1
|
Radwan AM, Abosharaf HA, Sharaky M, Abdelmonem R, Effat H. Functional combination of resveratrol and tamoxifen to overcome tamoxifen-resistance in breast cancer cells. Arch Pharm (Weinheim) 2024; 357:e2400261. [PMID: 38943449 DOI: 10.1002/ardp.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024]
Abstract
Researchers are encountering challenges in addressing the issue of cancer cells becoming unresponsive to various chemotherapy treatments due to drug resistance. This study was designed to study the influence of antioxidant resveratrol (RSV) to sensitize resistant breast cancer (BC) cells toward tamoxifen (TAM). The cytotoxic effects of RSV and TAM against TAM-resistant LCC2 cells and their parental michigan cancer foundation-7 BC cells were determined by sulphorhodamine B assay. Further, the expression levels of multidrug resistance (MDR) genes including ABCB1, ABCC2, ABCG2, and MRP1 using quantitative polymerase chain reaction, apoptosis induction, and reactive oxygen species (ROS) content using flow cytometry were evaluated in either LCC2 cells treated with RSV, TAM, or their combination. The obtained results showed that resistant cells have a magnificent level of MDR genes. This elevated expression dramatically lowered upon receiving the combined therapy of RSV and TAM. Additionally, our work assessed the possible role of RSV in modulating the expression of MDR genes by controlling the expression of certain microRNAs (miRNAs) that target ATP-binding cassette (ABC) transporters. According to the obtained data, the TAM and RSV combination increased the expression of tumor inhibitor miRNAs such miR-10b-3p, miR-195-3p, and miR-223-3p, which made LCC2 cells more sensitive to TAM. Furthermore, this combination showed an elevation in apoptotic levels and total ROS content. The combination between RSV and TAM could be a functional therapy in the fight against TAM-resistant BC cells via modulating miRNA and ABC transporters.
Collapse
Affiliation(s)
- Aliaa M Radwan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science & Technology, 6th October City, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Xiao Y, Hu Z, Liu H, Jiang X, Zhou T, Wang H, Long H, Li M. A review on antitumor effect of pachymic acid. Medicine (Baltimore) 2024; 103:e39752. [PMID: 39312302 PMCID: PMC11419566 DOI: 10.1097/md.0000000000039752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Poria cocos, also known as Jade Ling and Songbai taro, is a dry fungus core for Wolfiporia cocos, which is parasitic on the roots of pine trees. The ancients called it "medicine of four seasons" because of its extensive effect and ability to be combined with many medicines. Pachymic acid (PA) is one of the main biological compounds of Poria cocos. Research has shown that PA has various pharmacological properties, including anti-inflammatory and antioxidant. PA has recently attracted much attention due to its anticancer properties. Researchers have found that PA showed anticancer activity by regulating apoptosis and the cell cycle in vitro and in vivo. Using PA with anticancer drugs, radiotherapy, and biomaterials could also improve the sensitivity of cancer cells and delay the progression of cancer. The purpose of this review was to summarize the anticancer mechanism of PA by referencing the published documents. A review of the collected data indicated that PA had the potential to be developed into an effective anticancer agent.
Collapse
Affiliation(s)
- Yubo Xiao
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Hang Liu
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Xinglin Jiang
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Taimei Zhou
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Haiying Wang
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Heng Long
- Department of Breast and Thyroid Surgery, First People’s Hospital of Huaihua City, Huaihua, China
| | - Ming Li
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
3
|
Dong Q, Zheng A, Zhai H, Zhang T. Resveratrol mediated the proliferation and apoptosis of gastric cancer cells by modulating the PI3K/Akt/P53 signaling pathway. Biochem Biophys Res Commun 2024; 723:150186. [PMID: 38830298 DOI: 10.1016/j.bbrc.2024.150186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
The aim of this study was to investigate the anti-cancer effects of resveratrol (RES) against gastric cancer (GC) and explore the potential mechanisms. We first measured the anti-cancer effects of RES on GC cell lines (i.e. AGS and HGC-27). Then protein-protein interaction (PPI) network was constructed, followed by GO and KEGG analysis to screen the possible targets. Molecular docking analysis was given to visualize the pharmacological effects of RES on GC cell lines. For the in vivo experiments, xenograft tumor model was established, and Western blot analysis was performed to determine the expression of protein screened by network pharmacology. Our results showed that RES could promote the apoptosis of GC cells. Five hub targets were identified by network pharmacology, including AKT1, TP53, JUN, ESR1 and MAPK14. GO and KEGG analyses revealed the PI3K/Akt/P53 signaling pathway was the most related signaling pathway. Molecular docking analysis indicated that RES could form 3 hydrogen bonds with AKT1 and 3 hydrogen bonds with TP53. The inhibitory effects of RES on the proliferation and promoting effects of RES on the apoptosis of AGS and HGC-27 cells were significantly reversed when blocking the PI3K-Akt signaling pathway using the LY294002. In vivo results showed that RES induced significant decrease of tumor volume and tumor weight without changing the body weight, or inducing significant cytotoxicities. Western blot analysis proved that RES could induce down-regulation of p-Akt and up-regulation of P53 in vivo. In conclusion, RES showed anti-cancer effects in GC by regulating the PI3K/Akt/P53 signaling pathway.
Collapse
Affiliation(s)
- Qihao Dong
- Department of Neurology, Zibo Central Hospital, Zibo, 255000, China
| | - Aixi Zheng
- Department of Emergency Medicine, Zibo Central Hospital, Zibo, 255000, China
| | - Heng Zhai
- Department of Emergency Medicine, Zibo Central Hospital, Zibo, 255000, China
| | - Tongtong Zhang
- Department of Medical Laboratory, Zibo Central Hospital, Zibo, 255000, China.
| |
Collapse
|
4
|
Çakan E, Lara OD, Szymanowska A, Bayraktar E, Chavez-Reyes A, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Therapeutic Antisense Oligonucleotides in Oncology: From Bench to Bedside. Cancers (Basel) 2024; 16:2940. [PMID: 39272802 PMCID: PMC11394571 DOI: 10.3390/cancers16172940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Advancements in our comprehension of tumor biology and chemoresistance have spurred the development of treatments that precisely target specific molecules within the body. Despite the expanding landscape of therapeutic options, there persists a demand for innovative approaches to address unmet clinical needs. RNA therapeutics have emerged as a promising frontier in this realm, offering novel avenues for intervention such as RNA interference and the utilization of antisense oligonucleotides (ASOs). ASOs represent a versatile class of therapeutics capable of selectively targeting messenger RNAs (mRNAs) and silencing disease-associated proteins, thereby disrupting pathogenic processes at the molecular level. Recent advancements in chemical modification and carrier molecule design have significantly enhanced the stability, biodistribution, and intracellular uptake of ASOs, thereby bolstering their therapeutic potential. While ASO therapy holds promise across various disease domains, including oncology, coronary angioplasty, neurological disorders, viral, and parasitic diseases, our review manuscript focuses specifically on the application of ASOs in targeted cancer therapies. Through a comprehensive examination of the latest research findings and clinical developments, we delve into the intricacies of ASO-based approaches to cancer treatment, shedding light on their mechanisms of action, therapeutic efficacy, and prospects.
Collapse
Affiliation(s)
- Elif Çakan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Olivia D Lara
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | | | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
5
|
Najafi D, Siri G, Sadri M, Yazdani O, Esbati R, Karimi P, Keshavarz A, Mehmandar-Oskuie A, Ilktac M. Combination MEG3 lncRNA and Ciprofloxacin dramatically decreases cell migration and viability as well as induces apoptosis in GC cells in vitro. Biotechnol Appl Biochem 2024; 71:809-816. [PMID: 38499448 DOI: 10.1002/bab.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Gastric cancer (GC) is a prominent cause of cancer-related mortality worldwide. Long noncoding RNA (lncRNA) maternal expression gene3 (MEG3) participates in numerous signaling pathways by targeting the miRNA-mRNA axis. Studies on human tumors have demonstrated that the antibiotic Ciprofloxacin induces cell cycle changes, programmed cell death, and growth suppression. In this study, we transfected MEG3 lncRNA and Ciprofloxacin into the MKN-45 GC cell line. qRT-PCR was employed to evaluate the effects on the specific microRNA and mRNA. The wound healing test, MTT assay, and flow cytometry were used to assess the impact of their administration on cell migration, viability, and apoptosis, respectively. Research showed that miR-147 expression fell even more after MEG3 lncRNA transfection, leading to an increase in B-cell lymphoma 2 (BCL-2) levels. Ciprofloxacin transfection did not significantly affect the axis, except for MEG3, which led to its slight upregulation. MEG3 lncRNA inhibited the migration of MKN-45 cells compared to the control group. When MEG3 lncRNA was coupled with Ciprofloxacin, there was a significant reduction in cell migration compared to untreated groups and controls. MTT assay and flow cytometry demonstrated that MEG3 lncRNA decreased cell viability and triggered apoptosis. Simultaneous administration of MEG3 lncRNA and Ciprofloxacin revealed a significant reduction in cell viability caused by increased apoptosis obtained from MTT or flow cytometry assays. Modulating the miR-147-BCL-2 axis decreases cell migration and survival while promoting cell death. In conclusion, combining MEG3 lncRNA with Ciprofloxacin may be an effective therapeutic approach for GC treatment by influencing the miR-14-BCl-2 axis, resulting in reduced cell viability, migration, and increased apoptosis.
Collapse
Affiliation(s)
- Dena Najafi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Yazdani
- Department of Medical Science, School of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Romina Esbati
- Research Center for Social Determinants of Health, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Karimi
- Fars Population-Based Cancer Registry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehmet Ilktac
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| |
Collapse
|
6
|
Tan EW, Abdullah ADI, Ming LC, Poh CL, Goh BH, Lau TP, Tan KO. Adenovirus-mediated expression of MOAP-1, Bax and RASSF1A antagonizes chemo-drug resistance of human breast cancer cells expressing cancer stem cell markers. Biomed Pharmacother 2024; 176:116744. [PMID: 38810399 DOI: 10.1016/j.biopha.2024.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer is one of the major leading causes of mortality globally and chemo-drug-resistant cancers pose significant challenges to cancer treatment by reducing patient survival rates and increasing treatment costs. Although the mechanisms of chemoresistance vary among different types of cancer, cancer cells are known to share several hallmarks, such as their resistance to apoptosis as well as the ability of cancer stem cells to produce metastatic daughter cells that are resistant to chemotherapy. To address the issue of chemo-drug resistance in cancer cells, a tetracistronic expression construct, Ad-MBR-GFP, encoding adenovirus-mediated expression of MOAP-1, Bax, RASSSF1A, and GFP, was generated to investigate its potential activity in reducing or inhibiting the chemo-drug resistant activity of the human breast cancer cells, MCF-7-CR and MDA-MB-231. When infected by Ad-MBR-GFP, the cancer cells exhibited round cell morphology and nuclei condensation with positive staining for annexin-V. Furthermore, our results showed that both MCF-7-CR and MDA-MB-231 cells stained positively for CD 44 and negatively for CD 24 (CD44+/CD24-) with high levels of endogenous ALDH activity whereas SNU-1581 breast cancer cells were identified as CD 44-/CD 24- cells with relatively low levels of endogenous ALDH activity and high sensitivity toward chemo-drugs, suggesting that both CD 44 and ALDH activity contribute to chemo-drug resistance. Moreover, both MCF-7-CR and MDA-MB-231 cells showed strong chemo-drug sensitivity to cisplatin when the cells were infected by Ad-MBR-GFP, leading to 9-fold and 2-fold reduction in the IC 50 values when compared to cisplatin treatment alone, respectively. The data were further supported by 3D (soft agar) and spheroid cell models of MCF-7-CR and MDA-MB-231 cells which showed a 2-fold reduction of a number of cell colonies and spheroid size when treated with both Ad-MBR-GFP and cisplatin, and compared to control. Other than chemo-sensitivity, Ad-MBR-GFP-infected cancer cells retarded cell migration. Flow cytometry analysis showed that the mechanism of action of Ad-MBR-GFP involved cell cycle arrest at the G1 phase and inhibition of cellular DNA synthesis. Taken together, our investigation showed that Ad-MBR-GFP mediated chemo-drug sensitization in the infected cancer cells involved the activation of apoptosis signaling, cell cycle arrest, and inhibition of DNA synthesis, suggesting that Ad-MBR-GFP is potentially efficacious for the treatment of chemo-drug resistant cancers.
Collapse
Affiliation(s)
- Ee Wern Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia; Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Amar Daud Iskandar Abdullah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Bey Hing Goh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia; Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, NSW, Australia
| | - Tze Pheng Lau
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| |
Collapse
|
7
|
Kopparapu P, Löhr CV, Pearce MC, Tyavanagimatt S, Nakshatri H, Kolluri SK. Small Molecule Functional Converter of B-Cell Lymphoma-2 (Bcl-2) Suppresses Breast Cancer Lung Metastasis. ACS Pharmacol Transl Sci 2024; 7:1302-1309. [PMID: 38751629 PMCID: PMC11091964 DOI: 10.1021/acsptsci.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 05/18/2024]
Abstract
The B-cell lymphoma-2 (Bcl-2) family of proteins plays a vital role in tumorigenesis. Cancer cells utilize the expression of Bcl-2 to evade therapy and develop resistance. Bcl-2 overexpression also causes cancer cells to be more invasive and metastatic. About 80% of cancer deaths are due to metastases, and yet targeted therapies for metastatic cancers are scarce. We discovered a small molecule, BFC1103, which changes the conformation of Bcl-2 to convert the antiapoptotic protein to a proapoptotic protein. BFC1103-induced apoptosis is dependent on the expression levels of Bcl-2, with higher levels causing more apoptosis. BFC1103 suppressed the growth of breast cancer lung metastasis. BFC1103 has the potential for further optimization and development for clinical testing in metastatic cancers that express Bcl-2. This study demonstrates a new approach to target Bcl-2 using a small molecule, BFC1103, to suppress metastatic disease.
Collapse
Affiliation(s)
- Prasad
R. Kopparapu
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
| | - Christiane V. Löhr
- Department
of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331-4801, United States
| | - Martin C. Pearce
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
| | - Shanthakumar Tyavanagimatt
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
| | - Harikrishna Nakshatri
- Department
of Surgery, Indiana University School of
Medicine, Indianapolis, Indiana 46202-3082, United States
| | - Siva K. Kolluri
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
- Linus
Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
8
|
Mir KB, Chakraborty S, Amin T, Kumar A, Rouf War A, Nalli Y, Kumar R, Dinesh Kumar L, Ali A, Goswami A. Canonical DDR activation by EMT inducing agent 5-Fluorouracil is modulated by a cannabinoid based combinatorial approach via inducing autophagy and suppression of vimentin expression. Biochem Pharmacol 2024; 223:116126. [PMID: 38490521 DOI: 10.1016/j.bcp.2024.116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Anastasis cascade including induction of Epithelial to Mesenchymal Transition (EMT), DNA repair, and stimulation of pro-survival mediators collectively exaggerate therapy resistance in cancer prognosis. The extensive implications of DNA-damaging agents are clinically proven futile for the rapid development of disease recurrence during treatment regime. Herein we report a glycosidic derivative of Δ9-tetrahydrocannabinol (THC-9-OG) abrogates sub-toxic doses of 5-Fluorouracil (5FU) induced EMT in colon cancer cells nullifying DNA repairing mechanism. Our in vitro and in vivo data strongly proclaims that THC-9-OG could not only abrogate 5FU mediated background EMT activation through stalling matrix degradation as well as murine 4T1 lung metastasis but also vigorously diminished Rad-51 repairing mediator along with stimulation of γ-H2AX foci formation. The combinatorial treatment (5FU + THC-9-OG) in Apc knockout colorectal carcinoma model conferred remission of the crypt progenitor phenotype which was prominently identified in 5FU treatment. Mechanistically, we demonstrated that 5FU plus THC-9-OG significantly attenuated major EMT inducer Vimentin via extensive ROS generation along with autophagy induction via LC3B I-II conversion and p62 degradation in a p-ATM dependent manner. Additionally, Cannabinoid receptor CB1 was responsible for abrogation of Vimentin since we found increase in the expression of γH2AX and decrease in vimentin expression in CB1 agonist (ACEA) plus 5FU treated cells. Nutshell, our results unveil a new direction of Cannabinoid based combinatorial approach to control background EMT along with robust enhancing of DNA damage potential of sub-toxic concentration of 5FU resulting immense inhibition of distant metastasis coupled with triggering cell death in vitro and in vivo.
Collapse
Affiliation(s)
- Khalid Bashir Mir
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Souneek Chakraborty
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Childern Mercy Research Institute, Kansas City, MO 64108, United States
| | - Tanzeeba Amin
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Aviral Kumar
- Cancer Biology, CSIR-Centre for Cellular & Molecular Biology, Hyderabad 500007, India; Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India
| | - Abdul Rouf War
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Yedukondalu Nalli
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra 182320, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular & Molecular Biology, Hyderabad 500007, India
| | - Asif Ali
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Anindya Goswami
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.
| |
Collapse
|
9
|
Iksen, Witayateeraporn W, Hardianti B, Pongrakhananon V. Comprehensive review of Bcl-2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules. Phytother Res 2024; 38:2249-2275. [PMID: 38415799 DOI: 10.1002/ptr.8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan, Indonesia
| | - Wasita Witayateeraporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Besse Hardianti
- Laboratory of Pharmacology and Clinical Pharmacy, Faculty of Health Sciences, Almarisah Madani University, South Sulawesi, Indonesia
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
11
|
Li HY, Feng YH, Lin CL, Hsu TI. Mitochondrial Mechanisms in Temozolomide Resistance: Unraveling the Complex Interplay and Therapeutic Strategies in Glioblastoma. Mitochondrion 2024; 75:101836. [PMID: 38158149 DOI: 10.1016/j.mito.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor, with temozolomide (TMZ) being the standard chemotherapeutic agent for its treatment. However, TMZ resistance often develops, limiting its therapeutic efficacy and contributing to poor patient outcomes. Recent evidence highlights the crucial role of mitochondria in the development of TMZ resistance through various mechanisms, including alterations in reactive oxygen species (ROS) production, metabolic reprogramming, apoptosis regulation, biogenesis, dynamics, stress response, and mtDNA mutations. This review article aims to provide a comprehensive overview of the mitochondrial mechanisms involved in TMZ resistance and discuss potential therapeutic strategies targeting these mechanisms to overcome resistance in GBM. We explore the current state of clinical trials targeting mitochondria or related pathways in primary GBM or recurrent GBM, as well as the challenges and future perspectives in this field. Understanding the complex interplay between mitochondria and TMZ resistance will facilitate the development of more effective therapeutic strategies and ultimately improve the prognosis for GBM patients.
Collapse
Affiliation(s)
- Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, Munich 81377, Germany; Gene Center, Ludwig-Maximilians-University, Munich 81377, Germany
| | | | | | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan.
| |
Collapse
|
12
|
Kumar R, Afrin H, Bhatt HN, Beaven E, Gangavarap A, Esquivel SV, Zahid MI, Nurunnabi M. Mucoadhesive Carrier-Mediated Oral Co-delivery of Bcl2 Inhibitors Improves Gastric Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:305-317. [PMID: 38157479 DOI: 10.1021/acsami.3c15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gastric cancer treatment is challenging due to the lack of early-stage diagnostic technology and targeted delivery systems. Currently, the available treatments for gastric cancer are surgery, chemotherapy, immunotherapy, and radiation. These strategies are either invasive or require systemic delivery, exerting toxicities within healthy tissues. By creation of a targeted delivery system to the stomach, gastric cancer can be treated in the early stages. Such an approach reduces the negative effects on the rest of the body by minimizing systemic absorbance and random localization. With this in mind, we developed a mucoadhesive vehicle composed of β-Glucan And Docosahexaenoic Acid (GADA) for controlled drug/gene delivery. In the current study, we investigated the therapeutic effect of codelivery Bcl2 inhibitors navitoclax (NAVI) and siRNA (Bcl2) via oral using GADA. The therapeutic efficacy of the GADA-mediated oral NAVI/siRNA was investigated in a gastric cancer mouse model. Higher Bcl2 inhibition efficacy was observed in Western blotting and TUNEL assay in mice treated with GADA/NAVI/siRNA compared to free NAVI, siRNA, and NAVI/siRNA. Histology (H&E) and immunohistochemistry (Ki67, TUNEL, and BCl2) analyses confirmed a significant reduction of the tumor region. Interaction between GADA and mucus resulted in retention for over 6 h and thereby sustained local payload release. The developed oral carrier GADA is an emerging vehicle that has promising potential in oral delivery of both small and large molecules, and their mucoadhesive property results in improved therapeutic efficacy with minimal side effects compared to conventional treatment. This study opens a new window for the effective delivery of oral medicine for the treatment of gastric cancer and other gastrointestinal diseases.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Humayra Afrin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, Texas 79965,United States
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Anushareddy Gangavarap
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Stephanie V Esquivel
- Department of Aerospace & Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md Ikhtiar Zahid
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, Texas 79965,United States
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
13
|
Wani AK, Singh R, Akhtar N, Prakash A, Nepovimova E, Oleksak P, Chrienova Z, Alomar S, Chopra C, Kuca K. Targeted Inhibition of the PI3K/Akt/mTOR Signaling Axis: Potential for Sarcoma Therapy. Mini Rev Med Chem 2024; 24:1496-1520. [PMID: 38265369 DOI: 10.2174/0113895575270904231129062137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
Sarcoma is a heterogeneous group of malignancies often resistant to conventional chemotherapy and radiation therapy. The phosphatidylinositol-3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has emerged as a critical cancer target due to its central role in regulating key cellular processes such as cell growth, proliferation, survival, and metabolism. Dysregulation of this pathway has been implicated in the development and progression of bone sarcomas (BS) and soft tissue sarcomas (STS). PI3K/Akt/mTOR inhibitors have shown promising preclinical and clinical activity in various cancers. These agents can inhibit the activation of PI3K, Akt, and mTOR, thereby reducing the downstream signaling events that promote tumor growth and survival. In addition, PI3K/Akt/mTOR inhibitors have been shown to enhance the efficacy of other anticancer therapies, such as chemotherapy and radiation therapy. The different types of PI3K/Akt/mTOR inhibitors vary in their specificity, potency, and side effect profiles and may be effective depending on the specific sarcoma type and stage. The molecular targeting of PI3K/Akt/mToR pathway using drugs, phytochemicals, nanomaterials (NMs), and microbe-derived molecules as Pan-PI3K inhibitors, selective PI3K inhibitors, and dual PI3K/mTOR inhibitors have been delineated. While there are still challenges to be addressed, the preclinical and clinical evidence suggests that these inhibitors may significantly improve patient outcomes. Further research is needed to understand the potential of these inhibitors as sarcoma therapeutics and to continue developing more selective and effective agents to meet the clinical needs of sarcoma patients.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Suliman Alomar
- King Saud University, Zoology Department, College of Science, Riyadh, 11451, Saudi Arabia
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Králové, Czechia
| |
Collapse
|
14
|
El-Beltagy AEFBM, Bakr SM, Mekhaimer SSG, Ghanem NF, Attaallah A. Zinc-nanoparticles alleviate the ovarian damage induced by bacterial lipopolysaccharide (LPS) in pregnant rats and their fetuses. Histochem Cell Biol 2023; 160:453-475. [PMID: 37495867 PMCID: PMC10624724 DOI: 10.1007/s00418-023-02222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Lipopolysaccharide (LPS) is an endotoxin derived from the cell wall of Gram-negative bacteria. LPS exposure during early gestation is associated with adverse effects on the placenta as well as on developmental outcomes, including embryonic resorption, fetal death, congenital teratogenesis, and fetal growth retardation. This work aimed to explore the adverse effects of LPS injected at an early stage of gestation on the gonads of pregnant rats and the ovaries of their pups and the role of zinc nanoparticles (Zn-NPs) against these adverse effects. Twenty-four pregnant rats were used in this study. They were divided at gestation day 4 into four groups (n = 6): control, Zn-NPs (20 mg/kg orally from gestation day E14 till the end of weaning), LPS (50 µg/kg at gestation days E7 and E9), and LPS + Zn-NPs group. The body weight and placenta weight were recorded at gestational day 16. At postnatal day 21 (weaning), the mothers rats and their offspring were sacrificed and immediately dissected to remove the ovaries and uteri from the mothers and the ovaries from their offspring for subsequent biochemical, histological, and immunohistochemical investigations. The obtained results revealed that LPS exposure during early gestation caused severe histopathological alterations in the placenta, uterus, and ovaries of mothers, as well as in the ovaries of their pups. Also, the uterine and ovarian sections displayed a positive reaction for caspase-3 antibody and a negative reaction for Bcl-2 antibody, which reflects the apoptotic effect of LPS. Additionally, remarkable reductions in the levels of antioxidants (superoxide dismutase and catalase) and significant increases in malondialdehyde (MDA) levels were recorded in the serum of LPS-treated mothers and in the ovarian tissues of their offspring. Further biochemical analysis of the ovarian tissues from LPS-maternally treated offspring showed a significant increase in the levels of caspase-3, TNF-α, and TGF-β1, but a significant decrease in the level of IGF-1. On the other hand, treatment of mothers with Zn-NPs from day 14 of gestation until the weaning day (21st day postnatal) successfully ameliorated most of the deleterious histopathological, immunohistochemical, and biochemical changes induced by LPS.
Collapse
Affiliation(s)
| | - Samaa M Bakr
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samah S G Mekhaimer
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Noura F Ghanem
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amany Attaallah
- Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
15
|
Khilwani R, Singh S. Systems Biology and Cytokines Potential Role in Lung Cancer Immunotherapy Targeting Autophagic Axis. Biomedicines 2023; 11:2706. [PMID: 37893079 PMCID: PMC10604646 DOI: 10.3390/biomedicines11102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer accounts for the highest number of deaths among men and women worldwide. Although extensive therapies, either alone or in conjunction with some specific drugs, continue to be the principal regimen for evolving lung cancer, significant improvements are still needed to understand the inherent biology behind progressive inflammation and its detection. Unfortunately, despite every advancement in its treatment, lung cancer patients display different growth mechanisms and continue to die at significant rates. Autophagy, which is a physiological defense mechanism, serves to meet the energy demands of nutrient-deprived cancer cells and sustain the tumor cells under stressed conditions. In contrast, autophagy is believed to play a dual role during different stages of tumorigenesis. During early stages, it acts as a tumor suppressor, degrading oncogenic proteins; however, during later stages, autophagy supports tumor cell survival by minimizing stress in the tumor microenvironment. The pivotal role of the IL6-IL17-IL23 signaling axis has been observed to trigger autophagic events in lung cancer patients. Since the obvious roles of autophagy are a result of different immune signaling cascades, systems biology can be an effective tool to understand these interconnections and enhance cancer treatment and immunotherapy. In this review, we focus on how systems biology can be exploited to target autophagic processes that resolve inflammatory responses and contribute to better treatment in carcinogenesis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, SPPU Campus, Ganeshkhind Road, Pune 411007, India;
| |
Collapse
|
16
|
Almehdi AM, Soliman SSM, El-Shorbagi ANA, Westwell AD, Hamdy R. Design, Synthesis, and Potent Anticancer Activity of Novel Indole-Based Bcl-2 Inhibitors. Int J Mol Sci 2023; 24:14656. [PMID: 37834104 PMCID: PMC10572575 DOI: 10.3390/ijms241914656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 10/15/2023] Open
Abstract
The Bcl-2 family plays a crucial role in regulating cell apoptosis, making it an attractive target for cancer therapy. In this study, a series of indole-based compounds, U1-6, were designed, synthesized, and evaluated for their anticancer activity against Bcl-2-expressing cancer cell lines. The binding affinity, safety profile, cell cycle arrest, and apoptosis effects of the compounds were tested. The designed compounds exhibited potent inhibitory activity at sub-micromolar IC50 concentrations against MCF-7, MDA-MB-231, and A549 cell lines. Notably, U2 and U3 demonstrated the highest activity, particularly against MCF-7 cells. Respectively, both U2 and U3 showed potential BCL-2 inhibition activity with IC50 values of 1.2 ± 0.02 and 11.10 ± 0.07 µM using an ELISA binding assay compared with 0.62 ± 0.01 µM for gossypol, employed as a positive control. Molecular docking analysis suggested stable interactions of compound U2 at the Bcl-2 binding site through hydrogen bonding, pi-pi stacking, and hydrophobic interactions. Furthermore, U2 demonstrated significant induction of apoptosis and cell cycle arrest at the G1/S phase. Importantly, U2 displayed a favourable safety profile on HDF human dermal normal fibroblast cells at 10-fold greater IC50 values compared with MDA-MB-231 cells. These findings underscore the therapeutic potential of compound U2 as a Bcl-2 inhibitor and provide insights into its molecular mechanisms of action.
Collapse
Affiliation(s)
- Ahmed M. Almehdi
- College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | | | - Andrew D. Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff CF10 3NB, UK
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
17
|
Rushing BR. Multi-Omics Analysis of NCI-60 Cell Line Data Reveals Novel Metabolic Processes Linked with Resistance to Alkylating Anti-Cancer Agents. Int J Mol Sci 2023; 24:13242. [PMID: 37686047 PMCID: PMC10487847 DOI: 10.3390/ijms241713242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed to elucidate the molecular determinants influencing the response of cancer cells to alkylating agents, a major class of chemotherapeutic drugs used in cancer treatment. The study utilized data from the National Cancer Institute (NCI)-60 cell line screening program and employed a comprehensive multi-omics approach integrating transcriptomic, proteomic, metabolomic, and SNP data. Through integrated pathway analysis, the study identified key metabolic pathways, such as cysteine and methionine metabolism, starch and sucrose metabolism, pyrimidine metabolism, and purine metabolism, that differentiate drug-sensitive and drug-resistant cancer cells. The analysis also revealed potential druggable targets within these pathways. Furthermore, copy number variant (CNV) analysis, derived from SNP data, between sensitive and resistant cells identified notable differences in genes associated with metabolic changes (WWOX, CNTN5, DDAH1, PGR), protein trafficking (ARL17B, VAT1L), and miRNAs (MIR1302-2, MIR3163, MIR1244-3, MIR1302-9). The findings of this study provide a holistic view of the molecular landscape and dysregulated pathways underlying the response of cancer cells to alkylating agents. The insights gained from this research can contribute to the development of more effective therapeutic strategies and personalized treatment approaches, ultimately improving patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Blake R. Rushing
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA;
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Lucchesi CA, Vasilatis DM, Mantrala S, Chandrasekar T, Mudryj M, Ghosh PM. Pesticides and Bladder Cancer: Mechanisms Leading to Anti-Cancer Drug Chemoresistance and New Chemosensitization Strategies. Int J Mol Sci 2023; 24:11395. [PMID: 37511154 PMCID: PMC10380322 DOI: 10.3390/ijms241411395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple risk factors have been associated with bladder cancer. This review focuses on pesticide exposure, as it is not currently known whether agricultural products have a direct or indirect effect on bladder cancer, despite recent reports demonstrating a strong correlation. While it is known that pesticide exposure is associated with an increased risk of bladder cancer in humans and dogs, the mechanism(s) by which specific pesticides cause bladder cancer initiation or progression is unknown. In this narrative review, we discuss what is currently known about pesticide exposure and the link to bladder cancer. This review highlights multiple pathways modulated by pesticide exposure with direct links to bladder cancer oncogenesis/metastasis (MMP-2, TGF-β, STAT3) and chemoresistance (drug efflux, DNA repair, and apoptosis resistance) and potential therapeutic tactics to counter these pesticide-induced affects.
Collapse
Affiliation(s)
- Christopher A. Lucchesi
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Demitria M. Vasilatis
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Urological Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Saisamkalpa Mantrala
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
| | - Thenappan Chandrasekar
- Department of Urological Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Maria Mudryj
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Paramita M. Ghosh
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Urological Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
19
|
Lin Y, Zhao Y, Chen M, Li Z, Liu Q, Chen J, Ding Y, Ding C, Ding Y, Qi C, Zheng L, Li J, Zhang R, Zhou J, Wang L, Zhang QQ. CYD0281, a Bcl-2 BH4 domain antagonist, inhibits tumor angiogenesis and breast cancer tumor growth. BMC Cancer 2023; 23:479. [PMID: 37237269 DOI: 10.1186/s12885-023-10974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND B-cell lymphoma 2 (Bcl-2) family proteins are key regulators of apoptosis, which possess four conserved Bcl-2 homologies (BH) domains. Among the BH domains, the BH3 domain is considered as a potent 'death domain' while the BH4 domain is required for anti-apoptotic activity. Bcl-2 can be converted to a pro-apoptotic molecule through the removal or mutation of the BH4 domain. Bcl-2 is considered as an inducer of angiogenesis, which can promote tumor vascular network formation and further afford nutrients and oxygen to promote tumor progression. However, whether disrupting the function of the BH4 domain to convert Bcl-2 into a pro-apoptotic molecule could make Bcl-2 possess the potential for anti-angiogenic therapy remains to be defined. METHODS CYD0281 was designed and synthesized according to the lead structure of BDA-366, and its function on inducing a conformational change of Bcl-2 was further evaluated via immunoprecipitation (IP) and immunofluorescence (IF) assays. Moreover, the function of CYD0281 on apoptosis of endothelial cells was analyzed via cell viability, flow cytometry, and western blotting assays. Additionally, the role of CYD0281 on angiogenesis in vitro was determined via endothelial cell migration and tube formation assays and rat aortic ring assay. Chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, breast cancer cell xenograft tumor on CAM and in mouse models as well as the Matrigel plug angiogenesis assay were used to explore the effects of CYD0281 on angiogenesis in vivo. RESULTS We identified a novel potent small-molecule Bcl-2-BH4 domain antagonist, CYD0281, which exhibited significant anti-angiogenic effects both in vitro and in vivo, and further inhibited breast cancer tumor growth. CYD0281 was found to induce conformational changes in Bcl-2 through the exposure of the BH3 domain and convert Bcl-2 from an anti-apoptotic molecule into a cell death inducer, thereby resulting in the apoptosis of vascular endothelial cells. CONCLUSIONS This study has revealed CYD0281 as a novel Bcl-2-BH4 antagonist that induces conformational changes of Bcl-2 to convert to a pro-apoptotic molecule. Our findings indicate that CYD0281 plays a crucial role in anti-angiogenesis and may be further developed as a potential anti-tumor drug candidate for breast cancer. This work also provides a potential anti-angiogenic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Yihua Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiling Zhao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Minggui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zishuo Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiao Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jian Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Ding
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chunyong Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ye Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qian-Qian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Sincere NI, Anand K, Ashique S, Yang J, You C. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Molecules 2023; 28:molecules28104014. [PMID: 37241755 DOI: 10.3390/molecules28104014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A potential therapeutic strategy to treat conditions brought on by the aberrant production of a disease-causing protein is emerging for targeted protein breakdown using the PROTACs technology. Few medications now in use are tiny, component-based and utilize occupancy-driven pharmacology (MOA), which inhibits protein function for a short period of time to temporarily alter it. By utilizing an event-driven MOA, the proteolysis-targeting chimeras (PROTACs) technology introduces a revolutionary tactic. Small-molecule-based heterobifunctional PROTACs hijack the ubiquitin-proteasome system to trigger the degradation of the target protein. The main challenge PROTAC's development facing now is to find potent, tissue- and cell-specific PROTAC compounds with favorable drug-likeness and standard safety measures. The ways to increase the efficacy and selectivity of PROTACs are the main focus of this review. In this review, we have highlighted the most important discoveries related to the degradation of proteins by PROTACs, new targeted approaches to boost proteolysis' effectiveness and development, and promising future directions in medicine.
Collapse
Affiliation(s)
- Nuwayo Ishimwe Sincere
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, India
| | - Jing Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, Raju GSR, Bhaskar L, Huh YS. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother 2023; 163:114822. [PMID: 37146418 DOI: 10.1016/j.biopha.2023.114822] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Breast cancer (BC) is the second most fatal disease and is the prime cause of cancer allied female deaths. BC is caused by aberrant tumor suppressor genes and oncogenes regulated by transcription factors (TFs) like NF-κB. NF-κB is a pro-inflammatory TF that crucially alters the expressions of various genes associated with inflammation, cell progression, metastasis, and apoptosis and modulates a network of genes that underlie tumorigenesis. Herein, we focus on NF-κB signaling pathways, its regulators, and the rationale for targeting NF-κB. This review also includes TFs that maintain NF-κB crosstalk and their roles in promoting angiogenesis and metastasis. In addition, we discuss the importance of combination therapies, resistance to treatment, and potential novel therapeutic strategies including nanomedicine that targets NF-κB.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Jyothsna Kancharla
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan 304022, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India
| | - Ju Yong Sung
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health care informatics, Sacred Heart University, 5151Park Avenue, Fair fields, CT06825, USA
| | - Rino Choi
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
22
|
Ebrahimi S, Soukhtanloo M, Mostafavi-Pour Z. Anti-tumor effects of Auraptene through induction of apoptosis and oxidative stress in a mouse model of colorectal cancer. Tissue Cell 2023; 81:102004. [PMID: 36603499 DOI: 10.1016/j.tice.2022.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The main strategy of cancer cells for survival is uncontrolled cell division and escape from apoptosis. The use of anticancer agents inducing the production of reactive oxygen species (ROS) and controlling cell division might be a therapeutic approach to eradicate cancer cells. Herein, we examined the therapeutic effects of Auraptene on CT26 cells as well as on a mouse model of colorectal cancer (CRC). The spheroid assay was also conducted to analyze the anti-proliferative activity of Auraptene. We also assessed the in vitro analysis of ROS generation. The impact of Auraptene on oxidant/antioxidant markers, as well as the mRNA expression of Bax, Bcl-2, Nrf2, Cyclin D1, and Survivin genes, was evaluated by qPCR in tumor samples. As a result, Auraptene significantly reduced the size of CT26 spheroids at a dose of 200 µM. After 12 h, ROS levels were significantly elevated in CT26 cells. The administration of Auraptene induced apoptosis and the cell cycle arrest by modulating Bax, Bcl-2, Nrf2, Cyclin D1, and Survivin mRNA levels. Furthermore, our results demonstrated that Auraptene suppressed CAT, GSH (reduced Glutathione), and FRAP while increasing MDA in tissue homogenates which in turn could raise oxidative stress and stimulate apoptosis. Therefore, Auraptene may act as a powerful adjuvant therapy in CRC since it triggers apoptosis and cell cycle.
Collapse
Affiliation(s)
- Sepideh Ebrahimi
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Mostafavi-Pour
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Petrikaite V, D'Avanzo N, Celia C, Fresta M. Nanocarriers overcoming biological barriers induced by multidrug resistance of chemotherapeutics in 2D and 3D cancer models. Drug Resist Updat 2023; 68:100956. [PMID: 36958083 DOI: 10.1016/j.drup.2023.100956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Multidrug resistance (MDR) is currently a big challenge in cancer therapy and limits its success in several patients. Tumors use the MDR mechanisms to colonize the host and reduce the efficacy of chemotherapeutics that are injected as single agents or combinations. MDR mechanisms are responsible for inactivation of drugs and formbiological barriers in cancer like the drug efflux pumps, aberrant extracellular matrix, hypoxic areas, altered cell death mechanisms, etc. Nanocarriers have some potential to overcome these barriers and improve the efficacy of chemotherapeutics. In fact, they are versatile and can deliver natural and synthetic biomolecules, as well as RNAi/DNAi, thus providing a controlled release of drugs and a synergistic effect in tumor tissues. Biocompatible and safe multifunctional biopolymers, with or without specific targeting molecules, modify the surface and interface properties of nanocarriers. These modifications affect the interaction of nanocarriers with cellular models as well as the selection of suitable models for in vitro experiments. MDR cancer cells, and particularly their 2D and 3D models, in combination with anatomical and physiological structures of tumor tissues, can boost the design and preparation of nanomedicines for anticancer therapy. 2D and 3D cancer cell cultures are suitable models to study the interaction, internalization, and efficacy of nanocarriers, the mechanisms of MDR in cancer cells and tissues, and they are used to tailor a personalized medicine and improve the efficacy of anticancer treatment in patients. The description of molecular mechanisms and physio-pathological pathways of these models further allow the design of nanomedicine that can efficiently overcome biological barriers involved in MDR and test the activity of nanocarriers in 2D and 3D models of MDR cancer cells.
Collapse
Affiliation(s)
- Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Nicola D'Avanzo
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy; Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy
| | - Christian Celia
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy
| |
Collapse
|
24
|
Mousavi SM, Hosseindoost S, Mahdian SMA, Vousooghi N, Rajabi A, Jafari A, Ostadian A, Hamblin MR, Hadjighassem MR, Mirzaei H. Exosomes released from U87 glioma cells treated with curcumin and/or temozolomide produce apoptosis in naive U87 cells. Pathol Res Pract 2023; 245:154427. [PMID: 37028110 DOI: 10.1016/j.prp.2023.154427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
Glioblastoma (GBM) remains the most lethal brain tumor without any curative treatment. Exosomes can mediate cell-to-cell communication, and may function as a new type of targeted therapy. In this study, the therapeutic benefits of exosomes generated by U87 cells treated with curcumin and/or temozolomide were investigated. The cells were cultured and treated with temozolomide (TMZ), curcumin (Cur), or their combination (TMZ+Cur). Exosomes were isolated with a centrifugation kit and characterized using DLS, SEM, TEM, and Western blotting. The levels of exosomal BDNF and TNF-α were measured. Naïve U87 cells were treated with the isolated exosomes, and the effects on apoptosis-related proteins HSP27, HSP70, HSP90, and P53 were assessed. All exosomes, Cur-Exo, TMZ-Exo, and TMZ+Cur-Exo increased cleaved caspase 3, Bax, and P53 proteins, while reducing HSP27, HSP70, HSP90, and Bcl2 proteins. Moreover all treatment groups increased apoptosis in naïve U87 recipient cells. Exosomes released from treated U87 cells had less BDNF and more TNF-α compared to exosomes released from naive U87 cells. In conclusion, we showed for the first time that exosomes released from drug-treated U87 cells could be a new therapeutic approach in glioblastoma, and could reduce the side effects produced by drugs alone. This concept needs to be further examined in animal models before clinical trials could be considered.
Collapse
|
25
|
Manunu B, Serafin AM, Akudugu JM. BAG1, MGMT, FOXO1, and DNAJA1 as potential drug targets for radiosensitizing cancer cell lines. Int J Radiat Biol 2023; 99:292-307. [PMID: 35511481 DOI: 10.1080/09553002.2022.2074164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Activation of some signaling pathways can promote cell survival and have a negative impact on tumor response to radiotherapy. Here, the role of differences in expression levels of genes related to the poly(ADP-ribose) polymerase-1 (PARP-1), heat shock protein 90 (Hsp90), B-cell lymphoma 2 (Bcl-2), and phosphoinositide 3-kinase (PI3K) pathways in the survival or death of cells following X-ray exposure was investigated. METHODS Eight human cell cultures (MCF-7 and MDA-MB-231: breast cancers; MCF-12A: apparently normal breast; A549: lung cancer; L132: normal lung; G28, G44 and G112: glial cancers) were irradiated with X-rays. The colony-forming and real-time PCR based on a custom human pathway RT2 Profiler PCR Array assays were used to evaluate cell survival and gene expression, respectively. RESULTS The surviving fractions at 2 Gy for the cell lines, in order of increasing radioresistance, were found to be as follows: MCF-7 (0.200 ± 0.011), G44 (0.277 ± 0.065), L132 (0.367 ± 0.023), MDA-MB-231 (0.391 ± 0.057), G112 (0.397 ± 0.113), A549 (0.490 ± 0.048), MCF-12A (0.526 ± 0.004), and G28 (0.633 ± 0.094). The rank order of radioresistance at 6 Gy was: MCF-7 < L132 < G44 < MDA-MB-231 < A549 < G28 < G112 < MCF-12A. PCR array data analysis revealed that several genes were differentially expressed between irradiated and unirradiated cell cultures. The following genes, with fold changes: BCL2A1 (21.91), TP53 (8743.75), RAD51 (11.66), FOX1 (65.86), TCP1 (141.32), DNAJB1 (3283.64), RAD51 (51.52), and HSPE1 (12887.29) were highly overexpressed, and BAX (-127.21), FOX1 (-81.79), PDPK1 (-1241.78), BRCA1 (-8.70), MLH1 (-12143.95), BCL2 (-18.69), CCND1 (-46475.98), and GJA1 (-2832.70) were highly underexpressed in the MDA-MB-231, MCF-7, MCF-12A, A549, L132, G28, G44, and G112 cell lines, respectively. The radioresistance in the malignant A549 and G28 cells was linked to upregulation in the apoptotic, DNA repair, PI3K, and Hsp90 pathway genes BAG1, MGMT, FOXO1, and DNAJA1, respectively, and inhibition of these genes resulted in significant radiosensitization. CONCLUSIONS Targeting BAG1, MGMT, FOXO1, and DNAJA1 with specific inhibitors might effectively sensitize radioresistant tumors to radiotherapy.
Collapse
Affiliation(s)
- Bayanika Manunu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Antonio M Serafin
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - John M Akudugu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
26
|
Silver Nanoparticles Modified by Carbosilane Dendrons and PEG as Delivery Vectors of Small Interfering RNA. Int J Mol Sci 2023; 24:ijms24010840. [PMID: 36614277 PMCID: PMC9820844 DOI: 10.3390/ijms24010840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
The fact that cancer is one of the leading causes of death requires researchers to create new systems of effective treatment for malignant tumors. One promising area is genetic therapy that uses small interfering RNA (siRNA). These molecules are capable of blocking mutant proteins in cells, but require specific systems that will deliver RNA to target cells and successfully release them into the cytoplasm. Dendronized and PEGylated silver nanoparticles as potential vectors for proapoptotic siRNA (siMCL-1) were used here. Using the methods of one-dimensional gel electrophoresis, the zeta potential, dynamic light scattering, and circular dichroism, stable siRNA and AgNP complexes were obtained. Data gathered using multicolor flow cytometry showed that AgNPs are able to deliver (up to 90%) siRNAs efficiently to some types of tumor cells, depending on the degree of PEGylation. Analysis of cell death showed that complexes of some AgNP variations with siMCL-1 lead to ~70% cell death in the populations that uptake these complexes due to apoptosis.
Collapse
|
27
|
Mehrotra N, Anees M, Tiwari S, Kharbanda S, Singh H. Polylactic acid based polymeric nanoparticle mediated co-delivery of navitoclax and decitabine for cancer therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102627. [PMID: 36410699 DOI: 10.1016/j.nano.2022.102627] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Combination chemotherapy with systemic administration of drugs in their free form can be challenging due to non-synchronized pharmacokinetics and sub-optimal tumor accumulation. The present study investigates a PLA-based block copolymeric nanocarrier for the co-delivery of navitoclax and decitabine (NAV/DCB NPs) for combination cancer therapy. NAV/DCB NPs exhibited potent in vitro synergistic cytotoxicity in both acute myeloid leukemia and breast cancer cell lines. Biodistribution studies of NAV/DCB NPs in tumor bearing mice, showed significant drug accumulation in tumor tissue and detectable quantities in plasma even after 48 h. Good hemocompatibility with reduced in vivo platelet toxicity indicated that encapsulation in PLA-based nanocarrier helped ameliorate navitoclax associated thrombocytopenia. In vivo biological activity of NAV/DCB NPs evaluated in xenograft AML and syngeneic breast cancer model, demonstrated potent tumor growth inhibition efficacy. PLA-based NAV/DCB dual NPs present a novel, safe and effective nanoformulation for combination cancer therapy in both solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Neha Mehrotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India
| | - Mohd Anees
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India
| | | | | | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India; Department of Biomedical Engineering, All India Institute of Medical Sciences Delhi, India.
| |
Collapse
|
28
|
Tiffner A, Hopl V, Derler I. CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development. Cancers (Basel) 2022; 15:101. [PMID: 36612099 PMCID: PMC9817886 DOI: 10.3390/cancers15010101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer represents a major health burden worldwide. Several molecular targets have been discovered alongside treatments with positive clinical outcomes. However, the reoccurrence of cancer due to therapy resistance remains the primary cause of mortality. Endeavors in pinpointing new markers as molecular targets in cancer therapy are highly desired. The significance of the co-regulation of Ca2+-permeating and Ca2+-regulated ion channels in cancer cell development, proliferation, and migration make them promising molecular targets in cancer therapy. In particular, the co-regulation of the Orai1 and SK3 channels has been well-studied in breast and colon cancer cells, where it finally leads to an invasion-metastasis cascade. Nevertheless, many questions remain unanswered, such as which key molecular components determine and regulate their interplay. To provide a solid foundation for a better understanding of this ion channel co-regulation in cancer, we first shed light on the physiological role of Ca2+ and how this ion is linked to carcinogenesis. Then, we highlight the structure/function relationship of Orai1 and SK3, both individually and in concert, their role in the development of different types of cancer, and aspects that are not yet known in this context.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
29
|
Wolfrum P, Fietz A, Schnichels S, Hurst J. The function of p53 and its role in Alzheimer's and Parkinson's disease compared to age-related macular degeneration. Front Neurosci 2022; 16:1029473. [PMID: 36620455 PMCID: PMC9811148 DOI: 10.3389/fnins.2022.1029473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The protein p53 is the main human tumor suppressor. Since its discovery, extensive research has been conducted, which led to the general assumption that the purview of p53 is also essential for additional functions, apart from the prevention of carcinogenesis. In response to cellular stress and DNA damages, p53 constitutes the key point for the induction of various regulatory processes, determining whether the cell induces cell cycle arrest and DNA repair mechanisms or otherwise cell death. As an implication, aberrations from its normal functioning can lead to pathogeneses. To this day, neurodegenerative diseases are considered difficult to treat, which arises from the fact that in general the underlying pathological mechanisms are not well understood. Current research on brain and retina-related neurodegenerative disorders suggests that p53 plays an essential role in the progression of these conditions as well. In this review, we therefore compare the role and similarities of the tumor suppressor protein p53 in the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD), two of the most prevalent neurological diseases, to the age-related macular degeneration (AMD) which is among the most common forms of retinal degeneration.
Collapse
|
30
|
Qi Y, Zhang C, Wu D, Zhang Y, Zhao Y, Li W. Indole-3-Carbinol Stabilizes p53 to Induce miR-34a, Which Targets LDHA to Block Aerobic Glycolysis in Liver Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15101257. [PMID: 36297369 PMCID: PMC9606903 DOI: 10.3390/ph15101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Certain cancer cells prefer aerobic glycolysis rather than oxidative phosphorylation for energy supply. Lactate dehydrogenase A (LDHA) catalyzes the reduction of pyruvate to lactate and regains NAD+ so that glycolysis is continued. As a pivotal enzyme to promote smooth glycolysis, LDHA plays an important role in carcinogenesis. Indole-3-carbinol (I3C) has displayed antitumor activity, but the exact mechanism remains to be identified. In this study, we treated liver cancer cells with I3C, performed colony formation and cell migration, measured the expression of glycolysis-related proteins, and predicted and validated LDHA-targeting miRNA from the databases. In addition, the mRNA and protein levels of p53, glycolysis-related genes and miRNAs that regulate glycolysis were detected after I3C and siRNA-p53 treatment alone or in combination. Next, the expression and colocalization of p53 and MDM2 in liver cancer cells were evaluated after I3C treatment, and the effect of I3C on p53 protein stability was examined. The results showed that I3C inhibited cell proliferation, migration, and the expression levels of glycolysis-related gene LDHAs. MiR-34a was predicted to target LDHA, and I3C downregulated its expression. Furthermore, the combined I3C and siRNA-p53 treatment demonstrated that I3C regulated the expression of LDHA via miR-34a in a p53-dependent manner. Finally, I3C inhibited MDM2 expression and its colocalization with p53 and stabilized p53 expression. In summary, I3C inhibited the degradation of p53 by MDM2 in liver cancer cells; stable p53 induced miR-34a, which targeted LDHA, a key enzyme for aerobic glycolysis, suggesting cancer metabolism is an important target for I3C in liver cancer cells.
Collapse
Affiliation(s)
- Yuehua Qi
- College of Basic Medicine, Hebei University, Baoding 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071000, China
| | - Chunjing Zhang
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161006, China
| | - Di Wu
- College of Basic Medicine, Hebei University, Baoding 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071000, China
| | - Yue Zhang
- College of Basic Medicine, Hebei University, Baoding 071000, China
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, LA 71103, USA
- Correspondence: (Y.Z.); (W.L.)
| | - Wenjuan Li
- College of Basic Medicine, Hebei University, Baoding 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071000, China
- Correspondence: (Y.Z.); (W.L.)
| |
Collapse
|
31
|
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, Chacon Castro MDC, Deese AR, Zhang L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel) 2022; 14:4562. [PMID: 36230484 PMCID: PMC9558974 DOI: 10.3390/cancers14194562] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
32
|
Zhao C, Dekker FJ. Novel Design Strategies to Enhance the Efficiency of Proteolysis Targeting Chimeras. ACS Pharmacol Transl Sci 2022; 5:710-723. [PMID: 36110375 PMCID: PMC9469497 DOI: 10.1021/acsptsci.2c00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/30/2022]
Abstract
Despite the success of drug discovery over the past decades, many potential drug targets still remain intractable for small molecule modulation. The development of proteolysis targeting chimeras (PROTACs) that trigger degradation of the target proteins provides a conceptually novel approach to address drug targets that remained previously elusive. Currently, the main challenge of PROTAC development is the identification of efficient, tissue- and cell-selective PROTAC molecules with good drug-likeness and favorable safety profiles. This review focuses on strategies to enhance the effectiveness and selectivity of PROTACs. We provide a comprehensive summary of recently reported PROTAC design strategies and discuss the advantages and disadvantages of these strategies. Future perspectives for PROTAC design will also be discussed.
Collapse
Affiliation(s)
- Chunlong Zhao
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Frank J. Dekker
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
33
|
Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomed Pharmacother 2022; 153:113451. [DOI: 10.1016/j.biopha.2022.113451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
|
34
|
Pal P, Zhang P, Poddar SK, Zheng G. Patent landscape of inhibitors and PROTACs of the anti-apoptotic BCL-2 family proteins. Expert Opin Ther Pat 2022; 32:1003-1026. [PMID: 35993382 PMCID: PMC9942934 DOI: 10.1080/13543776.2022.2116311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The anti-apoptotic BCL-2 family proteins, such as BCL-2, BCL-XL, and MCL-1, are excellent cancer therapeutic targets. The FDA approval of BCL-2 selective inhibitor venetoclax in 2016 validated the strategy of targeting these proteins with BH3 mimetic small molecule inhibitors. AREAS COVERED This review provides an overview of the patent literature between 2016 and 2021 covering inhibitors and PROTACs of the anti-apoptotic BCL-2 proteins. EXPERT OPINION Since the FDA approval of venetoclax, tremendous efforts have been made to develop its analogues with improved drug properties. These activities will likely result in new drugs in coming years. Significant progress on MCL-1 inhibitors has also been made, with multiple compounds entering clinical trials. However, MCL-1 inhibition could cause on-target toxicity to normal tissues especially the heart. Similar issue exists with BCL-XL inhibitors, which cause on-target platelet toxicity. To overcome this issue, several strategies have been applied, including prodrug, dendrimer-based drug delivery, antibody-drug conjugate (ADC), and proteolysis targeting chimera (PROTAC); and amazingly, each of these approaches has resulted in a drug candidate entering clinical trials. We envision technologies like ADC and PROTAC could also be utilized to increase the therapeutic index of MCL-1 inhibitors.
Collapse
Affiliation(s)
- Pratik Pal
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Saikat K Poddar
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Abaza A, Vasavada AM, Sadhu A, Valencia C, Fatima H, Nwankwo I, Anam M, Maharjan S, Amjad Z, Khan S. A Systematic Review of Apoptosis in Correlation With Cancer: Should Apoptosis Be the Ultimate Target for Cancer Treatment? Cureus 2022; 14:e28496. [PMID: 36185861 PMCID: PMC9514374 DOI: 10.7759/cureus.28496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/28/2022] [Indexed: 11/05/2022] Open
Abstract
Targeting apoptosis in cancer therapy has become increasingly popular, and there has been an increasing debate on whether apoptosis should be one of the main targets of therapy in cancer management. This study demonstrates the definition of apoptosis, the signaling pathways, and the pathogenesis behind it. We also show the correlation between apoptosis and cancer and how cancer can evade apoptosis to develop resistance to therapy. In addition, we illustrate the efficacy of adding pro-apoptotic therapy to conventional radio-chemotherapy cancer treatment. A systematic review was conducted using PubMed, PubMed Central (PMC), and ResearchGate, including papers written in English, focusing on adult and geriatric populations, in literature reviews, systematic reviews, and randomized controlled trials published in the last 25 years with relevance to the question. Based on the findings of this review, we conclude that apoptosis is a very sophisticated programmed cellular death with many signaling pathways. Its evasion should be considered one of the hallmarks of cancer and is responsible for multiple drug resistance (MDR) to cancer therapy. Targeting apoptosis seems promising, especially if combined with radio-chemotherapy.
Collapse
Affiliation(s)
- Abdelrahman Abaza
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Advait M Vasavada
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Akhil Sadhu
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Carla Valencia
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hameeda Fatima
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ijeoma Nwankwo
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mahvish Anam
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shrinkhala Maharjan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Zainab Amjad
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
36
|
Khan SU, Fatima K, Malik F. Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clin Exp Metastasis 2022; 39:715-726. [PMID: 35829806 DOI: 10.1007/s10585-022-10172-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/25/2022] [Indexed: 11/26/2022]
Abstract
Anchorage-independent survival of cancer cells is associated with metastasis as it enables cells to travel to secondary target sites. Tissue integrity is generally maintained by detachment-induced cell death called 'anoikis', but cancer cells undergoing the multistep metastatic process show resistance to anoikis. Anoikis resistance enables these cells to survive through the extracellular matrix (ECM) deprived phase, which starts when cancer cells detach and move into the circulation till cells reach to the secondary target site. Comprehensive analysis of the molecular and functional biology of anoikis resistance in cancer cells will provide crucial details about cancer metastasis, enabling us to identify novel therapeutic targets against cancer cell dissemination and ultimately secondary tumor formation. This review broadly summarizes recent advances in the understanding of cellular and molecular events leading to anoikis and anoikis resistance. It further elaborates more about the signaling cross-talk in anoikis resistance and its regulation during metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, 190005, Srinagar, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Kaneez Fatima
- Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, 190005, Srinagar, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Fayaz Malik
- Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, 190005, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
37
|
Yang J, Zhang J, Gao X, Luo R, Xie K, Wang W, Li J, Yang Q, Huang X, Yan Z, Wang P, Gun S. FTO Regulates Apoptosis in CPB2-Treated IPEC-J2 Cells by Targeting Caspase 3 Apoptotic Protein. Animals (Basel) 2022; 12:ani12131644. [PMID: 35804542 PMCID: PMC9264887 DOI: 10.3390/ani12131644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
N6-methyladenosine (m6A) modification can accommodate mRNA processing, stability, and translation in mammals, and fat mass and obesity associated protein (FTO) is a vital demethylase in the m6A modification pathway. Clostridium perfringens type C (C. perfringens type C) causes diarrhea in piglets and has a serious impact on the pig industry. However, our understanding of the effect of m6A in the process of C. perfringens type C infectious piglet diarrhea (CPTCIPD) is limited. Here, an in vitro model of CPTCIPD was constructed by treating the intestinal porcine epithelial cell line-J2 (IPEC-J2) with Clostridium perfringens beta2 (CPB2) toxin, and the role of FTO was analyzed using quantitative real-time polymerase chain reaction, Western blotting, and flow cytometry. The results revealed that the overall RNA m6A contents at the tissue and cell levels were significantly up-regulated after C. perfringens infection (p < 0.05). FTO expression was significantly reduced in CPB2-treated IPEC-J2 cells. Functionally, FTO knockdown in the treated cells inhibited their proliferation and promoted apoptosis and the inflammation phenotype, whereas FTO overexpression had the opposite effects. Inhibiting FTO prolonged the half-life and up-regulated the expression of Caspase 3, leading to apoptosis. Therefore, this work explored the regulation of FTO in IPEC-J2 cells after CPB2 treatment and enhanced our understanding of the effect of the m6A modification in CPTCIPD.
Collapse
Affiliation(s)
- Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.Z.); (X.G.); (R.L.); (K.X.); (J.L.); (Q.Y.); (X.H.); (Z.Y.); (P.W.)
| | - Juanli Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.Z.); (X.G.); (R.L.); (K.X.); (J.L.); (Q.Y.); (X.H.); (Z.Y.); (P.W.)
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.Z.); (X.G.); (R.L.); (K.X.); (J.L.); (Q.Y.); (X.H.); (Z.Y.); (P.W.)
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.Z.); (X.G.); (R.L.); (K.X.); (J.L.); (Q.Y.); (X.H.); (Z.Y.); (P.W.)
| | - Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.Z.); (X.G.); (R.L.); (K.X.); (J.L.); (Q.Y.); (X.H.); (Z.Y.); (P.W.)
| | - Wei Wang
- College of Animal Science and Technology, Northwest A&F University, Xi’an 712100, China;
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.Z.); (X.G.); (R.L.); (K.X.); (J.L.); (Q.Y.); (X.H.); (Z.Y.); (P.W.)
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.Z.); (X.G.); (R.L.); (K.X.); (J.L.); (Q.Y.); (X.H.); (Z.Y.); (P.W.)
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.Z.); (X.G.); (R.L.); (K.X.); (J.L.); (Q.Y.); (X.H.); (Z.Y.); (P.W.)
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.Z.); (X.G.); (R.L.); (K.X.); (J.L.); (Q.Y.); (X.H.); (Z.Y.); (P.W.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.Z.); (X.G.); (R.L.); (K.X.); (J.L.); (Q.Y.); (X.H.); (Z.Y.); (P.W.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.Z.); (X.G.); (R.L.); (K.X.); (J.L.); (Q.Y.); (X.H.); (Z.Y.); (P.W.)
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
- Correspondence:
| |
Collapse
|
38
|
Cheng W, Liu D, Guo M, Li H, Wang Q. Sophoraflavanone G suppresses the progression of triple‐negative breast cancer via the inactivation of EGFR–PI3K–AKT signaling. Drug Dev Res 2022; 83:1138-1151. [PMID: 35426453 DOI: 10.1002/ddr.21938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Cheng
- Department of Pharmacy Second Hospital of Shanxi Medical University Taiyuan China
| | - Dan Liu
- Department of Pharmacy The Second Affiliated Hospital of Army Medical University Chongqing China
| | - Min Guo
- Department of Pharmacy Second Hospital of Shanxi Medical University Taiyuan China
| | - Honglei Li
- Fuxing Road Outpatient Department Chinese PLA General Hospital Beijing China
| | - Qiang Wang
- Department of Pharmacy The Second Affiliated Hospital of Army Medical University Chongqing China
| |
Collapse
|
39
|
Boghaert ER, Cox MC, Vaidya KS. Pathophysiological and pharmacological considerations to improve the design and application of antibody-drug conjugates. Cancer Res 2022; 82:1858-1869. [PMID: 35298624 DOI: 10.1158/0008-5472.can-21-3236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugates (ADC) have emerged as one of the pillars of clinical disease management in oncology. The biggest hurdle to widespread development and application of ADCs has been a narrow therapeutic index. Advances in antibody technologies and formats as well as novel linker and payload chemistries have begun to facilitate structural improvements to ADCs. However, the interplay of structural characteristics with physiologic and pharmacologic factors determining therapeutic success has garnered less attention. This review elaborates on the pharmacology of ADCs, the pathophysiology of cancerous tissues, and the reciprocal consequences on ADC properties and functions. While most currently approved ADCs utilize either microtubule inhibition or DNA damage as primary mechanisms of action, we present arguments to expand this repertoire and highlight the need for payload mechanisms that exploit disease-specific vulnerabilities. We promote the idea that the choice of antibody format, targeting antigen, linker properties, and payload of an ADC should be deliberately fit for purpose by taking the pathophysiology of disease and the specific pharmacology of the drug entity into account, thus allowing a higher probability of clinical success.
Collapse
Affiliation(s)
| | - Megan C Cox
- Abbvie, Inc., North Chicago, IL, United States
| | - Kedar S Vaidya
- Jazz Pharmaceuticals (United States), Palo Alto, CA, United States
| |
Collapse
|
40
|
Li L, Han C, Yu X, Shen J, Cao Y. Targeting AraC-Resistant Acute Myeloid Leukemia by Dual Inhibition of CDK9 and Bcl-2: A Systematic Review and Meta-Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2842066. [PMID: 35126914 PMCID: PMC8808115 DOI: 10.1155/2022/2842066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aims to determine the influence of targeting araC-resistant acute myeloid leukemia by dual inhibition cyclin-dependent protein kinase (CDK9) and B-cell lymphoma-2 (Bcl-2). METHOD The c-Myc inhibitor 10058-F4 and the CDK9 inhibitor AZD4573 were used to determine the cell cycle arrest and apoptosis. RESULTS 10058-F4 reduces c-Myc protein levels and suppresses HepG2 cell proliferation, possibly by upregulating cyclin-dependent kinase (CDK) inhibitors, p21WAF1, and reducing intracellular alpha-fetal protein (AFP) levels. CONCLUSION The combination of AZD4573 and 10058-F4 has a synergistic anti-araC-resistant AML activity, providing a solid database for the aforementioned scientific hypothesis.
Collapse
Affiliation(s)
- Linzhang Li
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chengwu Han
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xueying Yu
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jun Shen
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yongtong Cao
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
41
|
Phenanthroline-based Ni(II) coordination compounds involving unconventional discrete fumarate-water-nitrate clusters and energetically significant cooperative ternary π-stacked assemblies: Antiproliferative evaluation and theoretical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Lv D, Pal P, Liu X, Jia Y, Thummuri D, Zhang P, Hu W, Pei J, Zhang Q, Zhou S, Khan S, Zhang X, Hua N, Yang Q, Arango S, Zhang W, Nayak D, Olsen SK, Weintraub ST, Hromas R, Konopleva M, Yuan Y, Zheng G, Zhou D. Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity. Nat Commun 2021; 12:6896. [PMID: 34824248 PMCID: PMC8617031 DOI: 10.1038/s41467-021-27210-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
PROteolysis-TArgeting Chimeras (PROTACs) have emerged as an innovative drug development platform. However, most PROTACs have been generated empirically because many determinants of PROTAC specificity and activity remain elusive. Through computational modelling of the entire NEDD8-VHL Cullin RING E3 ubiquitin ligase (CRLVHL)/PROTAC/BCL-xL/UbcH5B(E2)-Ub/RBX1 complex, we find that this complex can only ubiquitinate the lysines in a defined band region on BCL-xL. Using this approach to guide our development of a series of ABT263-derived and VHL-recruiting PROTACs, we generate a potent BCL-xL and BCL-2 (BCL-xL/2) dual degrader with significantly improved antitumor activity against BCL-xL/2-dependent leukemia cells. Our results provide experimental evidence that the accessibility of lysines on a target protein plays an important role in determining the selectivity and potency of a PROTAC in inducing protein degradation, which may serve as a conceptual framework to guide the future development of PROTACs.
Collapse
Affiliation(s)
- Dongwen Lv
- grid.15276.370000 0004 1936 8091Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Pratik Pal
- grid.15276.370000 0004 1936 8091Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Xingui Liu
- grid.15276.370000 0004 1936 8091Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Yannan Jia
- grid.240145.60000 0001 2291 4776Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| | - Dinesh Thummuri
- grid.15276.370000 0004 1936 8091Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Peiyi Zhang
- grid.15276.370000 0004 1936 8091Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Wanyi Hu
- grid.15276.370000 0004 1936 8091Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Jing Pei
- grid.15276.370000 0004 1936 8091Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Qi Zhang
- grid.240145.60000 0001 2291 4776Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| | - Shuo Zhou
- grid.15276.370000 0004 1936 8091Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Sajid Khan
- grid.15276.370000 0004 1936 8091Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Xuan Zhang
- grid.15276.370000 0004 1936 8091Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Nan Hua
- grid.15276.370000 0004 1936 8091Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Qingping Yang
- grid.15276.370000 0004 1936 8091Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Sebastian Arango
- grid.15276.370000 0004 1936 8091Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Weizhou Zhang
- grid.15276.370000 0004 1936 8091Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL USA
| | - Digant Nayak
- grid.267309.90000 0001 0629 5880Department of Biochemistry & Structure Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA ,grid.267309.90000 0001 0629 5880Mays Cancer Center, the Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Shaun K. Olsen
- grid.267309.90000 0001 0629 5880Department of Biochemistry & Structure Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA ,grid.267309.90000 0001 0629 5880Mays Cancer Center, the Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Susan T. Weintraub
- grid.267309.90000 0001 0629 5880Department of Biochemistry & Structure Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Robert Hromas
- grid.267309.90000 0001 0629 5880Mays Cancer Center, the Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Marina Konopleva
- grid.240145.60000 0001 2291 4776Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| | - Yaxia Yuan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
43
|
Son J, Kim MJ, Lee JS, Kim JY, Chun E, Lee KY. Hepatitis B virus X Protein Promotes Liver Cancer Progression through Autophagy Induction in Response to TLR4 Stimulation. Immune Netw 2021; 21:e37. [PMID: 34796041 PMCID: PMC8568915 DOI: 10.4110/in.2021.21.e37] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.
Collapse
Affiliation(s)
- Juhee Son
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Mi-Jeong Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ji Su Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ji Young Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
44
|
Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers (Basel) 2021; 13:cancers13174363. [PMID: 34503172 PMCID: PMC8430856 DOI: 10.3390/cancers13174363] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Despite recent therapeutic advances against cancer, many patients do not respond well or respond poorly, to treatment and develop resistance to more than one anti-cancer drug, a term called multi-drug resistance (MDR). One of the main factors that contribute to MDR is the deregulation of apoptosis or programmed cell death. Herein, we describe the major apoptotic pathways and discuss how pro-apoptotic and anti-apoptotic proteins are modified in cancer cells to convey drug resistance. We also focus on our current understanding related to the interactions between survival and cell death pathways, as well as on mechanisms underlying the balance shift towards cancer cell growth and drug resistance. Moreover, we highlight the role of the tumor microenvironment components in blocking apoptosis in MDR tumors, and we discuss the significance and potential exploitation of epigenetic modifications for cancer treatment. Finally, we summarize the current and future therapeutic approaches for overcoming MDR. Abstract The ability of tumor cells to evade apoptosis is established as one of the hallmarks of cancer. The deregulation of apoptotic pathways conveys a survival advantage enabling cancer cells to develop multi-drug resistance (MDR), a complex tumor phenotype referring to concurrent resistance toward agents with different function and/or structure. Proteins implicated in the intrinsic pathway of apoptosis, including the Bcl-2 superfamily and Inhibitors of Apoptosis (IAP) family members, as well as their regulator, tumor suppressor p53, have been implicated in the development of MDR in many cancer types. The PI3K/AKT pathway is pivotal in promoting survival and proliferation and is often overactive in MDR tumors. In addition, the tumor microenvironment, particularly factors secreted by cancer-associated fibroblasts, can inhibit apoptosis in cancer cells and reduce the effectiveness of different anti-cancer drugs. In this review, we describe the main alterations that occur in apoptosis-and related pathways to promote MDR. We also summarize the main therapeutic approaches against resistant tumors, including agents targeting Bcl-2 family members, small molecule inhibitors against IAPs or AKT and agents of natural origin that may be used as monotherapy or in combination with conventional therapeutics. Finally, we highlight the potential of therapeutic exploitation of epigenetic modifications to reverse the MDR phenotype.
Collapse
|
45
|
Bikiewicz A, Banach M, von Haehling S, Maciejewski M, Bielecka‐Dabrowa A. Adjuvant breast cancer treatments cardiotoxicity and modern methods of detection and prevention of cardiac complications. ESC Heart Fail 2021; 8:2397-2418. [PMID: 33955207 PMCID: PMC8318493 DOI: 10.1002/ehf2.13365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
The most common cancer diagnosis in female population is breast cancer, which affects every year about 2.0 million women worldwide. In recent years, significant progress has been made in oncological therapy, in systemic treatment, and in radiotherapy of breast cancer. Unfortunately, the improvement in the effectiveness of oncological treatment and prolonging patients' life span is associated with more frequent occurrence of organ complications, which are side effects of this treatment. Current recommendations suggest a periodic monitoring of the cardiovascular system in course of oncological treatment. The monitoring includes the assessment of occurrence of risk factors for cardiovascular diseases in combination with the evaluation of the left ventricular systolic function using echocardiography and electrocardiography as well as with the analysis of the concentration of cardiac biomarkers. The aim of this review was critical assessment of the breast cancer therapy cardiotoxicity and the analysis of methods its detections. The new cardio-specific biomarkers in serum, the development of modern imaging techniques (Global Longitudinal Strain and Three-Dimensional Left Ventricular Ejection Fraction) and genotyping, and especially their combined use, may become a useful tool for identifying patients at risk of developing cardiotoxicity, who require further cardiovascular monitoring or cardioprotective therapy.
Collapse
Affiliation(s)
- Agata Bikiewicz
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| | - Maciej Banach
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology and German Center for Cardiovascular Research (DZHK), partner site GöttingenUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Marek Maciejewski
- Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)LodzPoland
| | - Agata Bielecka‐Dabrowa
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| |
Collapse
|
46
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
47
|
Choudhary D, Goykar H, Karanwad T, Kannaujia S, Gadekar V, Misra M. An understanding of mitochondria and its role in targeting nanocarriers for diagnosis and treatment of cancer. Asian J Pharm Sci 2021; 16:397-418. [PMID: 34703491 PMCID: PMC8520044 DOI: 10.1016/j.ajps.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology has changed the entire paradigm of drug targeting and has shown tremendous potential in the area of cancer therapy due to its specificity. In cancer, several targets have been explored which could be utilized for the better treatment of disease. Mitochondria, the so-called powerhouse of cell, portrays significant role in the survival and death of cells, and has emerged as potential target for cancer therapy. Direct targeting and nanotechnology based approaches can be tailor-made to target mitochondria and thus improve the survival rate of patients suffering from cancer. With this backdrop, in present review, we have reemphasized the role of mitochondria in cancer progression and inhibition, highlighting the different targets that can be explored for targeting of disease. Moreover, we have also summarized different nanoparticulate systems that have been used for treatment of cancer via mitochondrial targeting.
Collapse
Affiliation(s)
- Devendra Choudhary
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Hanmant Goykar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Tukaram Karanwad
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Suraj Kannaujia
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Vedant Gadekar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | | |
Collapse
|
48
|
Soliman L, De Souza A, Srinivasan P, Danish M, Bertone P, El-Deiry WS, Carneiro BA. The Role of BCL-2 Proteins in the Development of Castration-resistant Prostate Cancer and Emerging Therapeutic Strategies. Am J Clin Oncol 2021; 44:374-382. [PMID: 34014842 DOI: 10.1097/coc.0000000000000829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of androgen resistance in advanced prostate cancer remains a challenging clinical problem. Because androgen deprivation therapy constitutes the backbone of first-line treatments for metastatic prostate cancer, the phenotypic switch from an androgen-dependent to an androgen-independent growth state limits the treatment options for these patients. This critical change from an androgen-dependent to an androgen-independent growth state can be regulated by the B-cell lymphoma gene 2 (BCL-2) family of apoptotic proteins. While the roles of BCL-2 protein family members in the carcinogenesis of prostate cancer have been well-studied, emerging data also delineates their modulation of disease progression to castration-resistant prostate cancer (CRPC). Over the past 2 decades, investigators have sought to describe the mechanisms that underpin this development at the molecular level, yet no recent literature has consolidated these findings in a dedicated review. As new classes of BCL-2 family inhibitors are finding indications for other cancer types, it is time to evaluate how such agents might find stable footing for the treatment of CRPC. Several trials to date have investigated BCL-2 inhibitors as therapeutic agents for CRPC. These therapies include selective BCL-2 inhibitors, pan-BCL-2 inhibitors, and novel inhibitors of MCL-1 and BCL-XL. This review details the research regarding the role of BCL-2 family members in the pathogenesis of prostate cancer and contextualizes these findings within the contemporary landscape of prostate cancer treatment.
Collapse
Affiliation(s)
- Luke Soliman
- Warren Alpert Medical School of Brown University
| | - Andre De Souza
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| | | | - Matthew Danish
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
| | - Paul Bertone
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| | - Wafik S El-Deiry
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI
| | - Benedito A Carneiro
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| |
Collapse
|
49
|
Vijayan K, Wei L, Glennon EKK, Mattocks C, Bourgeois N, Staker B, Kaushansky A. Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. Chem Rev 2021; 121:10452-10468. [PMID: 34197083 DOI: 10.1021/acs.chemrev.1c00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terminal and benign diseases alike in adults, children, pregnant women, and others are successfully treated by pharmacological inhibitors that target human enzymes. Despite extensive global efforts to fight malaria, the disease continues to be a massive worldwide health burden, and new interventional strategies are needed. Current drugs and vector control strategies have contributed to the reduction in malaria deaths over the past 10 years, but progress toward eradication has waned in recent years. Resistance to antimalarial drugs is a substantial and growing problem. Moreover, targeting dormant forms of the malaria parasite Plasmodium vivax is only possible with two approved drugs, which are both contraindicated for individuals with glucose-6-phosphate dehydrogenase deficiency and in pregnant women. Plasmodium parasites are obligate intracellular parasites and thus have specific and absolute requirements of their hosts. Growing evidence has described these host necessities, paving the way for opportunities to pharmacologically target host factors to eliminate Plasmodium infection. Here, we describe progress in malaria research and adjacent fields and discuss key challenges that remain in implementing host-directed therapy against malaria.
Collapse
Affiliation(s)
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | | | - Christa Mattocks
- Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Natasha Bourgeois
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Bart Staker
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States.,Department of Pediatrics, University of Washington, Seattle, Washington 98105, United States.,Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
50
|
Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y, Wang J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 2021; 23:417. [PMID: 33846780 PMCID: PMC8025476 DOI: 10.3892/mmr.2021.12056] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating of all the traumatic conditions that afflict individuals. For a number of years, extensive studies have been conducted to clarify the molecular mechanisms of SCI. Experimental and clinical studies have indicated that two phases, primary damage and secondary damage, are involved in SCI. The initial mechanical damage is caused by local impairment of the spinal cord. In addition, the fundamental mechanisms are associated with hyperflexion, hyperextension, axial loading and rotation. By contrast, secondary injury mechanisms are led by systemic and cellular factors, which may also be initiated by the primary injury. Although significant advances in supportive care have improved clinical outcomes in recent years, a number of studies continue to explore specific pharmacological therapies to minimize SCI. The present review summarized some important pathophysiologic mechanisms that are involved in SCI and focused on several pharmacological and non‑pharmacological therapies, which have either been previously investigated or have a potential in the management of this debilitating injury in the near future.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Abdullah Al Mamun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuan Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qi Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shulin Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Chengbiao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|