1
|
Schlosser CS, Morris CJ, Brocchini S, Williams GR. Hydrophobic ion pairing as a novel approach to co-axial electrospraying of peptide-PLGA particles. Int J Pharm 2024; 667:124885. [PMID: 39491655 DOI: 10.1016/j.ijpharm.2024.124885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Electrospraying is a processing technique that has gained much interest to prepare polymeric particles. The technique operates at ambient temperature, thereby avoiding heat induced degradation of labile therapeutics (e.g. peptides and proteins). Exposure to organic solvents can be minimised by co-axial electrospraying through separation of core (aqueous) and shell (organic) solvents. However, aqueous solutions are often difficult to electrospray due to high surface tension. Immiscibility between the core-shell solvents creates a further process challenge. Herein, we describe for the first time the use of hydrophobic ion pairing (HIP) to encapsulate a polypeptide into polymeric particles prepared by co-axial electrospraying. Peptide ion pairs were prepared to incorporate a model peptide - teriparatide - into an organic solvent, permitting facile electrospraying while also protecting the peptide from denaturation. Teriparatide loaded PLGA particles were generated by electrospraying from aqueous or ethanolic peptide solutions (core). A PLGA solution in chloroform (with and without co-solvents) was employed as the shell solution. The aqueous core solution led to a teriparatide encapsulation efficiency of 79.2 ± 19.8 %, which was not significantly different from the ethanolic core (57.1 ± 14.5 %). When aqueous solutions were used the process lacked reproducibility, resulting in low process yields (61.3 ± 4.0 %). In contrast, when an organic core was used a dry powder bed was achieved with a yield of 102.2 ± 8.8 %. The peptide's integrity and biological functionality were retained after electrospraying as ion pairs, as evidenced in a cell-based PTH1 receptor binding assay.
Collapse
Affiliation(s)
- Corinna S Schlosser
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Christopher J Morris
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Steve Brocchini
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
2
|
Nakmode DD, Singh B, Abdella S, Song Y, Garg S. Long-acting parenteral formulations of hydrophilic drugs, proteins, and peptide therapeutics: mechanisms, challenges, and therapeutic benefits with a focus on technologies. Drug Deliv Transl Res 2024:10.1007/s13346-024-01747-y. [PMID: 39661312 DOI: 10.1007/s13346-024-01747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Despite being the most widely prescribed formulation, oral formulations possess several limitations such as low adherence, low bioavailability, high toxicity (in the case of anticancer drugs), and multiple-time administration requirements. All these limitations can be overcome by long-acting injectables. Improved adherence, patient compliance, and reduced relapse have been observed with long-acting formulation which has increased the demand for long-acting injectables. Drugs or peptide molecules with oral bioavailability issues can be easily delivered by long-acting systems. This review comprehensively addresses the various technologies used to develop long-acting injections with a particular focus on hydrophilic drugs and large molecules as well as the factors affecting the choice of formulation strategy. This is the first review that discusses the possible technologies that can be used for developing long-acting formulations for hydrophilic molecules along with factors which will affect the choice of the technology. Furthermore, the mechanism of drug release as well as summaries of marketed formulations will be presented. This review also discusses the challenges associated with the manufacturing and scale-up of the long-acting injectables.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Baljinder Singh
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
3
|
Pohjola J, Jokinen M, Soukka T, Stolt M. Polymer microsphere inks for semi-solid extrusion 3D printing at ambient conditions. J Mech Behav Biomed Mater 2024; 160:106783. [PMID: 39486301 DOI: 10.1016/j.jmbbm.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Extrusion-based 3D printing methods have great potential for manufacturing of personalized polymer-based drug-releasing systems. However, traditional melt-based extrusion techniques are often unsuitable for processing thermally labile molecules. Consequently, methods that utilize the extrusion of semi-solid inks under mild conditions are frequently employed. The rheological properties of the semi-solid inks have a substantial impact on the 3D printability, making it necessary to evaluate and tailor these properties. Here, we report a novel semi-solid extrusion 3D printing method based on utilization of a Carbopol gel matrix containing various concentrations of polymeric microspheres. We also demonstrate the use of a solvent vapor-based post-processing method for enhancing the mechanical strength of the printed objects. As our approach enables room-temperature processing of polymers typically used in the pharmaceutical industry, it may also facilitate the broader application of 3D printing and microsphere technologies in preparation of personalized medicine.
Collapse
Affiliation(s)
- Juuso Pohjola
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland; Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland.
| | | | - Tero Soukka
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland
| | - Mikael Stolt
- Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland
| |
Collapse
|
4
|
Wang X, Zeng J, Gan D, Ling K, He M, Li J, Lu Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. NANO-MICRO LETTERS 2024; 17:73. [PMID: 39601916 PMCID: PMC11602938 DOI: 10.1007/s40820-024-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Jia Zeng
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Kun Ling
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Mingfang He
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yongping Lu
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| |
Collapse
|
5
|
Tang T, Chen Y, Zhao Z, Bai Q, Leisner JJ, Liu T. Nisin-loaded chitosan/sodium alginate microspheres enhance the antimicrobial efficacy of nisin against Staphylococcus aureus. J Appl Microbiol 2024; 135:lxae259. [PMID: 39394666 DOI: 10.1093/jambio/lxae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
AIMS To develop and evaluate nisin-loaded chitosan/sodium alginate (CS/SA) microspheres as an improved antimicrobial delivery system targeting Staphylococcus aureus strains. METHODS AND RESULTS The microspheres were prepared using a modified water-in-oil emulsion cross-linking method, resulting in spherical particles sized 1-8 µm with a surface charge of -7.92 ± 5.09 mV, confirmed by scanning electron microscopy (SEM) and Zetasizer analysis. Encapsulation efficiency (EE) and loading capacity (LC) of nisin were 87.60% ± 0.43% and 1.99% ± 0.01%, respectively. In vitro release studies over 48 h indicated a controlled release pattern of nisin, described by the Korsmeyer-Peppas model, with higher release rates at 37°C and alkaline pH. Antimicrobial assays showed an enhanced efficacy of nisin-loaded CS/SA microspheres compared to free nisin, with minimum inhibitory concentration values reduced by 50%. Confocal laser scanning microscopy (CLSM), SEM, and transmission electron microscopy showed significant bacterial membrane damage and cellular disruption induced by the microspheres. CONCLUSIONS This study highlights the potential of nisin-loaded CS/SA microspheres as an innovative antimicrobial delivery system with improved stability and antimicrobial efficacy against S. aureus, addressing limitations associated with nisin applied alone.
Collapse
Affiliation(s)
- Taya Tang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Yinzhu Chen
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193 Beijing, P. R. China
| | - Zhongling Zhao
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193 Beijing, P. R. China
| | - Qianyu Bai
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193 Beijing, P. R. China
| | - Jørgen J Leisner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193 Beijing, P. R. China
| |
Collapse
|
6
|
Ralbovsky NM, Zhang Y, Williams DM, McKelvey CA, Smith JP. Machine Learning and Hyperspectral Imaging for Analysis of Human Papillomaviruses (HPV) Vaccine Self-Healing Particles. Anal Chem 2024; 96:17118-17127. [PMID: 39413009 DOI: 10.1021/acs.analchem.4c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Human papillomaviruses (HPV) are known to cause a variety of diseases, including cervical cancer and genital warts. HPV is a highly prevalent virus and is considered the most common sexually transmitted disease. Because of the risks associated with HPV, Gardasil, a quadrivalent recombinant vaccine, was developed by Merck & Co., Inc., Rahway, NJ, USA, and approved by the Food and Drug Administration (FDA) in 2006. The second generation of the vaccine, Gardasil9, was subsequently approved by the FDA in 2014, providing significant protection against HPV. The HPV vaccine may be given as 2 or 3 doses; however, vaccine administration as a single dose with a sustained release mechanism may potentially offer benefits to meet emerging health needs. To explore this, HPV vaccines were formulated within microporous self-healing particles (SHPs) to enable potential controlled release of HPV virus-like particle (VLP) antigen. Machine learning, in the form of multivariate curve resolution-alternating least-squares (MCR-ALS), with Raman hyperspectral imaging was used to determine the molecular identity and spatial distribution of all relevant species within this HPV vaccine formulation. The results indicate that machine learning with Raman hyperspectral imaging was able to spatially resolve HPV VLP antigens within SHP vaccines for the first time, providing crucial information necessary for vaccine development.
Collapse
Affiliation(s)
- Nicole M Ralbovsky
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yingyue Zhang
- Vaccine Drug Product Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Donna M Williams
- Vaccine Drug Product Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Craig A McKelvey
- Vaccine Drug Product Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Joseph P Smith
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
7
|
Garcia-Garcia A, Muñana-González S, Lanceros-Mendez S, Ruiz-Rubio L, Alvarez LP, Vilas-Vilela JL. Biodegradable Natural Hydrogels for Tissue Engineering, Controlled Release, and Soil Remediation. Polymers (Basel) 2024; 16:2599. [PMID: 39339063 PMCID: PMC11435712 DOI: 10.3390/polym16182599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
This article provides insights into hydrogels of the most promising biodegradable natural polymers and their mechanisms of degradation, highlighting the different possibilities of controlling hydrogel degradation rates. Since biodegradable hydrogels can be designed as scaffolding materials to mimic the physical and biochemical properties of natural tissues, these hydrogels have found widespread application in the field of tissue engineering and controlled release. In the same manner, their potential as water reservoirs, macro- and microelement carriers, or matrixes for the selective adsorption of pollutants make them excellent candidates for sustainable soil amendment solutions. Accordingly, this article summarizes the recent advances in natural biodegradable hydrogels in the fields of tissue engineering, controlled release, and soil remediation, emphasizing the new opportunities that degradability and its tunability offer for the design and applicability of hydrogels.
Collapse
Affiliation(s)
- Ane Garcia-Garcia
- Macromolecular Chemistry Group (LABQUIMAC), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Sara Muñana-González
- Macromolecular Chemistry Group (LABQUIMAC), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Group (LABQUIMAC), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leyre Perez Alvarez
- Macromolecular Chemistry Group (LABQUIMAC), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LABQUIMAC), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
8
|
Lu H, Cai Z, Hu P. Recent Advances in Polymeric Delivery Vehicles for Controlled and Sustained Drug Release. Pharmaceutics 2024; 16:1184. [PMID: 39339220 PMCID: PMC11435192 DOI: 10.3390/pharmaceutics16091184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
In the realm of modern therapeutics, the development of polymeric delivery vehicles has revolutionized drug administration, offering a sophisticated approach to controlled and sustained drug release [...].
Collapse
Affiliation(s)
- Hong Lu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Zheng Cai
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ping Hu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| |
Collapse
|
9
|
Wang K, Huang K, Wang L, Lin X, Tan M, Su W. Microfluidic Strategies for Encapsulation, Protection, and Controlled Delivery of Probiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15092-15105. [PMID: 38920087 DOI: 10.1021/acs.jafc.4c02973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Probiotics are indispensable for maintaining the structure of gut microbiota and promoting human health, yet their survivability is frequently compromised by environmental stressors such as temperature fluctuations, pH variations, and mechanical agitation. In response to these challenges, microfluidic technology emerges as a promising avenue. This comprehensive review delves into the utilization of microfluidic technology for the encapsulation and delivery of probiotics within the gastrointestinal tract, with a focus on mitigating obstacles associated with probiotic viability. Initially, it elucidates the design and application of microfluidic devices, providing a precise platform for probiotic encapsulation. Moreover, it scrutinizes the utilization of carriers fabricated through microfluidic devices, including emulsions, microspheres, gels, and nanofibers, with the intent of bolstering probiotic stability. Subsequently, the review assesses the efficacy of encapsulation methodologies through in vitro gastrointestinal simulations and in vivo experimentation, underscoring the potential of microfluidic technology in amplifying probiotic delivery efficiency and health outcomes. In sum, microfluidic technology represents a pioneering approach to probiotic stabilization, offering avenues to cater to consumer preferences for a diverse array of functional food options.
Collapse
Affiliation(s)
- Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Kexin Huang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangsong Lin
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| |
Collapse
|
10
|
Zeng H, Song J, Li Y, Guo C, Zhang Y, Yin T, He H, Gou J, Tang X. Effect of hydroxyethyl starch on drug stability and release of semaglutide in PLGA microspheres. Int J Pharm 2024; 654:123991. [PMID: 38471578 DOI: 10.1016/j.ijpharm.2024.123991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/14/2024]
Abstract
The degradation of peptide drugs limits the application of peptide drug microspheres. Structural changes of peptides at the water-oil interface and the destruction of their spatial structure in the complex microenvironment during polymer degradation can affect drug release and in vivo biological activity. This study demonstrates that adding hydroxyethyl starch (HES) to the internal aqueous phase (W1) significantly enhances the stability of semaglutide and optimizes its release behavior in PLGA microspheres. The results showed that this improvement was due to a spontaneous exothermic reaction (ΔH = -132.20 kJ mol-1) facilitated by hydrogen bonds. Incorporating HES into the internal aqueous phase using the water-in-oil-in-water (W1/O/W2) emulsion method yielded PLGA microspheres with a high encapsulation rate of 94.38 %. Moreover, microspheres with HES demonstrated well-controlled drug release over 44 days, unlike the slower and incomplete release in microspheres without HES. The optimized h-MG2 formulation achieved a more complete drug release (83.23 %) and prevented 30.65 % of drug loss compared to the HES-free microspheres within the same period. Additionally, the optimized semaglutide microspheres provided nearly three weeks of glycemic control with adequate safety. In conclusion, adding HES to the internal aqueous phase improved the in-situ drug stability and release behavior of semaglutide-loaded PLGA microspheres, effectively increasing the peptide drug payload in PLGA microspheres.
Collapse
Affiliation(s)
- Han Zeng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jiaxin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yiyao Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Chen Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
11
|
Bektas C, Mao Y. Hydrogel Microparticles for Bone Regeneration. Gels 2023; 10:28. [PMID: 38247752 PMCID: PMC10815488 DOI: 10.3390/gels10010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrogel microparticles (HMPs) stand out as promising entities in the realm of bone tissue regeneration, primarily due to their versatile capabilities in delivering cells and bioactive molecules/drugs. Their significance is underscored by distinct attributes such as injectability, biodegradability, high porosity, and mechanical tunability. These characteristics play a pivotal role in fostering vasculature formation, facilitating mineral deposition, and contributing to the overall regeneration of bone tissue. Fabricated through diverse techniques (batch emulsion, microfluidics, lithography, and electrohydrodynamic spraying), HMPs exhibit multifunctionality, serving as vehicles for drug and cell delivery, providing structural scaffolding, and functioning as bioinks for advanced 3D-printing applications. Distinguishing themselves from other scaffolds like bulk hydrogels, cryogels, foams, meshes, and fibers, HMPs provide a higher surface-area-to-volume ratio, promoting improved interactions with the surrounding tissues and facilitating the efficient delivery of cells and bioactive molecules. Notably, their minimally invasive injectability and modular properties, offering various designs and configurations, contribute to their attractiveness for biomedical applications. This comprehensive review aims to delve into the progressive advancements in HMPs, specifically for bone regeneration. The exploration encompasses synthesis and functionalization techniques, providing an understanding of their diverse applications, as documented in the existing literature. The overarching goal is to shed light on the advantages and potential of HMPs within the field of engineering bone tissue.
Collapse
Affiliation(s)
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA;
| |
Collapse
|
12
|
Poerio A, Mano JF, Cleymand F. Advanced 3D Printing Strategies for the Controlled Delivery of Growth Factors. ACS Biomater Sci Eng 2023; 9:6531-6547. [PMID: 37968925 DOI: 10.1021/acsbiomaterials.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The controlled delivery of growth factors (GFs) from tissue engineered constructs represents a promising strategy to improve tissue repair and regeneration. However, despite their established key role in tissue regeneration, the use of GFs is limited by their short half-life in the in vivo environment, their dose-dependent effectiveness, and their space- and time-dependent activity. Promising results have been obtained both in vitro and in vivo in animal models. Nevertheless, the clinical application of tissue engineered constructs releasing GFs is still challenging due to the several limitations and risks associated with their use. 3D printing and bioprinting, by allowing the microprecise spatial deposition of multiple materials and the fabrication of complex geometries with high resolution, offer advanced strategies for an optimal release of GFs from tissue engineered constructs. This review summarizes the strategies that have been employed to include GFs and their delivery system into biomaterials used for 3D printing applications to optimize their controlled release and to improve both the in vitro and in vivo regeneration processes. The approaches adopted to overcome the above-mentioned limitations are presented, showing the potential of the technology of 3D printing to get one step closer to clinical applications.
Collapse
Affiliation(s)
- Aurelia Poerio
- Institut Jean Lamour, University of Lorraine, Nancy 54011, France
| | - João F Mano
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Franck Cleymand
- Institut Jean Lamour, University of Lorraine, Nancy 54011, France
| |
Collapse
|
13
|
Kotha AA, Ahmad SU, Dewan I, Bhuiyan MA, Rahman FI, Naina Mohamed I, Reza MS. Metformin Hydrochloride Loaded Mucoadhesive Microspheres and Nanoparticles for Anti-Hyperglycemic and Anticancer Effects Using Factorial Experimental Design. Drug Des Devel Ther 2023; 17:3661-3684. [PMID: 38084128 PMCID: PMC10710808 DOI: 10.2147/dddt.s432790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Background Metformin hydrochloride (HCl) microspheres and nanoparticles were formulated to enhance bioavailability and minimize side effects through sustained action and optimized drug-release characteristics. Initially, the same formulation design with different ratios of metformin HCl and Eudragit RSPO was used to formulate four batches of microspheres and nanoparticles using solvent evaporation and nanoprecipitation methods, respectively. Methods The produced formulations were evaluated based on particle size and shape (particle size distribution (PSD), scanning electron microscope (SEM)), incompatibility (differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR)), drug release pattern, permeation behavior, in vivo hypoglycemic effects, and in vitro anticancer potential. Results Compatibility studies concluded that there was minimal interaction between metformin HCl and the polymer, whereas SEM images revealed smoother, more spherical nanoparticles than microspheres. Drug release from the formulations was primarily controlled by the non-Fickian diffusion process, except for A1 and A4 by Fickian, and B3 by Super case II. Korsmeyer-Peppas was the best-fit model for the maximum formulations. The best formulations of microspheres and nanoparticles, based on greater drug release, drug entrapment, and compatibility characteristics, were attributed to the study of drug permeation by non-everted intestinal sacs, in vivo anti-hyperglycemic activity, and in vitro anticancer activity. Conclusion This study suggests that the proposed metformin HCl formulation can dramatically reduce hyperglycemic conditions and may also have anticancer potential.
Collapse
Affiliation(s)
- Amina Alam Kotha
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shihab Uddin Ahmad
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Irin Dewan
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Mohiuddin Ahmed Bhuiyan
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Fahad Imtiaz Rahman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Md Selim Reza
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
14
|
Wang EY, Sarmadi M, Ying B, Jaklenec A, Langer R. Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials 2023; 303:122345. [PMID: 37918182 DOI: 10.1016/j.biomaterials.2023.122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Vaccines provide substantial safety against infectious diseases, saving millions of lives each year. The recent COVID-19 pandemic highlighted the importance of vaccination in providing mass-scale immunization against outbreaks. However, the delivery of vaccines imposes a unique set of challenges due to their large molecular size and low room temperature stability. Advanced biomaterials and delivery systems such as nano- and mciro-scale carriers are becoming critical components for successful vaccine development. In this review, we provide an updated overview of recent advances in the development of nano- and micro-scale carriers for controlled delivery of vaccines, focusing on carriers compatible with nucleic acid-based vaccines and therapeutics that emerged amid the recent pandemic. We start by detailing nano-scale delivery systems, focusing on nanoparticles, then move on to microscale systems including hydrogels, microparticles, and 3D printed microneedle patches. Additionally, we delve into emerging methods that move beyond traditional needle-based applications utilizing innovative delivery systems. Future challenges for clinical translation and manufacturing in this rapidly advancing field are also discussed.
Collapse
Affiliation(s)
- Erika Yan Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Morteza Sarmadi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Binbin Ying
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Wang K, Huang S, Xing S, Wu S, Li H, Zhong X, Na X, Tan M, Su W. On-Chip Precisely Controlled Preparation of Uniform Core-Shell Salmon Byproduct Protein/Polysaccharide Microcapsules for Enhancing Probiotic Survivability in Fruit Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16702-16714. [PMID: 37885404 DOI: 10.1021/acs.jafc.3c05373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The increasing demand for probiotic-fortified fruit juices stems from the dietary requirements of individuals with dairy allergies, lactose intolerance, and vegetarian diets. However, a notable obstacle arises from the degradation of probiotics in fruit juices due to their low pH levels and harsh gastrointestinal conditions. In response, this study proposes an innovative approach utilizing a microfluidic chip to create core-shell microcapsules that contain Lactobacillus plantarum Lp90. This method, based on internal-external gelation, forms highly uniform microcapsules that fully enclose the core, which consists of oil-in-water Pickering emulsions stabilized by salmon byproduct protein and sodium alginate. These emulsions remain stable for up to 72 h at a 1% sodium alginate concentration. The shell layer incorporates kelp nanocellulose and sodium alginate, thus improving the thermal properties. Furthermore, compared to free probiotics, the multilayer structure of the core-shell microcapsules provides a robust barrier, resulting in significantly enhanced probiotic stability. These findings introduce a novel strategy for augmenting probiotic delivery in functional fruit juice beverages, promising solutions to the challenges encountered during their development.
Collapse
Affiliation(s)
- Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Shasha Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Shida Wu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Hongliang Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Xu Zhong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Xin Na
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| |
Collapse
|
16
|
Lukova P, Katsarov P, Pilicheva B. Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers (Basel) 2023; 15:3615. [PMID: 37688241 PMCID: PMC10490215 DOI: 10.3390/polym15173615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Micro- and nanotechnologies have been intensively studied in recent years as novel platforms for targeting and controlling the delivery of various pharmaceutical substances. Microparticulate drug delivery systems for oral, parenteral, or topical administration are multiple unit formulations, considered as powerful therapeutic tools for the treatment of various diseases, providing sustained drug release, enhanced drug stability, and precise dosing and directing the active substance to specific sites in the organism. The properties of these pharmaceutical formulations are highly dependent on the characteristics of the polymers used as drug carriers for their preparation. Starch and cellulose are among the most preferred biomaterials for biomedical applications due to their biocompatibility, biodegradability, and lack of toxicity. These polysaccharides and their derivatives, like dextrins (maltodextrin, cyclodextrins), ethylcellulose, methylcellulose, hydroxypropyl methylcellulose, carboxy methylcellulose, etc., have been widely used in pharmaceutical technology as excipients for the preparation of solid, semi-solid, and liquid dosage forms. Due to their accessibility and relatively easy particle-forming properties, starch and cellulose are promising materials for designing drug-loaded microparticles for various therapeutic applications. This study aims to summarize some of the basic characteristics of starch and cellulose derivatives related to their potential utilization as microparticulate drug carriers in the pharmaceutical field.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
17
|
Ma Z, Wang X, Li C. Advances in anti-invasive fungal drug delivery systems. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:318-327. [PMID: 37476943 PMCID: PMC10409907 DOI: 10.3724/zdxbyxb-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Currently, the first-line drugs for invasive fungal infections (IFI), such as amphotericin B, fluconazole and itraconazole, have drawbacks including poor water solubility, low bioavailability, and severe side effects. Using drug delivery systems is a promising strategy to improve the efficacy and safety of traditional antifungal therapy. Synthetic and biomimetic carriers have greatly facilitated the development of targeted delivery systems for antifungal drugs. Synthetic carrier drug delivery systems, such as liposomes, nanoparticles, polymer micelles, and microspheres, can improve the physicochemical properties of antifungal drugs, prolong their circulation time, enhance targeting capabilities, and reduce toxic side effects. Cell membrane biomimetic drug delivery systems, such as macrophage or red blood cell membrane-coated drug delivery systems, retain the membrane structure of somatic cells and confer various biological functions and specific targeting abilities to the loaded antifungal drugs, exhibiting better biocompatibility and lower toxicity. This article reviews the development of antifungal drug delivery systems and their application in the treatment of IFI, and also discusses the prospects of novel biomimetic carriers in antifungal drug delivery.
Collapse
Affiliation(s)
- Zhongyi Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Xinyu Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
- Medical Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Salas Sanzana D, Flores Faúndez E, Meléndez J, Soto-Arriaza M. Increased delivery and cytotoxicity of doxorubicin in HeLa cells using the synthetic cationic peptide pEM-2 functionalized liposomes. Colloids Surf B Biointerfaces 2023; 228:113420. [PMID: 37379702 DOI: 10.1016/j.colsurfb.2023.113420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
HYPOTHESIS Due to the inability of nano-carriers to passively cross the cell membrane, cell penetration enhancers are used to accelerate cytoplasmic delivery of antineoplastic drugs. In this regard, snake venom phospholipase A2 peptides are known for their ability to destabilize natural and artificial membranes. In this context, functionalized liposomes with peptide pEM-2 should favor the incorporation of doxorubicin and increase its cytotoxicity in HeLa cells compared to free doxorubicin, and doxorubicin encapsulated in non-functionalized liposomes. EXPERIMENTS Several characteristics were monitored, including doxorubicin loading capacity of the liposomes, as well as the release and uptake before and after functionalization. Cell viability and half-maximal inhibition concentrations were determined in HeLa cells. FINDINGS In vitro studies showed that functionalization of doxorubicin-loaded PC-NG liposomes with pEM-2 not only improved the amount of doxorubicin delivered compared to free doxorubicin or other doxorubicin-containing formulations, but also showed enhanced cytotoxicity against HeLa cells. The PC-NG liposomes loaded with doxorubicin improved treatment efficacy by reducing the IC50 value and incubation time. This increase in cell toxicity was directly related to the concentration of pEM-2 peptide bound to the liposomes. We conclude that the cytotoxicity observed in HeLa cells due to the action of doxorubicin was strongly favored when encapsulated in synthetic liposomes and functionalized with the pEM-2 peptide.
Collapse
Affiliation(s)
- Diego Salas Sanzana
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica, Santiago, Chile.
| | - Emilia Flores Faúndez
- Centro de Biología Celular y Biomedicina CEBICEM, Universidad San Sebastián, Santiago, Chile.
| | - Jaime Meléndez
- Reproductive Health Research Institute (RHRI), Santiago, Chile.
| | - Marco Soto-Arriaza
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
19
|
Jindal AB, Bhide AR, Salave S, Rana D, Benival D. Long-acting Parenteral Drug Delivery Systems for the Treatment of Chronic Diseases. Adv Drug Deliv Rev 2023; 198:114862. [PMID: 37160247 DOI: 10.1016/j.addr.2023.114862] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/12/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
The management of chronic conditions often requires patients to take daily medication for an extended duration. However, the need for daily dosing can lead to nonadherence to the therapy, which can result in the recurrence of the disease. Long-acting parenteral drug delivery systems have the potential to improve the treatment of chronic conditions. These systems use various technologies, such as oil-based injectables, PLGA-based microspheres, and in situ forming gel-based depots, to deliver different types of drugs. The use of long-acting parenteral formulations for the treatment of chronic infections such as HIV/AIDS and tuberculosis is a recent development in the field. Researchers are also exploring the use of long-acting parenteral formulations for the treatment of malaria, with the aim of reducing dosing frequency and improving adherence to treatment. This review discusses various aspects of long-acting formulation development, including the impact of the physicochemical properties of the drug, the type of long-acting formulation, and the route of administration. The clinical significance of long-acting formulations and recent advances in the field, such as long-acting nanoformulations and long-acting products currently in clinical trials, have also been highlighted.
Collapse
Affiliation(s)
- Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan - 333031, India.
| | - Atharva R Bhide
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan - 333031, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A) An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A) An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A) An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, India
| |
Collapse
|
20
|
Yu S, Xing J. Preparation of temperature-responsive PMMA-based microspheres encapsulating erythromycin in situ by emulsion photopolymerization. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
21
|
Yuan G, Liu Z, Wang W, Liu M, Xu Y, Hu W, Fan Y, Zhang X, Liu Y, Si G. Multifunctional nanoplatforms application in the transcatheter chemoembolization against hepatocellular carcinoma. J Nanobiotechnology 2023; 21:68. [PMID: 36849981 PMCID: PMC9969656 DOI: 10.1186/s12951-023-01820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has the sixth-highest new incidence and fourth-highest mortality worldwide. Transarterial chemoembolization (TACE) is one of the primary treatment strategies for unresectable HCC. However, the therapeutic effect is still unsatisfactory due to the insufficient distribution of antineoplastic drugs in tumor tissues and the worsened post-embolization tumor microenvironment (TME, e.g., hypoxia and reduced pH). Recently, using nanomaterials as a drug delivery platform for TACE therapy of HCC has been a research hotspot. With the development of nanotechnology, multifunctional nanoplatforms have been developed to embolize the tumor vasculature, creating conditions for improving the distribution and bioavailability of drugs in tumor tissues. Currently, the researchers are focusing on functionalizing nanomaterials to achieve high drug loading efficacy, thorough vascular embolization, tumor targeting, controlled sustained release of drugs, and real-time imaging in the TACE process to facilitate precise embolization and enable therapeutic procedures follow-up imaging of tumor lesions. Herein, we summarized the recent advances and applications of functionalized nanomaterials based on TACE against HCC, believing that developing these functionalized nanoplatforms may be a promising approach for improving the TACE therapeutic effect of HCC.
Collapse
Affiliation(s)
- Gang Yuan
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Zhiyin Liu
- grid.488387.8Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Weiming Wang
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Mengnan Liu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yanneng Xu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Wei Hu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Yao Fan
- grid.410578.f0000 0001 1114 4286Department of Anus and Intestine Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Xun Zhang
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Guangyan Si
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
22
|
Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. INTERNATIONAL MATERIALS REVIEWS 2023; 68:184-224. [DOI: 10.1080/09506608.2022.2069451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2025]
Affiliation(s)
- Ayda Afshar
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
23
|
Bukhari A, Fatima Z, Atta M, Nazir A, Alshawwa SZ, Alotaibi HF, Iqbal M. Poly Lactic-Co-Glycolic Acid Nano-Carriers for Encapsulation and Controlled Release of Hydrophobic Drug to Enhance the Bioavailability and Antimicrobial Properties. Dose Response 2023; 21:15593258231152117. [PMID: 36743194 PMCID: PMC9893093 DOI: 10.1177/15593258231152117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023] Open
Abstract
This study focusses on the fabrication of nano-carriers for delivery of ciprofloxacin through the nanoprecipitation process. This was done to examine the release of drug at the pH of stomach to find out the antibacterial action of ciprofloxacin loaded nanoparticles (NPs). Prepared NPs were characterized by Fourier Transform Infra-Red (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and particle size analyzer (PSA) techniques. Drug yield, loading, and sustained release was studied as function of time (up to 8 h). Antibacterial activity of ciprofloxacin loaded NPs were also determined against different gram-positive and gram-negative bacteria. Results revealed that nanoprecipitation is a suitable method for encapsulation of ciprofloxacin in poly(lactic-co-glycolic acid) PLGA NPs. The drug yield and drug loading were found to be 60%. The size range of NPs observed by PSA was in the range of 5.03-6.60 nm. It can be concluded that nanoformulation of ciprofloxacin loaded PLGA NPs can be used in stomach for longer period of time to enhance the bioavailability of the drug.
Collapse
Affiliation(s)
| | - Zuha Fatima
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Madiha Atta
- Department of Biochemistry, The University of Lahore, Lahore, Pakistan
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hadil F. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan,Munawar Iqbal, Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan.
| |
Collapse
|
24
|
Microspheres as a Carrier System for Therapeutic Embolization Procedures: Achievements and Advances. J Clin Med 2023; 12:jcm12030918. [PMID: 36769566 PMCID: PMC9917963 DOI: 10.3390/jcm12030918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The targeted delivery of anti-cancer drugs and isotopes is one of the most pursued goals in anti-cancer therapy. One of the prime examples of such an application is the intra-arterial injection of microspheres containing cytostatic drugs or radioisotopes during hepatic embolization procedures. Therapy based on the application of microspheres revolves around vascular occlusion, complemented with local therapy in the form of trans-arterial chemoembolization (TACE) or radioembolization (TARE). The broadest implementation of these embolization strategies currently lies within the treatment of untreatable hepatocellular cancer (HCC) and metastatic colorectal cancer. This review aims to describe the state-of-the-art TACE and TARE technologies investigated in the clinical setting for HCC and addresses current trials and new developments. In addition, chemical properties and advancements in microsphere carrier systems are evaluated, and possible improvements in embolization therapy based on the modification of and functionalization with therapeutical loads are explored.
Collapse
|
25
|
Yadav D, Puranik N, Meshram A, Chavda V, Lee PCW, Jin JO. How Advanced are Cancer Immuno-Nanotherapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:35-48. [PMID: 36636642 PMCID: PMC9830082 DOI: 10.2147/ijn.s388349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Cancer is a broad term for a group of diseases involving uncontrolled cell growth and proliferation. There is no cure for cancer despite recent significant improvements in screening, treatment, and prevention approaches. Among the available treatments, immunotherapy has been successful in targeting and killing cancer cells by stimulating or enhancing the body's immune system. Antibody-based immunotherapeutic agents that block immune checkpoint proteins expressed by cancer cells have shown promising results. The rapid development of nanotechnology has contributed to improving the effectiveness and reducing the adverse effects of these anti-cancer immunotherapeutic agents. Recently, engineered nanomaterials have been the focus of many state-of-The-art approaches toward effective cancer treatment. In this review, the contribution of various nanomaterials such as polymeric nanoparticles, dendrimers, microspheres, and carbon nanomaterials in improving the efficiency of anti-cancer immunotherapy is discussed as well as nanostructures applied to combination cancer immunotherapy.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Anju Meshram
- Department of Biotechnology, Kalinga University, Naya Raipur, Chhattisgarh, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea,Correspondence: Peter Chang-Whan Lee, Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea, Email
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea,Jun-O Jin, Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea, Email
| |
Collapse
|
26
|
Ray S, Puente A, Steinmetz NF, Pokorski JK. Recent advancements in single dose slow-release devices for prophylactic vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1832. [PMID: 35850120 PMCID: PMC9840709 DOI: 10.1002/wnan.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 01/31/2023]
Abstract
Single dose slow-release vaccines herald a new era in vaccine administration. An ideal device for slow-release vaccine delivery would be minimally invasive and self-administered, making these approaches an attractive alternative for mass vaccination programs, particularly during the time of a pandemic. In this review article, we discuss the latest advances in this field, specifically for prophylactic vaccines able to prevent infectious diseases. Recent studies have found that slow-release vaccines elicit better immune responses and often do not require cold chain transportation and storage, thus drastically reducing the cost, streamlining distribution, and improving efficacy. This promise has attracted significant attention, especially when poor patient compliance of the standard multidose vaccine regimes is considered. Single dose slow-release vaccines are the next generation of vaccine tools that could overcome most of the shortcomings of present vaccination programs and be the next platform technology to combat future pandemics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Sayoni Ray
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
| | - Armando Puente
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
- Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA
- Department of Radiology, University of California-San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
- Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
27
|
Guliy OI, Staroverov SA, Fomin AS, Zhnichkova EG, Kozlov SV, Lovtsova LG, Dykman LA. Polymeric Micelles for Targeted Drug Delivery System. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
28
|
Wang K, Ni J, Li H, Tian X, Tan M, Su W. Survivability of probiotics encapsulated in kelp nanocellulose/alginate microcapsules on microfluidic device. Food Res Int 2022; 160:111723. [PMID: 36076461 DOI: 10.1016/j.foodres.2022.111723] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
Probiotics are living microorganisms that can produce health benefits to the host only when they are ingested in sufficient quantities and reach the intestines active state. However, the external environment that probiotics face for a long time before administration and the low pH environment in the stomach after administration can greatly reduce their activity. In this work, we proposed a simple microfluidic encapsulation strategy to efficiently prepare the probiotics-loaded nanocellulose/alginate delivery system, which can improve the storage stability and gastrointestinal survival rate of probiotics. The microcapsules were found to be monodisperse, and the average particle size was<500 μm by observing the microstructure and macroscopic morphology. The kelp nanocellulose was cross-linked in the microcapsule and formed a dense surface with alginate. Through the simulated gastrointestinal digestion experiment, it was found that the survival of probiotics in microcapsules containing 0.5 % and 1.5 % kelp nanocellulose decreased by 1.77 log CFU/g and 1.65 log CFU/g respectively, which was significantly lower than that of nanocellulose-free microcapsules (3.70 log CFU/g). And all the treated groups could release probiotics above 7 log CFU/g after digesting intestinal juice for 6 h. Furthermore, through the storage experiment, it was found that the microcapsules with 1.5 % kelp nanocellulose could still release 8.07 log CFU/g probiotics after four weeks. The results provide a new strategy for probiotics processing and extensive high-value utilization of marine natural products.
Collapse
Affiliation(s)
- Kuiyou Wang
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jialu Ni
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Hongliang Li
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xueying Tian
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
29
|
Supercritical CO2 Assisted Electrospray to Produce Poly(lactic-co-glycolic Acid) Nanoparticles. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6050066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work proposes an improvement of the traditional electrospraying process, in which supercritical carbon dioxide (SC-CO2) is used to produce poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The experiments were performed at different PLGA concentrations (1, 3 and 5% w/w), applied voltages (10 and 30 kV) and operating pressures (80, 120 and 140 bar). It was found that working at 140 bar and 30 kV, spherical nanoparticles, with mean diameters of 101 ± 13 nm and 151 ± 45 nm, were obtained, when solutions at 1% w/w and 3% w/w PLGA were electrosprayed, respectively. Increasing PLGA concentration up to 5% w/w, a mixture of fibers and particles was observed, indicating the transition to the electrospinning regime.
Collapse
|
30
|
In Vitro Cell Behavior and Antibiotic Activity under Sustained Release of Doxycycline-Loaded Poly(lactic-co-glycolic acid) Microspheres. Antibiotics (Basel) 2022; 11:antibiotics11070945. [PMID: 35884199 PMCID: PMC9311981 DOI: 10.3390/antibiotics11070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
The state-of-the-art sustained drug delivery systems are related to features to improve pharmacological transport through a controlled ratio between drug release and the desired therapeutic effect. Microspheres of biodegradable polymers, such as poly(lactic-co-glycolic acid) (PLGA), play an important role in these approaches, directing the release in a specific region of interest. In this way, the encapsulation of doxycycline (DOX) as a microbial agent turns the PLGA microspheres into a potential device for the treatment of topic oral diseases. Thus, this work aimed to produce DOX-loaded PLGA microspheres and see how they interfered with mesenchymal stem cell viability and in the sustained release in antimicrobial assays. Scanning electron microscopy showed the spherical microstructured pattern, revealing assorted sized distribution, with major diameters ranging 1–3 µm. The encapsulation efficiency presented a mean of 80% in both methods to obtain the microspheres (sonication and magnetic rotation). The DOX release test revealed a gradual and continuous profile of 30–40% between 120 and 168 h. Mesenchymal stem cells cultured in PLGA with or without DOX at several concentrations revealed no effect on the cell metabolic activity. Striking morphology changes were observed by confocal microscopy after 1 to 3 days under culture. The live/dead assay indicated that when microsphere densities were increased (from 10 to 100 µg/mL) cultured cells presented an internalized pattern of microspheres in both groups of PLGA containing DOX or not, while slight cell death signals were identified nearby microsphere clusters. Microbiological assays performed by the agar diffusion test pointed out that an inhibition zone was identified in Staphylococcus aureus (S. aureus) cultures at earlier times of DOX release. Despite the well-known use of PLGA as a drug delivery vehicle, when synthesized with DOX, it presents both characteristics of the desired treatment to prevent healthy tissue damage while avoiding bacterial growth in a microenvironment with anatomical features, such as grooves, projections, and other tough conditions that favor the development of oral diseases.
Collapse
|
31
|
Giles MB, Hong JKY, Liu Y, Tang J, Li T, Beig A, Schwendeman A, Schwendeman SP. Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid). Nat Commun 2022; 13:3282. [PMID: 35676271 PMCID: PMC9177552 DOI: 10.1038/s41467-022-30813-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) long-acting release depots are effective for extending the duration of action of peptide drugs. We describe efficient organic-solvent-free remote encapsulation based on the capacity of common uncapped PLGA to bind and absorb into the polymer phase net positively charged peptides from aqueous solution after short exposure at modest temperature. Leuprolide encapsulated by this approach in low-molecular-weight PLGA 75/25 microspheres slowly and continuously released peptide for over 56 days in vitro and suppressed testosterone production in rats in an equivalent manner as the 1-month Lupron Depot®. The technique is generalizable to encapsulate a number of net cationic peptides of various size, including octreotide, with competitive loading and encapsulation efficiencies to traditional methods. In certain cases, in vitro and in vivo performance of remote-loaded PLGA microspheres exceeded that relative to marketed products. Remote absorption encapsulation further removes the need for a critical organic solvent removal step after encapsulation, allowing for simple and cost-effective sterilization of the drug-free microspheres before encapsulation of the peptide.
Collapse
Affiliation(s)
- Morgan B Giles
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Justin K Y Hong
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Yayuan Liu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jie Tang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Tinghui Li
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Avital Beig
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Varela-Fernández R, Bendicho-Lavilla C, Martin-Pastor M, Herrero Vanrell R, Lema-Gesto MI, González-Barcia M, Otero-Espinar FJ. Design, optimization, and in vitro characterization of idebenone-loaded PLGA microspheres for LHON treatment. Int J Pharm 2022; 616:121504. [PMID: 35121045 DOI: 10.1016/j.ijpharm.2022.121504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
Biodegradable poly(lactic-co-glycolic acid) microspheres (PLGA MSs) are attractive delivery systems for site-specific maintained release of therapeutic active substances into the intravitreal chamber. The design, development, and characterization of idebenone-loaded PLGA microspheres by means of an oil-in-water emulsion/solvent evaporation method enabled the obtention of appropriate production yield, encapsulation efficiency and loading values. MSs revealed spherical shape, with a size range of 10-25 μm and a smooth and non-porous surface. Fourier-transform infrared spectroscopy (FTIR) spectra demonstrated no chemical interactions between idebenone and polymers. Solid-state nuclear magnetic resonance (NMR), X-ray diffractometry, differential scanning calorimetry (DSC) and thermogravimetry (TGA) analyses indicated that microencapsulation led to drug amorphization. In vitro release profiles were fitted to a biexponential kinetic profile. Idebenone-loaded PLGA MSs showed no cytotoxic effects in an organotypic tissue model. Results suggest that PLGA MSs could be an alternative intraocular system for long-term idebenone administration, showing potential therapeutic advantages as a new therapeutic approach to the Leber's Hereditary Optic Neuropathy (LHON) treatment by intravitreal administration.
Collapse
Affiliation(s)
- Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela Zip Code: 15782, Spain; Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n Santiago de Compostela Zip Code: 15706, Spain.
| | - Carlos Bendicho-Lavilla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela Zip Code: 15782, Spain; Institute of Materials iMATUS, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela, Zip Code: 15782, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n Santiago de Compostela, Zip Code: 15706, Spain.
| | - Manuel Martin-Pastor
- Magnetic Resonance Unit, Infrastructure Supporting Network of Research and Technological Development, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela Zip Code: 15782, Spain.
| | - Rocío Herrero Vanrell
- Innoftal Research Group (UCM 920415), Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid Zip Code: 28040, Spain.
| | - María Isabel Lema-Gesto
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n Santiago de Compostela Zip Code: 15706, Spain.
| | - Miguel González-Barcia
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n Santiago de Compostela, Zip Code: 15706, Spain.
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela Zip Code: 15782, Spain; Institute of Materials iMATUS, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela, Zip Code: 15782, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n Santiago de Compostela, Zip Code: 15706, Spain.
| |
Collapse
|
33
|
Mirza-Aghazadeh-Attari M, Mihanfar A, Yousefi B, Majidinia M. Nanotechnology-based advances in the efficient delivery of melatonin. Cancer Cell Int 2022; 22:43. [PMID: 35093076 PMCID: PMC8800219 DOI: 10.1186/s12935-022-02472-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/16/2022] [Indexed: 01/09/2023] Open
Abstract
N-[2-(5-methoxy-1H-indol-3-yl) ethyl] or simply melatonin is a biogenic amine produced by pineal gland and recently recognized various other organs. Because of a broad range of biological function melatonin is considered as a therapeutic agent with high efficacy in the treatment of multiple disorders, such as cancer, degenerative disorders and immune disease. However, since melatonin can affect receptors on the cellular membrane, in the nucleus and can act as an anti-oxidant molecule, some unwanted effects may be observed after administration. Therefore, the entrapment of melatonin in biocompatible, biodegradable and safe nano-delivery systems can prevent its degradation in circulation; decrease its toxicity with increased half-life, enhanced pharmacokinetic profile leading to improved patient compliance. Because of this, nanoparticles have been used to deliver melatonin in multiple studies, and the present article aims to cumulatively illustrate their findings.
Collapse
Affiliation(s)
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Orjhans Street, Resalat Blvd, Urmia, Iran.
| |
Collapse
|
34
|
Thomas G, Koland M. Composition of Piperine with Enteric-Coated Chitosan Microspheres Enhances the Transepithelial Permeation of Curcumin in Sheep Intestinal Mucosa and Caco-2 Cells. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2022. [DOI: 10.1055/s-0041-1741417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Objectives The purpose of this study was to investigate the efficacy of enteric-coated chitosan microspheres with herbal bioenhancer, piperine, as a suitable composition for improving the permeation of curcumin through biological membranes using suitable ex vivo models.
Material and Methods Chitosan microspheres of curcumin and piperine were prepared by an emulsion cross-linking method using glutaraldehydes the cross-linking agent and characterized for size, shape, entrapment efficiency, mucoadhesion, and in vitro release. The effect of piperine on the permeation of curcumin through excised sheep intestinal mucosa and Caco-2-cell monolayer was investigated.
Statistical Analysis The data from permeation studies were analyzed by Student's t-test using Statistical Package for the Social Sciences (SPSS) software (SPSS, Chicago, IL, United States) with p-values <0.05 indicating statistical significance.
Results The formulations showed mucoadhesion for a period of more than 6 hours which was influenced by the chitosan content. The rate of drug release of uncoated formulation followed first-order kinetics, and the mechanism of release was non-Fickian transport. Optimized formulation was coated with a pH-sensitive polymer, Eudragit S-100, by a solvent evaporation technique in different concentrations and evaluated for ex vivo permeation through sheep intestinal mucosa and Caco-2-cell monolayer. Scanning electron microscopy images of the optimized coated formulation showed spherical particles with smooth surfaces. The calculated permeation flux and permeability coefficient of curcumin from microspheres were at least 20% greater in the presence of piperine through the intestinal mucosa and 30% through the Caco-2-cell monolayer model. The permeability coefficient of curcumin from microspheres with piperine was 1.93 × 10 to 5 cm/sec and significantly greater (p < 0.05) than that of microspheres devoid of piperine and from aqueous dispersion (p < 0.005).
Conclusion The study confirmed the contribution of piperine and mucoadhesive microspheres toward improved permeation of curcumin through biological membranes, thereby providing an approach that has the potential of increasing transport through intestinal epithelial cells and possibly enhancing the oral bioavailability of this drug.
Collapse
Affiliation(s)
- Githa Thomas
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Marina Koland
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
35
|
Shen W, Ning Y, Ge X, Fan G, Ao F, Wu S, Mao Y. Phosphoglyceride‐coated polylactic acid porous microspheres and its regulation of curcumin release behavior. J Appl Polym Sci 2022. [DOI: 10.1002/app.52118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wen Shen
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Yuanlan Ning
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering Nanjing Forestry University Nanjing PR China
| | - Guodong Fan
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Fen Ao
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Shang Wu
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Yueyang Mao
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| |
Collapse
|
36
|
Yan J, Zhan X, Zhang Z, Chen K, Wang M, Sun Y, He B, Liang Y. Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospects. J Nanobiotechnology 2021; 19:412. [PMID: 34876145 PMCID: PMC8650297 DOI: 10.1186/s12951-021-01164-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
Recently, DNA nanostructures with vast application potential in the field of biomedicine, especially in drug delivery. Among these, tetrahedral DNA nanostructures (TDN) have attracted interest worldwide due to their high stability, excellent biocompatibility, and simplicity of modification. TDN could be synthesized easily and reproducibly to serve as carriers for, chemotherapeutic drugs, nucleic acid drugs and imaging probes. Therefore, their applications include, but are not restricted to, drug delivery, molecular diagnostics, and biological imaging. In this review, we summarize the methods of functional modification and application of TDN in cancer treatment. Also, we discuss the pressing questions that should be targeted to increase the applicability of TDN in the future.
Collapse
Affiliation(s)
- Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Keqi Chen
- Department of Clinical Laboratory, Qingdao Special Servicemen Recuperation Centre of PLA Navy, Qingdao, 266021, China
| | - Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
37
|
van der Kooij RS, Steendam R, Frijlink HW, Hinrichs WLJ. An overview of the production methods for core-shell microspheres for parenteral controlled drug delivery. Eur J Pharm Biopharm 2021; 170:24-42. [PMID: 34861359 DOI: 10.1016/j.ejpb.2021.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 01/25/2023]
Abstract
Core-shell microspheres hold great promise as a drug delivery system because they offer several benefits over monolithic microspheres in terms of release kinetics, for instance a reduced initial burst release, the possibility of delayed (pulsatile) release, and the possibility of dual-drug release. Also, the encapsulation efficiency can significantly be improved. Various methods have proven to be successful in producing these core-shell microspheres, both the conventional bulk emulsion solvent evaporation method and methods in which the microspheres are produced drop by drop. The latter have become increasingly popular because they provide improved control over the particle characteristics. This review assesses various production methods for core-shell microspheres and summarizes the characteristics of formulations prepared by the different methods, with a focus on their release kinetics.
Collapse
Affiliation(s)
- Renée S van der Kooij
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rob Steendam
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
38
|
van der Kooij RS, Steendam R, Zuidema J, Frijlink HW, Hinrichs WLJ. Microfluidic Production of Polymeric Core-Shell Microspheres for the Delayed Pulsatile Release of Bovine Serum Albumin as a Model Antigen. Pharmaceutics 2021; 13:pharmaceutics13111854. [PMID: 34834269 PMCID: PMC8625087 DOI: 10.3390/pharmaceutics13111854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
For many vaccines, multiple injections are required to confer protective immunity against targeted pathogens. These injections often consist of a primer administration followed by a booster administration of the vaccine a few weeks or months later. A single-injection vaccine formulation that provides for both administrations could greatly improve the convenience and vaccinee's compliance. In this study, we developed parenterally injectable core-shell microspheres with a delayed pulsatile release profile that could serve as the booster in such a vaccine formulation. These microspheres contained bovine serum albumin (BSA) as the model antigen and poly(dl-lactide-co-glycolide) (PLGA) with various dl-lactide:glycolide monomer ratios as the shell material. Highly monodisperse particles with different particle characteristics were obtained using a microfluidic setup. All formulations exhibited a pulsatile in vitro release of BSA after an adjustable lag time. This lag time increased with the increasing lactide content of the polymer and ranged from 3 to 7 weeks. Shell thickness and bovine serum albumin loading had no effect on the release behavior, which could be ascribed to the degradation mechanism of the polymer, with bulk degradation being the main pathway. Co-injection of the core-shell microspheres together with a solution of the antigen that serves as the primer would allow for the desired biphasic release profile. Altogether, these findings show that injectable core-shell microspheres combined with a primer are a promising alternative for the current multiple-injection vaccines.
Collapse
Affiliation(s)
- Renée S. van der Kooij
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (R.S.v.d.K.); (H.W.F.)
| | - Rob Steendam
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands; (R.S.); (J.Z.)
| | - Johan Zuidema
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands; (R.S.); (J.Z.)
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (R.S.v.d.K.); (H.W.F.)
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (R.S.v.d.K.); (H.W.F.)
- Correspondence: ; Tel.: +31-(0)50-36-32398
| |
Collapse
|
39
|
Choi GW, Lee S, Kang DW, Kim JH, Kim JH, Cho HY. Long-acting injectable donepezil microspheres: Formulation development and evaluation. J Control Release 2021; 340:72-86. [PMID: 34715262 DOI: 10.1016/j.jconrel.2021.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/17/2021] [Indexed: 11/15/2022]
Abstract
Novel formulations of donepezil (DNP)-loaded microspheres based on a bio-degradable polymer of poly(lactic-co-glycolic acid) (PLGA) with a one-month duration of effect were developed, aimed at reducing dosing frequency and adverse effects and improving patient adherence. The spherical and monodispersed DNP-loaded microspheres were precisely fabricated by the Inventage Lab Precision Particle Fabrication method (IVL-PPFM®) based on micro-electromechanical systems (MEMS) and microfluidic technology. The types of polymers and end-groups, the drug/polymer ratio (DPR), and the routes of administration for DNP were studied to ensure an effective concentration and desired duration. Laser-light particle size analysis and scanning electron microscopy were used to characterization. Also, non-clinical animal models of beagle dogs are used to optimize DNP formulations and evaluate their pharmacokinetic properties. The PK results showed that the DPR was a critical factor in determining the exposure level and duration of DNR release. Furthermore, the lactide ratio, which varied depending upon the type of polymer, determined the hydrophobic interaction and was also an important factor affecting the desired DNP release. Since DNP shows a large inter-species variation between dogs and humans, PK modeling and simulation of the reference drug (i.e., Aricept®) and DNP-loaded microspheres were used for formulation development to overcome and interpret these variations. In addition, the developed PK model was extrapolated to humans using the estimated PK parameter and published clinical pharmacology data for DNP. The predicted PK profile of the DNP-loaded microsphere in humans showed that the formulation with PLGA 7525A and the DPR of 1/9 could maintain drug concentration for a month and could control initial burst release. The data obtained from the study could be used as scientific evidence for decision-making in future formulation development.
Collapse
Affiliation(s)
- Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Sangno Lee
- Headquarter, Inventage Lab, Inc., 12, Yanghyeon-ro 405beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do 13438, Republic of Korea
| | - Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ju Hee Kim
- Headquarter, Inventage Lab, Inc., 12, Yanghyeon-ro 405beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do 13438, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
40
|
Wang YL, Hu JJ. Sub-100-micron calcium-alginate microspheres: Preparation by nitrogen flow focusing, dependence of spherical shape on gas streams and a drug carrier using acetaminophen as a model drug. Carbohydr Polym 2021; 269:118262. [PMID: 34294295 DOI: 10.1016/j.carbpol.2021.118262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022]
Abstract
We developed a miniature gas-liquid coaxial flow device using glass capillaries, aiming to produce sub-100-μm Ca-alginate microspheres. Depending on collecting distance and the flow rates of nitrogen gas and alginate solution, however, Ca-alginate microparticles of different shapes were obtained. Spherical, monodisperse microparticles (microspheres) could only be obtained at certain gas flow rates and within a corresponding range of collecting distance. The result suggests that, for particles of this size, the gas flow rate and collecting distance are crucial for the formation of the spherical shape. We evaluated, as an example of its applications, the microsphere as a drug carrier using acetaminophen as a model drug. Large (~150 μm) and small (~70 μm) drug-loaded microspheres were prepared using two respective devices. Specifically, the drug-loaded microspheres were complexed with chitosan of different molecular weights. The dependence of in vitro drug release on the microsphere size and the chitosan molecular weight was examined. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Alginic acid sodium salt (PubChem CID: 5102882); Chitosan (PubChem CID: 71853); Calcium chloride (PubChem CID: 5284359); Sodium chloride (PubChem CID: 5234); Acetaminophen (PubChem CID: 1983); Polydimethylsiloxane (PubChem CID: 24771); n-Octadecyltrimethoxysilane (PubChem CID: 76486).
Collapse
Affiliation(s)
- Ying-Lin Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Jia Hu
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
41
|
Mitra S, Gera R, Linderoth B, Lind G, Wahlberg L, Almqvist P, Behbahani H, Eriksdotter M. A Review of Techniques for Biodelivery of Nerve Growth Factor (NGF) to the Brain in Relation to Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:167-191. [PMID: 34453298 DOI: 10.1007/978-3-030-74046-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Age-dependent progressive neurodegeneration and associated cognitive dysfunction represent a serious concern worldwide. Currently, dementia accounts for the fifth highest cause of death, among which Alzheimer's disease (AD) represents more than 60% of the cases. AD is associated with progressive cognitive dysfunction which affects daily life of the affected individual and associated family. The cognitive dysfunctions are at least partially due to the degeneration of a specific set of neurons (cholinergic neurons) whose cell bodies are situated in the basal forebrain region (basal forebrain cholinergic neurons, BFCNs) but innervate wide areas of the brain. It has been explicitly shown that the delivery of the neurotrophic protein nerve growth factor (NGF) can rescue BFCNs and restore cognitive dysfunction, making NGF interesting as a potential therapeutic substance for AD. Unfortunately, NGF cannot pass through the blood-brain barrier (BBB) and thus peripheral administration of NGF protein is not viable therapeutically. NGF must be delivered in a way which will allow its brain penetration and availability to the BFCNs to modulate BFCN activity and viability. Over the past few decades, various methodologies have been developed to deliver NGF to the brain tissue. In this chapter, NGF delivery methods are discussed in the context of AD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.
| | - Ruchi Gera
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Almqvist
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Homira Behbahani
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Karolinska Universitets laboratoriet (LNP5), Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
42
|
Aubeux D, Peters OA, Hosseinpour S, Tessier S, Geoffroy V, Pérez F, Gaudin A. Specialized pro-resolving lipid mediators in endodontics: a narrative review. BMC Oral Health 2021; 21:276. [PMID: 34030680 PMCID: PMC8142493 DOI: 10.1186/s12903-021-01619-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/09/2021] [Indexed: 02/06/2023] Open
Abstract
Endodontics is the branch of dentistry concerned with the morphology, physiology, and pathology of the human dental pulp and periradicular tissues. Human dental pulp is a highly dynamic tissue equipped with a network of resident immunocompetent cells that play major roles in the defense against pathogens and during tissue injury. However, the efficiency of these mechanisms during dental pulp inflammation (pulpitis) varies due to anatomical and physiological restrictions. Uncontrolled, excessive, or unresolved inflammation can lead to pulp tissue necrosis and subsequent bone infections called apical periodontitis. In most cases, pulpitis treatment consists of total pulp removal. Although this strategy has a good success rate, this treatment has some drawbacks (lack of defense mechanisms, loss of healing capacities, incomplete formation of the root in young patients). In a sizeable number of clinical situations, the decision to perform pulp extirpation and endodontic treatment is justifiable by the lack of therapeutic tools that could otherwise limit the immune/inflammatory process. In the past few decades, many studies have demonstrated that the resolution of acute inflammation is necessary to avoid the development of chronic inflammation and to promote repair or regeneration. This active process is orchestrated by Specialized Pro-resolving lipid Mediators (SPMs), including lipoxins, resolvins, protectins and maresins. Interestingly, SPMs do not have direct anti-inflammatory effects by inhibiting or directly blocking this process but can actively reduce neutrophil infiltration into inflamed tissues, enhance efferocytosis and bacterial phagocytosis by monocytes and macrophages and simultaneously inhibit inflammatory cytokine production. Experimental clinical application of SPMs has shown promising result in a wide range of inflammatory diseases, such as renal fibrosis, cerebral ischemia, marginal periodontitis, and cancer; the potential of SPMs in endodontic therapy has recently been explored. In this review, our objective was to analyze the involvement and potential use of SPMs in endodontic therapies with an emphasis on SPM delivery systems to effectively administer SPMs into the dental pulp space.
Collapse
Affiliation(s)
- Davy Aubeux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
| | - Ove A Peters
- School of Dentistry, The University of Queensland, Brisbane, Australia
| | | | - Solène Tessier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
| | - Valérie Geoffroy
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
| | - Fabienne Pérez
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
- CHU Nantes, PHU4 OTONN44093, Nantes, France
| | - Alexis Gaudin
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France.
- Université de Nantes, UFR Odontologie, 44042, Nantes, France.
- CHU Nantes, PHU4 OTONN44093, Nantes, France.
| |
Collapse
|
43
|
Patel M, Jha A, Patel R. Potential application of PLGA microsphere for tissue engineering. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02562-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Forigua A, Kirsch RL, Willerth SM, Elvira KS. Recent advances in the design of microfluidic technologies for the manufacture of drug releasing particles. J Control Release 2021; 333:258-268. [PMID: 33766691 DOI: 10.1016/j.jconrel.2021.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Drug releasing particles are valued for their ability to deliver therapeutics to targeted locations and for their controllable release patterns. The development of microfluidic technologies, which are designed specifically to manipulate small amounts of fluids, to manufacture particles for drug delivery applications reflects a recent trend due to the advantages they confer in terms of control over particle size and material composition. This review takes a comprehensive look at the different types of microfluidic devices used to fabricate such particles from different types of biomaterials, and at how the on-chip features enable the production of particles with different types of properties. The review concludes by suggesting avenues for future work that will enable these technologies to fulfill their potential and be used in industrial settings for the manufacture of drug releasing particles with unique capabilities.
Collapse
Affiliation(s)
- Alejandro Forigua
- Department of Chemistry, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Rebecca L Kirsch
- Department of Chemistry, University of Victoria, Victoria, BC V8W 2Y2, Canada; Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Katherine S Elvira
- Department of Chemistry, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| |
Collapse
|
45
|
Gomeni R, Bressolle-Gomeni F. Modeling Complex Pharmacokinetics of Long-Acting Injectable Products Using Convolution-Based Models With Nonparametric Input Functions. J Clin Pharmacol 2021; 61:1081-1095. [PMID: 33606280 PMCID: PMC8359850 DOI: 10.1002/jcph.1842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/16/2021] [Indexed: 11/11/2022]
Abstract
The interest in the development and the therapeutic use of long-acting injectable (LAI) products for chronic or long-term treatments has grown exponentially. The complexity and the multiphase drug release process represent serious issues for an effective modeling of the PK properties of LAI products. The objective of this article is to show how convolution-based models with piecewise-linear approximation of the nonlinear drug release function can provide an enhanced modeling tool for (1) characterizing the complex PK profiles of LAI formulations with completely different drug release properties, and (2) addressing key questions supporting the optimal development of LAI products by simulating the PK time course resulting from different dosing strategies. Convolution-based modeling and simulation were implemented in NONMEM, and 3 case studies were presented to assess the performances of this new modeling approach using PK data of LAI products developed using different technologies and administered using different routes: microsphere technology and aqueous nanosuspension intramuscularly administered and biodegradable polymer subcutaneously administered. The performance of the convolution-based modeling approach was compared with the performance of conventional parametric models using a reference data set on theophylline. The results of the comparison indicated that the nonparametric input function provided a more accurate description of the data either in terms of global measure of goodness of fit (ie, Akaike information criterion and Bayesian information criterion) or in terms of performance of the fitted model (ie, the percent prediction error on Cma x and AUC0-t ).
Collapse
Affiliation(s)
- Roberto Gomeni
- R&D Department, Pharmacometrica, Longcol, La Fouillade, France
| | | |
Collapse
|
46
|
The Issue of Tissue: Approaches and Challenges to the Light Control of Drug Activity. CHEMPHOTOCHEM 2021; 5:611-618. [DOI: 10.1002/cptc.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Distler T, Kretzschmar L, Schneidereit D, Girardo S, Goswami R, Friedrich O, Detsch R, Guck J, Boccaccini AR, Budday S. Mechanical properties of cell- and microgel bead-laden oxidized alginate-gelatin hydrogels. Biomater Sci 2021; 9:3051-3068. [PMID: 33666608 DOI: 10.1039/d0bm02117b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
3D-printing technologies, such as biofabrication, capitalize on the homogeneous distribution and growth of cells inside biomaterial hydrogels, ultimately aiming to allow for cell differentiation, matrix remodeling, and functional tissue analogues. However, commonly, only the mechanical properties of the bioinks or matrix materials are assessed, while the detailed influence of cells on the resulting mechanical properties of hydrogels remains insufficiently understood. Here, we investigate the properties of hydrogels containing cells and spherical PAAm microgel beads through multi-modal complex mechanical analyses in the small- and large-strain regimes. We evaluate the individual contributions of different filler concentrations and a non-fibrous oxidized alginate-gelatin hydrogel matrix on the overall mechanical behavior in compression, tension, and shear. Through material modeling, we quantify parameters that describe the highly nonlinear mechanical response of soft composite materials. Our results show that the stiffness significantly drops for cell- and bead concentrations exceeding four million per milliliter hydrogel. In addition, hydrogels with high cell concentrations (≥6 mio ml-1) show more pronounced material nonlinearity for larger strains and faster stress relaxation. Our findings highlight cell concentration as a crucial parameter influencing the final hydrogel mechanics, with implications for microgel bead drug carrier-laden hydrogels, biofabrication, and tissue engineering.
Collapse
Affiliation(s)
- T Distler
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.
| | - L Kretzschmar
- Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.
| | - D Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91056 Erlangen, Germany
| | - S Girardo
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - R Goswami
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - O Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91056 Erlangen, Germany
| | - R Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.
| | - J Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen-Nürnberg, 91058 Erlangen, Germany and Chair of Biological Optomechanics, Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.
| | - S Budday
- Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.
| |
Collapse
|
48
|
Nanoparticles and Nanocrystals by Supercritical CO2-Assisted Techniques for Pharmaceutical Applications: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041476] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many active ingredients currently prescribed show limited therapeutic efficacy, mainly due to their dissolution rate inadequate to treat the pathology of interest. A large drug particle size creates an additional problem if a specific site of action in the human body has to be reached. For this reason, active ingredient size reduction using micronization/nanonization techniques is a valid approach to improve the efficacy of active compounds. Supercritical carbon-dioxide-assisted technologies enable the production of different morphologies of different sizes, including nanoparticles and nanocrystals, by modulating operating conditions. Supercritical fluid-based processes have numerous advantages over techniques conventionally employed to produce nanosized particles or crystals, such as reduced use of toxic solvents, which are completely removed from the final product, ensuring safety for patients. Active compounds can be processed alone by supercritical techniques, although polymeric carriers are often added as stabilizers, to control the drug release on the basis of the desired therapeutic effect, as well as to improve drug processability with the chosen technology. This updated review on the application of supercritical micronization/nanonization techniques in the pharmaceutical field aims at highlighting the most effective current results, operating conditions, advantages, and limitations, providing future perspectives.
Collapse
|
49
|
Li T, Wang T, Wang L, Liu R, Zhang L, Zhai R, Fu F. Antinociceptive effects of rotigotine-loaded microspheres and its synergistic interactions with analgesics in inflammatory pain in rats. Eur J Pharmacol 2021; 891:173693. [PMID: 33160937 DOI: 10.1016/j.ejphar.2020.173693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 01/24/2023]
Abstract
Rotigotine-loaded microspheres (RoMS) are sustained-release formulations with prolonged anti-Parkinson's effects. Given that pain is a non-motor symptom of Parkinson's disease, this study investigated the antinociceptive effects of RoMS and their synergistic effects with analgesics on inflammatory pain. A model of inflammatory pain was prepared by intraplantarly injecting male Sprague-Dawley rats with carrageenan. The antinociceptive effects of RoMS, acetaminophen, and tramadol, both alone and in combination, were evaluated using the hind paw withdrawal latency in the hot plate test and Randall-Selitto test. The rotigotine concentrations in serum and tissues were assayed using ultra-performance liquid chromatography-tandem mass spectrometry. Isobolographic analysis was performed to evaluate the nature of the interactions of RoMS with acetaminophen or tramadol. The results showed that hind paw withdrawal latency to thermal and mechanical stimuli was significantly increased on day 3 and 7 after administered RoMS. Rotigotine could be detected in serum and tissues 3 and 7 days after an intramuscular injection of RoMS. However, the rotigotine concentration fell the detection limit of the assay on day 14 after administration. RoMS produced synergistic antinociceptive effects in the inflammatory pain model when RoMS is combined with acetaminophen or tramadol. These findings suggest that RoMS can relieve inflammatory pain in rats. Furthermore, the combination of RoMS with acetaminophen or tramadol produces synergistic antinociception, which may be clinically worthy because combination therapies may reduce the drug doses required for antinociception.
Collapse
Affiliation(s)
- Ting Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Linlin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Leiming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Rong Zhai
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, PR China; State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Luye Pharma Group Ltd., Yantai, Shandong, 264003, PR China.
| |
Collapse
|
50
|
Baldwin ET, Wells LA. Hyaluronic Acid and Poly-l-Lysine Layers on Calcium Alginate Microspheres to Modulate the Release of Encapsulated FITC-Dextran. J Pharm Sci 2021; 110:2472-2478. [PMID: 33450219 DOI: 10.1016/j.xphs.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/12/2020] [Accepted: 01/03/2021] [Indexed: 11/25/2022]
Abstract
Alginate solutions crosslink into microspheres in calcium alginate, enabling the encapsulation and subsequent release of biological macromolecules and drugs. However, release from calcium alginate into PBS is relatively fast because it will decrosslink the gel relatively quickly. In this research, FITC-dextran (MW 10 kDa) was encapsulated in 2% (w/v) calcium alginate microspheres by electrospraying. The resulting microspheres (diameter = 247 ± 13 μm) were then layered with thin polyelectrolyte films of hyaluronic acid (HA) and poly-l-lysine (PLL) to attempt to slow the diffusion of FITC-dextran out of the microspheres and the coating parameters were modified to modulate diffusion and release. Increasing the concentration of FITC-dextran encapsulated in the microspheres resulted in an increase in its release over time into PBS. Crosslinking PLL/HA layers on the microspheres did not decrease the in vitro release rates of encapsulated FITC-dextran into PBS. Increasing the number of layers on the microspheres from 3 to 5 layers significantly decreased the amount of encapsulated FITC-dextran released. However, increasing the number of layers to 7 did not further sustain the release of FITC-dextran, likely because these microspheres collapsed to a smaller size during the coating procedure, resulting in release controlled by both diffusion and swelling. Multiple layers of PLL and HA provided a robust mechanism to sustain and control release of large molecules from calcium alginate.
Collapse
Affiliation(s)
- Emily T Baldwin
- Department of Chemical Engineering, Queen's University, 99 University Ave., Kingston, Ontario, Canada
| | - Laura A Wells
- Department of Chemical Engineering, Queen's University, 99 University Ave., Kingston, Ontario, Canada.
| |
Collapse
|