural extracellular matrix, something often overlooked in numerous tissue engineering materials to date. In this review article, we focus on the use of electroconductive nanobiomaterials for different biomedical applications, particularly, very recent advancements for cardiovascular, neural, bone, and muscle tissue regeneration. Moreover, this review highlights how electroconductive nanobiomaterials can facilitate cell to cell crosstalk (i.e., for cell growth, migration, proliferation, and differentiation) in different tissues. Thoughts on what the field needs for future growth are also provided.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Ada Taymoori
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Pooneh Soltantabar
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Xu C, Okpokwasili C, Huang Y, Shi X, Wu J, Liao J, Tang L, Hong Y. Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium. ACS Biomater Sci Eng 2020; 6:2757-2769. [PMID: 33313394 PMCID: PMC7725265 DOI: 10.1021/acsbiomaterials.9b01860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable cardiac patch is desirable to possess mechanical properties mimicking native myocardium for heart infarction treatment. We fabricated a series of anisotropic and biodegradable polyurethane porous scaffolds via thermally induced phase separation (TIPS) and tailored their mechanical properties by using various polyurethanes with different soft segments and varying polymer concentrations. The uniaxial mechanical properties, suture retention strength, ball-burst strength, and biaxial mechanical properties of the anisotropic porous scaffolds were optimized to mechanically match native myocardium. The optimal anisotropic scaffold had a ball burst strength (20.7 ± 1.5 N) comparable to that of native porcine myocardium (20.4 ± 6.0 N) and showed anisotropic behavior close to biaxial stretching behavior of the native porcine myocardium. Furthermore, the optimized porous scaffold was combined with a porcine myocardium-derived hydrogel to form a biohybrid scaffold. The biohybrid scaffold showed morphologies similar to the decellularized porcine myocardial matrix. This combination did not affect the mechanical properties of the synthetic scaffold alone. After in vivo rat subcutaneous implantation, the biohybrid scaffolds showed minimal immune response and exhibited higher cell penetration than the polyurethane scaffold alone. This biohybrid scaffold with biomimetic mechanics and good tissue compatibility would have great potential to be applied as a biodegradable acellular cardiac patch for myocardial infarction treatment.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chuka Okpokwasili
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaodan Shi
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinglei Wu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
30
|
Yang H, Wei L, Liu C, Zhong W, Li B, Chen Y, Han R, Zhuang J, Qu J, Tao H, Chen H, Xu C, Liang Q, Lu C, Qian R, Chen S, Wang W, Sun N. Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds. Acta Biomater 2019; 88:540-553. [PMID: 30779999 DOI: 10.1016/j.actbio.2019.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Myocardial infarction (MI) is a primary cardiovascular disease threatening human health and quality of life worldwide. The development of engineered heart tissues (EHTs) as a transplantable artificial myocardium provides a promising therapy for MI. Since most MIs occur at the ventricle, engineering ventricular-specific myocardium is therefore more desirable for future applications. Here, by combining a new macroporous 3D iron oxide scaffold (IOS) with a fixed ratio of human pluripotent stem cell (hPSC)-derived ventricular-specific cardiomyocytes and human umbilical cord-derived mesenchymal stem cells, we constructed a new type of engineered human ventricular-specific heart tissue (EhVHT). The EhVHT promoted expression of cardiac-specific genes, ion exchange, and exhibited a better Ca2+ handling behaviors and normal electrophysiological activity in vitro. Furthermore, when patched on the infarcted area, the EhVHT effectively promoted repair of heart tissues in vivo and facilitated the restoration of damaged heart function of rats with acute MI. Our results show that it is feasible to generate functional human ventricular heart tissue based on hPSC-derived ventricular myocytes for the treatment of ventricular-specific myocardium damage. STATEMENT OF SIGNIFICANCE: We successfully generated highly purified homogenous human ventricular myocytes and developed a method to generate human ventricular-specific heart tissue (EhVHT) based on three-dimensional iron oxide scaffolds. The EhVHT promoted expression of cardiac-specific genes, ion exchange, and exhibited a better Ca2+ handling behaviors and normal electrophysiological activity in vitro. Patching the EhVHT on the infarct area significantly improved cardiac function in rat acute MI models. This EhVHT has a great potential to meet the specific requirements for ventricular damages in most MI cases and for screening drugs specifically targeting ventricular myocardium.
Collapse
Affiliation(s)
- Hui Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lai Wei
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weiyi Zhong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Bin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Yuncan Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Rui Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Jiexian Zhuang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Jianxun Qu
- GE Healthcare Applied Science Lab, United States
| | - Hongyue Tao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haiyan Chen
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Qianqian Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Wenshuo Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
31
|
Locatelli P, Giménez CS, Vega MU, Crottogini A, Belaich MN. Targeting the Cardiomyocyte Cell Cycle for Heart Regeneration. Curr Drug Targets 2018; 20:241-254. [DOI: 10.2174/1389450119666180801122551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Adult mammalian cardiomyocytes (CMs) exhibit limited proliferative capacity, as cell cycle
activity leads to an increase in DNA content, but mitosis and cytokinesis are infrequent. This
makes the heart highly inefficient in replacing with neoformed cardiomyocytes lost contractile cells as
occurs in diseases such as myocardial infarction and dilated cardiomyopathy. Regenerative therapies
based on the implant of stem cells of diverse origin do not warrant engraftment and electromechanical
connection of the new cells with the resident ones, a fundamental condition to restore the physiology
of the cardiac syncytium. Consequently, there is a growing interest in identifying factors playing relevant
roles in the regulation of the CM cell cycle to be targeted in order to induce the resident cardiomyocytes
to divide into daughter cells and thus achieve myocardial regeneration with preservation of
physiologic syncytial performance.
Despite the scientific progress achieved over the last decades, many questions remain unanswered, including
how cardiomyocyte proliferation is regulated during heart development in gestation and neonatal
life. This can reveal unknown cell cycle regulation mechanisms and molecules that may be manipulated
to achieve cardiac self-regeneration.
We hereby revise updated data on CM cell cycle regulation, participating molecules and pathways recently
linked with the cell cycle, as well as experimental therapies involving them.
Collapse
Affiliation(s)
- Paola Locatelli
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Carlos Sebastián Giménez
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Martín Uranga Vega
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Alberto Crottogini
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingenieria Genetica y Biologia Celular y Molecular, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Nacional de Quilmes (UNQ), Roque Saenz Pena 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
32
|
Heuschkel MA, Leitolis A, Roderjan JG, Suss PH, Luzia CAO, Costa FDA, Correa A, Stimamiglio MA. In vitro evaluation of bovine pericardium after a soft decellularization approach for use in tissue engineering. Xenotransplantation 2018; 26:e12464. [DOI: 10.1111/xen.12464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Marina Augusto Heuschkel
- Laboratory of Basic Biology of Stem Cells Carlos Chagas Institute, Fiocruz‐Parana Curitiba Brazil
| | - Amanda Leitolis
- Laboratory of Basic Biology of Stem Cells Carlos Chagas Institute, Fiocruz‐Parana Curitiba Brazil
| | | | | | | | | | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells Carlos Chagas Institute, Fiocruz‐Parana Curitiba Brazil
| | | |
Collapse
|
33
|
Veličković VM, Borisenko O, Svensson M, Spelman T, Siebert U. Congenital heart defect repair with ADAPT tissue engineered pericardium scaffold: An early-stage health economic model. PLoS One 2018; 13:e0204643. [PMID: 30261033 PMCID: PMC6160133 DOI: 10.1371/journal.pone.0204643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the cost effectiveness of tissue engineered bovine tissue pericardium scaffold (CardioCel) for the repair of congenital heart defects in comparison with surgery using xenogeneic, autologous, and synthetic patches over a 40-year time horizon from the perspective of the UK National Health Service. METHODS A six-state Markov state-transition model to model natural history of disease and difference in the interventional effect of surgeries depending on patch type implanted. Patches differed regarding their probability of re-operation due to patch calcification, based on a systematic literature review. Transition probabilities were based on the published literature, other clinical inputs were based on UK registry data, and cost data were based on UK sources and the published literature. Incremental cost-effectiveness ratio (ICER) was determined as incremental costs per quality adjusted life years (QALY) gained. We used a 40-year analytic time-horizon and adopted the payer perspective. Comprehensive sensitivity analyses were performed. RESULTS According to the model predictions, CardioCel was associated with reduced incidence of re-operation, increased QALY, and costs savings compared to all other patches. Cost savings were greatest compared to synthetic patches. Estimated cost savings associated with CardioCel were greatest within atrioventricular septal defect repair and lowest for ventricular septal defect repair. Based on our model, CardioCel relative risk for re-operations is 0.938, 0.956and 0.902 relative to xenogeneic, autologous, and synthetic patches, respectively. CONCLUSION CardioCel was estimated to increase health benefits and save cost when used during surgery for congenital heart defects instead of other patches.
Collapse
Affiliation(s)
- Vladica M. Veličković
- Synergus AB, Health Economics and Evidence Synthesis Department, Stockholm, Sweden
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Reseaech and Health Technology Assessment, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall i.T., Austria
| | - Oleg Borisenko
- Synergus AB, Health Economics and Evidence Synthesis Department, Stockholm, Sweden
| | - Mikael Svensson
- Health Metrics, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tim Spelman
- Synergus AB, Health Economics and Evidence Synthesis Department, Stockholm, Sweden
- Centre for Population Health, Burnet Institute, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Uwe Siebert
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Reseaech and Health Technology Assessment, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall i.T., Austria
| |
Collapse
|
34
|
Joshi J, Mahajan G, Kothapalli CR. Three-dimensional collagenous niche and azacytidine selectively promote time-dependent cardiomyogenesis from human bone marrow-derived MSC spheroids. Biotechnol Bioeng 2018; 115:2013-2026. [PMID: 29665002 DOI: 10.1002/bit.26714] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Endogenous adult cardiac regenerative machinery is not capable of replacing the lost cells following myocardial infarction, often leading to permanent alterations in structure-function-mechanical properties. Regenerative therapies based on delivering autologous stem cells within an appropriate 3D milieu could meet such demand, by enabling homing and directed differentiation of the transplanted cells into lost specialized cell populations. Since type I collagen is the predominant cardiac tissue matrix protein, we here optimized the 3D niche which could promote time-dependent evolution of cardiomyogenesis from human bone marrow-derived mesenchymal stem cells (BM-MSC). 3D collagen gel physical and mechanical characteristics were assessed using SEM and AFM, respectively, while the standalone and combined effects of collagen concentration, culture duration, and 5-azacytidine (aza) dose on the phenotype and genotype of MSC spheroids were quantified using immunofluorescence labeling and RT-PCR analysis. Increasing collagen concentration led to a significant increase in Young's modulus (p < 0.01) but simultaneous decrease in the mean pore size, resulting in stiffer gels. Spheroid formation significantly modulated MSC differentiation and genotype, mostly due to better cell-cell interactions. Among the aza dosages tested, 10 μM appears to be optimal, while 3 mg/ml gels resulted in significantly lower cell viability compared to 1 or 2 mg/ml gels. Stiffer gels (2 and 3 mg/ml) and exposure to 10 μM aza upregulated early and late cardiac marker expressions in a time-dependent fashion. On the other hand, cell-cell signaling within the MSC spheroids seem to have a strong role in influencing mature cardiac markers expression, since neither aza nor gel stiffness seem to significantly improve their expression. Western blot analysis suggested that canonical Wnt/β-catenin signaling pathway might be primarily mediating the observed benefits of aza on cardiac differentiation of MSC spheroids. In conclusion, 2 mg/ml collagen and 10 μM aza appears to offer optimal 3D microenvironment in terms of cell viability and time-dependent evolution of cardiomyogenesis from human BM-MSCs, with significant applications in cardiac tissue engineering and stem cell transplantation for regenerating lost cardiac tissue.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | | |
Collapse
|
35
|
Svystonyuk DA, Mewhort HEM, Fedak PWM. Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair. Front Cardiovasc Med 2018; 5:35. [PMID: 29696148 PMCID: PMC5904207 DOI: 10.3389/fcvm.2018.00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 01/16/2023] Open
Abstract
An inability to recover lost cardiac muscle following acute ischemic injury remains the biggest shortcoming of current therapies to prevent heart failure. As compared to standard medical and surgical treatments, tissue engineering strategies offer the promise of improved heart function by inducing regeneration of functional heart muscle. Tissue engineering approaches that use stem cells and genetic manipulation have shown promise in preclinical studies but have also been challenged by numerous critical barriers preventing effective clinical translational. We believe that surgical intervention using acellular bioactive ECM scaffolds may yield similar therapeutic benefits with minimal translational hurdles. In this review, we outline the limitations of cellular-based tissue engineering strategies and the advantages of using acellular biomaterials with bioinductive properties. We highlight key anatomic targets enriched with cellular niches that can be uniquely activated using bioactive scaffold therapy. Finally, we review the evolving cardiovascular tissue engineering landscape and provide critical insights into the potential therapeutic benefits of acellular scaffold therapy.
Collapse
Affiliation(s)
- Daniyil A Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Holly E M Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Construction of scaffolds composed of acellular cardiac extracellular matrix for myocardial tissue engineering. Biologicals 2018; 53:10-18. [PMID: 29625872 DOI: 10.1016/j.biologicals.2018.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 01/26/2023] Open
Abstract
High rates of mortality and morbidity stemming from cardiovascular diseases unveil extreme limitations in current therapies despite enormous advances in medical and pharmaceutical sciences. Following myocardial infarction (MI), parts of myocardium undergo irreversible remodeling and is substituted by a scar tissue which eventually leads to heart failure (HF). To address this issue, cardiac patches have been utilized to initiate myocardial regeneration. In this study, a porous cardiac patch is fabricated using a mixture of decellularized myocardium extracellular matrix (ECM) and chitosan (CS). Results of rheological measurements, SEM, biodegradation test, and MTT assay showed that the scaffold composed of 3.5% (w/w) CS and 0.5% ECM has the best potential in providing cardiac progenitor cells (CPCs) with a suitable microenvironmental condition for both attachment and growth. This study demonstrates that the fabricated scaffold is capable of transmitting both mechanical and chemical cues that is native to myocardial tissue and supports efficient growth of the CPCs.
Collapse
|
37
|
Shiekh PA, Singh A, Kumar A. Engineering Bioinspired Antioxidant Materials Promoting Cardiomyocyte Functionality and Maturation for Tissue Engineering Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3260-3273. [PMID: 29303551 DOI: 10.1021/acsami.7b14777] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oxidative stress plays an important role in various pathological conditions, such as wound healing, inflammation, myocardial infarction, and biocompatibility of the materials. Antioxidant polymers to attenuate oxidative stress is an emerging field of biomaterial research with a huge impact in the field of tissue engineering and regenerative medicine. We describe here the fabrication and evaluation of an elastomeric antioxidant polyurethane (PUAO) for tissue engineering applications. Uniaxial and cyclic tensile testing, thermal analysis, degradation, cytotoxicity and antioxidant analysis was carried out. An in vitro oxidative stress model demonstrated that PUAO reduced intracellular oxidative stress in H9C2 cardiomyocytes (p < 0.05) and attenuated reactive oxygen species (ROS) induced cell death (p < 0.001). Under simulated ischemic reperfusion, PUAO could rescue hypoxia induced cell death. Further as a proof of concept, neonatal rat cardiomyocytes cultured on PUAO film displayed synchronous beating with mature phenotype showing expression of cardiac specific α-actinin, troponin-T, and connexin-43 proteins. Intracellular calcium transients established the functionality of cultured cardiomyocytes on PUAO film. Our study demonstrated the potential of this biomaterial to be developed into tissue engineered scaffold to attenuate oxidative stress for treatment of diseased conditions with increased oxidative stress, such as cardiovascular diseases, chronic wound healing, and myocardial infarction.
Collapse
Affiliation(s)
- Parvaiz A Shiekh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016, Uttar Pradesh, India
| | - Anamika Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
38
|
Tijore A, Irvine SA, Sarig U, Mhaisalkar P, Baisane V, Venkatraman S. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication 2018; 10:025003. [PMID: 29235444 DOI: 10.1088/1758-5090/aaa15d] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Here, we have developed a 3D bioprinted microchanneled gelatin hydrogel that promotes human mesenchymal stem cell (hMSC) myocardial commitment and supports native cardiomyocytes (CMs) contractile functionality. Firstly, we studied the effect of bioprinted microchanneled hydrogel on the alignment, elongation, and differentiation of hMSC. Notably, the cells displayed well defined F-actin anisotropy and elongated morphology on the microchanneled hydrogel, hence showing the effects of topographical control over cell behavior. Furthermore, the aligned stem cells showed myocardial lineage commitment, as detected using mature cardiac markers. The fluorescence-activated cell sorting analysis also confirmed a significant increase in the commitment towards myocardial tissue lineage. Moreover, seeded CMs were found to be more aligned and demonstrated synchronized beating on microchanneled hydrogel as compared to the unpatterned hydrogel. Overall, our study proved that microchanneled hydrogel scaffold produced by 3D bioprinting induces myocardial differentiation of stem cells as well as supports CMs growth and contractility. Applications of this approach may be beneficial for generating in vitro cardiac model systems to physiological and cardiotoxicity studies as well as in vivo generating custom designed cell impregnated constructs for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Ajay Tijore
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | | | | | | | | | | |
Collapse
|
39
|
Bäcker H, Polgár L, Soós P, Lajkó E, Láng O, Merkely B, Szabó G, Dohmen PM, Weymann A, Kőhidai L. Impedimetric Analysis of the Effect of Decellularized Porcine Heart Scaffold on Human Fibrosarcoma, Endothelial, and Cardiomyocyte Cell Lines. Med Sci Monit 2017; 23:2232-2240. [PMID: 28493851 PMCID: PMC5436501 DOI: 10.12659/msm.901527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Experiments on porcine heart scaffold represent significant assays in development of immunoneutral materials for cardiac surgery. Characterization of cell-cell and cell-scaffold interactions is essential to understand the homing process of cardiac cells into the scaffolds. MATERIAL AND METHODS In the present study, the highly sensitive and real-time impedimetric technique of xCELLigence SP was used to monitor cell adhesion, which is the key process of recellularization in heart scaffolds. Our objectives were: (i) to characterize the effect of decellularized porcine heart scaffold on cell adhesion of human cardiovascular cells potentially used in the recellularization process; and (ii) to investigate cell-extracellular matrix element interactions for building artificial multi-layer systems, applied as cellular models of recellularization experiments. Human fibrosarcoma, endothelial, and cardiomyocyte cells were investigated and the effect of decellularized porcine heart scaffold (HS) and fibronectin on cell adhesion was examined. Adhesion was quantified as slope of curves. RESULTS Heart scaffold had neutral effect on cardiomyocytes as well as on endothelial cells. Adhesion of cardiomyocytes was increased by fibronectin (1.480±0.021) compared to control (0.745±0.029). The combination of fibronectin and HS induced stronger adhesion of cardiomyocytes (2.407±0.634) than fibronectin alone. Endothelial and fibrosarcoma cells showed similarly strong adhesion profiles with marked enhancer effect by fibronectin. CONCLUSIONS Decellularized porcine HS does not inhibit adhesion of human cardiovascular cells at the cell biological level, while fibronectin has strong cell adhesion-inducer effect, as well as an enhancer effect on activity of HS. Consequently, decellularized porcine hearts could be used as scaffolds for recellularization with cardiomyocytes and endothelial cells with fibronectin acting as a regulator, leading to construction of working bioartificial hearts.
Collapse
Affiliation(s)
- Henrik Bäcker
- Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Livia Polgár
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Pal Soós
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Orsolya Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gabor Szabó
- Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Pascal M Dohmen
- Department of Cardiac Surgery, University Hospital Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Alexander Weymann
- Department of Cardiac Surgery, University Hospital Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg, Heidelberg, Germany
| | - Laszlo Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
40
|
Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S. Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules 2016; 18:1-26. [PMID: 27966916 DOI: 10.1021/acs.biomac.6b01619] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biomechanical performance of functional cartilage is executed by the exclusive anisotropic composition and spatially varying intricate architecture in articulating ends of diarthrodial joint. Osteochondral tissue constituting the articulating ends comprise superfical soft cartilage over hard subchondral bone sandwiching interfacial soft-hard tissue. The shock-absorbent, lubricating property of cartilage and mechanical stability of subchondral bone regions are rendered by extended chemical structure of glycosaminoglycans and mineral deposition, respectively. Extracellular matrix glycosaminoglycans analogous polysaccharides are major class of hydrogels investigated for restoration of functional cartilage. Recently, injectable hydrogels have gained momentum as it offers patient compliance, tunable mechanical properties, cell deliverability, and facile administration at physiological condition with long-term functionality and hyaline cartilage construction. Interestingly, facile modifiable functional groups in carbohydrate polymers impart tailorability of desired physicochemical properties and versatile injectable chemistry for the development of highly potent biomimetic in situ forming scaffold. The scaffold design strategies have also evolved from single component to bi- or multilayered and graded constructs with osteogenic properties for deep subchondral regeneration. This review highlights the significance of polysaccharide structure-based functions in engineering cartilage tissue, injectable chemistries, strategies for combining analogous matrices with cells/stem cells and biomolecules and multicomponent approaches for osteochondral mimetic constructs. Further, the rheology and precise spatiotemporal positioning of cells in hydrogel bioink for rapid prototyping of complex three-dimensional anisotropic cartilage have also been discussed.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Anuradha Subramanian
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| |
Collapse
|
41
|
Cristallini C, Cibrario Rocchietti E, Gagliardi M, Mortati L, Saviozzi S, Bellotti E, Turinetto V, Sassi MP, Barbani N, Giachino C. Micro- and Macrostructured PLGA/Gelatin Scaffolds Promote Early Cardiogenic Commitment of Human Mesenchymal Stem Cells In Vitro. Stem Cells Int 2016; 2016:7176154. [PMID: 27822229 PMCID: PMC5086396 DOI: 10.1155/2016/7176154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
The biomaterial scaffold plays a key role in most tissue engineering strategies. Its surface properties, micropatterning, degradation, and mechanical features affect not only the generation of the tissue construct in vitro, but also its in vivo functionality. The area of myocardial tissue engineering still faces significant difficulties and challenges in the design of bioactive scaffolds, which allow composition variation to accommodate divergence in the evolving myocardial structure. Here we aimed at verifying if a microstructured bioartificial scaffold alone can provoke an effect on stem cell behavior. To this purpose, we fabricated microstructured bioartificial polymeric constructs made of PLGA/gelatin mimicking anisotropic structure and mechanical properties of the myocardium. We found that PLGA/gelatin scaffolds promoted adhesion, elongation, ordered disposition, and early myocardial commitment of human mesenchymal stem cells suggesting that these constructs are able to crosstalk with stem cells in a precise and controlled manner. At the same time, the biomaterial degradation kinetics renders the PLGA/gelatin constructs very attractive for myocardial regeneration approaches.
Collapse
Affiliation(s)
- Caterina Cristallini
- Institute for Chemical-Physical Processes, IPCF C.N.R., UOS Pisa, 56122 Pisa, Italy
| | | | - Mariacristina Gagliardi
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Leonardo Mortati
- National Institute of Research in Metrology, INRIM, 10135 Turin, Italy
| | - Silvia Saviozzi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Elena Bellotti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Valentina Turinetto
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Maria Paola Sassi
- National Institute of Research in Metrology, INRIM, 10135 Turin, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| |
Collapse
|
42
|
Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang YS, Tamayol A, Khademhosseini A. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 2016; 105:255-274. [PMID: 27037064 PMCID: PMC5039063 DOI: 10.1016/j.addr.2016.03.007] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/16/2023]
Abstract
Graphene and its chemical derivatives have been a pivotal new class of nanomaterials and a model system for quantum behavior. The material's excellent electrical conductivity, biocompatibility, surface area and thermal properties are of much interest to the scientific community. Two-dimensional graphene materials have been widely used in various biomedical research areas such as bioelectronics, imaging, drug delivery, and tissue engineering. In this review, we will highlight the recent applications of graphene-based materials in tissue engineering and regenerative medicine. In particular, we will discuss the application of graphene-based materials in cardiac, neural, bone, cartilage, skeletal muscle, and skin/adipose tissue engineering. We will also discuss the potential risk factors of graphene-based materials in tissue engineering. In conclusion, we will outline the opportunities in the usage of graphene-based materials for clinical applications.
Collapse
Affiliation(s)
- Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Yi-Chen Li
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Hae Lin Jang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parastoo Khoshakhlagh
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Mohsen Akbari
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
| | - Amir Nasajpour
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia; College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
43
|
Wang Y, Cai W, Wang L, Xia R, Chen W, Zheng J, Gao F. Evaluation of the Differences of Myocardial Fibers between Acute and Chronic Myocardial Infarction: Application of Diffusion Tensor Magnetic Resonance Imaging in a Rhesus Monkey Model. Korean J Radiol 2016; 17:725-33. [PMID: 27587961 PMCID: PMC5007399 DOI: 10.3348/kjr.2016.17.5.725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/29/2016] [Indexed: 02/05/2023] Open
Abstract
Objective To understand microstructural changes after myocardial infarction (MI), we evaluated myocardial fibers of rhesus monkeys during acute or chronic MI, and identified the differences of myocardial fibers between acute and chronic MI. Materials and Methods Six fixed hearts of rhesus monkeys with left anterior descending coronary artery ligation for 1 hour or 84 days were scanned by diffusion tensor magnetic resonance imaging (MRI) to measure apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA). Results Comparing with acute MI monkeys (FA: 0.59 ± 0.02; ADC: 5.0 ± 0.6 × 10-4 mm2/s; HA: 94.5 ± 4.4°), chronic MI monkeys showed remarkably decreased FA value (0.26 ± 0.03), increased ADC value (7.8 ± 0.8 × 10-4mm2/s), decreased HA transmural range (49.5 ± 4.6°) and serious defects on endocardium in infarcted regions. The HA in infarcted regions shifted to more components of negative left-handed helix in chronic MI monkeys (-38.3 ± 5.0°–11.2 ± 4.3°) than in acute MI monkeys (-41.4 ± 5.1°–53.1 ± 3.7°), but the HA in remote regions shifted to more components of positive right-handed helix in chronic MI monkeys (-43.8 ± 2.7°–66.5 ± 4.9°) than in acute MI monkeys (-59.5 ± 3.4°–64.9 ± 4.3°). Conclusion Diffusion tensor MRI method helps to quantify differences of mechanical microstructure and water diffusion of myocardial fibers between acute and chronic MI monkey's models.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China.; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Wei Cai
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China.; Department of Radiology, Beijing Jishuitan Hospital, 4th Clinical Medical College of Peking University, Beijing 100035, China
| | - Lei Wang
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Rui Xia
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China.; Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wei Chen
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China.; Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Yunnan 650032, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China
| |
Collapse
|
44
|
D'Amore A, Yoshizumi T, Luketich SK, Wolf MT, Gu X, Cammarata M, Hoff R, Badylak SF, Wagner WR. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials 2016; 107:1-14. [PMID: 27579776 DOI: 10.1016/j.biomaterials.2016.07.039] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 01/28/2023]
Abstract
As an intervention to abrogate ischemic cardiomyopathy, the concept of applying a temporary, local patch to the surface of the recently infarcted ventricle has been explored from a number of design perspectives. Two important features considered for such a cardiac patch include the provision of appropriate mechanical support and the capacity to influence the remodeling pathway by providing cellular or biomolecule delivery. The objective of this report was to focus on these two features by first evaluating the incorporation of a cardiac extracellular matrix (ECM) component, and second by evaluating the impact of patch anisotropy on the pathological remodeling process initiated by myocardial infarction. The functional outcomes of microfibrous, elastomeric, biodegradable cardiac patches have been evaluated in a rat chronic infarction model. Ten weeks after infarction and 8 wk after patch epicardial placement, echocardiographic function, tissue-level structural remodeling (e.g., biaxial mechanical response and microstructural analysis), and cellular level remodeling were assessed. The results showed that the incorporation of a cardiac ECM altered the progression of several keys aspects of maladaptive remodeling following myocardial infarction. This included decreasing LV global mechanical compliance, inhibiting echocardiographically-measured functional deterioration, mitigating scar formation and LV wall thinning, and promoting angiogenesis. In evaluating the impact of patch anisotropy, no effects from the altered patch mechanics were detected after 8 wk, possibly due to patch fibrous encapsulation. Overall, this study demonstrates the benefit of a cardiac patch design that combines both ventricle mechanical support, through a biodegradable, fibrillary elastomeric component, and the incorporation of ECM-based hydrogel components.
Collapse
Affiliation(s)
- Antonio D'Amore
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Fondazione RiMED, Italy; DICGIM, Università di Palermo, Italy
| | - Tomo Yoshizumi
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel K Luketich
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew T Wolf
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinzhu Gu
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Richard Hoff
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Wagner
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Amezcua R, Shirolkar A, Fraze C, Stout DA. Nanomaterials for Cardiac Myocyte Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E133. [PMID: 28335261 PMCID: PMC5224604 DOI: 10.3390/nano6070133] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/31/2023]
Abstract
Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.
Collapse
Affiliation(s)
- Rodolfo Amezcua
- Department of Mechanical and Aerospace Engineering, California State University, Long Beach, Long Beach, CA 90840, USA.
| | - Ajay Shirolkar
- Department of Mechanical and Aerospace Engineering, California State University, Long Beach, Long Beach, CA 90840, USA.
| | - Carolyn Fraze
- Deparment of Mechanical Engineering, Brigham Young University-Idaho, Rexburg, ID 83460, USA.
| | - David A Stout
- Department of Mechanical and Aerospace Engineering, California State University, Long Beach, Long Beach, CA 90840, USA.
- Department of Biomedical Engineering, California State University, Long Beach, Long Beach, CA 90840, USA.
- International Research Center for Translational Orthopaedics, Soochow University, Suzhou 215006, China.
| |
Collapse
|
46
|
O'Neill HS, Gallagher LB, O'Sullivan J, Whyte W, Curley C, Dolan E, Hameed A, O'Dwyer J, Payne C, O'Reilly D, Ruiz-Hernandez E, Roche ET, O'Brien FJ, Cryan SA, Kelly H, Murphy B, Duffy GP. Biomaterial-Enhanced Cell and Drug Delivery: Lessons Learned in the Cardiac Field and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5648-5661. [PMID: 26840955 DOI: 10.1002/adma.201505349] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Heart failure is a significant clinical issue. It is the cause of enormous healthcare costs worldwide and results in significant morbidity and mortality. Cardiac regenerative therapy has progressed considerably from clinical and preclinical studies delivering simple suspensions of cells, macromolecule, and small molecules to more advanced delivery methods utilizing biomaterial scaffolds as depots for localized targeted delivery to the damaged and ischemic myocardium. Here, regenerative strategies for cardiac tissue engineering with a focus on advanced delivery strategies and the use of multimodal therapeutic strategies are reviewed.
Collapse
Affiliation(s)
- Hugh S O'Neill
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Laura B Gallagher
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Janice O'Sullivan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - William Whyte
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Clive Curley
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Eimear Dolan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Joanne O'Dwyer
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Christina Payne
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Daniel O'Reilly
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Eduardo Ruiz-Hernandez
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Ellen T Roche
- Department of Biomedical Engineering, Eng-2053, Engineering Building, National University of Ireland, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally Ann Cryan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Helena Kelly
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Bruce Murphy
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
47
|
Pangesty AI, Arahira T, Todo M. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet. J Funct Biomater 2016; 7:jfb7020014. [PMID: 27271675 PMCID: PMC4932471 DOI: 10.3390/jfb7020014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 11/16/2022] Open
Abstract
A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs) sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone) (PLCL) sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo.
Collapse
Affiliation(s)
- Azizah Intan Pangesty
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan.
| | | | - Mitsugu Todo
- Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580, Japan.
| |
Collapse
|
48
|
Affiliation(s)
- Fan Jiang
- Department of Pathophysiology; School of Medicine; Shandong University; Jinan Shandong Province China
| |
Collapse
|
49
|
Novel electrospun poly(glycerol sebacate)–zein fiber mats as candidate materials for cardiac tissue engineering. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Wang Y, Cai W, Wang L, Xia R. Evaluate the early changes of myocardial fibers in rhesus monkey during sub-acute stage of myocardial infarction using diffusion tensor magnetic resonance imaging. Magn Reson Imaging 2015; 34:391-6. [PMID: 26708038 DOI: 10.1016/j.mri.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/12/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE The deterioration of cardiac mechanical function starts from the micro-alterations in the myocardial fibers after myocardial infarction (MI) due to the heart beats derived from the systole and diastole of the myocardial fibers. So, we want to evaluate quantitatively the early changes of myocardial fibers in rhesus monkey during sub-acute MI stage. MATERIALS AND METHODS Three fixed hearts with infarction after left anterior descending coronary artery ligation for 7days and eight age-matched intact controls were scanned by ex-vivo diffusion tensor magnetic resonance imaging (DT-MRI) to measure apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA). RESULTS In comparison with healthy controls, FA and transmural range of HA in MI regions showed a significant reduction whereas ADC showed a significant increment (p<0.01). The double-helix myocardial fibers shifted further to left-handed helix around the infarcted and adjacent myocardium but shifted further to right-handed helix in remote myocardium. CONCLUSION HA is sensitive to evaluate quantitatively the early changes of myocardial fibers in sub-acute MI rhesus monkeys. The myocardial fibers in normal monkeys are similar to those in normal humans, suggesting that early changes of myocardial fibers in sub-acute MI monkeys can contribute to more accurately understand those in patients suffering sub-acute MI.
Collapse
Affiliation(s)
- Yuqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11 ZhongGuanCun BeiYiTiao, Beijing, 100190, China.
| | - Wei Cai
- Department of Radiology, Beijing Jishuitan Hospital, 4th clinical medical college of Peking University, No.31 Xinjiekou East Road, Beijing, China, 100035
| | - Lei Wang
- Department of Radiology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan, China, 610041
| | - Rui Xia
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, No.1 Friendship Road, Chongqing, China, 400016
| |
Collapse
|