1
|
Husni ME, Sun C, Chandrasekharan UM, Hwang ST. Advancing Basic and Translational Science: Highlights From the Basic Science Workshop at the GRAPPA 2023 Annual Meeting. J Rheumatol 2024; 51:84-88. [PMID: 39009391 PMCID: PMC11444898 DOI: 10.3899/jrheum.2024-0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 07/17/2024]
Abstract
Contemporary translational and clinical research advances in psoriatic disease (PsD) were highlighted at the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) 2023 annual meeting basic science workshop. This year's workshop focused on key topics, including the significance of the annual GRAPPA meetings as a platform for collaboration and knowledge exchange. Discussions centered around expanding our understanding of tumor necrosis factor inhibitor (TNFi) treatment in PsD and enhancing early detection strategies for PsD comorbidities, specifically for the timely intervention and management of cardiovascular (CV) comorbidities. Insights on the role of the C-C chemokine receptor type 6 (CCR6) in PsD and psoriatic arthritis were provided, suggesting that blockade of CCR6 can reduce psoriasis-like dermatitis and joint inflammation in mouse models.
Collapse
Affiliation(s)
- M Elaine Husni
- M.E. Husni, MD, MPH, Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, Ohio;
| | - Chris Sun
- C. Sun, Case Western Reserve University, Cleveland, Ohio
| | - Unnikrishnan M Chandrasekharan
- U.M. Chandrasekharan, PhD, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Samuel T Hwang
- S.T. Hwang, MD, PhD, Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
2
|
Chennareddy S, Rindler K, Ruggiero JR, Alkon N, Cohenour ER, Tran S, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell RNA sequencing comparison of CD4+, CD8+ and TCR-γδ+ cutaneous T-cell lymphomas reveals subset-specific molecular phenotypes. Br J Dermatol 2024:ljae313. [PMID: 39133553 DOI: 10.1093/bjd/ljae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Malignant clones of primary cutaneous T-cell lymphomas (CTCL) can show a CD4, CD8 or TCR-γδ phenotype, but their individual impact on tumor biology and skin lesion formation remains ill-defined. OBJECTIVES To perform a comprehensive molecular characterization of CD4+ vs. CD8+ and TCR-γ/δ+ CTCL lesions. METHODS We performed scRNA-seq of 18 CTCL skin biopsies to compare classic CD4+ advanced-stage mycosis fungoides (MF) with TCR-γ/δ+MF and primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma (Berti's lymphoma). RESULTS Malignant clones of TCR-γ/δ+MF and Berti's lymphoma showed similar clustering patterns distinct from CD4+MF, along with increased expression of cytotoxic markers such as NKG7, CTSW, GZMA, and GZMM. Only advanced-stage CD4+MF clones expressed central memory T-cell markers (SELL, CCR7, LEF1), alongside B1/B2 blood involvement, whereas TCR-γ/δ+MF and Berti's lymphoma harbored a more tissue-resident phenotype (CD69, CXCR4, NR4A1) without detectable cells in the blood. CD4+MF and TCR-γ/δ+MF skin lesions harbored strong type 2 immune activation across myeloid cells, while Berti's lymphoma was more skewed towards type 1 immune responses. Both CD4+MF and TCR-γ/δ+MF lesions showed upregulation of keratinocyte hyperactivation markers such as S100As and KRT16 genes. This increase was entirely absent in Berti's lymphoma, possibly reflecting an aberrant keratinocyte response to invading tumor cells, that could contribute to the formation of the typical ulcero-necrotic lesions within this entity. CONCLUSIONS Our scRNAseq profiling study reveals specific molecular patterns associated with distinct CTCL subtypes.
Collapse
Affiliation(s)
- Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Austria
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Tran
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Alsabbagh MM. Cytokines in psoriasis: From pathogenesis to targeted therapy. Hum Immunol 2024; 85:110814. [PMID: 38768527 DOI: 10.1016/j.humimm.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Psoriasis is a multifactorial disease that affects 0.84% of the global population and it can be associated with disabling comorbidities. As patients present with thick scaly lesions, psoriasis was long believed to be a disorder of keratinocytes. Psoriasis is now understood to be the outcome of the interaction between immunological and environmental factors in individuals with genetic predisposition. While it was initially thought to be solely mediated by cytokines of type-1 immunity, namely interferon-γ, interleukin-2, and interleukin-12 because it responds very well to cyclosporine, a reversible IL-2 inhibitor; the discovery of Th-17 cells advanced the understanding of the disease and helped the development of biological therapy. This article aims to provide a comprehensive review of the role of cytokines in psoriasis, highlighting areas of controversy and identifying the connection between cytokine imbalance and disease manifestations. It also presents the approved targeted treatments for psoriasis and those currently under investigation.
Collapse
Affiliation(s)
- Manahel Mahmood Alsabbagh
- Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders and Department of Molecular Medicine, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
4
|
Shi ZR, Mabuchi T, Riutta SJ, Wu X, Peterson FC, Volkman BF, Hwang ST. The Chemokine, CCL20, and Its Receptor, CCR6, in the Pathogenesis and Treatment of Psoriasis and Psoriatic Arthritis. JOURNAL OF PSORIASIS AND PSORIATIC ARTHRITIS 2023; 8:107-117. [PMID: 39296310 PMCID: PMC11361516 DOI: 10.1177/24755303231159106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Background Chemokines represent a superfamily of immune-modulatory small protein molecules that regulate leukocyte migration to inflammatory sites through their chemoattractant and cell signaling properties. This review focuses on the immunological functions of the CCR6 chemokine receptor and is chemokine ligand, CCL20, that contribute to it role in inflammation in human psoriasis. Methods Peer-reviewed relevant articles are searched and selected from 2000 to 2022 using the search engines including PubMed and Google Scholar. Results After selectively reviewing and evaluating over seventy articles, a comprehensive overview on the immunology of CCL20-CCR6 axis in psoriasis and psoriatic arthritis, the X-ray crystal structures of CCL20 monomers, and the potential of developing clinical therapies targeting this axis is summarized. Conclusions Over the past decade, preclinical studies carried out in animal models of psoriasis involving agents targeting CCL20-CCR6 axis have yielded promising results. Other studies that this axis may play a role in a number of other autoimmune diseases, including rheumatoid arthritis, suggesting a rationale for further investigation into this key signaling/migratory pathway.
Collapse
Affiliation(s)
- Zhen-Rui Shi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Guang-zhou, China
| | - Tomotaka Mabuchi
- Department of Dermatology, Tokai University School of Medicine, Isehara, Japan
| | - Sarah J Riutta
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xuesong Wu
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sam T Hwang
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
5
|
Lee SY, Cheah JS, Zhao B, Xu C, Roh H, Kim CK, Cho KF, Udeshi ND, Carr SA, Ting AY. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. Nat Methods 2023; 20:908-917. [PMID: 37188954 PMCID: PMC10539039 DOI: 10.1038/s41592-023-01880-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.
Collapse
Affiliation(s)
- Song-Yi Lee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Joleen S Cheah
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Boxuan Zhao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Charles Xu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heegwang Roh
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Christina K Kim
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Neuroscience and Department of Neurology, University of California, Davis, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Amgen Research, South San Francisco, CA, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Tanaka T, Tawara M, Suzuki H, Kaneko MK, Kato Y. Identification of the Binding Epitope of an Anti-Mouse CCR6 Monoclonal Antibody (C 6Mab-13) Using 1× Alanine Scanning. Antibodies (Basel) 2023; 12:antib12020032. [PMID: 37218898 DOI: 10.3390/antib12020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
CC chemokine receptor 6 (CCR6) is one of the members of the G-protein-coupled receptor (GPCR) family that is upregulated in many immune-related cells, such as B lymphocytes, effector and memory T cells, regulatory T cells, and immature dendritic cells. The coordination between CCR6 and its ligand CC motif chemokine ligand 20 (CCL20) is deeply involved in the pathogenesis of various diseases, such as cancer, psoriasis, and autoimmune diseases. Thus, CCR6 is an attractive target for therapy and is being investigated as a diagnostic marker for various diseases. In a previous study, we developed an anti-mouse CCR6 (mCCR6) monoclonal antibody (mAb), C6Mab-13 (rat IgG1, kappa), that was applicable for flow cytometry by immunizing a rat with the N-terminal peptide of mCCR6. In this study, we investigated the binding epitope of C6Mab-13 using an enzyme-linked immunosorbent assay (ELISA) and the surface plasmon resonance (SPR) method, which were conducted with respect to the synthesized point-mutated-peptides within the 1-20 amino acid region of mCCR6. In the ELISA results, C6Mab-13 lost its ability to react to the alanine-substituted peptide of mCCR6 at Asp11, thereby identifying Asp11 as the epitope of C6Mab-13. In our SPR analysis, the dissociation constants (KD) could not be calculated for the G9A and D11A mutants due to the lack of binding. The SPR analysis demonstrated that the C6Mab-13 epitope comprises Gly9 and Asp11. Taken together, the key binding epitope of C6Mab-13 was determined to be located around Asp11 on mCCR6. Based on the epitope information, C6Mab-13 could be useful for further functional analysis of mCCR6 in future studies.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mayuki Tawara
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Gómez-Melero S, Caballero-Villarraso J. CCR6 as a Potential Target for Therapeutic Antibodies for the Treatment of Inflammatory Diseases. Antibodies (Basel) 2023; 12:30. [PMID: 37092451 PMCID: PMC10123731 DOI: 10.3390/antib12020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
The CC chemokine receptor 6 (CCR6) is a G protein-coupled receptor (GPCR) involved in a wide range of biological processes. When CCR6 binds to its sole ligand CCL20, a signaling network is produced. This pathway is implicated in mechanisms related to many diseases, such as cancer, psoriasis, multiple sclerosis, HIV infection or rheumatoid arthritis. The CCR6/CCL20 axis plays a fundamental role in immune homeostasis and activation. Th17 cells express the CCR6 receptor and inflammatory cytokines, including IL-17, IL-21 and IL-22, which are involved in the spread of inflammatory response. The CCL20/CCR6 mechanism plays a crucial role in the recruitment of these pro-inflammatory cells to local tissues. To date, there are no drugs against CCR6 approved, and the development of small molecules against CCR6 is complicated due to the difficulty in screenings. This review highlights the potential as a therapeutic target of the CCR6 receptor in numerous diseases and the importance of the development of antibodies against CCR6 that could be a promising alternative to small molecules in the treatment of CCR6/CCL20 axis-related pathologies.
Collapse
Affiliation(s)
- Sara Gómez-Melero
- Maimonides Biomedical Research Institute of Cordoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Biomedical Research Institute of Cordoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
8
|
Lee SY, Cheah JS, Zhao B, Xu C, Roh H, Kim CK, Cho KF, Udeshi ND, Carr SA, Ting AY. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531939. [PMID: 36945504 PMCID: PMC10028978 DOI: 10.1101/2023.03.09.531939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions, and function with light. We integrated optogenetic control into proximity labeling (PL), a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the PL enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. "LOV-Turbo" works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffick between endoplasmic reticulum, nuclear, and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by BRET from luciferase, enabling interaction-dependent PL. Overall, LOV-Turbo increases the spatial and temporal precision of PL, expanding the scope of experimental questions that can be addressed with PL.
Collapse
|
9
|
Parween F, Singh SP, Zhang HH, Kathuria N, Otaizo-Carrasquero FA, Shamsaddini A, Gardina PJ, Ganesan S, Kabat J, Lorenzi HA, Myers TG, Farber JM. Chemokine positioning determines mutually exclusive roles for their receptors in extravasation of pathogenic human T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525561. [PMID: 36789428 PMCID: PMC9928044 DOI: 10.1101/2023.01.25.525561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pro-inflammatory T cells co-express multiple chemokine receptors, but the distinct functions of individual receptors on these cells are largely unknown. Human Th17 cells uniformly express the chemokine receptor CCR6, and we discovered that the subgroup of CD4+CCR6+ cells that co-express CCR2 possess a pathogenic Th17 signature, can produce inflammatory cytokines independent of TCR activation, and are unusually efficient at transendothelial migration (TEM). The ligand for CCR6, CCL20, was capable of binding to activated endothelial cells (ECs) and inducing firm arrest of CCR6+CCR2+ cells under conditions of flow - but CCR6 could not mediate TEM. By contrast, CCL2 and other ligands for CCR2, despite being secreted from both luminal and basal sides of ECs, failed to bind to the EC surfaces - and CCR2 could not mediate arrest. Nonetheless, CCR2 was required for TEM. To understand if CCR2's inability to mediate arrest was due solely to an absence of EC-bound ligands, we generated a CCL2-CXCL9 chimeric chemokine that could bind to the EC surface. Although display of CCL2 on the ECs did indeed lead to CCR2-mediated arrest of CCR6+CCR2+ cells, activating CCR2 with surface-bound CCL2 blocked TEM. We conclude that mediating arrest and TEM are mutually exclusive activities of chemokine receptors and/or their ligands that depend, respectively, on chemokines that bind to the EC luminal surfaces versus non-binding chemokines that form transendothelial gradients under conditions of flow. Our findings provide fundamental insights into mechanisms of lymphocyte extravasation and may lead to novel strategies to block or enhance their migration into tissue.
Collapse
Affiliation(s)
- Farhat Parween
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Satya P. Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hongwei H Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Nausheen Kathuria
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Francisco A. Otaizo-Carrasquero
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Amirhossein Shamsaddini
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Paul J. Gardina
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Sundar Ganesan
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Juraj Kabat
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hernan A. Lorenzi
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Timothy G. Myers
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Joshua M. Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
10
|
Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice. Nat Commun 2022; 13:4255. [PMID: 35869084 PMCID: PMC9307837 DOI: 10.1038/s41467-022-31935-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
CaMK4 has an important function in autoimmune diseases, and the contribution of CaMK4 in psoriasis remains obscure. Here, we show that CaMK4 expression is significantly increased in psoriatic lesional skin from psoriasis patients compared to healthy human skin as well as inflamed skin from an imiquimod (IMQ)-induced mouse model of psoriasis compared to healthy mouse skin. Camk4-deficient (Camk4−/−) mice treated with IMQ exhibit reduced severity of psoriasis compared to wild-type (WT) mice. There are more macrophages and fewer IL-17A+γδ TCR+ cells in the skin of IMQ-treated Camk4−/− mice compared to IMQ-treated WT mice. CaMK4 inhibits IL-10 production by macrophages, thus allowing excessive psoriatic inflammation. Deletion of Camk4 in macrophages alleviates IMQ-induced psoriatic inflammation in mice. In keratinocytes, CaMK4 inhibits apoptosis as well as promotes cell proliferation and the expression of pro-inflammatory genes such as S100A8 and CAMP. Taken together, these data indicate that CaMK4 regulates IMQ-induced psoriasis by sustaining inflammation and provides a potential target for psoriasis treatment. Calcium/calmodulin-dependent protein kinase IV (CaMK4) has been shown to be involved in autoimmunity but it is not clear how it functions in psoriasis. Here the authors show that CaMK4 is increased in psoriasis and promotes inflammatory responses in mouse models of psoriasis mediated through macrophages and keratinocytes.
Collapse
|
11
|
Shi Z, Garcia-Melchor E, Wu X, Getschman AE, Nguyen M, Rowland DJ, Wilson M, Sunzini F, Akbar M, Huynh M, Law T, Kundu-Raychaudhuri SK, Raychaudhuri SP, Volkman BF, Millar NL, Hwang ST. Targeting the CCR6/CCL20 axis in entheseal and cutaneous inflammation. Arthritis Rheumatol 2021; 73:2271-2281. [PMID: 34081845 DOI: 10.1002/art.41882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES To assess the involvement of the CCR6/CCL20 axis in psoriatic arthritis (PsA) and psoriasis (PsO) and to evaluate its potential as a therapeutic target. METHODS First, we quantified CCL20 levels in peripheral blood and synovial fluid of PsA patients and the presence of CCR6+ cells in synovial and tendon tissue. Utilizing an IL-23 minicircle DNA (MC) mouse model exhibiting key features of both PsO and PsA, we investigated CCR6 and CCL20 expression and the preventive and therapeutical effect of CCL20 blockade. Healthy tendon stromal cells were stimulated in vitro with IL-1β to assess the production of CCL20 by qPCR and ELISA. The effect of conditioned media from stimulated tenocytes in inducing T cell migration was interrogated with a transwell system. RESULTS We observed an upregulation of both CCR6 and CCL20 in the enthesis of IL-23 MC-treated mice, which was confirmed in human biopsies. Specific targeting of the CCR6/CCL20 axis with a CCL20 locked dimer (CCL20LD) blocked entheseal inflammation, leading to profound reductions in clinical and proinflammatory markers in the joints and skin of IL-23 MC-treated mice. The stromal compartment in the tendon was the main source of CCL20 in this model and accordingly, in vitro activated human tendon cells were able to produce this chemokine and to induce CCR6+ T cell migration, the latter of which could be blocked by CCL20LD. CONCLUSIONS Our studies highlight the pathogenic role of CCR6-CCL20 axis in enthesitis and raise the prospect of a novel therapeutic approach for treating patients with PsO and PsA.
Collapse
Affiliation(s)
- Zhenrui Shi
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA.,Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Emma Garcia-Melchor
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, UK
| | - Xuesong Wu
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | | | - Mimi Nguyen
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, Sacramento, CA, USA
| | - Machelle Wilson
- Division of Biostatistics, Clinical and Translational Science Center, University of California, Davis, Sacramento, CA, USA
| | - Flavia Sunzini
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, UK
| | - Moeed Akbar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mindy Huynh
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Timothy Law
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Smriti K Kundu-Raychaudhuri
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, CA, USA
| | - Siba P Raychaudhuri
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, CA, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, WI, USA
| | - Neal L Millar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, UK
| | - Sam T Hwang
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
12
|
Zhao J, Xie X, Di T, Liu Y, Qi C, Chen Z, Li P, Wang Y. Indirubin attenuates IL-17A-induced CCL20 expression and production in keratinocytes through repressing TAK1 signaling pathway. Int Immunopharmacol 2021; 94:107229. [PMID: 33611057 DOI: 10.1016/j.intimp.2020.107229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Psoriatic skin inflammation is mainly driven by complex interactions of infiltrating immune cells and activated keratinocytes. Keratinocytes play an active role in initiating and maintenance of psoriatic skin inflammation by secreting chemokines and cytokines. IL-17A produced by T cells potently upregulates the production of chemokine CCL20 in the keratinocytes, which further chemoattracts IL-17A-producing CCR6+ immune cells to the site of inflammation. Indirubin, an active constituent of indigo naturalis, has been reported to possess anti-inflammatory activities, but whether it can suppress the production of chemokines in keratinocytes is largely unknown. To address this question, IL-17A stimulated HaCaT cells were used as cell model to explore the effects of indirubin on the expression and secretion of chemokines. Also, RNA-seq analysis was performed to extensively understand the entire gene expression changes after indirubin treatment and identify the differentially expressed genes further. Indirubin treatment strongly inhibited CCL20 expression and secretion in IL-17A stimulated HaCaT cells. The inhibitory action of indirubin on CCL20 expression was mainly mediated by TAK1 signaling pathway in a mouse psoriasis-like model and cultured HaCaT cells in vitro. Combining with our previous report, indirubin ameliorated psoriasiform dermatitis by breaking CCL20/CCR6 axis-mediated inflammatory loops. Our results provide novel insights into the mechanisms of indirubin in the treatment of psoriasis.
Collapse
Affiliation(s)
- Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Xiangjiang Xie
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Yu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China; Beijing University of Chinese Medicine, No. 11, North Three-ring East Road, Chaoyang District, Beijing 100029, PR China
| | - Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Zhaoxia Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China.
| |
Collapse
|
13
|
Qi C, Wang Y, Li P, Zhao J. Gamma Delta T Cells and Their Pathogenic Role in Psoriasis. Front Immunol 2021; 12:627139. [PMID: 33732249 PMCID: PMC7959710 DOI: 10.3389/fimmu.2021.627139] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
γδT cells are an unconventional population of T lymphocytes that play an indispensable role in host defense, immune surveillance, and homeostasis of the immune system. They display unique developmental, distributional, and functional patterns and rapidly respond to various insults and contribute to diverse diseases. Although γδT cells make up only a small portion of the total T cell pool, emerging evidence suggest that aberrantly activated γδT cells may play a role in the pathogenesis of psoriasis. Dermal γδT cells are the major IL-17-producing cells in the skin that respond to IL-23 stimulation. Furthermore, γδT cells exhibit memory-cell-like characteristics that mediate repeated episodes of psoriatic inflammation. This review discusses the differentiation, development, distribution, and biological function of γδT cells and the mechanisms by which they contribute to psoriasis. Potential therapeutic approaches targeting these cells in psoriasis have also been detailed.
Collapse
Affiliation(s)
- Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Wasilko DJ, Johnson ZL, Ammirati M, Che Y, Griffor MC, Han S, Wu H. Structural basis for chemokine receptor CCR6 activation by the endogenous protein ligand CCL20. Nat Commun 2020; 11:3031. [PMID: 32541785 PMCID: PMC7295996 DOI: 10.1038/s41467-020-16820-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
Chemokines are important protein-signaling molecules that regulate various immune responses by activating chemokine receptors which belong to the G protein-coupled receptor (GPCR) superfamily. Despite the substantial progression of our structural understanding of GPCR activation by small molecule and peptide agonists, the molecular mechanism of GPCR activation by protein agonists remains unclear. Here, we present a 3.3-Å cryo-electron microscopy structure of the human chemokine receptor CCR6 bound to its endogenous ligand CCL20 and an engineered Go. CCL20 binds in a shallow extracellular pocket, making limited contact with the core 7-transmembrane (TM) bundle. The structure suggests that this mode of binding induces allosterically a rearrangement of a noncanonical toggle switch and the opening of the intracellular crevice for G protein coupling. Our results demonstrate that GPCR activation by a protein agonist does not always require substantial interactions between ligand and the 7TM core region. Chemokine receptors are GPCRs involved in immune responses and regulated by small protein ligands known as chemokines. A structural study of the human CCR6/CCL20–Go complex reveals that CCL20 binds in a shallow extracellular pocket, and suggests that activation of CCR6 by CCL20 binding involves an allosteric effect on a noncanonical toggle switch.
Collapse
Affiliation(s)
- David Jonathan Wasilko
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA
| | - Zachary Lee Johnson
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA
| | - Mark Ammirati
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA
| | - Ye Che
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA
| | - Matthew C Griffor
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA
| | - Seungil Han
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA
| | - Huixian Wu
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA.
| |
Collapse
|
15
|
Laffan SB, Thomson AS, Mai S, Fishman C, Kambara T, Nistala K, Raymond JT, Chen S, Ramani T, Pageon L, Polsky R, Watkins M, Ottolangui G, White JR, Maier C, Herdman M, Bouma G. Immune complex disease in a chronic monkey study with a humanised, therapeutic antibody against CCL20 is associated with complement-containing drug aggregates. PLoS One 2020; 15:e0231655. [PMID: 32325480 PMCID: PMC7180069 DOI: 10.1371/journal.pone.0231655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the potential for the chemokine class as therapeutic targets in immune mediated disease, success has been limited. Many chemokines can bind to multiple receptors and many receptors have multiple ligands, with few exceptions. One of those exceptions is CCL20, which exclusively pairs to CCR6 and is associated with several immunologic conditions, thus providing a promising therapeutic target. Following successful evaluation in a single dose, first time in human clinical study, GSK3050002—a humanized IgG1 monoclonal antibody against human CCL20—was evaluated in a 26-week cynomolgus monkey toxicology study. A high incidence of unexpected vascular and organ inflammation was observed microscopically, leading to the decision to halt clinical development. Here we report a dose-responsive increase in the incidence and severity of inflammation in multiple organs from monkeys receiving 30 and 300 mg/kg/week by either subcutaneous or intravenous injection. Histomorphological changes resembled an immune complex-mediated pathology, which is often due to formation of anti-drug antibodies in monkeys receiving a human protein therapeutic and thus not predictive of clinical outcome. However, the presentation was atypical in that there was a clear dose response with a very high incidence of inflammation with a low incidence of ADA that did not correlate well individually. Additionally, the immunohistologic presentation was atypical in that the severity and distribution of tissue inflammation was greater than the numbers of associated immune complexes (i.e., granular deposits). An extensive ex vivo analysis of large molecular weight protein complexes in monkey serum from this study and in human serum samples demonstrated a time-dependent aggregation of GSK3050002, that was not predicted by in vitro assays. The aggregates also contained complement components. These findings support the hypothesis that immune complexes of drug aggregates, not necessarily including anti-drug antibodies, can fix complement, accumulate over time, and trigger immune complex disease. A situation which may have increased clinical relevance than typical anti-drug antibody-associated immune complex disease in monkeys administered human antibody proteins.
Collapse
Affiliation(s)
- Susan B. Laffan
- In vitro In vivo Translation (IVIVT), R&D, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Andrew S. Thomson
- Biopharm Analytical Science, R&D Platform Technology and Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Shing Mai
- Biopharm Analytical Science, R&D Platform Technology and Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Cindy Fishman
- In vitro In vivo Translation (IVIVT), R&D, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Takahito Kambara
- Pathology, IVIVT, R&D, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Kiran Nistala
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - James T. Raymond
- Charles River Laboratories, Inc., Frederick, Maryland, United States of America
| | - Shugui Chen
- Biopharm Analytical Science, R&D Platform Technology and Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Thulasi Ramani
- Envigo CRS, Inc., Princeton, New Jersey, United States of America
| | - Laura Pageon
- Envigo CRS, Inc., Princeton, New Jersey, United States of America
| | - Rodd Polsky
- Biopharm Analytical Science, R&D Platform Technology and Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Mark Watkins
- In vitro In vivo Translation (IVIVT), R&D, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Gemma Ottolangui
- Biopharm Molecular Discovery, R&D Platform Technology and Science, GlaxoSmithKline, Stevenage, United Kingdom
| | - John R. White
- Biopharm Analytical Science, R&D Platform Technology and Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Curtis Maier
- In vitro In vivo Translation (IVIVT), R&D, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Michael Herdman
- Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline, Stevenage, United Kingdom
| | - Gerben Bouma
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, United Kingdom
- Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline, Stevenage, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Shin JU, Abaci HE, Herron L, Guo Z, Sallee B, Pappalardo A, Jackow J, Wang EHC, Doucet Y, Christiano AM. Recapitulating T cell infiltration in 3D psoriatic skin models for patient-specific drug testing. Sci Rep 2020; 10:4123. [PMID: 32139717 PMCID: PMC7057979 DOI: 10.1038/s41598-020-60275-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Drug screening studies for inflammatory skin diseases are currently performed using model systems that only partially recapitulate human diseased skin. Here, we developed a new strategy to incorporate T cells into human 3D skin constructs (HSCs), which enabled us to closely monitor and quantitate T cell responses. We found that the epidermis promotes the activation and infiltration of T cells into the skin, and provides a directional cue for their selective migration towards the epidermis. We established a psoriatic HSC (pHSC) by incorporating polarized Th1/Th17 cells or CCR6+CLA+ T cells derived from psoriasis patients into the constructs. These pHSCs showed a psoriatic epidermal phenotype and characteristic cytokine profiles, and responded to various classes of psoriasis drugs, highlighting the potential utility of our model as a drug screening platform. Taken together, we developed an advanced immunocompetent 3D skin model to investigate epidermal-T cell interactions and to understand the pathophysiology of inflammatory skin diseases in a human-relevant and patient-specific context.
Collapse
Affiliation(s)
- Jung U Shin
- Department of Dermatology, Columbia University Medical Center, NY, New York, USA
- Department of Dermatology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Hasan E Abaci
- Department of Dermatology, Columbia University Medical Center, NY, New York, USA.
| | - Lauren Herron
- Department of Dermatology, Columbia University Medical Center, NY, New York, USA
| | - Zongyou Guo
- Department of Dermatology, Columbia University Medical Center, NY, New York, USA
| | - Brigitte Sallee
- Department of Dermatology, Columbia University Medical Center, NY, New York, USA
| | - Alberto Pappalardo
- Department of Dermatology, Columbia University Medical Center, NY, New York, USA
| | - Joanna Jackow
- Department of Dermatology, Columbia University Medical Center, NY, New York, USA
| | - Eddy Hsi Chun Wang
- Department of Dermatology, Columbia University Medical Center, NY, New York, USA
| | - Yanne Doucet
- Department of Dermatology, Columbia University Medical Center, NY, New York, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Medical Center, NY, New York, USA.
- Department of Genetics & Development, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Richmond JM, Strassner JP, Essien KI, Harris JE. T-cell positioning by chemokines in autoimmune skin diseases. Immunol Rev 2019; 289:186-204. [PMID: 30977191 PMCID: PMC6553463 DOI: 10.1111/imr.12762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Autoimmune skin diseases are complex processes in which autoreactive cells must navigate through the skin tissue to find their targets. Regulatory T cells in the skin help to mitigate autoimmune inflammation and may in fact be responsible for the patchy nature of these conditions. In this review, we will discuss chemokines that are important for global recruitment of T cell populations to the skin during disease, as well as signals that fine-tune their localization and function. We will describe prototypical disease responses and chemokine families that mediate these responses. Lastly, we will include an overview of chemokine-targeting drugs that have been tested as new treatment strategies for autoimmune skin diseases.
Collapse
Affiliation(s)
- Jillian M Richmond
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - James P Strassner
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - Kingsley I Essien
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - John E Harris
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| |
Collapse
|
18
|
Ramamourthy G, Arias M, Nguyen LT, Ishida H, Vogel HJ. Expression and Purification of Chemokine MIP-3α (CCL20) through a Calmodulin-Fusion Protein System. Microorganisms 2019; 7:microorganisms7010008. [PMID: 30626048 PMCID: PMC6352211 DOI: 10.3390/microorganisms7010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022] Open
Abstract
Human macrophage inflammatory protein 3α (MIP-3α), also known as CCL20, is a 70 amino acid chemokine that selectively binds and activates chemokine receptor 6 (CCR6). This chemokine is responsible for inducing the migration of immature dendritic cells, effector, or memory T-cells, and B-cells. Moreover, the MIP-3α protein has been shown to display direct antimicrobial, antiviral and antiprotozoal activities. Because of the potential therapeutic uses of this protein, the efficient production of MIP-3α is of great interest. However, bacterial recombinant production of the MIP-3α protein has been limited by the toxicity of this extremely basic protein (pI 9.7) toward prokaryotic cells, and by solubility problems during expression and purification. In an attempt to overcome these issues, we have investigated the bacterial recombinant expression of MIP-3α by using several common expression and fusion tags, including 6× histidine (His), small ubiquitin modifier protein (SUMO), thioredoxin (TRX), ketosteroid isomerase (KSI), and maltose binding protein (MBP). We have also evaluated a recently introduced calmodulin (CaM)-tag that has been used for the effective expression of many basic antimicrobial peptides (AMPs). Here, we show that the CaM fusion tag system effectively expressed soluble MIP-3α in the cytoplasm of Escherichia coli with good yields. Rapid purification was facilitated by the His-tag that was integrated in the CaM-fusion protein system. Multidimensional nuclear magnetic resonance (NMR) studies demonstrated that the recombinant protein was properly folded, with the correct formation of disulfide bonds. In addition, the recombinant MIP-3α had antibacterial activity, and was shown to inhibit the formation of Pseudomonas aeruginosa biofilms.
Collapse
Affiliation(s)
- Gopal Ramamourthy
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
19
|
Jin M, Yoon J. From Bench to Clinic: the Potential of Therapeutic Targeting of the IL-22 Signaling Pathway in Atopic Dermatitis. Immune Netw 2018; 18:e42. [PMID: 30619628 PMCID: PMC6312894 DOI: 10.4110/in.2018.18.e42] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Atopic dermatitis (AD) is the most common pruritic inflammatory skin disease characterized by thickening of epidermis and dermis as well as by the infiltration of multiple pathogenic polarized T lymphocytes, including Th2, Th17, and Th22 cells. Significant progress has been made to develop targeted therapeutics for treating AD, e.g., Food and Drug Administration-approved dupilumab, an antibody for dual targeting of IL-4 and IL-13 signaling pathways. Additionally, a growing body of published evidence and a promising result from the early stage of the clinical trial with ILV-094, an anti-IL-22 antibody, strongly support the notion that IL-22 is a potential therapeutic target for treating AD. Moreover, we also experimentally proved that IL-22 contributes to the pathophysiology of AD by employing a murine model of AD induced by epicutaneous sensitization. Here, we review recent preclinical and clinical findings that have advanced our understanding of the roles of IL-22 and Th22 cells in skin inflammation. We conclude that blockade of IL-22 signaling may be a promising therapeutic approach for the treatment of AD.
Collapse
Affiliation(s)
- Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea.,Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Korea
| | - Juhan Yoon
- Department of Pharmacology, C&C Research Laboratories, Suwon 16419, Korea
| |
Collapse
|
20
|
Abstract
Psoriasis is a chronic, immune-mediated, inflammatory disease that is pathogenically driven by proinflammatory cytokines. This article reviews the immunologic role of interleukin (IL)-17, the major effector cytokine in the pathogenesis of psoriatic disease, along with the rationale for targeting the IL-17 cytokine family (IL-17A, IL-17F, and IL-17 receptor A) in the treatment of psoriasis and psoriatic arthritis. Emerging evidence indicates that major sources of IL-17A in patients with psoriatic disease are mast cells, γδ T cells, αβ T cells, and innate lymphoid cells in lesional skin and synovial fluid. Within the skin and joints, IL-17A acts on cellular targets, including keratinocytes, neutrophils, endothelial cells, fibroblasts, osteoclasts, chondrocytes, and osteoblasts, to stimulate production of various antimicrobial peptides, chemokines, and proinflammatory and proliferative cytokines, which, in turn, promote tissue inflammation and bone remodeling. The critical importance of the IL-23/IL-17A axis to the pathogenesis of psoriatic disease has resulted in many new biologic treatments targeting these cytokines. These biologics dramatically improve skin and joint symptoms in patients with moderate-to-severe psoriasis and psoriatic arthritis.
Collapse
Affiliation(s)
- Andrew Blauvelt
- Oregon Medical Research Center, 9495 SW Locust St, Suite G, Portland, OR,, 97223, USA.
| | - Andrea Chiricozzi
- Dermatology Unit, Department of Clinical and Translational Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Riutta SJ, Larsen O, Getschman AE, Rosenkilde MM, Hwang ST, Volkman BF. Mutational analysis of CCL20 reveals flexibility of N-terminal amino acid composition and length. J Leukoc Biol 2018; 104:423-434. [DOI: 10.1002/jlb.1vma0218-049r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Sarah J. Riutta
- Department of Biochemistry; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Olav Larsen
- Laboratory for Molecular Pharmacology; Department of Biomedical Sciences; Faculty of Health and Medical Sciences; The Panum Institute; University of Copenhagen; Copenhagen Denmark
| | - Anthony E. Getschman
- Department of Biochemistry; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Mette M. Rosenkilde
- Laboratory for Molecular Pharmacology; Department of Biomedical Sciences; Faculty of Health and Medical Sciences; The Panum Institute; University of Copenhagen; Copenhagen Denmark
| | - Sam T. Hwang
- Department of Dermatology; University of California Davis School of Medicine; Sacramento California USA
| | - Brian F. Volkman
- Department of Biochemistry; Medical College of Wisconsin; Milwaukee Wisconsin USA
| |
Collapse
|
22
|
Ranasinghe R, Eri R. Pleiotropic Immune Functions of Chemokine Receptor 6 in Health and Disease. MEDICINES 2018; 5:medicines5030069. [PMID: 30004409 PMCID: PMC6164274 DOI: 10.3390/medicines5030069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023]
Abstract
C-C chemoattractant cytokine (chemokine) receptor 6 (CCR6) and its exclusive binding molecule CCL20 is an extremely important chemokine receptor-ligand pair which controls cell migration and immune induction during inflammatory disease. Not many scientific studies have been undertaken to study its immune mechanisms in detail, but its unique contribution to steady state cell chemotaxis in upholding immune tolerance and regulating immune homeostasis during inflammation is evident in multiple systems in the human body, including skin, liver, lung, kidney, brain, eye, joints, gonads and the gut. The role of CCR6 is constitutively expressed as a series of much debilitating severe inflammatory and autoimmune diseases, Human Immunodeficiency Virus (HIV) and cancer metastasis. CD4+ T cells, the central organizers of adaptive immunity, are stringently mobilized by the CCR6/CCL20 axis also induced by cytokines and a host of other factors in a carefully executed immune modulation scenario, to bring about a delicate balance between inflammation inducing TH17 cells and regulatory Treg cells. Although the exact immune regulatory role is not elucidated as yet, the CCR6/CCL20 axis is implicated as a front runner which determines the polarization of TH17 and regulatory Treg cells, upon which depends the resolution or progression of many debilitating disorders. This review therefore aims at emphasizing the pleiotropic significance of the chemokines CCR6 and CCL20 in immunologic function in multiple organ systems, thereby hoping to accentuate its value in future therapeutic modalities.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.
| |
Collapse
|
23
|
Scanning the Immunopathogenesis of Psoriasis. Int J Mol Sci 2018; 19:ijms19010179. [PMID: 29316717 PMCID: PMC5796128 DOI: 10.3390/ijms19010179] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, the immunologic model of which has been profoundly revised following recent advances in the understanding of its pathophysiology. In the current model, a crosstalk between keratinocytes, neutrophils, mast cells, T cells, and dendritic cells is thought to create inflammatory and pro-proliferative circuits mediated by chemokines and cytokines. Various triggers, including recently identified autoantigens, Toll-like receptor agonists, chemerin, and thymic stromal lymphopoietin may activate the pathogenic cascade resulting in enhanced production of pro-inflammatory and proliferation-inducing mediators such as interleukin (IL)-17, tumor necrosis factor (TNF)-α, IL-23, IL-22, interferon (IFN)-α, and IFN-γ by immune cells. Among these key cytokines lie therapeutic targets for currently approved antipsoriatic therapies. This review aims to provide a comprehensive overview on the immune-mediated mechanisms characterizing the current pathogenic model of psoriasis.
Collapse
|
24
|
Circulating CCL20 as a New Biomarker of Abdominal Aortic Aneurysm. Sci Rep 2017; 7:17331. [PMID: 29229985 PMCID: PMC5725593 DOI: 10.1038/s41598-017-17594-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/29/2017] [Indexed: 01/09/2023] Open
Abstract
Autoimmunity appears to play a role in abdominal aortic aneurysm (AAA) pathology. Although the chemokine CCL20 has been involved in autoimmune diseases, its relationship with the pathogenesis of AAA is unclear. We investigated CCL20 expression in AAA and evaluated it as a potential biomarker for AAA. CCL20 was measured in plasma of AAA patients (n = 96), atherosclerotic disease (AD) patients (n = 28) and controls (n = 45). AAA presence was associated with higher plasma levels of CCL20 after adjustments for confounders in the linear regression analysis. Diagnostic performance of plasma CCL20 was assessed by ROC curve analysis, AUC 0.768 (CI:0.678-0.858; p<0.001). Classification and regression tree analysis classified patients into two CCL20 plasma level groups. The high-CCL20 group had a higher number of AAA than the low-CCL20 group (91% vs 54.3%, p< 0.001). mRNA of CCL20 and its receptor CCR6 were higher in AAA (n = 89) than in control aortas (n = 17, p<0.001). A positive correlation was found between both mRNA in controls (R = 0674; p = 0.003), but not in AAA. Immunohistochemistry showed that CCR6 and CCL20 colocalized in the media and endothelial cells. Infiltrating leukocytes immunostained for both proteins but only colocalized in some of them. Our data shows that CCL20 is increased in AAA and circulating CCL20 is a high sensitive biomarker of AAA.
Collapse
|
25
|
C19, a C-terminal peptide of CKLF1, decreases inflammation and proliferation of dermal capillaries in psoriasis. Sci Rep 2017; 7:13890. [PMID: 29066845 PMCID: PMC5655640 DOI: 10.1038/s41598-017-13799-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/02/2017] [Indexed: 12/26/2022] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune disease with undefined etiology. Chemokine-like factor 1 (CKLF1), a human cytokine that is a functional ligand for CCR4, displays chemotactic activities in a wide spectrum of leukocytes and plays an important role in psoriasis development. In previous study, our laboratory found that the expression of CKLF1 increased in psoriatic lesions. C19 as a CKLF1's C-terminal peptide has been reported to exert inhibitory effects on a variety of diseases. However, the protective roles of C19 in endothelial cells proliferation and inflammatory cells chemotaxis remain elusive in psoriasis. In this study we examined the protective effect of C19 on both the cellular model and the animal model. The effects of C19 on endothelial cells proliferation and inflammatory cells chemotaxis were investigated in cultured human umbilical vein endothelial cells (HUVECs) and imiquimod-induced psoriasiform inflammation of BALB/c mice based on techniques including immunohistochemical analysis, quantitative real-time PCR (qRT-PCR), western blot, transwell, and EdU assay. This study shows that CKLF1-C19 significantly protects against psoriasis by inhibiting the infiltration of inflammatory cells and proliferation of microvascular cells, possibly via inhibiting MAPK pathways.
Collapse
|
26
|
Cochez PM, Michiels C, Hendrickx E, Dauguet N, Warnier G, Renauld JC, Dumoutier L. Ccr6 Is Dispensable for the Development of Skin Lesions Induced by Imiquimod despite its Effect on Epidermal Homing of IL-22-Producing Cells. J Invest Dermatol 2017; 137:1094-1103. [PMID: 28115058 DOI: 10.1016/j.jid.2016.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 12/23/2022]
Abstract
Expression of the chemokine receptor Ccr6 is shared by most IL-22-producing cells, and Ccr6-deficient mice showed decreased IL-22 production and skin inflammation upon IL-23 intradermal injections. To determine whether this observation might be extended to another psoriasis model, we applied imiquimod on Ccr6-deficient mice. Although epidermal IL-22 production was decreased because of a deficient recruitment of γδ T cells in these mice, they were not protected against psoriatic lesions. When primary epidermis or dermis tissue culture cells from nontreated mice were stimulated ex vivo with IL-1α/IL-2/IL-23, we observed that Ccr6 is crucial for Il22 expression from epidermal but not dermal cultures. Taking advantage of Ccr6-LacZ-knock-in mice, we showed that Ccr6 is necessary for the homing of Ccr6-positive cells, probably a γδ T-cell subset, which represents the main potential IL-22 source in the epidermis. Similar results were observed in Rag1-/- epidermis and dermis primary cultures, in which a subset of innate lymphoid cells expressing Ccr6 represents the main potential source of IL-22. Taken together, our data show that Ccr6 is not required for the development of skin lesions induced by imiquimod despite its effect on epidermal homing of IL-22-producing cells.
Collapse
Affiliation(s)
- Perrine M Cochez
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Camille Michiels
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Hendrickx
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Guy Warnier
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure Dumoutier
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
27
|
Singh TP, Zhang HH, Borek I, Wolf P, Hedrick MN, Singh SP, Kelsall BL, Clausen BE, Farber JM. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation. Nat Commun 2016; 7:13581. [PMID: 27982014 PMCID: PMC5171657 DOI: 10.1038/ncomms13581] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6Chi blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells.
Imiquimod exacerbates IL-23-induced skin inflammation and models psoriasis in mice. Here the authors show that this pathology is not dependent on resident dendritic cells, but on CCR6-induced immigration of monocyte-derived cells.
Collapse
Affiliation(s)
- Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Howard H Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Izabela Borek
- Institute of Pathophysiology and Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, A-8036 Graz, Austria
| | - Michael N Hedrick
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Satya P Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bjorn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Joshua M Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Dutta P, Ta A, Thakur BK, Dasgupta N, Das S. Biphasic Ccl20 regulation by Toll-like receptor 9 through the activation of ERK-AP-1 and non-canonical NF-κB signaling pathways. Biochim Biophys Acta Gen Subj 2016; 1861:3365-3377. [PMID: 27590109 DOI: 10.1016/j.bbagen.2016.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/24/2016] [Accepted: 08/28/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chemokines play key roles in immune homeostasis and inflammatory response. Considering the role of Ccl20 and Toll-like receptor 9 (TLR9) in gut homeostasis and inflammatory bowel disease (IBD), regulation of Ccl20 by bacterial DNA, the TLR9 ligand, merits in-depth studies. METHODS We analyzed Ccl20 expression in various epithelial cell (EC) lines by q-PCR and ELISA. In-vivo expression was investigated in isolated murine colonocytes by immunoblotting. Transcriptional regulation of Ccl20 was studied by reporter assays, gene knock-down, electrophoretic mobility shift assay and chromatin immunoprecipitation. Activation of upstream kinases was checked by immunoblotting. RESULTS We showed low levels of Ccl20 expression in mouse colonic ECs, but marked induction by in vivo treatment with bacterial DNA. This corroborated with persistent Ccl20 induction in different EC lines. We found involvement of MAP-kinases during the early hours after stimulation, and a novel AP-1site (-252bp) regulated the expression in colonic ECs. More importantly, mutually exclusive transcriptional regulation by AP-1 (cjun/cfos) and non-canonical NF-κB (RelB/p52) downstream of MEK-ERK and NIK-IKK-α-NF-κB2 (p100) phosphorylation, respectively was responsible for persistent Ccl20 expression in the colonic cells, while canonical NF-κB isoforms played no role. CONCLUSIONS Persistent Ccl20 induction by TLR9 in colonic ECs involves early and delayed activation of two independent signaling pathways. This is the first report of non-canonical NF-κB activation and Ccl20 expression in the colonic ECs by TLR9. GENERAL SIGNIFICANCE Our study will help to better understand immune regulation by Ccl20 in the intestine and may be exploited for future development of novel therapeutics against IBD.
Collapse
Affiliation(s)
- Pujarini Dutta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Atri Ta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Bhupesh Kumar Thakur
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Nirmalya Dasgupta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Santasabuj Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India.
| |
Collapse
|
29
|
Sukhov A, Adamopoulos IE, Maverakis E. Interactions of the Immune System with Skin and Bone Tissue in Psoriatic Arthritis: A Comprehensive Review. Clin Rev Allergy Immunol 2016; 51:87-99. [PMID: 26780035 PMCID: PMC6080719 DOI: 10.1007/s12016-016-8529-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cutaneous psoriasis (e.g., psoriasis vulgaris (PsV)) and psoriatic arthritis (PsA) are complex heterogeneous diseases thought to have similar pathophysiology. The soluble and cellular mediators of these closely related diseases are being elucidated through genetic approaches such as genome-wide association studies (GWAS), as well as animal and molecular models. Novel therapeutics targeting these mediators (IL-12, IL-23, IL-17, IL-17 receptor, TNF) are effective in treating both the skin and joint manifestations of psoriasis, reaffirming the shared pathophysiology of PsV and PsA. However, the molecular and cellular interactions between skin and joint disease have not been well characterized. Clearly, PsV and PsA are highly variable in terms of their clinical manifestations, and this heterogeneity can partially be explained by differences in HLA-associations (HLA-Cw*0602 versus HLA-B*27, for example). In addition, there are numerous other genetic susceptibility loci (LCE3, CARD14, NOS2, NFKBIA, PSMA6, ERAP1, TRAF3IP2, IL12RB2, IL23R, IL12B, TNIP1, TNFAIP3, TYK2) and geoepidemiologic factors that contribute to the wide variability seen in psoriasis. Herein, we review the complex interplay between the genetic, cellular, ethnic, and geographic mediators of psoriasis, focusing on the shared mechanisms of PsV and PsA.
Collapse
Affiliation(s)
- Andrea Sukhov
- Department of Dermatology, University of California, Davis, 3301 C St. Suite 1400, Sacramento, CA, 95816, USA
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California, CA, Davis, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, 3301 C St. Suite 1400, Sacramento, CA, 95816, USA.
| |
Collapse
|
30
|
Hsieh YJ, Chang YC, Huang YH, Chung WH, Tsai HY, Hsu LA. A lack of association between genetic polymorphisms in beta-defensins and susceptibility of psoriasis in Taiwanese: A case–control study. DERMATOL SIN 2016. [DOI: 10.1016/j.dsi.2015.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Christiansen JR, Olesen MN, Otzen DE, Romero-Ramos M, Sanchez-Guajardo V. α-Synuclein vaccination modulates regulatory T cell activation and microglia in the absence of brain pathology. J Neuroinflammation 2016; 13:74. [PMID: 27055651 PMCID: PMC4825077 DOI: 10.1186/s12974-016-0532-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/18/2016] [Indexed: 12/22/2022] Open
Abstract
Background Passive and active immunization with α-synuclein has been shown to be neuroprotective in animal models of Parkinson’s disease. We have previously shown that vaccination with α-synuclein, long before α-synuclein-induced brain pathology, prevents striatal degeneration by inducing regulatory T cell infiltration in parenchyma and antibody deposition on α-synuclein overexpressing neurons. However, the effect of peripheral α-synuclein on the immune system is unknown, as are the mechanistic changes induced in the CD4 T cell population during successful neuroprotective animal studies. We have studied the changes induced by vaccination with α-synuclein in the CD4 T cell pool and its impact on brain microglia to understand the immune mechanisms behind successful vaccination strategies in Parkinson’s disease animal models. Methods Mice were immunized with WT or nitrated α-synuclein at a dose equivalent to the one used in our previous successful vaccination strategy and at a higher dose to determine potential dose-dependent effects. Animals were re-vaccinated 4 weeks after and sacrificed 5 days later. These studies were conducted in naive animals in the absence of human α-synuclein expression. Results The CD4 T cell response was modulated by α-synuclein in a dose-dependent manner, in particular the regulatory T cell population. Low-dose α-synuclein induced expansion of naive (Foxp3 + CCR6-CD127lo/neg) and dopamine receptor type D3+ regulatory T cells, as well as an increase in Stat5 protein levels. On the other hand, high dose promoted activation of regulatory T cells (Foxp3CCR6 + CD127lo/neg), which were dopamine receptor D2+D3-, and induced up-regulation of Stat5 and production of anti-α-synuclein antibodies. These effects were specific to the variant of α-synuclein used as the pathology-associated nitrated form induced distinct effects at both doses. The changes observed in the periphery after vaccination with low-dose α-synuclein correlated with an increase in CD154+, CD103+, and CD54+ microglia and the reduction of CD200R+ microglia. This resulted in the induction of a polarized tolerogenic microglia population that was CD200R-CD54CD103CD172a+ (82 % of total microglia). Conclusions We have shown for the first time the mechanisms behind α-synuclein vaccination and, importantly, how we can modulate microglia’s phenotype by regulating the CD4 T cell pool, thus shedding invaluable light on the design of neuroimmunoregulatory therapies for Parkinson’s disease. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0532-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josefine R Christiansen
- Neuroimmunology of Degenerative Diseases group, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark.,CNS Disease Modeling group, Department of Biomedicine, HEALTH , Aarhus University, Aarhus, Denmark.,AU Ideas Pilot Center NEURODIN, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark
| | - Mads N Olesen
- Neuroimmunology of Degenerative Diseases group, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark.,AU Ideas Pilot Center NEURODIN, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center - iNANO, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- CNS Disease Modeling group, Department of Biomedicine, HEALTH , Aarhus University, Aarhus, Denmark.,AU Ideas Pilot Center NEURODIN, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark
| | - Vanesa Sanchez-Guajardo
- Neuroimmunology of Degenerative Diseases group, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark. .,AU Ideas Pilot Center NEURODIN, Department of Biomedicine, HEALTH, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
32
|
Kim KE, Houh Y, Park HJ, Cho D. Therapeutic Effects of Erythroid Differentiation Regulator 1 on Imiquimod-Induced Psoriasis-Like Skin Inflammation. Int J Mol Sci 2016; 17:244. [PMID: 26901187 PMCID: PMC4783975 DOI: 10.3390/ijms17020244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/23/2022] Open
Abstract
Psoriasis is a common skin disease accompanied by chronic inflammation. In previous studies, erythroid differentiation regulator 1 (ERDR1) was shown to have a negative correlation with proinflammatory cytokine IL-18. However, the role of ERDR1 in the inflammatory skin disease psoriasis has not been evaluated. In this study, to investigate the role of ERDR1 in psoriasis, recombinant ERDR1 was injected intraperitoneally into a psoriasis mouse model. Recombinant ERDR1 (rERDR1) significantly alleviated the symptoms of psoriasis-like skin inflammation and reduced the mRNA of various psoriasis-related markers, including keratin 14, S100A8, and Th17-related cytokines IL-17 and IL-22, suggesting that rERDR1 exerts therapeutic effects on psoriasis via the regulation of Th17 functions. Additionally, the expression of CCL20, a well-known Th17 attracting chemokine, was determined. CCL20 expression significantly decreased in the rERDR1-injected group compared with the vehicle (PBS)-injected group. CCR6 expression in the psoriatic lesional skin was also decreased by rERDR1 administration, implying the inhibition of CCR6-expressing Th17 cell chemotaxis via the downregulation of CCL20. Taken together, this study provides the first evidence that ERDR1 may be a potential therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Kyung Eun Kim
- Department of Life Systems, Sookmyung Women's University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 140-742, Korea.
| | - Younkyung Houh
- Department of Life Systems, Sookmyung Women's University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 140-742, Korea.
| | - Hyun Jeong Park
- Department of Dermatology, Yeouido St. Mary's Hospital, The Catholic University of Korea, Seoul 150-713, Korea.
| | - Daeho Cho
- Department of Life Systems, Sookmyung Women's University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 140-742, Korea.
| |
Collapse
|
33
|
Ramanathan R, Woodrow K. Engineering immunity in the mucosal niche against sexually transmitted infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:107-22. [PMID: 26153141 PMCID: PMC6467227 DOI: 10.1002/wnan.1359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 05/04/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
The mucosal surfaces of the genital tract are the site of entry to over 30 different bacterial, parasitic, and viral pathogens that are the cause of sexually transmitted infections (STIs) including HIV. Women and adolescent girls are more severely impacted by STIs than men due in part to a greater biological susceptibility for acquiring infections and differences in disease sequelae. While it is widely accepted that preventative vaccines against the most commonly transmitted STIs would have a major impact on decreasing the global health burden of STIs for women worldwide, several challenges preclude their development. The female genital tract is a complex niche of microflora, hormonal influences, and immune tissues and cells that result in a mucosal immune system that is distinct from other mucosal sites and from our systemic immune system. An appreciation of these differences and their effect on shaping mucosal immunity to sexually transmitted pathogens is an important determinant for the design of effective STI vaccines. Here we describe the anatomy and mucosal immune system of the female reproductive tract, and discuss bioengineering strategies to design mucosal vaccines that overcome delivery challenges and coordinate the presentation kinetics and compartmentalization of antigens and adjuvants to relevant mucosal immune cell subsets. In particular, we describe recent progress in understanding the role of specific mucosal dendritic cell subsets in facilitating immune responses to pathogenic microbes in the genital mucosa. We also discuss the development of pathogen-mimicking materials that may be useful for engineering protective immunity in this mucosal niche.
Collapse
Affiliation(s)
- Renuka Ramanathan
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kim Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
Skovdahl HK, Granlund AVB, Østvik AE, Bruland T, Bakke I, Torp SH, Damås JK, Sandvik AK. Expression of CCL20 and Its Corresponding Receptor CCR6 Is Enhanced in Active Inflammatory Bowel Disease, and TLR3 Mediates CCL20 Expression in Colonic Epithelial Cells. PLoS One 2015; 10:e0141710. [PMID: 26536229 PMCID: PMC4633243 DOI: 10.1371/journal.pone.0141710] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Background The chemokine CCL20 and its receptor CCR6 are putative drug targets in inflammatory bowel disease, and CCL20 is a novel IBD predilection gene. Previous findings on the CCL20 response in these diseases are divergent. This study was undertaken to examine CCL20 and CCR6 during active and inactive disease, and mechanisms for CCL20 regulation by the innate immune system. As TLR3 has recently emerged as a possible mediator of CCL20 production, we hypothesised that this TLR plays an important role in enterocytic CCL20 production. Methods A large microarray study on colonic pinch biopsies from active and inactive ulcerative colitis and Crohn’s disease provided background information. CCL20 and CCR6 were localized and their expression levels assessed in biopsies using in situ hybridization and immunohistochemistry. Regulation of CCL20 was studied in the HT29 cell line using a panel of pattern recognition receptor ligands followed by a TLR3 siRNA assay. Results CCL20 and CCR6 mRNA abundances were increased during active inflammation (CCL20 5.4-fold in ulcerative colitis and 4.2-fold in Crohn’s disease; CCR6 1.8 and 2.0, respectively). CCL20 and CCR6 mRNA positive immune cells in lamina propria were more numerous, and CCL20 immunoreactivity increased massively in the epithelial cells during active inflammation for both diseases. TLR3 stimulation potently induced upregulation and release of CCL20 from HT29 cells, and TLR3 silencing reduced CCL20 mRNA and protein levels. Conclusions The CCL20-CCR6 axis is involved during active inflammation in both ulcerative colitis and Crohn’s disease. The epithelial cells seem particularly involved in the CCL20 response, and results from this study strongly suggest that the innate immune system is important for activation of the epithelium, especially through TLR3.
Collapse
Affiliation(s)
- Helene Kolstad Skovdahl
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle van Beelen Granlund
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ann Elisabet Østvik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Torunn Bruland
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Bakke
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sverre Helge Torp
- Department of Laboratory Medicine, Children and Women’s Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology and Medical Genetics, St. Olav’s University Hospital, Trondheim, Norway
| | - Jan Kristian Damås
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, St. Olav’s University Hospital, Trondheim, Norway
| | - Arne Kristian Sandvik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
- * E-mail:
| |
Collapse
|
35
|
The role of chemokines in adjusting the balance between CD4+ effector T cell subsets and FOXp3-negative regulatory T cells. Int Immunopharmacol 2015; 28:829-35. [DOI: 10.1016/j.intimp.2015.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|
36
|
Goldminz AM, Suárez-Fariñas M, Wang AC, Dumont N, Krueger JG, Gottlieb AB. CCL20 and IL22 Messenger RNA Expression After Adalimumab vs Methotrexate Treatment of Psoriasis: A Randomized Clinical Trial. JAMA Dermatol 2015; 151:837-46. [PMID: 25946554 PMCID: PMC5788701 DOI: 10.1001/jamadermatol.2015.0452] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE Methotrexate is a first-line systemic agent for treating of psoriasis, although its onset of effects is slower and overall it is less effective than tumor necrosis factor blockers. OBJECTIVE To differentiate the response of psoriatic disease to adalimumab and methotrexate sodium. DESIGN, SETTING, AND PARTICIPANTS Single-center, randomized, assessor-blind, 2-arm clinical trial of 30 patients from the outpatient dermatology center of Tufts Medical Center, enrolled from August 18, 2009, to October 11, 2011. Patients aged 18 to 85 years with chronic plaque-type psoriasis, a minimum Physician Global Assessment score of 3 (higher scores indicate more severe disease), and a psoriatic plaque of at least 2 cm were randomized in a 1:1 fashion to receive subcutaneous adalimumab or oral methotrexate. Skin biopsy specimens obtained at baseline and weeks 1, 2, 4, and 16 were given a histologic grade by blinded assessors to evaluate treatment response. Analyses were conducted from April 16, 2013, to January 5, 2015. INTERVENTIONS A 16-week course of subcutaneous adalimumab (40 mg every 2 weeks after a loading dose) or low-dosage oral methotrexate sodium (7.5-25 mg/wk). MAIN OUTCOMES AND MEASURES Changes in genomic, immunohistochemical, and messenger RNA (mRNA) profiles. RESULTS Methotrexate responders experienced significant downregulation of helper T-cell-related (T(H)1, T(H)17, and T(H)22) mRNA expression compared with methotrexate nonresponders. Comparisons among adalimumab-treated patients were limited by the number of nonresponders (n = 1). Between adalimumab and methotrexate responders, we found no significant differences in gene expression at any study point or in the expression of T-cell-related mRNA at week 16. Adalimumab responders demonstrated early downregulation of chemokine (C-C motif) ligand 20 (CCL20) mRNA (mean [SE] at week 2, -1.83 [0.52], P < .001; week 16, -3.55 [0.54], P < .001) compared with late downregulation for methotrexate responders (week 2, 0.02 [0.51], P = .96; week 16, -2.96 [0.51], P < .001). Similar differences were observed with interleukin 22 (IL22) mRNA showing early downregulation for adalimumab responders (week 2, -3.17 [1.00], P < .001; week 16, -3.58 [1.00], P < .001) compared with late downregulation for methotrexate responders (week 2, -0.44 [0.68], P = .64; week 16, -5.14 [0.68], P < .001). Analysis of variance findings for key mRNA and immunohistochemical marker expression over the study course were significant only for CCL20 (P = .03) and IL22 (P = .006) mRNA comparing adalimumab and methotrexate responders. CONCLUSIONS AND RELEVANCE Methotrexate is an immunomodulator with effects on helper T-cell signaling in psoriasis. Similar genomic and immunohistochemical response signatures and levels of mRNA downregulation at study completion among adalimumab and methotrexate responders suggest a disease-driven instead of therapeutic-driven pathway regulation. Adalimumab and methotrexate responses are differentiated by patterns of normalization of CCL20 and IL22 mRNA expression and may explain the varied onset and degree of clinical responses by each treatment. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00932113.
Collapse
Affiliation(s)
- Ari M Goldminz
- Department of Dermatology, Tufts Medical Center, Boston, Massachusetts
| | - Mayte Suárez-Fariñas
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York
| | - Andrew C Wang
- Department of Dermatology, Tufts Medical Center, Boston, Massachusetts
| | - Nicole Dumont
- Department of Dermatology, Tufts Medical Center, Boston, Massachusetts
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York
| | - Alice B Gottlieb
- Department of Dermatology, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
37
|
Cai Y, Xue F, Fleming C, Yang J, Ding C, Ma Y, Liu M, Zhang HG, Zheng J, Xiong N, Yan J. Differential developmental requirement and peripheral regulation for dermal Vγ4 and Vγ6T17 cells in health and inflammation. Nat Commun 2014; 5:3986. [PMID: 24909159 PMCID: PMC4068267 DOI: 10.1038/ncomms4986] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/29/2014] [Indexed: 02/08/2023] Open
Abstract
Dermal IL-17-producing γδT cells play a critical role in skin inflammation. However, their development and peripheral regulation have not been fully elucidated. Here we demonstrate that dermal γδT cells develop from the embryonic thymus and undergo homeostatic proliferation after birth with diversified TCR repertoire. Vγ6T cells are bona fide resident but precursors of dermal Vγ4T cells may require extrathymic environment for imprinting skin homing properties. Thymic Vγ6T cells are more competitive than Vγ4 for dermal γδT cell reconstitution and TCRδ−/− mice reconstituted with Vγ6 develop psoriasis-like inflammation after IMQ-application. Although both IL-23 and IL-1β promote Vγ4 and Vγ6 proliferation, Vγ4 are the main source of IL-17 production, which requires IL-1 signaling. Mice with deficiency of IL-1RI signaling have significantly decreased skin inflammation. These studies reveal a differential developmental requirement and peripheral regulation for dermal Vγ6 and Vγ4 γδT cells, implying a new mechanism that may be involved in skin inflammation.
Collapse
Affiliation(s)
- Yihua Cai
- 1] James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA [2]
| | - Feng Xue
- 1] Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China [2]
| | - Chris Fleming
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | - Jie Yang
- Center for Molecular Immunology and Infectious Diseases and Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chuanlin Ding
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | - Yunfeng Ma
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | - Min Liu
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | - Huang-ge Zhang
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | - Jie Zheng
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Na Xiong
- Center for Molecular Immunology and Infectious Diseases and Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
38
|
Klemm C, Dommisch H, Göke F, Kreppel M, Jepsen S, Rolf F, Dommisch K, Perner S, Standop J. Expression profiles for 14-3-3 zeta and CCL20 in pancreatic cancer and chronic pancreatitis. Pathol Res Pract 2014; 210:335-41. [DOI: 10.1016/j.prp.2014.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 11/10/2013] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
|
39
|
Chen JP, Wu MS, Kuo SH, Liao F. IL-22 negatively regulates Helicobacter pylori-induced CCL20 expression in gastric epithelial cells. PLoS One 2014; 9:e97350. [PMID: 24824519 PMCID: PMC4019584 DOI: 10.1371/journal.pone.0097350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/18/2014] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects the human gastric mucosa and causes various gastric diseases. H. pylori infection induces the production of inflammatory chemokine CCL20 in gastric mucosa and leads to gastric inflammation. Given that the IL-22/IL-22R axis plays a critical role in the regulation of homeostasis and inflammation of epithelial cells at barrier surfaces, we investigated the effect of IL-22 on CCL20 expression induced by H. pylori. We demonstrated that H. pylori infection of the gastric epithelia-derived AGS cells significantly induced CCL20 expression and the induction was inhibited by IL-22. Functional analysis of the CCL20 promoter revealed that the H. pylori-induced CCL20 expression required the activation of NF-κB, and that IL-22 inhibited the induction by attenuating NF-κB activation. Knockdown of endogenous STAT3 by either short interfering RNAs or a short hairpin RNA significantly reduced the inhibitory effect of IL-22. Furthermore, STAT3 phosphorylation elicited by IL-22 was crucial for the inhibition of H. pylori-induced CCL20 expression. Consistent with the in vitro data showing that IL-22 negatively regulated H. pylori-induced CCL20 expression in gastric epithelial cells, studies on the tissue sections from patients with H. pylori infection also revealed an inverse association of IL-22 expression and CCL20 expression in vivo. Together, our findings suggest that IL-22 plays a role in the control of overproduction of the inflammatory chemokine and thus may protect the gastric mucosa from inflammation-mediated damage.
Collapse
Affiliation(s)
- Jia-Perng Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Cancer Research Center and Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fang Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
40
|
Gatzka M, Hainzl A, Peters T, Singh K, Tasdogan A, Wlaschek M, Scharffetter-Kochanek K. Reduction of CD18 Promotes Expansion of Inflammatory γδ T Cells Collaborating with CD4+T Cells in Chronic Murine Psoriasiform Dermatitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:5477-88. [DOI: 10.4049/jimmunol.1300976] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease. PLoS One 2013; 8:e78508. [PMID: 24223818 PMCID: PMC3817213 DOI: 10.1371/journal.pone.0078508] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/13/2013] [Indexed: 11/19/2022] Open
Abstract
CD4(+) T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4(+) T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4(+) T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4(+) T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.
Collapse
|
42
|
Comerford I, Kara EE, McKenzie DR, McColl SR. Advances in understanding the pathogenesis of autoimmune disorders: focus on chemokines and lymphocyte trafficking. Br J Haematol 2013; 164:329-41. [PMID: 24164387 DOI: 10.1111/bjh.12616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lymphocyte trafficking is a key step in the pathogenesis of various autoimmune diseases. Recruitment of autoreactive lymphocytes to inflamed tissues is a defining feature of numerous persistent organ-specific autoimmune conditions and various therapies are now used in several of these diseases which appear to specifically block lymphocyte migration. Thus, better understanding of the molecular events involved in homing of autoreactive pathogenic lymphocytes may present novel opportunities for pharmacological intervention in autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, type-1 diabetes and psoriasis. This review describes recent progress in understanding lymphocyte trafficking in autoimmunity, focusing on the involvement of the chemokine and chemokine receptor superfamily. Possible strategies to improve therapeutics for autoimmune diseases arising from these studies are discussed.
Collapse
Affiliation(s)
- Iain Comerford
- Chemokine Biology Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
43
|
Roh KB, Jung E, Park D, Lee J. Fumaric acid attenuates the eotaxin-1 expression in TNF-α-stimulated fibroblasts by suppressing p38 MAPK-dependent NF-κB signaling. Food Chem Toxicol 2013; 58:423-31. [PMID: 23707484 DOI: 10.1016/j.fct.2013.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Eotaxin-1 is a potent chemoattractant for eosinophils and a critical mediator during the development of eosinophilic inflammation. Fumaric acid is an intermediate product of the citric acid cycle, which is source of intracellular energy. Although fumaric acid ameliorates psoriasis and multiple sclerosis, its involvement in eotaxin-1-mediated effects has not been assessed. In this study, we investigated the effects of fumaric acid on eotaxin-1 expression in a mouse fibroblast cell line. We found that fumaric acid significantly inhibited tumor necrosis factor-α (TNF-α-induced eotaxin-1 expression. This fumaric acid effect was mediated through the inhibition of p38 mitogen-activated protein kinase (MAPK)-dependent nuclear factor (NF)-κB signaling. We also found that fumaric acid operates downstream of MEKK3 during TNF-α-induced NF-κB signaling, which upregulated eotaxin-1 expression. In addition, fumaric acid attenuated expression of CC-chemokine receptor 3 (CCR3), an eotaxin-1 receptor, and adhesion molecules that play important roles in eosinophil binding to induce allergic inflammation. Taken together, these findings indicate that inhibiting TNF-α-induced eotaxin-1 expression by fumaric acid occurs primarily through suppression of NF-κB signaling, which is mediated by inhibiting p38 MAPK and suggest that fumaric acid may be used as a complementary treatment option for eotaxin-1-mediated diseases.
Collapse
Affiliation(s)
- Kyung-Baeg Roh
- Biospectrum Life Science Institute, Sangdaewon-Dong, Seongnam City, 442-13 Gyeonggi Do, Republic of Korea
| | | | | | | |
Collapse
|
44
|
Mabuchi T, Singh TP, Takekoshi T, Jia GF, Wu X, Kao MC, Weiss I, Farber JM, Hwang ST. CCR6 is required for epidermal trafficking of γδ-T cells in an IL-23-induced model of psoriasiform dermatitis. J Invest Dermatol 2013; 133:164-71. [PMID: 22895364 PMCID: PMC3511632 DOI: 10.1038/jid.2012.260] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A subset of CC chemokine receptor-6(+) (CCR6(+)), γδ-low (GDL) T cells that express Th17 cytokines in mouse skin participates in IL-23-induced psoriasiform dermatitis. We use CCR6-deficient (knockout, KO) and wild-type (WT) mice to analyze skin trafficking patterns of GDL T cells and function-blocking mAbs to determine the role of CCR6 in IL-23-mediated dermatitis. Herein, CCL20 was highly upregulated in IL-23-injected WT mouse ear skin as early as 24 hours after initial treatment, and large numbers of CCR6(+) cells were observed in the epidermis of IL-23-injected WT mice. Anti-CCL20 mAbs reduced psoriasiform dermatitis and blocked recruitment of GDL T cells to the epidermis. In CCR6 KO mice, GDL T cells failed to accumulate in the epidermis after IL-23 treatment, but the total numbers of GDL T cells in the dermis of WT and CCR6 KO mice were equivalent. There was an ∼70% reduction in the proportion of IL-22(+) GDL T cells in the dermis of CCR6 KO mice (vs WT mice), suggesting that effector function and epidermal recruitment of GDL T cells are impaired in CCR6-deficient mice. Thus, these data show that CCR6 regulates epidermal trafficking of γδ-T-cell subsets in the skin and suggest the potential of CCR6 as a therapeutic target for psoriasis.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Cell Movement/drug effects
- Cell Movement/immunology
- Chemokine CCL20/immunology
- Dermatitis/immunology
- Dermatitis/pathology
- Epidermis/drug effects
- Epidermis/immunology
- Epidermis/pathology
- Interleukin-23/adverse effects
- Interleukins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Psoriasis/chemically induced
- Psoriasis/immunology
- Psoriasis/pathology
- Receptors, Antigen, T-Cell, gamma-delta/drug effects
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, CCR6/genetics
- Receptors, CCR6/immunology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- Interleukin-22
Collapse
Affiliation(s)
- Tomotaka Mabuchi
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| | - Tej Pratap Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, NIAID, Bethesda, MD 20892
| | - Tomonori Takekoshi
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| | - Guang-fu Jia
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| | - Xuesong Wu
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| | - Mandy C. Kao
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| | - Ido Weiss
- Inflammation Biology Section, Laboratory of Molecular Immunology, NIAID, Bethesda, MD 20892
| | - Joshua M. Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, NIAID, Bethesda, MD 20892
| | - Sam T. Hwang
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53005
| |
Collapse
|
45
|
Lee CH, Hwang STY. Pathophysiology of chemokines and chemokine receptors in dermatological science: A focus on psoriasis and cutaneous T-cell lymphoma. DERMATOL SIN 2012. [DOI: 10.1016/j.dsi.2012.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
46
|
Abstract
Molecular diagnostic strategies are gaining wider acceptance and use in dermatology and dermatopathology as more practitioners in this field develop an understanding of the principles and applications of genomic technologies. Molecular testing is facilitating more accurate diagnosis, staging, and prognostication, in addition to guiding the selection of appropriate treatment, monitoring of therapy, and identification of novel therapeutic targets, for a wide variety of skin diseases.
Collapse
Affiliation(s)
- Zendee Elaba
- Department of Pathology, Hartford Hospital, Hartford, CT, USA
| | | | | |
Collapse
|
47
|
Mabuchi T, Chang TW, Quinter S, Hwang ST. Chemokine receptors in the pathogenesis and therapy of psoriasis. J Dermatol Sci 2012; 65:4-11. [PMID: 22177422 DOI: 10.1016/j.jdermsci.2011.11.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 12/21/2022]
Abstract
Chemokine receptors are G-protein-coupled, seven-transmembrane-spanning surface receptors that play key roles in cell trafficking, cell motility, and survival. These receptors are activated by small molecular weight chemotactic cytokines called chemokines. Chemokine receptors and their corresponding chemokine ligands play roles in the migration and localization of normal T cells (and other cells) during physiological responses in inflamed or infected skin. In psoriasis, the chemokine receptor CCR6 is expressed on the Th17 cells and γδ T cells, which produce a variety of cytokines (IL17 and IL22 among others), that play a role in the immunological activation. CCR6 and its ligand, CCL20, are highly expressed in psoriatic skin lesion and CCR6 is essential for the development of the psoriasiform phenotype following IL23 injection in mouse skin. In this review, we focus on the roles of chemokine receptors, particularly of CCR6, in the pathogenesis of psoriasis and discuss chemokine receptors as novel therapeutic targets for psoriasis.
Collapse
Affiliation(s)
- Tomotaka Mabuchi
- Department of Dermatology, Medical College of Wisconsin, WI, USA.
| | | | | | | |
Collapse
|
48
|
Mabuchi T, Takekoshi T, Hwang ST. Epidermal CCR6+ γδ T cells are major producers of IL-22 and IL-17 in a murine model of psoriasiform dermatitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:5026-31. [PMID: 21984702 DOI: 10.4049/jimmunol.1101817] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cytokine components of Th17 pathway play vital roles in human psoriasis. Although much is known about TCR αβ T cells in psoriasis, the role of unconventional T cells, including γδ T cells, is unclear. In this study, using an IL-23 skin injection model of psoriasiform dermatitis in mice, we demonstrate that IL-22, IL-17A, and the IL-23R were highly enriched in a population of CCR6(+), TCR γδ-low expressing (GDL) T cells that accumulated in the epidermis after IL-23 injections. GDL cells were distinct from resident TCR γδ-high, Vγ3(+),CCR6(-) T cells in the epidermis that did not change appreciably in numbers following IL-23 injection. Large numbers of CCR6(+) cells were detected at or above the level of the epidermal basement membrane by confocal microscopy 5 d after repeated IL-23 injections at the same time GDL cells increased in numbers in the epidermis. TCR δ-deficient mice (lacking γδ T cells) exhibited decreased ear swelling and downregulated expression of IL-22 and IL-17A in the epidermis following IL-23 injection. Our data suggest that a subset of γδ T cells play a critical role in IL-23-mediated psoriasiform dermatitis.
Collapse
Affiliation(s)
- Tomotaka Mabuchi
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
49
|
Abstract
Atherosclerosis is a complex vascular pathology characterized in part by accumulation of innate and adaptive inflammatory cells in arterial plaque. Molecular mediators responsible for inflammatory cell accumulation in plaque include specific members of the chemokine family of leukocyte chemoattractants and their G protein-coupled receptors. Studies using the ApoE knockout mouse model have recently implicated chemokine receptor Ccr6 and its ligand Ccl20 as a nonredundant ligand-receptor pair in atherosclerosis, potentially operating at several stages of cell recruitment and on several leukocyte subtypes.
Collapse
Affiliation(s)
- Wuzhou Wan
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|