1
|
Mostofinejad A, Romero DA, Brinson D, Marin-Araujo AE, Bazylak A, Waddell TK, Haykal S, Karoubi G, Amon CH. In silico model development and optimization of in vitro lung cell population growth. PLoS One 2024; 19:e0300902. [PMID: 38748626 PMCID: PMC11095723 DOI: 10.1371/journal.pone.0300902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/04/2024] [Indexed: 05/19/2024] Open
Abstract
Tissue engineering predominantly relies on trial and error in vitro and ex vivo experiments to develop protocols and bioreactors to generate functional tissues. As an alternative, in silico methods have the potential to significantly reduce the timelines and costs of experimental programs for tissue engineering. In this paper, we propose a methodology to formulate, select, calibrate, and test mathematical models to predict cell population growth as a function of the biochemical environment and to design optimal experimental protocols for model inference of in silico model parameters. We systematically combine methods from the experimental design, mathematical statistics, and optimization literature to develop unique and explainable mathematical models for cell population dynamics. The proposed methodology is applied to the development of this first published model for a population of the airway-relevant bronchio-alveolar epithelial (BEAS-2B) cell line as a function of the concentration of metabolic-related biochemical substrates. The resulting model is a system of ordinary differential equations that predict the temporal dynamics of BEAS-2B cell populations as a function of the initial seeded cell population and the glucose, oxygen, and lactate concentrations in the growth media, using seven parameters rigorously inferred from optimally designed in vitro experiments.
Collapse
Affiliation(s)
- Amirmahdi Mostofinejad
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - David A. Romero
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dana Brinson
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alba E. Marin-Araujo
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Aimy Bazylak
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Thomas K. Waddell
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Siba Haykal
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Division of Plastic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Golnaz Karoubi
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Cristina H. Amon
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Sompunga P, Rodprasert W, Srisuwatanasagul S, Techangamsuwan S, Jirajessada S, Hanchaina R, Kangsamaksin T, Yodmuang S, Sawangmake C. Preparation of Decellularized Tissue as Dual Cell Carrier Systems: A Step Towards Facilitating Re-epithelization and Cell Encapsulation for Tracheal Reconstruction. Ann Biomed Eng 2024; 52:1222-1239. [PMID: 38353908 DOI: 10.1007/s10439-024-03448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 04/06/2024]
Abstract
Surgical treatment of tracheal diseases, trauma, and congenital stenosis has shown success through tracheal reconstruction coupled with palliative care. However, challenges in surgical-based tracheal repairs have prompted the exploration of alternative approaches for tracheal replacement. Tissue-based treatments, involving the cultivation of patient cells on a network of extracellular matrix (ECM) from donor tissue, hold promise for restoring tracheal structure and function without eliciting an immune reaction. In this study, we utilized decellularized canine tracheas as tissue models to develop two types of cell carriers: a decellularized scaffold and a hydrogel. Our hypothesis posits that both carriers, containing essential biochemical niches provided by ECM components, facilitate cell attachment without inducing cytotoxicity. Canine tracheas underwent vacuum-assisted decellularization (VAD), and the ECM-rich hydrogel was prepared through peptic digestion of the decellularized trachea. The decellularized canine trachea exhibited a significant reduction in DNA content and major histocompatibility complex class II, while preserving crucial ECM components such as collagen, glycosaminoglycan, laminin, and fibronectin. Scanning electron microscope and fluorescent microscope images revealed a fibrous ECM network on the luminal side of the cell-free trachea, supporting epithelial cell attachment. Moreover, the ECM-rich hydrogel exhibited excellent viability for human mesenchymal stem cells encapsulated for 3 days, indicating the potential of cell-laden hydrogel in promoting the development of cartilage rings of the trachea. This study underscores the versatility of the trachea in producing two distinct cell carriers-decellularized scaffold and hydrogel-both containing the native biochemical niche essential for tracheal tissue engineering applications.
Collapse
Affiliation(s)
- Pensuda Sompunga
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sayamon Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Sirinee Jirajessada
- Biology Program, Faculty of Science, Buriram Rajabhat University, Muang, Buriram, 31000, Thailand
| | - Rattanavinan Hanchaina
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Thaned Kangsamaksin
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Ananda Mahidol Building, 1873 Rama 4 Rd, Pathumwan, Bangkok, 10330, Thailand.
- Center of Excellence in Biomaterial Engineering for Medical and Health, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Clinical Excellence Center for Advanced Therapy Medicinal Products, King Chulalongkorn Memorial Hospital, Pathumwan, Bangkok, 10330, Thailand.
- Avatar Biotech for Oral Health & Healthy Longevity Research Unit, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Gehret PM, Dumas AA, Jacobs IN, Gottardi R. A Pilot Study of Decellularized Cartilage for Laryngotracheal Reconstruction in a Neonatal Pig Model. Laryngoscope 2024; 134:807-814. [PMID: 37658705 PMCID: PMC11046979 DOI: 10.1002/lary.31017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE Severe subglottic stenosis develops as a response to intubation in 1% of the >200,000 neonatal intensive care unit infants per year and may require laryngotracheal reconstruction (LTR) with autologous hyaline cartilage. Although effective, LTR is limited by comorbidities, severity of stenosis, and graft integration. In children, there is a significant incidence of restenosis requiring revision surgery. Tissue engineering has been proposed to develop alterative grafting options to improve outcomes and eliminate donor-site morbidity. Our objective is to engineer a decellularized, channel-laden xenogeneic cartilage graft, that we deployed in a proof-of-concept, neonatal porcine LTR model. METHODS Meniscal porcine cartilage was freeze-thawed and washed with pepsin/elastase to decellularize and create microchannels. A 6 × 10-mm decellularized cartilage graft was then implanted in 4 infant pigs in an anterior cricoid split. Airway patency and host response were monitored endoscopically until sacrifice at 12 weeks, when the construct phenotype, cricoid expansion, mechanics, and histomorphometry were evaluated. RESULTS The selective digestion of meniscal components yielded decellularized cartilage with cell-size channels. After LTR with decellularized meniscus, neonatal pigs were monitored via periodic endoscopy observing re-epithelization, integration, and neocartilage formation. At 12 weeks, the graft appeared integrated and exhibited airway expansion of 4 mm in micro-CT and endoscopy. Micro-CT revealed a larger lumen compared with age-matched controls. Finally, histology showed significant neocartilage formation. CONCLUSION Our neonatal porcine LTR model with a decellularized cartilage graft is a novel approach to tissue engineered pediatric LTR. This pilot study sets the stage for "off-the-shelf" graft procurement and future optimization of MEND for LTR. LEVEL OF EVIDENCE NA Laryngoscope, 134:807-814, 2024.
Collapse
Affiliation(s)
- Paul M Gehret
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Alexandra A Dumas
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Ian N Jacobs
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
- Department of Otorhinolaryngology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Riccardo Gottardi
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
- Department of Otorhinolaryngology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Ri.MED Foundation, Palermo, Italy
| |
Collapse
|
4
|
Sanchez‐Rubio A, Jayawarna V, Maxwell E, Dalby MJ, Salmeron‐Sanchez M. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity. Adv Healthc Mater 2023; 12:e2202110. [PMID: 36938891 PMCID: PMC11469230 DOI: 10.1002/adhm.202202110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Tissue engineering aims at replicating tissues and organs to develop applications in vivo and in vitro. In vivo, by engineering artificial constructs using functional materials and cells to provide both physiological form and function. In vitro, by engineering three-dimensional (3D) models to support drug discovery and enable understanding of fundamental biology. 3D culture constructs mimic cell-cell and cell-matrix interactions and use biomaterials seeking to increase the resemblance of engineered tissues with its in vivo homologues. Native tissues, however, include complex architectures, with compartmentalized regions of different properties containing different types of cells that can be captured by multicompartment constructs. Recent advances in fabrication technologies, such as micropatterning, microfluidics or 3D bioprinting, have enabled compartmentalized structures with defined compositions and properties that are essential in creating 3D cell-laden multiphasic complex architectures. This review focuses on advances in engineered multicompartment constructs that mimic tissue heterogeneity. It includes multiphasic 3D implantable scaffolds and in vitro models, including systems that incorporate different regions emulating in vivo tissues, highlighting the emergence and relevance of 3D bioprinting in the future of biological research and medicine.
Collapse
Affiliation(s)
| | - Vineetha Jayawarna
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Emily Maxwell
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | | |
Collapse
|
5
|
Deguchi K, Zambaiti E, De Coppi P. Regenerative medicine: current research and perspective in pediatric surgery. Pediatr Surg Int 2023; 39:167. [PMID: 37014468 PMCID: PMC10073065 DOI: 10.1007/s00383-023-05438-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
The field of regenerative medicine, encompassing several disciplines including stem cell biology and tissue engineering, continues to advance with the accumulating research on cell manipulation technologies, gene therapy and new materials. Recent progress in preclinical and clinical studies may transcend the boundaries of regenerative medicine from laboratory research towards clinical reality. However, for the ultimate goal to construct bioengineered transplantable organs, a number of issues still need to be addressed. In particular, engineering of elaborate tissues and organs requires a fine combination of different relevant aspects; not only the repopulation of multiple cell phenotypes in an appropriate distribution but also the adjustment of the host environmental factors such as vascularisation, innervation and immunomodulation. The aim of this review article is to provide an overview of the recent discoveries and development in stem cells and tissue engineering, which are inseparably interconnected. The current status of research on tissue stem cells and bioengineering, and the possibilities for application in specific organs relevant to paediatric surgery have been specifically focused and outlined.
Collapse
Affiliation(s)
- Koichi Deguchi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Elisa Zambaiti
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- UOC Chirurgia Pediatrica, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK.
- NIHR BRC SNAPS Great Ormond Street Hospitals, London, UK.
- Stem Cells and Regenerative Medicine Section, Faculty of Population Health Sciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
6
|
Magagna P, Xodo A, Menegolo M, Campana C, Ghiotto L, Salvador L, Grego F. Applications of Three-Dimensional Printing in the Management of Complex Aortic Diseases. AORTA (STAMFORD, CONN.) 2022; 10:242-248. [PMID: 36539116 PMCID: PMC9767784 DOI: 10.1055/s-0042-1750410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of three-dimensional (3D) printing is gaining considerable success in many medical fields, including surgery; however, the spread of this innovation in cardiac and vascular surgery is still limited. This article reports our pilot experience with this technology, applied as an additional tool for 20 patients treated for complex vascular or cardiac surgical diseases. We have analyzed the feasibility of a "3D printing and aortic diseases project," which helps to obtain a more complete approach to these conditions. 3D models have been used as a resource to improve preoperative planning and simulation, both for open and endovascular procedures; furthermore, real 3D aortic models were used to develop doctor-patients communication, allowing better knowledge and awareness of their disease and of the planned surgical procedure. A 3D printing project seems feasible and applicable as an adjunctive tool in the diagnostic-therapeutic path of complex aortic diseases, with the need for future studies to verify the results.
Collapse
Affiliation(s)
- Paolo Magagna
- Operative Unit of Cardiac Surgery, AULSS8 Berica, “San Bortolo” Hospital, Vicenza, Italy
| | - Andrea Xodo
- Vascular and Endovascular Surgery Division, Padova University, School of Medicine, Padova, Italy,Address for correspondence Andrea Xodo, MD Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Vascular and Endovascular Surgery Division, Padova UniversityVia Giustiniani 2, Padova 35128Italy
| | - Mirko Menegolo
- Vascular and Endovascular Surgery Division, Padova University, School of Medicine, Padova, Italy
| | - Carlo Campana
- Operative Unit of Cardiac Surgery, AULSS8 Berica, “San Bortolo” Hospital, Vicenza, Italy
| | - Luciano Ghiotto
- Operative Unit of Cardiac Surgery, AULSS8 Berica, “San Bortolo” Hospital, Vicenza, Italy
| | - Loris Salvador
- Operative Unit of Cardiac Surgery, AULSS8 Berica, “San Bortolo” Hospital, Vicenza, Italy
| | - Franco Grego
- Vascular and Endovascular Surgery Division, Padova University, School of Medicine, Padova, Italy
| |
Collapse
|
7
|
Shokrani H, Shokrani A, Sajadi SM, Seidi F, Mashhadzadeh AH, Rabiee N, Saeb MR, Aminabhavi T, Webster TJ. Cell-Seeded Biomaterial Scaffolds: The Urgent Need for Unanswered Accelerated Angiogenesis. Int J Nanomedicine 2022; 17:1035-1068. [PMID: 35309965 PMCID: PMC8927652 DOI: 10.2147/ijn.s353062] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
One of the most arduous challenges in tissue engineering is neovascularization, without which there is a lack of nutrients delivered to a target tissue. Angiogenesis should be completed at an optimal density and within an appropriate period of time to prevent cell necrosis. Failure to meet this challenge brings about poor functionality for the tissue in comparison with the native tissue, extensively reducing cell viability. Prior studies devoted to angiogenesis have provided researchers with some biomaterial scaffolds and cell choices for angiogenesis. For example, while most current angiogenesis approaches require a variety of stimulatory factors ranging from biomechanical to biomolecular to cellular, some other promising stimulatory factors have been underdeveloped (such as electrical, topographical, and magnetic). When it comes to choosing biomaterial scaffolds in tissue engineering for angiogenesis, key traits rush to mind including biocompatibility, appropriate physical and mechanical properties (adhesion strength, shear stress, and malleability), as well as identifying the appropriate biomaterial in terms of stability and degradation profile, all of which may leave essential trace materials behind adversely influencing angiogenesis. Nevertheless, the selection of the best biomaterial and cells still remains an area of hot dispute as such previous studies have not sufficiently classified, integrated, or compared approaches. To address the aforementioned need, this review article summarizes a variety of natural and synthetic scaffolds including hydrogels that support angiogenesis. Furthermore, we review a variety of cell sources utilized for cell seeding and influential factors used for angiogenesis with a concentrated focus on biomechanical factors, with unique stimulatory factors. Lastly, we provide a bottom-to-up overview of angiogenic biomaterials and cell selection, highlighting parameters that need to be addressed in future studies.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Erbil, 625, Iraq
- Department of Phytochemistry, SRC, Soran University, Soran, KRG, 624, Iraq
- Correspondence: S Mohammad Sajadi; Navid Rabiee, Email ; ;
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, Iran
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Tejraj Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University, Tianjin, People’s Republic of China
- Center for Biomaterials, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
8
|
Lei C, Mei S, Zhou C, Xia C. Decellularized tracheal scaffolds in tracheal reconstruction: An evaluation of different techniques. J Appl Biomater Funct Mater 2021; 19:22808000211064948. [PMID: 34903089 DOI: 10.1177/22808000211064948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In humans, the trachea is a conduit for ventilation connecting the throat and lungs. However, certain congenital or acquired diseases may cause long-term tracheal defects that require replacement. Tissue engineering is considered a promising method to reconstruct long-segment tracheal lesions and restore the structure and function of the trachea. Decellularization technology retains the natural structure of the trachea, has good biocompatibility and mechanical properties, and is currently a hotspot in tissue engineering studies. This article lists various recent representative protocols for the generation of decellularized tracheal scaffolds (DTSs), as well as their validity and limitations. Based on the advancements in decellularization methods, we discussed the impact and importance of mechanical properties, revascularization, recellularization, and biocompatibility in the production and implantation of DTS. This review provides a basis for future research on DTS and its application in clinical therapy.
Collapse
Affiliation(s)
- Chenyang Lei
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Sheng Mei
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chun Zhou
- Department of Geriatrics, The 903 Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Hangzhou, China
| | - Chen Xia
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
9
|
Varma R, Poon J, Liao Z, Aitchison JS, Waddell TK, Karoubi G, McGuigan AP. Planar organization of airway epithelial cell morphology using hydrogel grooves during ciliogenesis fails to induce ciliary alignment. Biomater Sci 2021; 10:396-409. [PMID: 34897300 DOI: 10.1039/d1bm01327k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Topographical cues are known to influence cell organization both in native tissues and in vitro. In the trachea, the matrix beneath the epithelial lining is composed of collagen fibres that run along the long axis of the airway. Previous studies have shown that grooved topography can induce morphological and cytoskeletal alignment in epithelial cell lines. In the present work we assessed the impact of substrate topography on the organization of primary human tracheal epithelial cells (HTECs) and human induced pluripotent stem cell (hiPSC)-derived airway progenitors and the resulting alignment of cilia after maturation of the airway cells under Air-Liquid-Interface (ALI) culture. Grooves with optimized dimensions were imprinted into collagen vitrigel membranes (CVM) to produce gel inserts for ALI culture. Grooved CVM substrates induced cell alignment in HTECs and hiPSC airway progenitors in submerged culture. Further, both cell types were able to terminally differentiate into a multi-ciliated epithelium on both flat and groove CVM substrates. When exposed to ALI conditions, HTECs lost alignment after 14 days. Meanwhile, hiPSC-derived airway progenitors maintained their alignment throughout 31 days of ALI culture. Interestingly, neither initial alignment on the grooves, nor maintained alignment on the grooves induced alignment of cilia basal bodies, an indication of the direction of ciliary beating direction in the airway cells. Planar organization of airway cells during or prior to ciliogenesis therefore does not appear to be a feasible strategy to control cilia organization and subsequent airway epithelial function and additional cues are likely necessary to produce cilia alignment.
Collapse
Affiliation(s)
- Ratna Varma
- Institute of Biomedical Engineering (BME), University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada. .,Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, 101 College St, Toronto, ON, M5G 0A3, Canada.
| | - James Poon
- Institute of Biomedical Engineering (BME), University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada. .,Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, 101 College St, Toronto, ON, M5G 0A3, Canada.
| | - Zhongfa Liao
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd, Toronto, ON M5S 3G8, Canada
| | - J Stewart Aitchison
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd, Toronto, ON M5S 3G8, Canada
| | - Thomas K Waddell
- Institute of Biomedical Engineering (BME), University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada. .,Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, 101 College St, Toronto, ON, M5G 0A3, Canada.
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, 101 College St, Toronto, ON, M5G 0A3, Canada. .,Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Circle, Toronto, ON, M5S 3G8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering (BME), University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
10
|
Abstract
AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting.
Graphic abstract
Collapse
|
11
|
Varma R, Marin‐Araujo AE, Rostami S, Waddell TK, Karoubi G, Haykal S. Short-Term Preclinical Application of Functional Human Induced Pluripotent Stem Cell-Derived Airway Epithelial Patches. Adv Healthc Mater 2021; 10:e2100957. [PMID: 34569180 DOI: 10.1002/adhm.202100957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Airway pathologies including cancer, trauma, and stenosis lack effective treatments, meanwhile airway transplantation and available tissue engineering approaches fail due to epithelial dysfunction. Autologous progenitors do not meet the clinical need for regeneration due to their insufficient expansion and differentiation, for which human induced pluripotent stem cells (hiPSCs) are promising alternatives. Airway epithelial patches are engineered by differentiating hiPSC-derived airway progenitors into physiological proportions of ciliated (73.9 ± 5.5%) and goblet (2.1 ± 1.4%) cells on a silk fibroin-collagen vitrigel membrane (SF-CVM) composite biomaterial for transplantation in porcine tracheal defects ex vivo and in vivo. Evaluation of ex vivo tracheal repair using hiPSC-derived SF-CVM patches demonstrate native-like tracheal epithelial metabolism and maintenance of mucociliary epithelium to day 3. In vivo studies demonstrate SF-CVM integration and maintenance of airway patency, showing 80.8 ± 3.6% graft coverage with an hiPSC-derived pseudostratified epithelium and 70.7 ± 2.3% coverage with viable cells, 3 days postoperatively. The utility of bioengineered, hiPSC-derived epithelial patches for airway repair is demonstrated in a short-term preclinical survival model, providing a significant leap for airway reconstruction approaches.
Collapse
Affiliation(s)
- Ratna Varma
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Biomedical Engineering (BME) University of Toronto 164 College St Toronto ON M5S 3G9 Canada
| | - Alba E. Marin‐Araujo
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
| | - Sara Rostami
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Biomedical Engineering (BME) University of Toronto 164 College St Toronto ON M5S 3G9 Canada
- Institute of Medical Sciences University of Toronto 27 King's College Cir Toronto ON M5S 1A8 Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Department of Mechanical and Industrial Engineering University of Toronto 5 King's College Circle Toronto ON M5S 3G8 Canada
- Department of Laboratory Medicine and Pathobiology University of Toronto 1 King's College Circle Toronto ON M5S 1A8 Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Medical Sciences University of Toronto 27 King's College Cir Toronto ON M5S 1A8 Canada
- Division of Plastic and Reconstructive Surgery Department of Surgery University of Toronto 200 Elizabeth Street 8N‐869 Toronto ON M5G2P7 Canada
| |
Collapse
|
12
|
Zhang X, Jing H, Luo K, Shi B, Luo Q, Zhu Z, He X, Zheng J. Exosomes from 3T3-J2 promote expansion of tracheal basal cells to facilitate rapid epithelization of 3D-printed double-layer tissue engineered trachea. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112371. [PMID: 34579890 DOI: 10.1016/j.msec.2021.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Functional epithelization plays a pivotal role in maintaining long-term lumen patency of tissue-engineered trachea (TET). Due to the slow migration of autologous epithelium, spontaneous epithelization process of transplanted TET is always tardive. Seeding tracheal basal cells (TBCs) on TET before transplantation might be favorable for accelerating epithelization, but rapid expansion of TBCs in vitro is still relatively intractable. In this study, we proposed a promising expansion strategy which enables the TBCs to proliferate rapidly in vitro. TBCs were isolated from the autologous tracheal mucosae of rabbit, and co-cultured with exosomes derived from 3T3-J2 cells. After co-culture with exosomal component, TBCs could vigorously proliferate in vitro and retained their multi-potency. It was in stark contrast to that the single-cultured TBCs could only be expand to passage 2 in about 30 days, moreover, the most majority of single-cultured cells entered late apoptotic stage. On the other hand, a bionic tubular double-layer scaffold with good mechanical property and bio-compatibility was designed and fabricated by 3D printing technology. Then TET with bi-lineage cell-type was constructed in vitro by implanting autologous chondrocytes on the outer-layer of scaffold, and TBCs on the inner-layer, respectively. And then TET was pre-vascularized in vivo, and pedicled transplanted to restore long-segmental defect in recipient rabbits. It was found that the chondrocytes and TBCs seeded on double-layer scaffolds developed well as expected. And almost complete coverage with ciliated epitheliums was observed on the lumen surface of TET 2-week after operation, in comparison with that the epithelization of TET without pre-seeding of TBCs accomplished nearly 2-month after operation. In conclusion, the promising expansion strategy of TBCs together with 3D-printed double-layer scaffolds facilitate the rapid epithelization process of transplanted TET, which might be of vital significance for clinical and translational medicine.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Hui Jing
- Department of Thoracic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Luo
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Qiancheng Luo
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China.
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China.
| |
Collapse
|
13
|
Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J Clin Med 2021; 10:2940. [PMID: 34209041 PMCID: PMC8267672 DOI: 10.3390/jcm10132940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-36981, Iran;
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
14
|
Sun F, Lu Y, Wang Z, Shi H. Vascularization strategies for tissue engineering for tracheal reconstruction. Regen Med 2021; 16:549-566. [PMID: 34114475 DOI: 10.2217/rme-2020-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering technology provides effective alternative treatments for tracheal reconstruction. The formation of a functional microvascular network is essential to support cell metabolism and ensure the long-term survival of grafts. Although several tracheal replacement therapy strategies have been developed in the past, the critical significance of the formation of microvascular networks in 3D scaffolds has not attracted sufficient attention. Here, we review key technologies and related factors of microvascular network construction in tissue-engineered trachea and explore optimized preparation processes of vascularized functional tissues for clinical applications.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
15
|
Wang Z, Sun F, Lu Y, Zhang B, Zhang G, Shi H. Rapid Preparation Method for Preparing Tracheal Decellularized Scaffolds: Vacuum Assistance and Optimization of DNase I. ACS OMEGA 2021; 6:10637-10644. [PMID: 34056217 PMCID: PMC8153783 DOI: 10.1021/acsomega.0c06247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Decellularized scaffolds are an effective way for tracheal tissue engineering to perform alternative treatments. However, clinically used decellularized tracheal scaffolds have a long preparation cycle. The purpose of this study is to improve the efficiency of decellularization by vacuum assistance and optimizing the concentration of DNase I in the decellularization process and to quickly obtain tracheal decellularized scaffolds. The trachea of New Zealand white rabbits was decellularized with 2, 4, 6, and 8 KU/mL DNase I under vacuum. The performance of the decellularized tracheal scaffold was evaluated through histological analysis, immunohistochemical staining, DNA residue, extracellular matrix composition, scanning electron microscopy, mechanical properties, cell compatibility, and in vivo experiments. Histological analysis and immunohistochemical staining showed that compared with the native trachea, the hierarchical structure of the decellularized trachea remained unchanged after decellularization, nonchondrocytes were effectively removed, and the antigenicity of the scaffold was significantly weakened. Deoxyribonucleic acid (DNA) quantitative analysis showed that the amount of residual DNA in the 6-KU group was significantly decreased. Scanning electron microscopy and mechanical tests showed that small gaps appeared in the basement membrane of the 6-KU group, and the mechanical properties decreased. The CCK-8 test results and in vivo experiments showed that the 6-KU group's acellular scaffold had good cell compatibility and new blood vessels were visible on the surface. Taken together, the 6-KU group could quickly prepare rabbit tracheal scaffolds with good decellularization effects in only 2 days, which significantly shortened the preparation cycle reducing the required cost.
Collapse
|
16
|
Motility Improvement of Biomimetic Trachea Scaffold via Hybrid 3D-Bioprinting Technology. Polymers (Basel) 2021; 13:polym13060971. [PMID: 33810007 PMCID: PMC8004939 DOI: 10.3390/polym13060971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
A trachea has a structure capable of responding to various movements such as rotation of the neck and relaxation/contraction of the conduit due to the mucous membrane and cartilage tissue. However, current reported tubular implanting structures are difficult to impelement as replacements for original trachea movements. Therefore, in this study, we developed a new trachea implant with similar anatomical structure and mechanical properties to native tissue using 3D printing technology and evaluated its performance. A 250 µm-thick layer composed of polycaprolactone (PCL) nanofibers was fabricated on a rotating beam using electrospinning technology, and a scaffold with C-shaped cartilage grooves that mimics the human airway structure was printed to enable reconstruction of cartilage outside the airway. A cartilage type scaffold had a highest rotational angle (254°) among them and it showed up to 2.8 times compared to human average neck rotation angle. The cartilage type showed a maximum elongation of 8 times higher than that of the bellows type and it showed the elongation of 3 times higher than that of cylinder type. In cartilage type scaffold, gelatin hydrogel printed on the outside of the scaffold was remain 22.2% under the condition where no hydrogel was left in other type scaffolds. In addition, after 2 days of breathing test, the amount of gelatin remaining inside the scaffold was more than twice that of other scaffolds. This novel trachea scaffold with hydrogel inside and outside of the structure was well-preserved under external flow and is expected to be advantageous for soft tissue reconstruction of the trachea.
Collapse
|
17
|
Xiong X, Xiao W, Zhou S, Cui R, Xu HHK, Qu S. Enhanced proliferation and angiogenic phenotype of endothelial cells via negatively-charged alginate and chondroitin sulfate microsphere hydrogels. Biomed Mater 2021; 16:025012. [PMID: 33412523 DOI: 10.1088/1748-605x/abd994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sodium alginate-based hydrogel was the one of the most used polymers for cell delivery. However, the adsorption of extracellular matrix and proteins was inhibited due to the formation of a hydrated surface layer of these hydrogels. In this study, a novel cell delivery system, negatively-charged alginate and chondroitin sulfate microsphere hydrogel (nCACSMH), was fabricated with excellent permeability and biocompatibility in the action of a high voltage direct-current electric field. Negative charge was introduced to the surface of nCACSMH to obtain the expanded network and enhanced permeability. Additionally, the increasing content of chondroitin sulfate in nCACSMH could give rise to the charge density and its asymmetric structure, thus the uneven, plicate and expanded surface of nCACSMH which was favorable to cell proliferation was developed. Moreover, chondroitin sulfate was released with the degradation of nCACSMH, which played a crucial role in maintaining the normal physiological functions of cells. Thus the proliferation of human umbilical vein endothelial cells (HUVECs) was further accelerated and the angiogenesis related genes expression in endothelial cells was continuously and dramatically up-regulated. After 4 d, the proliferation and viability of HUVECs were significantly improved, the cells were distributed evenly in nCACSMH. The novel nCACSMH has the potential to be used as cell delivery, three-dimensional (3D) cell cultures for cell therapy, 3D bioprinting, high-throughput screening for drugs, and disease model for regeneration and constructing of tissue engineering.
Collapse
Affiliation(s)
- Xiong Xiong
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China. School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China. Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, United States of America. These authors contributed to this work equally
| | | | | | | | | | | |
Collapse
|
18
|
Sideris AW, Wallace G, Lam ME, Kitipornchai L, Lewis R, Jones A, Jeiranikhameneh A, Beirne S, Hingley L, Mackay S. Smart polymer implants as an emerging technology for treating airway collapse in obstructive sleep apnea: a pilot (proof of concept) study. J Clin Sleep Med 2021; 17:315-324. [PMID: 33118930 DOI: 10.5664/jcsm.8946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES To assess the use of a novel magnetic polymer implant in reversing airway collapse and identify potential anatomical targets for airway implant surgery in an in vivo porcine model. METHODS Target sites of airway collapse were genioglossus muscle, hyoid bone, and middle constrictor muscle. Magnetic polymer implants were sutured to these sites, and external magnetic forces, through magnets with pull forces rated at 102 kg and 294 kg, were applied at the skin. The resultant airway movement was assessed via nasendoscopy. Pharyngeal plexus branches to the middle constrictor muscle were stimulated at 0.5 mA, 1.0 mA, and 2.0 mA and airway movement assessed via nasendoscopy. RESULTS At the genioglossus muscles, large magnetic forces were required to produce airway movement. At the hyoid bone, anterior movement of the airway was noted when using a 294 kg rated magnet. At the middle constrictor muscle, an anterolateral (or rotatory) pattern of airway movement was noted when using the same magnet. Stimulation of pharyngeal plexus branches to the middle constrictor revealed contraction and increasing rigidity of the lateral walls of the airway as stimulation amplitude increased. The resultant effect was prevention of collapse as opposed to typical airway dilation, a previously unidentified pattern of airway movement. CONCLUSIONS Surgically implanted smart polymers are an emerging technology showing promise in the treatment of airway collapse in obstructive sleep apnea. Future research should investigate their biomechanical role as an adjunct to treatment of airway collapse through nerve stimulation.
Collapse
Affiliation(s)
- Anders William Sideris
- Department of Otolaryngology Head and Neck Surgery, The Wollongong Hospital, Wollongong, New South Wales, Australia.,Illawarra ENT Head and Neck Clinic, Wollongong, New South Wales, Australia.,Illawarra Shoalhaven Local Health District Wollongong, New South Wales, Australia
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, New South Wales, Australia
| | - Matthew Eugene Lam
- Department of Otolaryngology Head and Neck Surgery, The Wollongong Hospital, Wollongong, New South Wales, Australia.,Illawarra ENT Head and Neck Clinic, Wollongong, New South Wales, Australia.,Illawarra Shoalhaven Local Health District Wollongong, New South Wales, Australia
| | - Leon Kitipornchai
- Department of Otolaryngology Head and Neck Surgery, The Wollongong Hospital, Wollongong, New South Wales, Australia.,Illawarra ENT Head and Neck Clinic, Wollongong, New South Wales, Australia.,Illawarra Shoalhaven Local Health District Wollongong, New South Wales, Australia
| | - Richard Lewis
- Department of Otolaryngology Head and Neck Surgery, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Andrew Jones
- Illawarra ENT Head and Neck Clinic, Wollongong, New South Wales, Australia.,Illawarra Shoalhaven Local Health District Wollongong, New South Wales, Australia
| | - Ali Jeiranikhameneh
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, New South Wales, Australia
| | - Stephen Beirne
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, New South Wales, Australia
| | - Lachlan Hingley
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Stuart Mackay
- Department of Otolaryngology Head and Neck Surgery, The Wollongong Hospital, Wollongong, New South Wales, Australia.,Illawarra ENT Head and Neck Clinic, Wollongong, New South Wales, Australia.,Illawarra Shoalhaven Local Health District Wollongong, New South Wales, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
19
|
Lee H, Marin-Araujo AE, Aoki FG, Haykal S, Waddell TK, Amon CH, Romero DA, Karoubi G. Computational fluid dynamics for enhanced tracheal bioreactor design and long-segment graft recellularization. Sci Rep 2021; 11:1187. [PMID: 33441927 PMCID: PMC7807076 DOI: 10.1038/s41598-020-80841-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Successful re-epithelialization of de-epithelialized tracheal scaffolds remains a challenge for tracheal graft success. Currently, the lack of understanding of the bioreactor hydrodynamic environment, and its relation to cell seeding outcomes, serve as major obstacles to obtaining viable tracheal grafts. In this work, we used computational fluid dynamics to (a) re-design the fluid delivery system of a trachea bioreactor to promote a spatially uniform hydrodynamic environment, and (b) improve the perfusion cell seeding protocol to promote homogeneous cell deposition. Lagrangian particle-tracking simulations showed that low rates of rotation provide more uniform circumferential and longitudinal patterns of cell deposition, while higher rates of rotation only improve circumferential uniformity but bias cell deposition proximally. Validation experiments with human bronchial epithelial cells confirm that the model accurately predicts cell deposition in low shear stress environments. We used the acquired knowledge from our particle tracking model, as a guide for long-term tracheal repopulation studies. Cell repopulation using conditions resulting in low wall shear stress enabled enhanced re-epithelialization of long segment tracheal grafts. While our work focuses on tracheal regeneration, lessons learned in this study, can be applied to culturing of any tissue engineered tubular scaffold.
Collapse
Affiliation(s)
- Hankyu Lee
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Alba E Marin-Araujo
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Fabio G Aoki
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Institute of Science and Technology, Federal University of Sao Paulo, R. Talim, 330, Sao Jose dos Campos, SP, 12231-280, Brazil
| | - Siba Haykal
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Division of Plastic & Reconstructive Surgery, University Health Network, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G2C4, Canada
| | - Thomas K Waddell
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Cristina H Amon
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - David A Romero
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada.
| | - Golnaz Karoubi
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada.
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
20
|
Chen J, Shen Y, Shen Z, Cheng L, Zhou S. Tissue engineering of the larynx: A contemporary review. J Clin Lab Anal 2020; 35:e23646. [PMID: 33320365 PMCID: PMC7891509 DOI: 10.1002/jcla.23646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Tissue engineering has been a topic of extensive research in recent years and has been applied to the regeneration and restoration of many organs including the larynx. Currently, research investigating tissue engineering of the larynx is either ongoing or in the preclinical trial stage. Methods A literature search was performed on the Advanced search field of PubMed using the keywords: “(laryncheal tissue engineering) AND (cartilage regeneration OR scaffolds OR stem cells OR biomolecules).” After applying the selection criteria, 65 articles were included in the study. Results The present review focuses on the rapidly expanding field of tissue‐engineered larynx, which aims to provide stem cell–based scaffolds combined with biological active factors such as growth factors for larynx reconstruction and regeneration. The trend in recent studies is to use new techniques for scaffold construction, such as 3D printing, are developed. All of these strategies have been instrumental in guiding optimization of the tissue‐engineered larynx, leading to a level of clinical induction beyond the in vivo animal experimental phase. Conclusions This review summarizes the current progress and outlines the necessary basic components of regenerative laryngeal medicine in preclinical fields. Finally, it considers the design of scaffolds, support of growth factors, and cell therapies toward potential clinical application.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China.,Department of Otorhinolaryngology- Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yi Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Lixin Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Shuihong Zhou
- Department of Otorhinolaryngology- Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
21
|
Shirazi J, Donzanti MJ, Nelson KM, Zurakowski R, Fromen CA, Gleghorn JP. Significant Unresolved Questions and Opportunities for Bioengineering in Understanding and Treating COVID-19 Disease Progression. Cell Mol Bioeng 2020; 13:259-284. [PMID: 32837585 PMCID: PMC7384395 DOI: 10.1007/s12195-020-00637-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
COVID-19 is a disease that manifests itself in a multitude of ways across a wide range of tissues. Many factors are involved, and though impressive strides have been made in studying this novel disease in a very short time, there is still a great deal that is unknown about how the virus functions. Clinical data has been crucial for providing information on COVID-19 progression and determining risk factors. However, the mechanisms leading to the multi-tissue pathology are yet to be fully established. Although insights from SARS-CoV-1 and MERS-CoV have been valuable, it is clear that SARS-CoV-2 is different and merits its own extensive studies. In this review, we highlight unresolved questions surrounding this virus including the temporal immune dynamics, infection of non-pulmonary tissue, early life exposure, and the role of circadian rhythms. Risk factors such as sex and exposure to pollutants are also explored followed by a discussion of ways in which bioengineering approaches can be employed to help understand COVID-19. The use of sophisticated in vitro models can be employed to interrogate intercellular interactions and also to tease apart effects of the virus itself from the resulting immune response. Additionally, spatiotemporal information can be gleaned from these models to learn more about the dynamics of the virus and COVID-19 progression. Application of advanced tissue and organ system models into COVID-19 research can result in more nuanced insight into the mechanisms underlying this condition and elucidate strategies to combat its effects.
Collapse
Affiliation(s)
- Jasmine Shirazi
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Michael J. Donzanti
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Katherine M. Nelson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| |
Collapse
|
22
|
Wang Z, Sun F, Lu Y, Pan S, Yang W, Zhang G, Ma J, Shi H. Rapid preparation of decellularized trachea as a 3D scaffold for organ engineering. Int J Artif Organs 2020; 44:55-64. [PMID: 32448040 DOI: 10.1177/0391398820924041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To shorten the preparation time of rabbit decellularized tracheal matrix through a modified detergent-enzymatic method with higher concentration of DNase (50 kU/mL), providing an experimental and theoretical basis for clinical decellularization technology. METHODS The control group was a natural trachea, and the experimental group was a tracheal matrix subjected to two and four decellularization cycles. The performance of each group of samples was evaluated by histology and immunohistochemical staining, scanning electron microscopy, biomechanical property testing, inoculation and cytotoxicity tests, and allograft experiments. RESULTS The results showed that the nuclei of the nonchondral areas of the tracheal stroma were essentially completely removed and MHC-I and MHC-II antigens were removed after two decellularization cycles. Histological staining and scanning electron microscopy showed that the extracellular matrix was retained and the basement membrane was intact. Cell inoculation and proliferation tests confirmed that the acellular tracheal matrix had good biocompatibility, and the proliferation capacity of bone mesenchymal stem cells on the matrix was increased in the experimental group compared with the control group (p < 0.05). Histological staining and CD68 molecular marker analysis after the allograft experiment showed that the inflammatory response of the acellular tracheal matrix was weak and the infiltration of surrounding macrophages was reduced. CONCLUSION A modified detergent-enzymatic method with an increased DNase (50 kU/mL) concentration requires only two cycles (4 days) to obtain a decellularized rabbit tracheal matrix with a short preparation time, good biocompatibility, suitable mechanical properties, and reduced preparation cost.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| | - Fei Sun
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, China
| | - Yi Lu
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| | - Shu Pan
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenlong Yang
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| | - Guozhong Zhang
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| | - Jun Ma
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University, Yangzhou, China
- The Research Center for Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Dhasmana A, Singh A, Rawal S. Biomedical grafts for tracheal tissue repairing and regeneration "Tracheal tissue engineering: an overview". J Tissue Eng Regen Med 2020; 14:653-672. [PMID: 32064791 DOI: 10.1002/term.3019] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Airway system is a vital part of the living being body. Trachea is the upper respiratory portion that connects nostril and lungs and has multiple functions such as breathing and entrapment of dust/pathogen particles. Tracheal reconstruction by artificial prosthesis, stents, and grafts are performed clinically for the repairing of damaged tissue. Although these (above-mentioned) methods repair the damaged parts, they have limited applicability like small area wounds and lack of functional tissue regeneration. Tissue engineering helps to overcome the above-mentioned problems by modifying the traditional used stents and grafts, not only repair but also regenerate the damaged area to functional tissue. Bioengineered tracheal replacements are biocompatible, nontoxic, porous, and having 3D biomimetic ultrastructure with good mechanical strength, which results in faster and better tissue regeneration. Till date, the bioengineered tracheal replacements studies have been going on preclinical and clinical levels. Besides that, still many researchers are working at advance level to make extracellular matrix-based acellular, 3D printed, cell-seeded grafts including living cells to overcome the demand of tissue or organ and making the ready to use tracheal reconstructs for clinical application. Thus, in this review, we summarized the tracheal tissue engineering aspects and their outcomes.
Collapse
Affiliation(s)
- Archna Dhasmana
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Atul Singh
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Sagar Rawal
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
24
|
Rock Inhibitor Y-27632 Enables Feeder-Free, Unlimited Expansion of Sus scrofa domesticus Swine Airway Stem Cells to Facilitate Respiratory Research. Stem Cells Int 2019; 2019:3010656. [PMID: 31871466 PMCID: PMC6906834 DOI: 10.1155/2019/3010656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Current limitations in the efficacy of treatments for chronic respiratory disorders position them as prospective regenerative medicine therapeutic targets. A substantial barrier to these ambitions is that research requires large numbers of cells whose acquisition is hindered by the limited availability of human tissue samples leading to an overreliance on physiologically dissimilar rodents. The development of cell culture strategies for airway cells from large mammals will more effectively support the transition from basic research to clinical therapy. Using readily available porcine lungs, we isolated conducting airway tissue and subsequently a large number of porcine airway epithelial cells (pAECs) using a digestion and mechanical scraping technique. Cells were cultured in a variety of culture media formulations, both foetal bovine serum-containing and serum-free media, in air (21%) and physiological (2%) oxygen tension and in the presence and absence of Rho kinase inhibitor Y-27362 (RI). Cell number at isolation and subsequent population doublings were determined; cells were characterised during culture and following differentiation by immunofluorescence, histology, and IL-8 ELISA. Cells were positive for epithelial markers (pan-cytokeratin and E-cadherin) and negative for fibroblastic markers (vimentin and smooth muscle actin). Supplementation of cultures with Y-27632 allowed for unlimited expansion whilst sustaining an epithelial phenotype. Early passage pAECs readily produced differentiated air-liquid interface (ALI) cultures with a capacity for mucociliary differentiation retained after substantial expansion, strongly modulated by the culture condition applied. Primary pAECs will be a useful tool to further respiratory-oriented research whilst RI-expanded pAECs are a promising tool, particularly with further optimisation of culture conditions.
Collapse
|
25
|
Abstract
As the prevalence and impact of lung diseases continue to increase worldwide, new therapeutic strategies are desperately needed. Advances in lung-regenerative medicine, a broad field encompassing stem cells, cell-based therapies, and a range of bioengineering approaches, offer new insights into and new techniques for studying lung physiology and pathophysiology. This provides a platform for the development of novel therapeutic approaches. Applicability to chronic obstructive pulmonary disease of recent advances and applications in cell-based therapies, predominantly those with mesenchymal stromal cell-based approaches, and bioengineering approaches for lung diseases are reviewed.
Collapse
|
26
|
Gao B, Jing H, Gao M, Wang S, Fu W, Zhang X, He X, Zheng J. Long-segmental tracheal reconstruction in rabbits with pedicled Tissue-engineered trachea based on a 3D-printed scaffold. Acta Biomater 2019; 97:177-186. [PMID: 31352107 DOI: 10.1016/j.actbio.2019.07.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
Long-segmental tracheal defects constitute an intractable clinical problem, due to the lack of satisfactory tracheal substitutes for surgical reconstruction. Tissue engineered artificial substitutes could represent a promising approach to tackle this challenge. In our current study, tissue-engineered trachea, based on a 3D-printed poly (l-lactic acid) (PLLA) scaffold with similar morphology to the native trachea of rabbits, was used for segmental tracheal reconstruction. The 3D-printed scaffolds were seeded with chondrocytes obtained from autologous auricula, dynamically pre-cultured in vitro for 2 weeks, and pre-vascularized in vivo for another 2 weeks to generate an integrated segmental trachea organoid unit. Then, segmental tracheal defects in rabbits were restored by transplanting the engineered tracheal substitute with pedicled muscular flaps. We found that the combination of in vitro pre-culture and in vivo pre-vascularization successfully generated a segmental tracheal substitute with bionic structure and mechanical properties similar to the native trachea of rabbits. Moreover, the stable blood supply provided by the pedicled muscular flaps facilitated the survival of chondrocytes and accelerated epithelialization, thereby improving the survival rate. The segmental trachea substitute engineered by a 3D-printed scaffold, in vitro pre-culture, and in vivo pre-vascularization enhanced survival in an early stage post-operation, presenting a promising approach for surgical reconstruction of long segmental tracheal defects. STATEMENT OF SIGNIFICANCE: We found that the combination of in vitro pre-culture and in vivo pre-vascularization successfully generated a segmental tracheal substitute with bionic structure and mechanical properties similar to the native trachea of rabbits. Moreover, the stable blood supply provided by the pedicled muscular flaps facilitated the survival of chondrocytes and accelerated epithelialization, thereby improving the survival rate of the rabbits. The segmental trachea substitute engineered by a 3D-printed scaffold, in vitro pre-culture, and in vivo pre-vascularization enhanced survival in an early stage post-operation, presenting a promising approach for surgical reconstruction of long segmental tracheal defects.
Collapse
Affiliation(s)
- Botao Gao
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, People's Republic of China
| | - Hui Jing
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, People's Republic of China
| | - Manchen Gao
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, People's Republic of China; Department of Pediatric Cardiac Surgery, National Center for Cardiovascular Disease and Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Road, Xicheng, Beijing 100037, People's Republic of China
| | - Shoubao Wang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, People's Republic of China; Department of Plastic and Reconstrucive Surgery, Shanghai 9th People's Hospital, 639 Zhi Zao Ju Road, Shanghai 200011, People's Republic of China
| | - Wei Fu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, People's Republic of China; Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dong Fang Road, Shanghai 200127, People's Republic of China
| | - Xiaoyang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, People's Republic of China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, People's Republic of China
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, People's Republic of China.
| |
Collapse
|
27
|
Zhong Y, Yang W, Yin Pan Z, Pan S, Zhang SQ, Hao Wang Z, Gu S, Shi H. In vivo transplantation of stem cells with a genipin linked scaffold for tracheal construction. J Biomater Appl 2019; 34:47-60. [DOI: 10.1177/0885328219839193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Zhong
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Wenlong Yang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Zi Yin Pan
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Shu Pan
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Si Quan Zhang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Zhi Hao Wang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Sijia Gu
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Xia D, Jin D, Wang Q, Gao M, Zhang J, Zhang H, Bai J, Feng B, Chen M, Huang Y, Zhong Y, Witman N, Wang W, Xu Z, Zhang H, Yin M, Fu W. Tissue‐engineered trachea from a 3D‐printed scaffold enhances whole‐segment tracheal repair in a goat model. J Tissue Eng Regen Med 2019; 13:694-703. [DOI: 10.1002/term.2828] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Dekai Xia
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Qian Wang
- Department of Radiology, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Manchen Gao
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Jialing Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Hengyi Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Jie Bai
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Bei Feng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Maolin Chen
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Yanhui Huang
- Department of Anesthesiology, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Yumin Zhong
- Department of Radiology, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Nevin Witman
- Department of MedicineKarolinska Institute Stockholm Sweden
| | - Wei Wang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Zhiwei Xu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Haibo Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
| | - Wei Fu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong University Shanghai China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of MedicineShanghai Jiao Tong University Shanghai China
| |
Collapse
|
29
|
Differential epithelial growth in tissue-engineered larynx and trachea generated from postnatal and fetal progenitor cells. Biochem Biophys Res Commun 2019; 510:205-210. [PMID: 30691694 DOI: 10.1016/j.bbrc.2019.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/11/2019] [Indexed: 01/19/2023]
Abstract
Postnatal organ-specific stem and progenitor cells are an attractive potential donor cell for tissue-engineering because they can be harvested autologous from the recipient and have sufficient potential to regenerate the tissue of interest with less risk for ectopic growth or tumor formation compared to donor cells from embryonic or fetal sources. We describe the generation of tissue-engineered larynx and trachea (TELT) from human and mouse postnatal organoid units (OU) as well as from human fetal OU. Mouse TELT contained differentiated respiratory epithelium lining large lumens, cartilage and smooth muscle. In contrast, human postnatal TE trachea, formed small epithelial lumens with rare differentiation, in addition to smooth muscle and cartilage. Human fetal TELT contained the largest epithelial lumens with all differentiated cell types as well as smooth muscle and cartilage. Increased epithelial cytokeratin 14 was identified in both human fetal and postnatal TELT compared to native trachea, consistent with regenerative basal cells. Cilia in TELT epithelium also demonstrated function with beating movements. While both human postnatal and fetal progenitors have the potential to generate TELT, there is more epithelial growth and differentiation from fetal progenitors, highlighting fundamental differences in these cell populations.
Collapse
|
30
|
Pan S, Zhong Y, Shan Y, Liu X, Xiao Y, Shi H. Selection of the optimum 3D-printed pore and the surface modification techniques for tissue engineering tracheal scaffold in vivo reconstruction. J Biomed Mater Res A 2018; 107:360-370. [PMID: 30485676 DOI: 10.1002/jbm.a.36536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/26/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
The influences of pore sizes and surface modifications on biomechanical properties and biocompatibility (BC) of porous tracheal scaffolds (PTSs) fabricated by polycaprolactone (PCL) using 3D printing technology. The porous grafts were surface-modified through hydrolysis, amination, and nanocrystallization treatment. The surface properties of the modified grafts were characterized by energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The materials were cocultured with bone marrow mesenchymal stem cells (BMSCs). The effect of different pore sizes and surface modifications on the cell proliferation behavior was evaluated by the cell counting kit-8 (CCK-8). Compared to native tracheas, the PTS has good biomechanical properties. A pore diameter of 200 μm is the optimum for cell adhesion, and the surface modifications successfully improved the cytotropism of the PTS. Allogeneic implantation confirmed that it largely retains its structural integrity in the host, and the immune rejection reaction of the PTS decreased significantly after the acute phase. Nano-silicon dioxide (NSD)-modified PTS is a promising material for tissue engineering tracheal reconstruction. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 360-370, 2019.
Collapse
Affiliation(s)
- Shu Pan
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, 225001, China.,Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yi Zhong
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yibo Shan
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Xueying Liu
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yuanfan Xiao
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, 225001, China.,Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
31
|
Safronova EI, Dydykin SS, Grigorevskiy ED, Tverye EA, Kolchenko SI, Piskunova NN, Denisova AV, Titova GP, Parshin VD, Romanova OA, Panteleyev AA. Experimental animal model for assessment of tracheal epithelium regeneration. Laryngoscope 2018; 129:E213-E219. [PMID: 30450552 DOI: 10.1002/lary.27480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2018] [Indexed: 11/12/2022]
Abstract
OBJECTIVES/HYPOTHESIS To develop an experimental model in rabbits for assessment of tracheal epithelium regeneration through application of either natural or artificial polymer scaffolds. STUDY DESIGN First, we identified the size of full-thickness mucosal defect, which does not allow self-healing (a "critical defect"), thus representing an adequate experimental model for regenerative therapy of tracheal epithelium damage. Then, two methods of polymer scaffold fixation at the site of the epithelium defect were compared: suturing and fixation with a stent. This was done through: 1) formation of a full-thickness anterolateral mucosal defect by tracheal mucosa excision; and 2) fixation of the scaffold at the site of the tracheal epithelium defect using sutures (through a tracheal wall "window") or a vascular stent (through a small tracheal incision). RESULTS The dimension of a critical anterolateral mucosal defect of the trachea for rabbits was found to be 1.5 cm in length and more than 50% of the tracheal circumference. Fixation of the scaffold with a stent proved to be more efficient due to a uniform distribution of the pressure over the entire surface of the scaffold, whereas the suturing of the scaffold provided unsatisfactory results. In addition, fixation of the scaffold by suturing required formation of a large "window" in the tracheal wall. Thus, using the stent appeared to be technically less complicated and much less traumatic as compared to suturing. CONCLUSION We present an experimental in vivo animal model of tracheal epithelium injury and recovery. It can be effectively used with certain further modifications as a basis for routine testing of bioengineered constructs. LEVEL OF EVIDENCE NA Laryngoscope, 129:E213-E219, 2019.
Collapse
Affiliation(s)
| | - Sergey S Dydykin
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Ekaterina A Tverye
- National Research Center Kurchatov Institute, Moscow, Russian Federation
| | - Stepan I Kolchenko
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Anna V Denisova
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Galina P Titova
- Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russian Federation
| | - Vladimir D Parshin
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Olga A Romanova
- National Research Center Kurchatov Institute, Moscow, Russian Federation
| | | |
Collapse
|
32
|
Varma R, Aoki FG, Soon K, Karoubi G, Waddell TK. Optimal biomaterials for tracheal epithelial grafts: An in vitro systematic comparative analysis. Acta Biomater 2018; 81:146-157. [PMID: 30268918 DOI: 10.1016/j.actbio.2018.09.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022]
Abstract
Tracheal injury, stenosis, and malignancy demand tracheal reconstruction, which often fails due to the lack of a functioning epithelium. We performed an extensive comparative analysis to determine optimal biomaterials for developing tracheal epithelial grafts with mucociliary function. We screened Hyaluronan-Poly(Ethylene Glycol), Chitosan-Collagen, Collagen Vitrigel Membrane, Fibrin Glue, Silk Fibroin, and Gelatin based on various parameters including mechanical strength, bulk degradation, cell attachment, spreading, metabolic activity, focal adhesion formation, and differentiation into ciliated and goblet cells. Silk Fibroin had significantly higher tensile strength (21.23 ± 4.42 MPa), retained 50% of its mass across 5 weeks, allowed 80-100% cell spreading and increasing metabolic activity across 10 days, focal adhesion formation within 2 h, and differentiation into 5.9 ± 2.6% goblet cells. Silk Fibroin, however, led to poor ciliation, producing 5.5 ± 3.9% ciliated cells, whereas Collagen Vitrigel Membrane promoted excellent ciliation. To capitalize on the mechanical and differentiation benefits of its respective components, we developed a composite biomaterial of Silk Fibroin and Collagen Vitrigel Membrane (SF-CVM), which demonstrated enhanced maturation into 20.6 ± 1.7% ciliated and 5.6 ± 1.0% goblet cells. Development of biomaterials-based airway epithelial grafts that provide desirable mechanics and differentiation is a major step towards treatment of airway disease. STATEMENT OF SIGNIFICANCE: Tracheal blockage, injury, and malignancy greater than 50% of the adult tracheal length cannot be safely resected. Tracheal replacement is one approach, but a major cause of transplant failure is the lack of a functioning epithelium. While tissue engineering for tracheal regeneration using biomaterials is promising, there is currently no gold standard. Therefore, we performed a systematic comparative study to characterize relevant materials for generating a biomaterials-based airway epithelial graft. We developed a composite biomaterial intended for surgical implantation providing tensile strength, slow biodegradation, and optimal support for differentiation of mature epithelia. This is a significant step augmenting current state-of-the-art methods for airway surgeries, laryngeal reconstruction, and tracheal tissue engineering.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories and the McEwen Centre for Regenerative Medicine, Toronto General Hospital, 101 College St, Toronto, ON M5G 1L7, Canada.
| | - Fabio G Aoki
- Latner Thoracic Surgery Research Laboratories and the McEwen Centre for Regenerative Medicine, Toronto General Hospital, 101 College St, Toronto, ON M5G 1L7, Canada
| | - Kayla Soon
- Latner Thoracic Surgery Research Laboratories and the McEwen Centre for Regenerative Medicine, Toronto General Hospital, 101 College St, Toronto, ON M5G 1L7, Canada
| | - Golnaz Karoubi
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories and the McEwen Centre for Regenerative Medicine, Toronto General Hospital, 101 College St, Toronto, ON M5G 1L7, Canada.
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories and the McEwen Centre for Regenerative Medicine, Toronto General Hospital, 101 College St, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
33
|
Hong P, Bezuhly M, Graham ME, Gratzer PF. Efficient decellularization of rabbit trachea to generate a tissue engineering scaffold biomatrix. Int J Pediatr Otorhinolaryngol 2018; 112:67-74. [PMID: 30055743 DOI: 10.1016/j.ijporl.2018.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Most tracheal decellularization protocols are lengthy and can lead to reduced biomechanical stability. The objectives of this study were: 1) to generate a tracheal extracellular matrix scaffold using an efficient decellularization process and 2) to characterize the decellularized scaffold to assess its suitability for tissue engineering applications. METHODS Twelve rabbit tracheae underwent a decellularization process that involved enzymatic-detergent treatments. For characterization, fresh (control) and decellularized tissues underwent histological, immunohistochemical, and biochemical analyses. Tensile testing, scanning electron microscopy, and biocompatibility assay were also conducted. RESULTS Post-decellularization, the tracheal tissue had significantly less genetic material while the structural integrity was maintained. Specifically, the deoxyribonucleic acid content was significantly reduced and the glycosaminoglycan content was unchanged. Cell and cellular components were largely removed; at the same time the tensile properties and surface ultrastructural characteristics were unaltered. Biocompatibility was confirmed by contact cytotoxicity assay. CONCLUSIONS Overall, an efficient decellularization process was used to treat rabbit tracheal tissue. The effectiveness of the decellularization process was demonstrated and at the same time there was preservation of the underlying extracellular matrix structure. This decellularized material may serve as a potential scaffold for tracheal tissue engineering.
Collapse
Affiliation(s)
- Paul Hong
- IWK Health Centre, Department of Surgery, Halifax, Nova Scotia, Canada; Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Michael Bezuhly
- IWK Health Centre, Department of Surgery, Halifax, Nova Scotia, Canada; Division of Plastic and Reconstructive Surgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - M Elise Graham
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paul F Gratzer
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
34
|
Rotter N, Zenobi-Wong M. [Regeneration - A New Therapeutic Dimension in Otorhinolaryngology]. Laryngorhinootologie 2018; 97:S185-S213. [PMID: 29905357 PMCID: PMC6290928 DOI: 10.1055/s-0043-122309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Regeneration as a therapeutic priniciple and regenerative medicine in general are promising new strategies to add new therapeutic dimensions to our current treatment options. Today, reconstructive surgery, drugs and implants such as the cochlear implant can replace the functions of damaged tissues. In contrast, regenerative therapies aim at the replacement of the damaged tissues themselves while at the same time replacing their lost tissue function. In this review article new technologies such as 3D-bioprinting and the application of decellularised tissues as biomaterials are introduced and explained. A summary of current preclinical and clinical regenerative studies in otorhinolaryngology is complementing these basic aspects.
Collapse
Affiliation(s)
- Nicole Rotter
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsmedizin Mannheim, Universitätsklinikum Mannheim
| | | |
Collapse
|
35
|
Nayak JV, Rathor A, Grayson JW, Bravo DT, Velasquez N, Noel J, Beswick DM, Riley KO, Patel ZM, Cho DY, Dodd RL, Thamboo A, Choby GW, Walgama E, Harsh GR, Hwang PH, Clemons L, Lowman D, Richman JS, Woodworth BA. Porcine small intestine submucosal grafts improve remucosalization and progenitor cell recruitment to sites of upper airway tissue remodeling. Int Forum Allergy Rhinol 2018; 8:1162-1168. [PMID: 29856526 DOI: 10.1002/alr.22156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND To better understand upper airway tissue regeneration, the exposed cartilage and bone at donor sites of tissue flaps may serve as in vivo "Petri dishes" for active wound healing. The pedicled nasoseptal flap (NSF) for skull-base reconstruction creates an exposed donor site within the nasal airway. The objective of this study is to evaluate whether grafting the donor site with a sinonasal repair cover graft is effective in promoting wound healing. METHODS In this multicenter, prospective trial, subjects were randomized to intervention (graft) or control (no graft) intraoperatively after NSF elevation. Individuals were evaluated at 2, 6, and 12 weeks postintervention with endoscopic recordings. Videos were graded (Likert scale) by 3 otolaryngologists blinded to intervention on remucosalization, crusting, and edema. Scores were analyzed for interrater reliability and cohorts compared. Biopsy and immunohistochemistry at the leading edge of wound healing was performed in select cases. RESULTS Twenty-one patients were randomized to intervention and 26 to control. Subjects receiving the graft had significantly greater overall remucosalization (p = 0.01) than controls over 12 weeks. Although crusting was less in the small intestine submucosa (SIS) group, this was not statistically significant (p = 0.08). There was no overall effect on nasal edema (p = 0.2). Immunohistochemistry demonstrated abundant upper airway basal cell progenitors in 2 intervention samples, suggesting that covering grafts may facilitate tissue proliferation via progenitor cell expansion. CONCLUSION This prospective, randomized, controlled trial indicates that a porcine SIS graft placed on exposed cartilage and bone within the upper airway confers improved remucosalization compared to current practice standards.
Collapse
Affiliation(s)
- Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Aakanksha Rathor
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Jessica W Grayson
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama Birmingham, Birmingham, AL
| | - Dawn T Bravo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Nathalia Velasquez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Julia Noel
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Daniel M Beswick
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Kristen O Riley
- Department of Neurosurgery, University of Alabama Birmingham, Birmingham, AL
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Do-Yeon Cho
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama Birmingham, Birmingham, AL
| | - Robert L Dodd
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | - Andrew Thamboo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Garret W Choby
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Evan Walgama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Griffith R Harsh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Lisa Clemons
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama Birmingham, Birmingham, AL
| | - Deborah Lowman
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama Birmingham, Birmingham, AL
| | - Joshua S Richman
- Department of Neurosurgery, University of Alabama Birmingham, Birmingham, AL
| | - Bradford A Woodworth
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama Birmingham, Birmingham, AL
| |
Collapse
|
36
|
Ragelle H, Tibbitt MW, Wu SY, Castillo MA, Cheng GZ, Gangadharan SP, Anderson DG, Cima MJ, Langer R. Surface tension-assisted additive manufacturing. Nat Commun 2018; 9:1184. [PMID: 29567939 PMCID: PMC5864961 DOI: 10.1038/s41467-018-03391-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022] Open
Abstract
The proliferation of computer-aided design and additive manufacturing enables on-demand fabrication of complex, three-dimensional structures. However, combining the versatility of cell-laden hydrogels within the 3D printing process remains a challenge. Herein, we describe a facile and versatile method that integrates polymer networks (including hydrogels) with 3D-printed mechanical supports to fabricate multicomponent (bio)materials. The approach exploits surface tension to coat fenestrated surfaces with suspended liquid films that can be transformed into solid films. The operating parameters for the process are determined using a physical model, and complex geometric structures are successfully fabricated. We engineer, by tailoring the window geometry, scaffolds with anisotropic mechanical properties that compress longitudinally (~30% strain) without damaging the hydrogel coating. Finally, the process is amenable to high cell density encapsulation and co-culture. Viability (>95%) was maintained 28 days after encapsulation. This general approach can generate biocompatible, macroscale devices with structural integrity and anisotropic mechanical properties. Integrating cell-laden hydrogels effectively into the 3D printing process is a challenge in the creation of tissue engineering scaffolds. Here, the authors describe an additive manufacturing technique to combine polymer and cell-containing networks with 3D-printed mechanical supports.
Collapse
Affiliation(s)
- Héloïse Ragelle
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St Cambridge, Cambridge, MA, 02142, USA.,Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave Boston, Boston, MA, 02115, USA
| | - Mark W Tibbitt
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St Cambridge, Cambridge, MA, 02142, USA.,Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092, Zürich, Switzerland
| | - Shang-Yun Wu
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St Cambridge, Cambridge, MA, 02142, USA
| | - Michael A Castillo
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St Cambridge, Cambridge, MA, 02142, USA
| | - George Z Cheng
- Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, 20 Duke Medicine Circle Durham, Durham, NC, 27710, USA
| | - Sidharta P Gangadharan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave Boston, Boston, MA, 02215, USA
| | - Daniel G Anderson
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St Cambridge, Cambridge, MA, 02142, USA.,Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave Boston, Boston, MA, 02115, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main St Cambridge, Cambridge, 02142, MA, USA
| | - Michael J Cima
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St Cambridge, Cambridge, MA, 02142, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 500 Main St Cambridge, Cambridge, MA, 02142, USA
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St Cambridge, Cambridge, MA, 02142, USA. .,Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main St Cambridge, Cambridge, 02142, MA, USA.
| |
Collapse
|
37
|
Rehmani SS, Al-Ayoubi AM, Ayub A, Barsky M, Lewis E, Flores R, Lebovics R, Bhora FY. Three-Dimensional-Printed Bioengineered Tracheal Grafts: Preclinical Results and Potential for Human Use. Ann Thorac Surg 2017; 104:998-1004. [DOI: 10.1016/j.athoracsur.2017.03.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/07/2017] [Accepted: 03/27/2017] [Indexed: 01/30/2023]
|
38
|
Butler CR, Hynds RE, Gowers KHC, Lee DDH, Brown JM, Crowley C, Teixeira VH, Smith CM, Urbani L, Hamilton NJ, Thakrar RM, Booth HL, Birchall MA, De Coppi P, Giangreco A, O'Callaghan C, Janes SM. Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering. Am J Respir Crit Care Med 2017; 194:156-68. [PMID: 26840431 DOI: 10.1164/rccm.201507-1414oc] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Stem cell-based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell-seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts. OBJECTIVES To define a scalable cell culture system to deliver airway epithelium to clinical grafts. METHODS Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air-liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air-liquid interface cultures. MEASUREMENTS AND MAIN RESULTS 3T3-J2 feeder cells and ROCK inhibition allowed rapid expansion of airway basal cells. These cells were capable of multipotent differentiation in vitro, generating both ciliated and goblet cell lineages. Cilia were functional with normal beat frequency and pattern. Cultured cells repopulated tracheal scaffolds in a heterotopic transplantation xenograft model. CONCLUSIONS Our method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical transplantation, suggesting its suitability for use in tracheal reconstruction.
Collapse
Affiliation(s)
- Colin R Butler
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Robert E Hynds
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Kate H C Gowers
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Dani Do Hyang Lee
- 2 Respiratory, Critical Care, and Anesthesia, Institute of Child Health, University College London, London, United Kingdom
| | - James M Brown
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Claire Crowley
- 3 Stem Cell and Regenerative Medicine Section, Great Ormond Street Hospital and UCL Institute of Child Health, London, United Kingdom
| | - Vitor H Teixeira
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Claire M Smith
- 2 Respiratory, Critical Care, and Anesthesia, Institute of Child Health, University College London, London, United Kingdom
| | - Luca Urbani
- 3 Stem Cell and Regenerative Medicine Section, Great Ormond Street Hospital and UCL Institute of Child Health, London, United Kingdom
| | - Nicholas J Hamilton
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Ricky M Thakrar
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Helen L Booth
- 4 Department of Thoracic Medicine, University College London Hospitals, London, United Kingdom; and
| | - Martin A Birchall
- 5 UCL Ear Institute, Royal National Throat, Nose and Ear Hospital, London, United Kingdom
| | - Paolo De Coppi
- 3 Stem Cell and Regenerative Medicine Section, Great Ormond Street Hospital and UCL Institute of Child Health, London, United Kingdom
| | - Adam Giangreco
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Christopher O'Callaghan
- 2 Respiratory, Critical Care, and Anesthesia, Institute of Child Health, University College London, London, United Kingdom
| | - Sam M Janes
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom.,4 Department of Thoracic Medicine, University College London Hospitals, London, United Kingdom; and
| |
Collapse
|
39
|
Long-Term Comparison between Human Normal Conchal and Microtia Chondrocytes Regenerated by Tissue Engineering on Nanofiber Polyglycolic Acid Scaffolds. Plast Reconstr Surg 2017; 139:911e-921e. [PMID: 28350666 DOI: 10.1097/prs.0000000000003201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous regeneration studies of auricle-shaped cartilage by tissue engineering leave unresolved whether the chondrocyte phenotype from human auricular chondrocytes seeded onto polymeric scaffolds is retained over the long term and whether microtia remnants may be a viable cell source for auricular reconstruction. METHODS Chondrocytes were isolated from human ears, either normal conchal ear or microtia cartilage remnants, expanded in vitro, and seeded onto nanoscale-diameter polyglycolic acid sheets. These tissue-engineered constructs were implanted into athymic mice for up to 40 weeks. At harvest times of 5, 10, 20, and 40 weeks, samples were documented by gross morphology, histology, and reverse transcription-quantitative polymerase chain reaction analysis. RESULTS Neocartilages generated from the two types of surgical tissues were similar in appearance of their extracellular matrices and positive staining for elastin and proteoglycans. In the 5- to 40-week time interval, there was an increasing trend in gene expression for type II collagen, elastin, and sex determining region Y box 5, important to normal cartilage phenotype, and a decreasing trend in gene expression for type III collagen, a fibroblast and dedifferentiation marker. Over 40 weeks of implantation, the original nanoscale-diameter polyglycolic acid scaffold dimensions (1 cm × 1 cm × 80 µm) were generally maintained in tissue-engineered cartilage length and width, and thickness was statistically significantly increased. CONCLUSIONS Auricular cartilage can be regenerated over the long term (40 weeks) from surgical remnants by tissue-engineering techniques incorporating nanoscale-diameter polyglycolic acid scaffolds. Based on the present assays, microtia neocartilage very closely resembles tissue-engineered cartilage regenerated from chondrocytes isolated from normal conchal cartilage.
Collapse
|
40
|
Stefani I, Asnaghi M, Cooper-White J, Mantero S. A double chamber rotating bioreactor for enhanced tubular tissue generation from human mesenchymal stem cells: a promising tool for vascular tissue regeneration. J Tissue Eng Regen Med 2017; 12:e42-e52. [DOI: 10.1002/term.2341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/18/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022]
Affiliation(s)
- I. Stefani
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane QLD 4072 Australia
| | - M.A. Asnaghi
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
- Departments of Surgery and of Biomedicine; University Hospital Basel, University of Basel; Basel 4031 Switzerland
| | - J.J. Cooper-White
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane QLD 4072 Australia
- School of Chemical Engineering; The University of Queensland; QLD 4072 Australia
- Biomedical Manufacturing, Manufacturing Flagship, CSIRO; Clayton VIC 3169 Australia
| | - S. Mantero
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
| |
Collapse
|
41
|
Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomater 2017; 52:1-8. [PMID: 28179160 DOI: 10.1016/j.actbio.2017.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 01/05/2023]
Abstract
Tubular collagen scaffolds have been used for the repair of damaged hollow organs in regenerative medicine, but they generally lack the ability to reversibly expand in radial direction, a physiological characteristic seen in many native tubular organs. In this study, tubular collagen scaffolds were prepared that display a shape recovery effect and therefore exhibit radial elasticity. Scaffolds were constructed by compression of fibrillar collagen around a star-shaped mandrel, mimicking folds in a lumen, a typical characteristic of empty tubular hollow organs, such as ureter or urethra. Shape recovery effect was introduced by in situ fixation using a star-shaped mandrel, 3D-printed clamps and cytocompatible carbodiimide crosslinking. Prepared scaffolds expanded upon increase of luminal pressure and closed to the star-shaped conformation after removal of pressure. In this study, we applied this method to construct a scaffold mimicking the dynamics of human urethra. Radial expansion and closure of the scaffold could be iteratively performed for at least 1000 cycles, burst pressure being 132±22mmHg. Scaffolds were seeded with human epithelial cells and cultured in a bioreactor under dynamic conditions mimicking urination (pulse flow of 21s every 2h). Cells adhered and formed a closed luminal layer that resisted flow conditions. In conclusion, a new type of a tubular collagen scaffold has been constructed with radial elastic-like characteristics based on the shape of the scaffold, and enabling the scaffold to reversibly expand upon increase in luminal pressure. These scaffolds may be useful for regenerative medicine of tubular organs. STATEMENT OF SIGNIFICANCE In this paper, a new type I collagen-based tubular scaffold is presented that possesses intrinsic radial elasticity. This characteristic is key to the functioning of a number of tubular organs including blood vessels and organs of the gastrointestinal and urogenital tract. The scaffold was given a star-shaped lumen by physical compression and chemical crosslinking, mimicking the folding pattern observed in many tubular organs. In rest, the lumen is closed but it opens upon increase of luminal pressure, e.g. when fluids pass. Human epithelial cells seeded on the luminal side adhered well and were compatible with voiding dynamics in a bioreactor. Collagen scaffolds with radial elasticity may be useful in the regeneration of dynamic tubular organs.
Collapse
|
42
|
Krishnan G, Du C, Fishman JM, Foreman A, Lott DG, Farwell G, Belafsky P, Krishnan S, Birchall MA. The current status of human laryngeal transplantation in 2017: A state of the field review. Laryngoscope 2017; 127:1861-1868. [PMID: 28224630 DOI: 10.1002/lary.26503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Human laryngeal allotransplantation has long been contemplated as a surgical option following laryngectomy, but there is a paucity of information regarding the indications, surgical procedure, and patient outcomes. Our objectives were to identify all human laryngeal allotransplants that have been undertaken and reported in the English literature and to evaluate the success of the procedure. DATA SOURCES MEDLINE, Embase, Current Index to Nursing and Allied Health Literature, Web of Science and Scopus, and the Gray literature. REVIEW METHODS A comprehensive search strategy was undertaken across multiple databases. Inclusion criteria were case reports of patients who had undergone human laryngeal allotransplantation. Information regarding indications, operative techniques, complications, graft viability, and functional outcomes were extracted. RESULTS A total of 5,961 articles, following removal of duplicates, matched the search criteria and were screened, with five case reports relating to two patients, ultimately fulfilling the entry criteria. CONCLUSIONS Two laryngeal transplants have been reported in the medical literature. Although both patients report improved quality of life relating to their ability to communicate with voice, further research is necessary to shape our understanding of this complicated operation, its indications, and its functional outcomes. Laryngoscope, 127:1861-1868, 2017.
Collapse
Affiliation(s)
- Giri Krishnan
- Department of Otolaryngology-Head and Neck Surgery, The Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Charles Du
- Department of Otolaryngology-Head and Neck Surgery, The Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jonathan M Fishman
- Department of Otolaryngology-Head and Neck Surgery, UCL Ear Institute, University College London, London, United Kingdom
| | - Andrew Foreman
- Department of Otolaryngology-Head and Neck Surgery, The Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - David G Lott
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Phoenix, Arizona, U.S.A
| | - Gregory Farwell
- Department of Otolaryngology, Division of Head and Neck Surgery, University of California Davis, Sacramento, California, U.S.A
| | - Peter Belafsky
- Department of Otolaryngology, Division of Head and Neck Surgery, University of California Davis, Sacramento, California, U.S.A
| | - Suren Krishnan
- Department of Otolaryngology-Head and Neck Surgery, The Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Martin A Birchall
- Department of Otolaryngology-Head and Neck Surgery, UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
43
|
Butler CR, Hynds RE, Crowley C, Gowers KHC, Partington L, Hamilton NJ, Carvalho C, Platé M, Samuel ER, Burns AJ, Urbani L, Birchall MA, Lowdell MW, De Coppi P, Janes SM. Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials 2017; 124:95-105. [PMID: 28189871 PMCID: PMC5332556 DOI: 10.1016/j.biomaterials.2017.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
Abstract
Patients with large tracheal lesions unsuitable for conventional endoscopic or open operations may require a tracheal replacement but there is no present consensus of how this may be achieved. Tissue engineering using decellularized or synthetic tracheal scaffolds offers a new avenue for airway reconstruction. Decellularized human donor tracheal scaffolds have been applied in compassionate-use clinical cases but naturally derived extracellular matrix (ECM) scaffolds demand lengthy preparation times. Here, we compare a clinically applied detergent-enzymatic method (DEM) with an accelerated vacuum-assisted decellularization (VAD) protocol. We examined the histological appearance, DNA content and extracellular matrix composition of human donor tracheae decellularized using these techniques. Further, we performed scanning electron microscopy (SEM) and biomechanical testing to analyze decellularization performance. To assess the biocompatibility of scaffolds generated using VAD, we seeded scaffolds with primary human airway epithelial cells in vitro and performed in vivo chick chorioallantoic membrane (CAM) and subcutaneous implantation assays. Both DEM and VAD protocols produced well-decellularized tracheal scaffolds with no adverse mechanical effects and scaffolds retained the capacity for in vitro and in vivo cellular integration. We conclude that the substantial reduction in time required to produce scaffolds using VAD compared to DEM (approximately 9 days vs. 3–8 weeks) does not compromise the quality of human tracheal scaffold generated. These findings might inform clinical decellularization techniques as VAD offers accelerated scaffold production and reduces the associated costs.
Collapse
Affiliation(s)
- Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK; Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Claire Crowley
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Leanne Partington
- Department of Haematology, Royal Free Hospital and University College London, London, UK
| | - Nicholas J Hamilton
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Carla Carvalho
- Department of Haematology, Royal Free Hospital and University College London, London, UK
| | - Manuela Platé
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Edward R Samuel
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Alan J Burns
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK; Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Luca Urbani
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Martin A Birchall
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, UK
| | - Mark W Lowdell
- Department of Haematology, Royal Free Hospital and University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK.
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.
| |
Collapse
|
44
|
Stevens S. Synthetic Biology in Cell and Organ Transplantation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029561. [PMID: 28003184 DOI: 10.1101/cshperspect.a029561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transplantation of cells and organs has an extensive history, with blood transfusion and skin grafts described as some of the earliest medical interventions. The speed and efficiency of the human immune system evolved to rapidly recognize and remove pathogens; the human immune system also serves as a barrier against the transplant of cells and organs from even highly related donors. Although this shows the remarkable effectiveness of the immune system, the engineering of cells and organs that will survive in a host patient over the long term remains a steep challenge. Progress in the understanding of host immune responses to donor cells and organs, combined with the rapid advancement in synthetic biology applications, allows the rational engineering of more effective solutions for transplantation.
Collapse
Affiliation(s)
- Sean Stevens
- Mammalian Synthetic Biology, Synthetic Genomics, Inc., La Jolla, California 92037
| |
Collapse
|
45
|
Affiliation(s)
- S Bala Bhaskar
- Department of Anaesthesiology, VIMS, Ballari, Karnataka, India E-mail:
| |
Collapse
|
46
|
Foster KR. 3-Dimensional Printing in Medicine: Hype, Hope, and the Challenge of Personalized Medicine. PHILOSOPHY OF ENGINEERING AND TECHNOLOGY 2017. [DOI: 10.1007/978-3-319-45193-0_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
47
|
Abstract
PURPOSE OF REVIEW Tissue engineering is a rapidly expanding field in medicine and involves regeneration and restoration of many organs, including larynx and the airways. Currently, this is not included in routine practice; however, a number of clinical trials in humans are ongoing or starting. This review will cover publications during the past 2 years and the focus is on larynx and trachea. RECENT FINDINGS Recent reports concern the development and investigations of cell therapies, including biological factors such as growth factors which promote healing of damage and increased vascular support of the tissue. A separate section concerns studies of stromal cells and stem cells in tissue engineering. Cell therapies and treatment with biological active factors are often combined with the development of scaffolds to support or reconstruct the soft tissue in the larynx or the cartilages in trachea or larynx. New techniques for scaffold construction, such as 3D printing, are developed. The trend in the recent publications is to combine these methods. SUMMARY Recent advances in tissue engineering of the larynx and trachea include the development of cell therapies or treatment with biological active factors often in combination with scaffolds.
Collapse
|
48
|
Wiles K, Fishman JM, De Coppi P, Birchall MA. The Host Immune Response to Tissue-Engineered Organs: Current Problems and Future Directions. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:208-19. [DOI: 10.1089/ten.teb.2015.0376] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Martin A. Birchall
- UCL Ear Institute & Royal National Throat, Nose and Ear Hospital, London, United Kingdom
| |
Collapse
|
49
|
Gillaspie EA, Matsumoto JS, Morris NE, Downey RJ, Shen KR, Allen MS, Blackmon SH. From 3-Dimensional Printing to 5-Dimensional Printing: Enhancing Thoracic Surgical Planning and Resection of Complex Tumors. Ann Thorac Surg 2016; 101:1958-62. [PMID: 27106426 PMCID: PMC4997802 DOI: 10.1016/j.athoracsur.2015.12.075] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/07/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE Three-dimensional (3D) printing of anatomic models for complex surgical cases improves patient and resident education, operative team planning, and guides the operation. Our group describes two additional dimensions. DESCRIPTION The process of 5-dimensional (5D) printing was developed for surgical planning. Pretreatment computed tomography and positron emission tomography scans were reformatted and fused. Selected anatomy from these studies, along with posttreatment computed tomography and magnetic resonance images, were coregistered and segmented. This fused anatomy was converted into stereolithography files for 3D printing. EVALUATION A patient presenting with a complex thoracic tumor was selected for 5D printing. 3D and 5D models were prepared to allow surgical teams to directly evaluate and compare the added benefits of information provided by printing in 5 dimensions. CONCLUSIONS Printing 5D models in patients with complex thoracic pathology facilitates surgical planning, selecting margins for resection, anticipating potential difficulties, teaching for learners, and education for patients.
Collapse
Affiliation(s)
| | | | | | - Robert J Downey
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - K Robert Shen
- Division of Thoracic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Mark S Allen
- Division of Thoracic Surgery, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
50
|
Suzuki R, Nakamura R, Nakaegawa Y, Nomoto Y, Fujimoto I, Semura K, Hazama A, Omori K. Optimal bovine collagen concentration to achieve tracheal epithelial coverage of collagen sponges. Laryngoscope 2016; 126:E396-E403. [PMID: 27075104 DOI: 10.1002/lary.25989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/18/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES/HYPOTHESIS Artificial tracheas prepared using a collagen sponge and polypropylene mesh have been implanted in patients who received tracheal resections, but epithelialization in the reconstructed area is slow. We determined the optimal bovine atelocollagen concentration necessary for the rapid and complete tracheal epithelial coverage of collagen sponge implants. STUDY DESIGN Preliminary animal experiment. METHODS Collagen sponges were prepared using lyophilizing 0.5%, 0.7%, and 1.0% atelocollagen solutions (0.5%, 0.7%, and 1.0% sponges) and were analyzed using scanning electron microscopy. Partial tracheal defects were prepared in rabbits and reconstructed using sponges. Epithelial regeneration in the reconstructed area was evaluated by endoscopic, histological, and scanning electron microscope analyses. RESULTS All sponges had a membranous structural framework, and numerous fibrous structures filled the spaces within the framework in the 0.5% sponges. The membranous structure in the 0.7% sponges branched at many points, and intermembrane spaces were frequently observed. Conversely, the membranous structure in the 1.0% sponges was relatively continuous, thick, and closely arranged. Two weeks after implantation, tracheal defects were entirely covered with epithelium in two of the four and three of the four of the 0.5% and 0.7% sponge-implanted rabbits, respectively. The collagen sponges remained exposed to the tracheal lumen in four of the four rabbits in the 1.0% sponge group. Ciliogenesis in the center of the epithelialized region was detected only in the 0.7% sponge group. CONCLUSION Collagen sponges prepared from various concentrations of bovine atelocollagen have different structures. Complete epithelial coverage was achieved in more rabbits implanted with sponges prepared using the 0.7% bovine atelocollagen solution than in those implanted with sponges prepared from the 0.5% and 1.0% solutions. LEVEL OF EVIDENCE NA Laryngoscope, 126:E396-E403, 2016.
Collapse
Affiliation(s)
- Ryo Suzuki
- Department of Otolaryngology, Fukushima Medical University, Fukushima, Japan
| | - Ryosuke Nakamura
- Department of Otolaryngology, Fukushima Medical University, Fukushima, Japan
| | - Yuta Nakaegawa
- Department of Otolaryngology, Fukushima Medical University, Fukushima, Japan
| | - Yukio Nomoto
- Department of Otolaryngology, Fukushima Medical University, Fukushima, Japan
| | | | - Kayoko Semura
- Department of Otolaryngology, Fukushima Medical University, Fukushima, Japan.,Koken Research Institute, Koken Company, Ltd., Tokyo, Japan
| | - Akihiro Hazama
- Department of Cellular and Integrative Physiology, Fukushima Medical University, Fukushima, Japan
| | - Koichi Omori
- Department of Otolaryngology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|