1
|
Ahsan R, Kifayat S, Pooniya KK, Kularia S, Adimalla BS, Sanapalli BKR, Sanapalli V, Sigalapalli DK. Bacterial Histidine Kinase and the Development of Its Inhibitors in the 21st Century. Antibiotics (Basel) 2024; 13:576. [PMID: 39061258 PMCID: PMC11274179 DOI: 10.3390/antibiotics13070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial histidine kinase (BHK) is a constituent of the two-component signaling (TCS) pathway, which is responsible for the regulation of a number of processes connected to bacterial pathogenicity, virulence, biofilm development, antibiotic resistance, and bacterial persistence. As BHK regulation is diverse, inhibitors can be developed, such as antibiotic synergists, bacteriostatic/bactericidal agents, virulence inhibitors, and biofilm inhibitors. Inhibition of essential BHK has always been an amenable strategy due to the conserved binding sites of the domains across bacterial species and growth dependence. Hence, an inhibitor of BHK might block multiple TCS regulatory networks. This review describes the TCS system and the role of BHK in bacterial virulence and discusses the available inhibitors of BHK, which is a specific response regulator with essential structural features.
Collapse
Affiliation(s)
- Ragib Ahsan
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Sumaiya Kifayat
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Krishan Kumar Pooniya
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Sunita Kularia
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India;
| | - Bhavani Sailu Adimalla
- Department of Pharmaceutical Analysis, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, Guntur 522213, Andhra Pradesh, India;
| | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS) Deemed to-be-University, Jadcherla 509301, Hyderabad, India;
| | - Vidyasrilekha Sanapalli
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS) Deemed to-be-University, Jadcherla 509301, Hyderabad, India
| | | |
Collapse
|
2
|
Zhou Y, Song Y, Zhang Y, Liu X, Liu L, Bao Y, Wang J, Yang L. Azalomycin F4a targets peptidoglycan synthesis of Gram-positive bacteria revealed by high-throughput CRISPRi-seq analysis. Microbiol Res 2024; 280:127584. [PMID: 38157688 DOI: 10.1016/j.micres.2023.127584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Azalomycin F4a is a promising 36-membered polyhydroxy macrolide that shows antibacterial activity against drug-resistant Gram-positive bacteria, but its exact working mechanism remains to be elusive. Here, we isolated the azalomycin F4a product from a Streptomyces solisilvae and demonstrated its antibacterial activity against Gram-positive pathogens including Streptococcus pneumoniae, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). We further showed that combination of azalomycin F4a with methicillin has an additive antimicrobial effect on MRSA, where the minimal inhibitory concentrations (MIC) of methicillin to MRSA was decreased by 1000-fold in the presence of sublethal concentration of azalomycin F4a. A CRISPRi-seq based whole genome screen was employed to identify the potential targets of azalomycin F4a, which revealed that peptidoglycan synthesis (PGS) was inhibited by azalomycin F4a. Furthermore, azalomycin F4a treatment could significantly impair S. aureus biofilm formation. Our research highlights that cell wall synthesis is an additional target for novel classes of macrolide besides ribosome.
Collapse
Affiliation(s)
- Yachun Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Yue Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- Department of Pathogen Biology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Centre, International Cancer Centre, Shenzhen University Health Science Centre, Shenzhen 518055, China
| | - Xue Liu
- Department of Pathogen Biology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Centre, International Cancer Centre, Shenzhen University Health Science Centre, Shenzhen 518055, China
| | - Lei Liu
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China.
| | - Yanmin Bao
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen 518031, Guangdong, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China.
| |
Collapse
|
3
|
Alawam AS, M Alneghery L, Alwethaynani MS, Alamri MA. A hierarchical approach towards identification of novel inhibitors against L, D-transpeptidase YcbB as an anti-bacterial therapeutic target. J Biomol Struct Dyn 2024:1-11. [PMID: 38411016 DOI: 10.1080/07391102.2024.2322619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024]
Abstract
The bacterial cell wall, being a vital component for cell viability, is regarded as a promising drug target. The L, D-Transpeptidase YcbB enzyme has been implicated for a significant role in cell wall polymers cross linking during typhoid toxin release, β-lactam resistance and outer membrane defect rescue. These observations have been recorded in different bacterial pathogens such as Salmonella Typhimurium, Citrobacter rodentium, and Salmonella typhi. In this work, we have shown structure based virtual screening of diverse natural and synthetic drug libraries against the enzyme and revealed three compounds as LAS_32135590, LAS_34036730 and LAS-51380924. These compounds showed highly stable energies and the findings are very competitive with the control molecule ((1RG or (4 R,5S)-3-({(3S,5S)-5-[(3-carboxyphenyl)carbamoyl]pyrrolidin-3-yl}sulfanyl)-5-[(1S,2R)-1-formyl-2-hydroxypropyl]-4-methyl-4,5-dihydro-1H-pyrrole-2-carboxylic acid or ertapenem)) used. Compared to control (which has binding energy score of -11.63 kcal/mol), the compounds showed better binding energy. The binding energy score of LAS_32135590, LAS_34036730 and LAS-51380924 is -12.63 kcal/mol, -12.22 kcal/mol and -12.10 kcal/mol, respectively. Further, the docked snapshot of the lead compounds and control were investigated for stability under time dependent dynamics environment. All the three leads complex and control system showed significant equilibrium (mean RMSD < 3 Å) both in term of intermolecular docked conformation and binding interactions network. Further validation on the complex's stability was acquired from the end-state MMPB/GBSA analysis that observed greater contribution from van der Waals forces and electrostatic energy while less contribution was noticed from solvation part. The compounds were also showed good drug-likeness and are non-toxic and non-mutagenic. In short, the compounds can be used in experimental testing's and might be subjected to structure modification to get better results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Lina M Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Maher S Alwethaynani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
4
|
Koatale P, Welling MM, Ndlovu H, Kgatle M, Mdanda S, Mdlophane A, Okem A, Takyi-Williams J, Sathekge MM, Ebenhan T. Insights into Peptidoglycan-Targeting Radiotracers for Imaging Bacterial Infections: Updates, Challenges, and Future Perspectives. ACS Infect Dis 2024; 10:270-286. [PMID: 38290525 PMCID: PMC10862554 DOI: 10.1021/acsinfecdis.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
The unique structural architecture of the peptidoglycan allows for the stratification of bacteria as either Gram-negative or Gram-positive, which makes bacterial cells distinguishable from mammalian cells. This classification has received attention as a potential target for diagnostic and therapeutic purposes. Bacteria's ability to metabolically integrate peptidoglycan precursors during cell wall biosynthesis and recycling offers an opportunity to target and image pathogens in their biological state. This Review explores the peptidoglycan biosynthesis for bacteria-specific targeting for infection imaging. Current and potential radiolabeled peptidoglycan precursors for bacterial infection imaging, their development status, and their performance in vitro and/or in vivo are highlighted. We conclude by providing our thoughts on how to shape this area of research for future clinical translation.
Collapse
Affiliation(s)
- Palesa
C. Koatale
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Honest Ndlovu
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mankgopo Kgatle
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Sipho Mdanda
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Amanda Mdlophane
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Ambrose Okem
- Department
of Anaesthesia, School of Clinical Medicine, University of Witwatersrand, 2050 Johannesburg, South Africa
| | - John Takyi-Williams
- Pharmacokinetic
and Mass Spectrometry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mike M. Sathekge
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Thomas Ebenhan
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
- DSI/NWU Pre-clinical
Drug Development Platform, North West University, 2520 Potchefstroom, South Africa
| |
Collapse
|
5
|
Ambade SS, Gupta VK, Bhole RP, Khedekar PB, Chikhale RV. A Review on Five and Six-Membered Heterocyclic Compounds Targeting the Penicillin-Binding Protein 2 (PBP2A) of Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules 2023; 28:7008. [PMID: 37894491 PMCID: PMC10609489 DOI: 10.3390/molecules28207008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen. Methicillin-resistant Staphylococcus aureus (MRSA) infections pose significant and challenging therapeutic difficulties. MRSA often acquires the non-native gene PBP2a, which results in reduced susceptibility to β-lactam antibiotics, thus conferring resistance. PBP2a has a lower affinity for methicillin, allowing bacteria to maintain peptidoglycan biosynthesis, a core component of the bacterial cell wall. Consequently, even in the presence of methicillin or other antibiotics, bacteria can develop resistance. Due to genes responsible for resistance, S. aureus becomes MRSA. The fundamental premise of this resistance mechanism is well-understood. Given the therapeutic concerns posed by resistant microorganisms, there is a legitimate demand for novel antibiotics. This review primarily focuses on PBP2a scaffolds and the various screening approaches used to identify PBP2a inhibitors. The following classes of compounds and their biological activities are discussed: Penicillin, Cephalosporins, Pyrazole-Benzimidazole-based derivatives, Oxadiazole-containing derivatives, non-β-lactam allosteric inhibitors, 4-(3H)-Quinazolinones, Pyrrolylated chalcone, Bis-2-Oxoazetidinyl macrocycles (β-lactam antibiotics with 1,3-Bridges), Macrocycle-embedded β-lactams as novel inhibitors, Pyridine-Coupled Pyrimidinones, novel Naphthalimide corbelled aminothiazoximes, non-covalent inhibitors, Investigational-β-lactam antibiotics, Carbapenem, novel Benzoxazole derivatives, Pyrazolylpyridine analogues, and other miscellaneous classes of scaffolds for PBP2a. Additionally, we discuss the penicillin-binding protein, a crucial target in the MRSA cell wall. Various aspects of PBP2a, bacterial cell walls, peptidoglycans, different crystal structures of PBP2a, synthetic routes for PBP2a inhibitors, and future perspectives on MRSA inhibitors are also explored.
Collapse
Affiliation(s)
- Shraddha S. Ambade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MH, India (P.B.K.)
| | - Vivek Kumar Gupta
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra 282004, UP, India
| | - Ritesh P. Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, MH, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, MH, India
| | - Pramod B. Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MH, India (P.B.K.)
| | | |
Collapse
|
6
|
Zhang H, Li X, Liu X, Ji X, Ma X, Chen J, Bao Y, Zhang Y, Xu L, Yang L, Wei X. The usnic acid derivative peziculone targets cell walls of Gram-positive bacteria revealed by high-throughput CRISPRi-seq analysis. Int J Antimicrob Agents 2023; 62:106876. [PMID: 37276892 DOI: 10.1016/j.ijantimicag.2023.106876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Usnic acid, a representative dibenzofuran metabolite, is known to have antimicrobial properties. However, despite considerable interest as an antimicrobial agent, the mechanism by which usnic acid and its derivatives exert their action is not fully characterized. This article describes the synthesis of peziculone, a 5:1 equilibrium mixture of two inseparable usnic acid derivatives: peziculone A and peziculone B. The antibacterial activity of peziculone against several Gram-positive bacterial pathogens was found to be significantly better compared with usnic acid. Clustered regularly interspaced short palindromic repeats interference sequencing analysis and membrane fluorescent staining were used to demonstrate that peziculone destabilizes the cell walls of Gram-positive bacteria. Additionally, peziculone 2.5 and 3.5 µg/mL impaired cell surface appendages and biofilm formation by Staphylococcus aureus. Taken together, these data demonstrate that peziculone, a derivative compound of usnic acid, has significant antimicrobial activity against Gram-positive bacteria by targeting the cell walls; this provides a platform for development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Han Zhang
- School of Life Sciences, Huizhou University, Huizhou, People's Republic of China; School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Xiaojie Li
- School of Life Sciences, Huizhou University, Huizhou, People's Republic of China
| | - Xue Liu
- Department of Pathogen Biology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Centre, International Cancer Centre, Shenzhen University Health Science Centre, Shenzhen, People's Republic of China
| | - Xia Ji
- School of Life Sciences, Huizhou University, Huizhou, People's Republic of China
| | - Xuan Ma
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Jun Chen
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yanmin Bao
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yingdan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Liangxiong Xu
- School of Life Sciences, Huizhou University, Huizhou, People's Republic of China.
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China.
| | - Xiaoyi Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement / Guangdong Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Spencer AC, Panda SS. DNA Gyrase as a Target for Quinolones. Biomedicines 2023; 11:371. [PMID: 36830908 PMCID: PMC9953508 DOI: 10.3390/biomedicines11020371] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial DNA gyrase is a type II topoisomerase that can introduce negative supercoils to DNA substrates and is a clinically-relevant target for the development of new antibacterials. DNA gyrase is one of the primary targets of quinolones, broad-spectrum antibacterial agents and are used as a first-line drug for various types of infections. However, currently used quinolones are becoming less effective due to drug resistance. Common resistance comes in the form of mutation in enzyme targets, with this type being the most clinically relevant. Additional mechanisms, conducive to quinolone resistance, are arbitrated by chromosomal mutations and/or plasmid-gene uptake that can alter quinolone cellular concentration and interaction with the target, or affect drug metabolism. Significant synthetic strategies have been employed to modify the quinolone scaffold and/or develop novel quinolones to overcome the resistance problem. This review discusses the development of quinolone antibiotics targeting DNA gyrase to overcome bacterial resistance and reduce toxicity. Moreover, structural activity relationship (SAR) data included in this review could be useful for the development of future generations of quinolone antibiotics.
Collapse
Affiliation(s)
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Zhou J, Cai Y, Liu Y, An H, Deng K, Ashraf MA, Zou L, Wang J. Breaking down the cell wall: Still an attractive antibacterial strategy. Front Microbiol 2022; 13:952633. [PMID: 36212892 PMCID: PMC9544107 DOI: 10.3389/fmicb.2022.952633] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Since the advent of penicillin, humans have known about and explored the phenomenon of bacterial inhibition via antibiotics. However, with changes in the global environment and the abuse of antibiotics, resistance mechanisms have been selected in bacteria, presenting huge threats and challenges to the global medical and health system. Thus, the study and development of new antimicrobials is of unprecedented urgency and difficulty. Bacteria surround themselves with a cell wall to maintain cell rigidity and protect against environmental insults. Humans have taken advantage of antibiotics to target the bacterial cell wall, yielding some of the most widely used antibiotics to date. The cell wall is essential for bacterial growth and virulence but is absent from humans, remaining a high-priority target for antibiotic screening throughout the antibiotic era. Here, we review the extensively studied targets, i.e., MurA, MurB, MurC, MurD, MurE, MurF, Alr, Ddl, MurI, MurG, lipid A, and BamA in the cell wall, starting from the very beginning to the latest developments to elucidate antimicrobial screening. Furthermore, recent advances, including MraY and MsbA in peptidoglycan and lipopolysaccharide, and tagO, LtaS, LspA, Lgt, Lnt, Tol-Pal, MntC, and OspA in teichoic acid and lipoprotein, have also been profoundly discussed. The review further highlights that the application of new methods such as macromolecular labeling, compound libraries construction, and structure-based drug design will inspire researchers to screen ideal antibiotics.
Collapse
Affiliation(s)
- Jingxuan Zhou
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yi Cai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Ying Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Haoyue An
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Kaihong Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Muhammad Awais Ashraf
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jun Wang
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- *Correspondence: Jun Wang,
| |
Collapse
|
9
|
Pugh BA, Rao AB, Angeles-Solano M, Grosser MR, Brock JW, Murphy KE, Wolfe AL. Design and evaluation of poly-nitrogenous adjuvants capable of potentiating antibiotics in Gram-negative bacteria. RSC Med Chem 2022; 13:1058-1063. [PMID: 36324495 PMCID: PMC9491355 DOI: 10.1039/d2md00041e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/05/2022] [Indexed: 01/03/2023] Open
Abstract
Antibiotic resistance has been a growing public health crisis since the 1980s. Therefore, it is essential not only to continue to develop novel antibiotics but also to develop new methods for overcoming resistance mechanisms in pathogenic bacteria so antibiotics can be reactivated towards these resistant strains. One common cause of antibiotic resistance in Gram-negative bacteria is reduced permeability of the tightly packed, negatively charged lipopolysaccharide outer membrane (OM), which dramatically reduces or even prevents antibiotic accumulation within the cell. Adjuvants that promote passive diffusion through the OM, including phenylalanine-arginine-β-naphthylamide, tobramycin, and pentamidine, have proven useful in potentiating antibiotics against Gram-negative bacteria. Structural evaluation of these adjuvants, which all include multiple nitrogenous groups, indicates that the entry rules developed for improving antibiotic accumulation in Escherichia coli (EC), could also be used to guide adjuvant development. To this end, a series of structurally simple poly-nitrogenous diphenylsuccinamide compounds have been prepared and evaluated for their ability to potentiate a panel of classic antibiotics in wild-type EC and Pseudomonas aeruginosa (PA). Modest adjuvant activity was observed for all compounds surveyed when co-administered with known antibiotics to inhibit either wild-type EC or PA, and all were able to accumulate in both EC and PA.
Collapse
Affiliation(s)
- Bryce A. Pugh
- Department of Chemistry and Biochemistry, University of North Carolina AshevilleOne University HeightsAshevilleNorth Carolina28804USA
| | - Aliyah B. Rao
- Department of Chemistry and Biochemistry, University of North Carolina AshevilleOne University HeightsAshevilleNorth Carolina28804USA
| | - Michelle Angeles-Solano
- Department of Biology, University of North Carolina AshevilleOne University HeightsAshevilleNorth Carolina28804USA
| | - Melinda R. Grosser
- Department of Biology, University of North Carolina AshevilleOne University HeightsAshevilleNorth Carolina28804USA
| | - John W. Brock
- Department of Chemistry and Biochemistry, University of North Carolina AshevilleOne University HeightsAshevilleNorth Carolina28804USA
| | - Kyle E. Murphy
- Department of Chemistry and Biochemistry, University of North Carolina AshevilleOne University HeightsAshevilleNorth Carolina28804USA
| | - Amanda L. Wolfe
- Department of Chemistry and Biochemistry, University of North Carolina AshevilleOne University HeightsAshevilleNorth Carolina28804USA
| |
Collapse
|
10
|
Jamod H, Mehta K, Sakariya A, Shoukani S, Sanapalli BKR, Yele V. Dual Acting Immuno-Antibiotics: Computational Investigation on Antibacterial Efficacy of Immune Boosters Against Isoprenoid H Enzyme. Assay Drug Dev Technol 2022; 20:225-236. [PMID: 35834649 DOI: 10.1089/adt.2022.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Drug-resistant infections have become a serious threat to human health in the past two decades. Global Antimicrobial Surveillance (GLASS) in January 2018 reported widespread antibiotic resistance among 1.5 million people infected with bacteria across 22 countries. According to prominent economist Jim O'Neil, antimicrobial resistance is estimated to kill ∼10 million people affected by microorganisms each year by 2050. Even though multiple therapeutics are now available to treat the infections, more and more bacterial strains have acquired resistance to these treatments through various techniques. Moreover, the decrease in the pipeline of antibacterial medicines under clinical development has become a significant problem. In this scenario, the development of novel antibiotics that act on untapped pathways is necessary to combat the bacterial infections. Isoprenoid H (IspH) synthetase has become an attractive antibacterial target as there is no human homologue. IspH is an enzyme involved in methyl-d-erythritol phosphate (MEP) pathway of isoprenoid synthesis and is conserved in gram-negative bacteria, mycobacteria, and apicomplexans. Since, IspH is a novel therapeutic target, explorations are only just beginning, and despite the progress made in this area, no single IspH inhibitor is available in the market for therapeutic use. In this article, we have repurposed 35 immune boosters against IspH enzyme using methods such as extra-precision docking and Molecular Mechanics Generalized Born Surface Area (MMGBSA). Among them, 4'-fluorouridine was found to be active because of its glide score and significant binding affinity with IspH enzyme. Furthermore, this study requires more in vitro, in vivo, and molecular dynamics studies to support our findings.
Collapse
Affiliation(s)
- Hitesh Jamod
- Faculty of Pharmacy, Marwadi University, Rajkot, India
| | - Kajal Mehta
- Faculty of Pharmacy, Marwadi University, Rajkot, India
| | | | | | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, India.,Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, India.,Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| |
Collapse
|
11
|
Optimization of Subcritical Fluid Extraction for Total Saponins from Hedera nepalensis Leaves Using Response Surface Methodology and Evaluation of Its Potential Antimicrobial Activity. Processes (Basel) 2022. [DOI: 10.3390/pr10071268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Hedera nepalensis (Araliaceae) is a recognized medicinal plant founded in Asia that has been reported to work in antioxidant, antifungal, antimicrobial, and antitumor capacities. (2) Methods: The subcritical fluid extraction of saponin from Hedera nepalensis leaves and the optimum of the extraction process based on yield of saponin contents (by calculating the hederacoside C contents in dried Hedera nepalensis leaves) are examined by response surface methodology (RSM). Furthermore, the antimicrobial activity of the extract is tested for potential drug applications in the future. (3) Results: Based upon RSM data, the following parameters are optimal: extraction time of 3 min, extraction temperature of 150 °C, and a sample/solvent ratio of 1:55 g/mL. Under such circumstances, the achieved yield of saponin is 1.879%. Moreover, the extracts inhibit the growth of some bacterial strains (Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenza) at a moderate to strong level with inhibition zone diameter values ranging from 12.63 to 19.50 mm. (4) Conclusions: The development of such a model provides a robust experimental process for optimizing the extraction factors of saponin contents from Hedera nepalensis extract using subcritical fluid extraction and RSM. Moreover, the current work reveals that saponin extracts of Hedera nepalensis leaves exhibit a potential antimicrobial activity, which can be used as scientific evidence for further study.
Collapse
|
12
|
Avci FG, Tastekil I, Jaisi A, Ozbek Sarica P, Sariyar Akbulut B. A review on the mechanistic details of OXA enzymes of ESKAPE pathogens. Pathog Glob Health 2022; 117:219-234. [PMID: 35758005 PMCID: PMC10081068 DOI: 10.1080/20477724.2022.2088496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The production of β-lactamases is a prevalent mechanism that poses serious pressure on the control of bacterial resistance. Furthermore, the unavoidable and alarming increase in the transmission of bacteria producing extended-spectrum β-lactamases complicates treatment alternatives with existing drugs and/or approaches. Class D β-lactamases, designated as OXA enzymes, are characterized by their activity specifically towards oxacillins. They are widely distributed among the ESKAPE bugs that are associated with antibiotic resistance and life-threatening hospital infections. The inadequacy of current β-lactamase inhibitors for conventional treatments of 'OXA' mediated infections confirms the necessity of new approaches. Here, the focus is on the mechanistic details of OXA-10, OXA-23, and OXA-48, commonly found in highly virulent and antibiotic-resistant pathogens Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter spp. to describe their similarities and differences. Furthermore, this review contains a specific emphasis on structural and computational perspectives, which will be valuable to guide efforts in the design/discovery of a common single-molecule drug against ESKAPE pathogens.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Uskudar University, Uskudar, 34662, Turkey
| | - Ilgaz Tastekil
- Bioengineering Department, Marmara University, Kadikoy, 34722, Turkey
| | - Amit Jaisi
- Drug and Cosmetics Excellence Center, School of Pharmacy, Walailak University, 80160, Nakhon Si Thammarat, Thailand
| | | | | |
Collapse
|
13
|
Ismail MMF, El-Sehrawi HMA, Khalifa MM, Harras MF. Design and Synthesis of 3,6-Disubstituted- and 2,3,6-Trisubstitutedquinoxalines: Docking and In Vitro Antimicrobial Study. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1781210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Magda M. F. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hend M. A. El-Sehrawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Maha M. Khalifa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Marwa F. Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
14
|
Mayank, Sidhu JS, Joshi G, Sindhu J, Kaur N, Singh N. Structural Diversity of D‐Alanine: D‐Alanine Ligase and Its Exploration in Development of Antibacterial Agents Against the Multi‐Variant Bacterial Infections. ChemistrySelect 2022. [DOI: 10.1002/slct.202104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mayank
- Department of Chemistry Indian Institute of Technology Ropar Punjab 140001 India
- School of Pharmaceutical Sciences Lovely Professional University Phagwara India
| | - Jagpreet Singh Sidhu
- Department of Pharmaceutical Sciences and Natural Products School of Health Science Central University of Punjab Bathinda 151 001 India
| | - Gaurav Joshi
- School of Pharmacy Graphic Era Hill University Dehradun Uttarakhand India
| | - Jayant Sindhu
- Department of Chemistry COBS&H CCS Haryana Agricultural University Hisar 125004 India
| | - Navneet Kaur
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Narinder Singh
- Department of Chemistry Indian Institute of Technology Ropar Punjab 140001 India
| |
Collapse
|
15
|
Traykovska M, Popova KB, Penchovsky R. Targeting glmS Ribozyme with Chimeric Antisense Oligonucleotides for Antibacterial Drug Development. ACS Synth Biol 2021; 10:3167-3176. [PMID: 34734706 DOI: 10.1021/acssynbio.1c00443] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to the steady rise of multidrug-resistant pathogenic bacteria worldwide, it is critical to develop novel antibacterial drugs. This article presents chimeric antisense oligonucleotides that inhibit the bacterial growth of Staphylococcus aureus, one of the most frequent causes of hospital-acquired infections. The chimeric antisense oligonucleotides have a combination of first- and second-generation chemical modification. To deliver the antisense oligonucleotides into a cell, we apply a cell-penetrating oligopeptide attached to them. We have performed complete bioinformatics analyses of the glmS ribozyme present in S. aureus and its essential role in the biochemical pathway of glucosamine-6-phosphate synthesis. Besides, we have analyzed the bacteria for alternative metabolic pathways, such as the nagA gene. The first antisense oligonucleotide explicitly targets the glmS riboswitch, while the second explicitly targets the nagA mRNA. We have evaluated that combined, the antisense oligonucleotides block the synthesis of glucosamine-6-phosphate entirely and inhibit the bacterial growth of S. aureus. However, the glmS riboswitch targeting the antisense oligonucleotide is sufficient to inhibit the growth of S. aureus with a MIC80 of 5 μg/mL. The glmS ribozyme is a very suitable target for antibacterial drug development with antisense oligonucleotides.
Collapse
Affiliation(s)
- Martina Traykovska
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Boulevard, 1164 Sofia, Bulgaria
| | - Katya B. Popova
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Boulevard, 1164 Sofia, Bulgaria
| | - Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Boulevard, 1164 Sofia, Bulgaria
| |
Collapse
|
16
|
Abstract
Class D β-lactamases are composed of 14 families and the majority of the member enzymes are included in the OXA family. The genes for class D β-lactamases are frequently identified in the chromosome as an intrinsic resistance determinant in environmental bacteria and a few of these are found in mobile genetic elements carried by clinically significant pathogens. The most dominant OXA family among class D β-lactamases is superheterogeneous and the family needs to have an updated scheme for grouping OXA subfamilies through phylogenetic analysis. The OXA enzymes, even the members within a subfamily, have a diverse spectrum of resistance. Such varied activity could be derived from their active sites, which are distinct from those of the other serine β-lactamases. Their substrate profile is determined according to the size and position of the P-, Ω- and β5-β6 loops, assembling the active-site channel, which is very hydrophobic. Also, amino acid substitutions occurring in critical structures may alter the range of hydrolysed substrates and one subfamily could include members belonging to several functional groups. This review aims to describe the current class D β-lactamases including the functional groups, occurrence types (intrinsic or acquired) and substrate spectra and, focusing on the major OXA family, a new model for subfamily grouping will be presented.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Qin Y, Xu L, Teng Y, Wang Y, Ma P. Discovery of novel antibacterial agents: Recent developments in D-alanyl-D-alanine ligase inhibitors. Chem Biol Drug Des 2021; 98:305-322. [PMID: 34047462 DOI: 10.1111/cbdd.13899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/09/2021] [Accepted: 05/23/2021] [Indexed: 01/14/2023]
Abstract
Bacterial infections can cause serious problems that threaten public health over a long period of time. Moreover, the continuous emergence of drug-resistant bacteria necessitates the development of novel antibacterial agents. D-alanyl-D-alanine ligase (Ddl) is an indispensable adenosine triphosphate-dependent bacterial enzyme involved in the biosynthesis of peptidoglycan precursor, which catalyzes the ligation of two D-alanine molecules into one D-alanyl-D-alanine dipeptide. This dipeptide is an essential component of the intracellular peptidoglycan precursor, uridine diphospho-N-acetylmuramic acid (UDP-MurNAc)-pentapeptide, that maintains the integrity of the bacterial cell wall by cross-linking the peptidoglycan chain, and is crucial for the survival of pathogens. Consequently, Ddl is expected to be a promising target for the development of antibacterial agents. In this review, we present a brief introduction regarding the structure and function of Ddl, as well as an overview of the various Ddl inhibitors currently being used as antibacterial agents, specifically highlighting their inhibitory activities, structure-activity relationships and mechanisms of action.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Linlin Xu
- Department of Pharmacy, Taian City Central Hospital, Taian, China
| | - Yuetai Teng
- Department of Pharmacy, Jinan Vocational College of Nursing, Jinan, China
| | - Yinhu Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
18
|
Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021; 10:pathogens10030373. [PMID: 33808905 PMCID: PMC8003822 DOI: 10.3390/pathogens10030373] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative ESKAPE microorganism that poses a threat to public health by causing severe and invasive (mostly nosocomial) infections linked with high mortality rates. During the last years, this pathogen displayed multidrug resistance (MDR), mainly due to extensive antibiotic abuse and poor stewardship. MDR isolates are associated with medical history of long hospitalization stays, presence of catheters, and mechanical ventilation, while immunocompromised and severely ill hosts predispose to invasive infections. Next-generation sequencing techniques have revolutionized diagnosis of severe A. baumannii infections, contributing to timely diagnosis and personalized therapeutic regimens according to the identification of the respective resistance genes. The aim of this review is to describe in detail all current knowledge on the genetic background of A. baumannii resistance mechanisms in humans as regards beta-lactams (penicillins, cephalosporins, carbapenems, monobactams, and beta-lactamase inhibitors), aminoglycosides, tetracyclines, fluoroquinolones, macrolides, lincosamides, streptogramin antibiotics, polymyxins, and others (amphenicols, oxazolidinones, rifamycins, fosfomycin, diaminopyrimidines, sulfonamides, glycopeptide, and lipopeptide antibiotics). Mechanisms of antimicrobial resistance refer mainly to regulation of antibiotic transportation through bacterial membranes, alteration of the antibiotic target site, and enzymatic modifications resulting in antibiotic neutralization. Virulence factors that may affect antibiotic susceptibility profiles and confer drug resistance are also being discussed. Reports from cases of A. baumannii coinfection with SARS-CoV-2 during the COVID-19 pandemic in terms of resistance profiles and MDR genes have been investigated.
Collapse
|
19
|
Fu J, Fu H, Xia Y, N'Go I, Cao J, Pan W, Vincent SP. Identification of inhibitors of UDP-galactopyranose mutase via combinatorial in situ screening. Org Biomol Chem 2021; 19:1818-1826. [PMID: 33565547 DOI: 10.1039/d1ob00138h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An in situ screening assay for UDP-galactopyranose mutase (UGM, an essential enzyme of M. tuberculosis cell wall biosynthesis) has been developed to discover novel UGM inhibitors. The approach is based on the amide-forming reaction of an amino acid core with various cinnamic acids, followed by a direct fluorescence polarization assay to identify the best UGM binders without isolation and purification of the screened ligands. This assay allows us to perform one-pot high-throughput synthesis and screening of enzyme inhibitors in a 384-well plate format. UGM ligands were successfully identified by this technology and their inhibition levels were established from pure synthetic compounds in vitro and in a whole cell antibacterial assay. This study provides a blueprint for designing enamide structures as new UGM inhibitors and anti-mycobacterial agents.
Collapse
Affiliation(s)
- Jian Fu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China and Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium. and The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Huixiao Fu
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Yufen Xia
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Inès N'Go
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Jun Cao
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Weidong Pan
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Stéphane P Vincent
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| |
Collapse
|
20
|
Fields L, Craig WR, Huffine CA, Allen CF, Bouthillette LM, Chappell JC, Shumate JT, Wolfe AL. Short chain α-pyrones capable of potentiating penicillin G against Pseudomonas aeruginosa. Bioorg Med Chem Lett 2020; 30:127301. [PMID: 32631521 DOI: 10.1016/j.bmcl.2020.127301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
Abstract
The dramatic increase in bacterial resistance over the past three decades has greatly reduced the effectiveness of nearly all clinical antibiotics, bringing infectious disease to the forefront as a dire threat to global health. To combat these infections, adjuvant therapies have emerged as a way to reactivate known antibiotics against resistant pathogens. Herein, we report the evaluation of simplified α-pyrone adjuvants capable of potentiating penicillin G against Pseudomonas aeruginosa, a Gram-negative pathogen whose multidrug-resistant strains have been labeled by the Centers for Disease Control and Prevention as a serious threat to public health.
Collapse
Affiliation(s)
- Lauren Fields
- Department of Chemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States
| | - Whitney R Craig
- Department of Chemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States; Department of Physical Sciences, Lander University, 320 Stanley Avenue, Greenwood, SC 29649, United States
| | - Clair A Huffine
- Department of Chemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States; Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States
| | - Catherine F Allen
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States
| | - Leah M Bouthillette
- Department of Chemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States
| | - Jacob C Chappell
- Department of Chemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States
| | - Jacob T Shumate
- Department of Chemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States
| | - Amanda L Wolfe
- Department of Chemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States.
| |
Collapse
|
21
|
Shalaby MAW, Dokla EME, Serya RAT, Abouzid KAM. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. Eur J Med Chem 2020; 199:112312. [PMID: 32442851 DOI: 10.1016/j.ejmech.2020.112312] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
Antimicrobial resistance is an imminent threat worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the "superbug" family, manifesting resistance through the production of a penicillin binding protein, PBP2a, an enzyme that provides its transpeptidase activity to allow cell wall biosynthesis. PBP2a's low affinity to most β-lactams, confers resistance to MRSA against numerous members of this class of antibiotics. An Achilles' heel of MRSA, PBP2a represents a substantial target to design novel antibiotics to tackle MRSA threat via inhibition of the bacterial cell wall biosynthesis. In this review we bring into focus the PBP2a enzyme and examine the various aspects related to its role in conferring resistance to MRSA strains. Moreover, we discuss several antibiotics and antimicrobial agents designed to target PBP2a and their therapeutic potential to meet such a grave threat. In conclusion, we consider future perspectives for targeting MRSA infections.
Collapse
Affiliation(s)
- Menna-Allah W Shalaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
22
|
Mokbel SA, Fathalla RK, El-Sharkawy LY, Abadi AH, Engel M, Abdel-Halim M. Synthesis of novel 1,2-diarylpyrazolidin-3-one-based compounds and their evaluation as broad spectrum antibacterial agents. Bioorg Chem 2020; 99:103759. [PMID: 32220665 DOI: 10.1016/j.bioorg.2020.103759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/13/2020] [Indexed: 11/16/2022]
Abstract
There is a continuous need to develop new antibacterial agents with non-traditional mechanisms to combat the nonstop emerging resistance to most of the antibiotics used in clinical settings. We identified novel pyrazolidinone derivatives as antibacterial hits in an in-house library screening and synthesized several derivatives in order to improve the potency and increase the polarity of the discovered hit compounds. The oxime derivative 24 exhibited promising antibacterial activity against E. coli TolC, B. subtilis and S. aureus with MIC values of 4, 10 and 20 µg/mL, respectively. The new lead compound 24 was found to exhibit a weak dual inhibitory activity against both the E. coli MurA and MurB enzymes with IC50 values of 88.1 and 79.5 µM, respectively, which could partially explain its antibacterial effect. A comparison with the previously reported, structurally related pyrazolidinediones suggested that the oxime functionality at position 4 enhanced the activity against MurA and recovered the activity against the MurB enzyme. Compound 24 can serve as a lead for further development of novel and safe antibiotics with potential broad spectrum activity.
Collapse
Affiliation(s)
- Salma A Mokbel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Reem K Fathalla
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Lina Y El-Sharkawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| |
Collapse
|
23
|
Antimicrobial Evaluation of Latex and TLC Fractions from the Leaves of Aloe adigratana Reynolds. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8312471. [PMID: 32308717 PMCID: PMC7139876 DOI: 10.1155/2020/8312471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
Background The highest prevalence and emergence of microbial infections coupled with the threat of antimicrobial resistance constitute a global concern, which entails searching for novel antimicrobial agents. Medicinal plants are among the major sources of medicines for novel drug discovery. Aloe adigratana is one of the endemic Aloe species in Ethiopia where the leaf latex of the plant is traditionally used for the treatment of various pathogenic conditions such as wound, dandruff, malaria, and diabetes. In spite of such claims, there was no scientific study done so far. The aim of the current study was, therefore, to evaluate the antimicrobial effect of leaf latex of A. adigratana and its thin layer chromatography (TLC) fractions. Methods Thin layer chromatography (TLC) separation was employed for isolation of bioactive compounds. Agar well diffusion and microdilution assay method were used to evaluate the antimicrobial actions of the leaf latex and TLC fractions against six bacterial strains and four Candida species of reference and clinical isolate microbial strains. Results Three major fractions, AA01, AA02, and AA03, were identified by TLC. Among the tested microbial strains, the reference strain of Staphylococcus aureus ATCC 29213 (MIC = 0.06 mg/mL) and clinical Candida krusei 242/18 (MIC = 0.14 mg/mL) exhibited higher susceptibility towards AA02, while reference strains of Klebsiella pneumoniae ATCC 700603 (MIC = 0.19 mg/mL) revealed the highest susceptibility towards AA01. The leaf latex displayed the highest activity against Staphylococcus aureus ATCC 29213 and clinical Candida krusei 242/18 with a MIC value of 0.19 mg/mL. Conclusion The leaf latex and TLC fractions were found to be active against the tested bacterial and Candida species. Therefore, this finding supports the traditional claim of Aloe adigratana and the need for characterization of the TLC fractions to provide as lead compounds for further comprehensive antibacterial and antifungal activities.
Collapse
|
24
|
Sanina NA, Mumyatova VA, Terent´ev AA, Morgunov RB, Ovanesyan NS, Kulikov AV. Synthesis, properties, and antibacterial activity of a new nitric oxide donor — a nitrosyl iron complex with 5-phenyl-1H-1,2,4-triazole-3-thiol. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2691-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Messaoudi A, Zoghlami M, Basharat Z, Sadfi-Zouaoui N. Identification of a Potential Inhibitor Targeting MurC Ligase of the Drug Resistant Pseudomonas aeruginosa Strain through Structure-Based Virtual Screening Approach and In Vitro Assay. Curr Pharm Biotechnol 2020; 20:1203-1212. [PMID: 31333120 DOI: 10.2174/1389201020666190719123133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND & OBJECTIVE Pseudomonas aeruginosa shows resistance to a large number of antibiotics, including carbapenems and third generation cephalosporin. According to the World Health Organization global report published in February 2017, Pseudomonas aeruginosa is on the priority list among resistant bacteria, for which new antibiotics are urgently needed. Peptidoglycan serves as a good target for the discovery of novel antimicrobial drugs. METHODS Biosynthesis of peptidoglycan is a multi-step process involving four mur enzymes. Among these enzymes, UDP-N-acetylmuramate-L-alanine ligase (MurC) is considered to be an excellent target for the design of new classes of antimicrobial inhibitors in gram-negative bacteria. RESULTS In this study, a homology model of Pseudomonas aeruginosa MurC ligase was generated and used for virtual screening of chemical compounds from the ZINC Database. The best screened inhibitor i.e. N, N-dimethyl-2-oxo-2,3-dihydro-1H-1,3-benzodiazole-5-sulfonamide was then validated experimentally through inhibition assay. CONCLUSION The presented results based on combined computational and in vitro analysis open up new horizons for the development of novel antimicrobials against this pathogen.
Collapse
Affiliation(s)
- Abdelmonaem Messaoudi
- The Higher Institute of Biotechnology of Béja, University of Jendouba, Avenue Habib Bourguiba, Béja 9000, Tunisia.,Laboratoire de Mycologie, Pathologies et Biomarqueurs, Faculté des Sciences de Tunis, Université de Tunis El Manar 2092, Tunis, Tunisia
| | - Manel Zoghlami
- Laboratoire de Mycologie, Pathologies et Biomarqueurs, Faculté des Sciences de Tunis, Université de Tunis El Manar 2092, Tunis, Tunisia
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.,Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, Conservatoire National des Arts et Métiers, Paris, 75003, France
| | - Najla Sadfi-Zouaoui
- Laboratoire de Mycologie, Pathologies et Biomarqueurs, Faculté des Sciences de Tunis, Université de Tunis El Manar 2092, Tunis, Tunisia
| |
Collapse
|
26
|
Possible role of rivoglitazone thiazolidine class of drug as dual-target therapeutic agent for bacterial infections: An in silico study. Med Hypotheses 2019; 131:109305. [PMID: 31443754 DOI: 10.1016/j.mehy.2019.109305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
Infections due to resistant bacteria are the life-threatening and leading cause of mortality worldwide. The current therapy for bacterial infections includes treatment with various drugs and antibiotics. The misuse and over usage of these antibiotics leads to bacterial resistance. There are several mechanisms by which bacteria exhibit resistance to some antibiotics. These include drug inactivation or modification, elimination of antibiotics through efflux pumps, drug target alteration, and modification of metabolic pathway. However, it is difficult to treat infections caused by resistant bacteria by conventional existing therapy. In the present study binding affinities of some glitazones against ParE and MurE bacterial enzymes are investigated by in silico methods. As evident by extra-precision docking and binding free energy calculation (MM-GBSA) results, rivoglitazone exhibited higher binding affinity against both ParE and MurE enzymes compared to all other selected compounds. Further molecular dynamic (MD) simulations were performed to validate the stability of rivoglitazone/4MOT and rivoglitazone/4C13 complexes and to get insight into the binding mode of inhibitor. Thus, we hypothesize that structural modifications of the rivoglitazone scaffold can be useful for the development of an effective antibacterial agent.
Collapse
|
27
|
Patel B, Ryan P, Makwana V, Zunk M, Rudrawar S, Grant G. Caprazamycins: Promising lead structures acting on a novel antibacterial target MraY. Eur J Med Chem 2019; 171:462-474. [DOI: 10.1016/j.ejmech.2019.01.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
|
28
|
Hussein M, Han ML, Zhu Y, Schneider-Futschik EK, Hu X, Zhou QT, Lin YW, Anderson D, Creek DJ, Hoyer D, Li J, Velkov T. Mechanistic Insights From Global Metabolomics Studies into Synergistic Bactericidal Effect of a Polymyxin B Combination With Tamoxifen Against Cystic Fibrosis MDR Pseudomonas aeruginosa. Comput Struct Biotechnol J 2018; 16:587-599. [PMID: 30546859 PMCID: PMC6280556 DOI: 10.1016/j.csbj.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/04/2023] Open
Abstract
Polymyxins are amongst the most important antibiotics in modern medicine, in recent times their clinical utility has been overshadowed by nosocomial outbreaks of polymyxin resistant MDR Gram-negative 'superbugs'. An effective strategy to surmount polymyxin resistance is combination therapy with FDA-approved non-antibiotic drugs. Herein we used untargeted metabolomics to investigate the mechanism(s) of synergy between polymyxin B and the selective estrogen receptor modulator (SERM) tamoxifen against a polymyxin-resistant MDR cystic fibrosis (CF) Pseudomonas aeruginosa FADDI-PA006 isolate (polymyxin B MIC=8 mg/L , it is an MDR polymyxin resistant P. aeruginosa isolated from the lungs of a CF patient). The metabolome of FADDI-PA006 was profiled at 15 min, 1 and 4 h following treatment with polymyxin B (2 mg/L), tamoxifen (8 mg/L) either as monotherapy or in combination. At 15 min, the combination treatment induced a marked decrease in lipids, primarily fatty acid and glycerophospholipid metabolites that are involved in the biosynthesis of bacterial membranes. In line with the polymyxin-resistant status of this strain, at 1 h, both polymyxin B and tamoxifen monotherapies produced little effect on bacterial metabolism. In contrast to the combination which induced extensive reduction (≥ 1.0-log2-fold, p ≤ 0.05; FDR ≤ 0.05) in the levels of essential intermediates involved in cell envelope biosynthesis. Overall, these novel findings demonstrate that the primary mechanisms underlying the synergistic bactericidal effect of the combination against the polymyxin-resistant P. aeruginosa CF isolate FADDI-PA006 involves a disruption of the cell envelope biogenesis and an inhibition of aminoarabinose LPS modifications that confer polymyxin resistance.
Collapse
Affiliation(s)
- Maytham Hussein
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Mei-Ling Han
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Elena K. Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Xiaohan Hu
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville 3052, VIC, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla 92037, CA, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| |
Collapse
|
29
|
Hrast M, Jukič M, Patin D, Tod J, Dowson CG, Roper DI, Barreteau H, Gobec S. In silico identification, synthesis and biological evaluation of novel tetrazole inhibitors of MurB. Chem Biol Drug Des 2018; 91:1101-1112. [DOI: 10.1111/cbdd.13172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Martina Hrast
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Marko Jukič
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Delphine Patin
- Group Bacterial Cell Envelopes and Antibiotics; Institute for Integrative Biology of the Cell (I2BC); CEA, CNRS; Univ Paris Sud; Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Julie Tod
- School of Life Sciences; University of Warwick; Coventry UK
| | | | - David I. Roper
- School of Life Sciences; University of Warwick; Coventry UK
| | - Hélène Barreteau
- Group Bacterial Cell Envelopes and Antibiotics; Institute for Integrative Biology of the Cell (I2BC); CEA, CNRS; Univ Paris Sud; Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Stanislav Gobec
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| |
Collapse
|
30
|
Lohani M, Dhasmana A, Haque S, Wahid M, Jawed A, Dar SA, Mandal RK, Areeshi MY, Khan S. Proteome mining for the identification and in-silico characterization of putative drug targets of multi-drug resistant Clostridium difficile strain 630. J Microbiol Methods 2017; 136:6-10. [PMID: 28235560 DOI: 10.1016/j.mimet.2017.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/19/2017] [Accepted: 02/19/2017] [Indexed: 10/20/2022]
Abstract
Clostridium difficile is an enteric pathogen that causes approximately 20% to 30% of antibiotic-associated diarrhea. In recent years, there has been a substantial rise in the rate of C. difficile infections as well as the emergence of virulent and antibiotic resistant C. difficile strains. So, there is an urgent need for the identification of therapeutic potential targets and development of new drugs for the treatment and prevention of C. difficile infections. In the current study, we used a hybrid approach by combining sequence similarity-based approach and protein-protein interaction network topology-based approach to identify and characterize the potential drug targets of C. difficile. A total of 155 putative drug targets of C. difficile were identified and the metabolic pathway analysis of these putative drug targets using DAVID revealed that 46 of them are involved in 9 metabolic pathways. In-silico characterization of these proteins identified seven proteins involved in pathogen-specific peptidoglycan biosynthesis pathway. Three promising targets viz. homoserine dehydrogenase, aspartate-semialdehyde dehydrogenase and aspartokinase etc. were found to be involved in multiple enzymatic pathways of the pathogen. These 3 drug targets are of particular interest as they can be used for developing effective drugs against multi-drug resistant C. difficile strain 630 in the near future.
Collapse
Affiliation(s)
- Mohtashim Lohani
- Department of Biosciences, Integral University, Lucknow, India; Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Anupam Dhasmana
- Department of Biotechnology, Amity University, Lucknow, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Saif Khan
- College of Applied Medical Sciences, Hail University, Hail, Saudi Arabia
| |
Collapse
|
31
|
Pan CL, Chen MH, Tung FI, Liu TY. A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray. Acta Biomater 2017; 47:159-169. [PMID: 27713087 DOI: 10.1016/j.actbio.2016.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/06/2016] [Accepted: 10/02/2016] [Indexed: 01/04/2023]
Abstract
Many non-antibiotic strategies, such as photocatalysis and photodynamic therapy, have been proposed to inhibit and/or kill bacteria. However, these approaches still have drawbacks such as insufficient bacterial specificity and the limited penetration depth of ultraviolet and near-infrared light. To overcome these limitations, we developed a bacteria-specific anti-bacterial technique via using low-dose X-ray. Graphene oxide quantum dots (GQDs, a multifunctional vehicle) conjugated with vancomycin (Van, a bacteria-targeting ligand) were assembled with Protoporphyrin IX (PpIX, a photo/radiation sensitizer) to yield a novel Van-GQDs/PpIX complex that specifically attached to Escherichia coli and efficiently generated intracellular reactive oxygen species following X-ray activation. Delivery using GQDs increased the PpIX/Van ratio in the target bacterial cell, damaged bacterial cell wall, and enhanced X-ray-induced PpIX activation. Hence, this approach allowed for the use of a low-dose X-ray to efficiently activate the Van-GQDs/PpIX complex to exert its bactericidal effects on Escherichia coli without damaging normal cells. Furthermore, the E. coli did not develop resistance to the proposed approach for at least 7 rounds of repeated administration during one week. Thus, this proposed vehicle exhibiting bacteria-specific X-ray-triggered toxicity is a promising alternative to antibiotics for treating serious bacterial infections occurring in deep-seated tissues/organs (e.g., osteomyelitis and peritonitis). STATEMENTS OF SIGNIFICANCE Administration of antibiotics is the most common treatment modality for bacterial infections. However, in some cases, patient attributes such as age, health, tolerance to antibiotics do not allow for the use of high-dose antibiotics. In addition, some bacteria develop resistance to antibiotics because of improper and long-term use of these agents. Therefore, non-antibiotic strategies to treat deeply situated bacterial infections, such as osteomyelitis, are urgently needed for avoiding amputation. To date, several non-antibiotic approaches, such as Ag nanoparticles, graphene-based materials, photocatalysis, and photodynamic therapy have been proposed to inhibit and/or kill bacteria. However, the major challenges of photochemical strategies, specificity and limited penetration depth of light source, still remain for treating the deep-seated bacteria. To overcome these problems, we developed a novel nanovehicle that exerted toxic effects specifically on bacteria following activation by a deeply penetrative low-dose X-ray, without damaging normal cells. As such, it realizes a deeply photochemical route for treating the deep-seated bacteria.
Collapse
|
32
|
Molecular Mechanism of Drug Resistance. DRUG RESISTANCE IN BACTERIA, FUNGI, MALARIA, AND CANCER 2017. [PMCID: PMC7122190 DOI: 10.1007/978-3-319-48683-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The treatment of microbial infections has suffered greatly in this present century of pathogen dominance. Inspite of extensive research efforts and scientific advancements, the worldwide emergence of microbial tolerance continues to plague survivability. The innate property of microbe to resist any antibiotic due to evolution is the virtue of intrinsic resistance. However, the classical genetic mutations and extrachromosomal segments causing gene exchange attribute to acquired tolerance development. Rampant use of antimicrobials causes certain selection pressure which increases the resistance frequency. Genomic duplication, enzymatic site modification, target alteration, modulation in membrane permeability, and the efflux pump mechanism are the major contributors of multidrug resistance (MDR), specifically antibiotic tolerance development. MDRs will lead to clinical failures for treatment and pose health crisis. The molecular mechanisms of antimicrobial resistance are diverse as well as complex and still are exploited for new discoveries in order to prevent the surfacing of “superbugs.” Antimicrobial chemotherapy has diminished the threat of infectious diseases to some extent. To avoid the indiscriminate use of antibiotics, the new ones licensed for use have decreased with time. Additionally, in vitro assays and genomics for anti-infectives are novel approaches used in resolving the issues of microbial resistance. Proper use of drugs can keep it under check and minimize the risk of MDR spread.
Collapse
|
33
|
Parimelzaghan A, Anbarasu A, Ramaiah S. Gene Network Analysis of Metallo Beta Lactamase Family Proteins Indicates the Role of Gene Partners in Antibiotic Resistance and Reveals Important Drug Targets. J Cell Biochem 2015; 117:1330-9. [PMID: 26517410 DOI: 10.1002/jcb.25422] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022]
Abstract
Metallo Beta (β) Lactamases (MBL) are metal dependent bacterial enzymes that hydrolyze the β-lactam antibiotics. In recent years, MBL have received considerable attention because it inactivates most of the β-lactam antibiotics. Increase in dissemination of MBL encoding antibiotic resistance genes in pathogenic bacteria often results in unsuccessful treatments. Gene interaction network of MBL provides a complete understanding on the molecular basis of MBL mediated antibiotic resistance. In our present study, we have constructed the MBL network of 37 proteins with 751 functional partners from pathogenic bacterial spp. We found 12 highly interconnecting clusters. Among the 37 MBL proteins considered in the present study, 22 MBL proteins are from B3 subclass, 14 are from B1 subclass and only one is from B2 subclass. Global topological parameters are used to calculate and compare the probability of interactions in MBL proteins. Our results indicate that the proteins associated within the network have a strong influence in antibiotic resistance mechanism. Interestingly, several drug targets are identified from the constructed network. We believe that our results would be helpful for researchers exploring MBL-mediated antibiotic resistant mechanisms.
Collapse
Affiliation(s)
- Anitha Parimelzaghan
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
34
|
Zheng Y, Zhou J, Sayre DA, Sintim HO. Identification of bromophenol thiohydantoin as an inhibitor of DisA, a c-di-AMP synthase, from a 1000 compound library, using the coralyne assay. Chem Commun (Camb) 2015; 50:11234-7. [PMID: 25116237 DOI: 10.1039/c4cc02916j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
c-di-AMP is an important bacterial second messenger found in Gram-positive and mycobacteria. c-di-AMP regulates myriads of processes in bacteria as well as immune response in higher organisms so interest in small molecules that would attenuate the activity of c-di-AMP metabolism enzymes is high. Herein, we report the first small molecule inhibitor of a c-di-AMP synthase, DisA, using a coralyne-based assay.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | |
Collapse
|
35
|
Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H. Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms. Chem Biol Drug Des 2015; 86:379-99. [DOI: 10.1111/cbdd.12517] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ségolène Ruer
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - David Steadman
- Wolfson Institute for Biomedical Research (WIBR); UCL; London WC1E 6BT UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - Han Remaut
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| |
Collapse
|
36
|
Chen PT, Lin CK, Tsai CJ, Huang DY, Nien FY, Lin WW, Cheng WC. Expeditious synthesis of enantiopure, orthogonally protected bis-α-amino acids (OPBAAs) and their use in a study of Nod1 stimulation. Chem Asian J 2014; 10:474-82. [PMID: 25504924 DOI: 10.1002/asia.201403173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 11/09/2022]
Abstract
A convenient approach towards the synthesis of orthogonally protected chiral bis-α-amino acids (OPBAAs) is described. The key transformations include: (1) a highly stereoselective conjugation (alkylation) of the Schöllkopf bis-lactim ethers and oxazolidinyl alkyl halides to build a backbone skeleton; and (2) our orthogonal protection strategy. A series of enantiopure OPBAAs bearing a variety of alkyl chain as a spacer; two stereogenic centers; and three protecting groups were prepared as examples. These versatile molecules were applied to the synthesis of biologically interesting di- or tri-peptide analogues, including chiral iE-meso-DAP and A-iE-meso-DAP, for the study of Nod1 activation in the innate immune response.
Collapse
Affiliation(s)
- Po-Ting Chen
- The Genomics Research Center, Academia Sinica, No. 128, Academia Road Sec. 2, Nankang District, Taipei, 11529 (Taiwan), Fax: (+886) 2-27899931
| | | | | | | | | | | | | |
Collapse
|
37
|
Kouidmi I, Levesque RC, Paradis-Bleau C. The biology of Mur ligases as an antibacterial target. Mol Microbiol 2014; 94:242-53. [DOI: 10.1111/mmi.12758] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Imène Kouidmi
- Department of Microbiology, Infectiology and Immunology; Université de Montreal; Montreal Quebec Canada
| | - Roger C. Levesque
- Institut de biologie intégrative et des systèmes; Université Laval; Montreal Quebec Canada
| | - Catherine Paradis-Bleau
- Department of Microbiology, Infectiology and Immunology; Université de Montreal; Montreal Quebec Canada
| |
Collapse
|
38
|
Kałużna-Czaplińska J, Żurawicz E, Struck W, Markuszewski M. Identification of organic acids as potential biomarkers in the urine of autistic children using gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:70-6. [DOI: 10.1016/j.jchromb.2014.01.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 11/15/2022]
|
39
|
Hrast M, Sosič I, Sink R, Gobec S. Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg Chem 2014; 55:2-15. [PMID: 24755374 DOI: 10.1016/j.bioorg.2014.03.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/12/2023]
Abstract
The widespread emergence of resistant bacterial strains is becoming a serious threat to public health. This thus signifies the need for the development of new antibacterial agents with novel mechanisms of action. Continuous efforts in the design of novel antibacterials remain one of the biggest challenges in drug development. In this respect, the Mur enzymes, MurA-F, that are involved in the formation of UDP-N-acetylmuramyl-pentapeptide can be genuinely considered as promising antibacterial targets. This review provides an in-depth insight into the recent developments in the field of inhibitors of the MurA-F enzymes. Special attention is also given to compounds that act as multiple inhibitors of two, three or more of the Mur enzymes. Moreover, the reasons for the lack of preclinically successful inhibitors and the challenges to overcome these hurdles in the next years are also debated.
Collapse
Affiliation(s)
- Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Roman Sink
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
40
|
Hrast M, Anderluh M, Knez D, Randall CP, Barreteau H, O'Neill AJ, Blanot D, Gobec S. Design, synthesis and evaluation of second generation MurF inhibitors based on a cyanothiophene scaffold. Eur J Med Chem 2014; 73:83-96. [DOI: 10.1016/j.ejmech.2013.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/15/2013] [Accepted: 11/24/2013] [Indexed: 11/29/2022]
|
41
|
Combination of site directed mutagenesis and secondary structure analysis predicts the amino acids essential for stability of M. leprae MurE. Interdiscip Sci 2014; 6:40-7. [PMID: 24464703 DOI: 10.1007/s12539-014-0185-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/22/2013] [Accepted: 04/23/2013] [Indexed: 10/25/2022]
Abstract
The life-threatening infections caused by Mycobacterium leprae (Mle) remain a major challenge in developing countries as well as globe and there is a need to design potent anti-leprosy drugs. In our previous studies, ATP-dependent Mle-MurE ligase involved in biosynthesis of peptidoglycan was identified as one of the common drug targets, homology modeled and reported. In this work in silico site directed mutagenesis study was carried out on the homology modeled Mle-MurE ligase. This predicted the amino acids essential for stability. In addition, the distribution of these residues in different secondary structures and in active sites was analyzed. Finally, the role of the conserved residues in stability and function was analyzed. The availability of Mle-MurE ligase built model together with insights gained from stability studies and docking studies will promote the rational design of potent and selective Mle-MurE ligase inhibitors as anti-leprosy therapeutics.
Collapse
|
42
|
Lee M, Artola-Recolons C, Carrasco-López C, Martínez-Caballero S, Hesek D, Spink E, Lastochkin E, Zhang W, Hellman LM, Boggess B, Hermoso JA, Mobashery S. Cell-wall remodeling by the zinc-protease AmpDh3 from Pseudomonas aeruginosa. J Am Chem Soc 2013; 135:12604-7. [PMID: 23931161 DOI: 10.1021/ja407445x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial cell wall is a polymer of considerable complexity that is in constant equilibrium between synthesis and recycling. AmpDh3 is a periplasmic zinc protease of Pseudomonas aeruginosa , which is intimately involved in cell-wall remodeling. We document the hydrolytic reactions that this enzyme performs on the cell wall. The process removes the peptide stems from the peptidoglycan, the major constituent of the cell wall. We document that the majority of the reactions of this enzyme takes place on the polymeric insoluble portion of the cell wall, as opposed to the fraction that is released from it. We show that AmpDh3 is tetrameric both in crystals and in solution. Based on the X-ray structures of the enzyme in complex with two synthetic cell-wall-based ligands, we present for the first time a model for a multivalent anchoring of AmpDh3 onto the cell wall, which lends itself to its processive remodeling.
Collapse
Affiliation(s)
- Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tiwari V, Moganty RR. Conformational stability of OXA-51 β-lactamase explains its role in carbapenem resistance of Acinetobacter baumannii. J Biomol Struct Dyn 2013; 32:1406-20. [PMID: 23879430 DOI: 10.1080/07391102.2013.819789] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acinetobacter baumannii, an important nosocomial pathogen, is increasingly becoming resistant to antibiotics including recent β-lactam like imipenem. Production of different types of β-lactamases is one of the major resistance mechanisms which bacteria adapt. We recently reported the presence of a β-lactamase, OXA-51, in clinical strains of A. baumannii in ICUs of our hospital. This study is an attempt to understand the structure-function relationship of purified OXA-51 in carbapenem resistance in A. baumannii. The OXA-51 was cloned, expressed in E. coli Bl-21(DE3) and further purified. The in vitro enzyme activity of purified OXA-51 was confirmed by two independent techniques; in-gel assay and spectrophotometric method using nitrocefin. Further in vivo effect of OXA-51 was followed by transmission electron microscopy of bacterium. Biophysical and biochemical investigations of OXA-51 were done using LC-MS/MS, UV-Vis absorption, fluorescence, circular dichroic spectroscopy and isothermal calorimetry. Native OXA-51 was characterized as 30.6 kDa, pI 8.43 with no disulphide bonds and comprising of 30% α-helix, 27% β-sheet. Secondary structure of OXA-51 was significantly unchanged in broad pH (4-10) and temperature (30-60 °C) range with only local alterations at tertiary structural level. Interestingly, enzymatic activity up to 75% was retained under above conditions. Hydrolysis of imipenem by OXA-51 (k(m),1 μM) was found to be thermodynamically favourable. In the presence of imipenem, morphology of sensitive strain of A. baumannii was drastically changed, while OXA-51-transformed sensitive strain retained the stable coccobacillus shape, which demonstrates that imipenem is able to kill sensitive strain but is unable to do so in OXA-51-transformed strain. Hence the production of pH- and temperature-stable OXA-51 appears to be a major determinant in the resistance mechanisms adopted by A. baumannii in order to evade even the latest β-lactams, imipenem. It can be concluded from the study that OXA-51 plays a vital role in the survival of the pathogen under stress conditions and thus poses a major threat.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- a Department of Biochemistry , All India Institute of Medical Sciences , Ansari Nagar, New Delhi 110029 , India
| | | |
Collapse
|
44
|
Abstract
In light of the low success rate of target-based genomics and HTS (High Throughput Screening) approaches in anti-infective drug discovery, in silico structure-based drug design (SBDD) is becoming increasingly prominent at the forefront of drug discovery. In silico SBDD can be used to identify novel enzyme inhibitors rapidly, where the strength of this approach lies with its ability to model and predict the outcome of protein-ligand binding. Over the past 10 years, our group have applied this approach to a diverse number of anti-infective drug targets ranging from bacterial D-ala-D-ala ligase to Plasmodium falciparum DHODH. Our search for new inhibitors has produced lead compounds with both enzyme and whole-cell activity with established on-target mode of action. This has been achieved with greater speed and efficiency compared with the more traditional HTS initiatives and at significantly reduced cost and manpower.
Collapse
|
45
|
Hrast M, Turk S, Sosič I, Knez D, Randall CP, Barreteau H, Contreras-Martel C, Dessen A, O'Neill AJ, Mengin-Lecreulx D, Blanot D, Gobec S. Structure-activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF. Eur J Med Chem 2013; 66:32-45. [PMID: 23786712 DOI: 10.1016/j.ejmech.2013.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
Peptidoglycan is an essential component of the bacterial cell wall, and enzymes involved in its biosynthesis represent validated targets for antibacterial drug discovery. MurF catalyzes the final intracellular peptidoglycan biosynthesis step: the addition of D-Ala-D-Ala to the nucleotide precursor UDP-MurNAc-L-Ala-γ-D-Glu-meso-DAP (or L-Lys). As MurF has no human counterpart, it represents an attractive target for the development of new antibacterial drugs. Using recently published cyanothiophene inhibitors of MurF from Streptococcus pneumoniae as a starting point, we designed and synthesized a series of structurally related derivatives and investigated their inhibition of MurF enzymes from different bacterial species. Systematic structural modifications of the parent compounds resulted in a series of nanomolar inhibitors of MurF from S. pneumoniae and micromolar inhibitors of MurF from Escherichia coli and Staphylococcus aureus. Some of the inhibitors also show antibacterial activity against S. pneumoniae R6. These findings, together with two new co-crystal structures, represent an excellent starting point for further optimization toward effective novel antibacterials.
Collapse
Affiliation(s)
- Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Synthesis and study of antibacterial activities of antibacterial glycopeptide antibiotics conjugated with benzoxaboroles. Future Med Chem 2013; 5:641-52. [DOI: 10.4155/fmc.13.16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: The ability of boron-containing compounds to undergo a number of novel binding interactions with drug target functional groups has recently been described. In an extension of this work, we have incorporated a boron-containing scaffold, the benzoxaborole, into several glycopeptides antibiotics. The aim of this work is to exploit the inherent reactivity of boron to gain additional interactions with the bacterial cell wall components to improve binding affinity and to thereby overcome resistance. Results: Three antibacterial glycopeptides (vancomycin, eremomycin and teicoplanin aglycone) have been selected for the construction of a series of 12 new benzoxaborole–glycopeptide conjugates. The hybrid antibiotics, in which the benzoxaborole and glycopeptide moieties were separated by a linker, exhibited excellent antibacterial activity against Gram-positive bacteria, including those with intermediate susceptibility to glycopeptides. Some analogs also demonstrated activity against vancomycin-resistant enterococci. Conclusion: Conjugation of antibiotics with benzoxaborole derivatives provides antibiotics with new and useful properties. Teicoplanin aglycone–benzoxaborole derivatives overcome resistance of Gram-positive bacteria to vancomycin.
Collapse
|
47
|
Abstract
The growing prevalence of antibiotic-resistant infections underscores the need to discover new antibiotics and to use them with maximum effectiveness. In response to these needs, we describe a screening protocol for the discovery of autolysis-inducing agents that uses two Bacillus subtilis reporter strains, SH-536 and BAU-102. To screen chemical libraries, autolysis-inducing agents were first identified with a BAU-102-based screen and then subdivided with SH-536 into two major groups: those that induce autolysis by their direct action on the cell membrane and those that induce autolysis secondary to inhibition of cell wall synthesis. SH-536 distinguishes between the two groups of autolysis-inducing agents by synthesizing and then releasing β-galactosidase (β-Gal) in late stationary phase at a time that cells have nearly stopped growing and are therefore tolerant of cell wall synthesis inhibitors. Four hits, named compound 2, compound 3, compound 5, and compound 24, obtained previously as inducers of autolysis by screening a 10,080-compound discovery library with BAU-102, were probed with SH-536 and found to release β-Gal, indicating that their mode of action was to permeabilize the B. subtilis cell membrane. The four primary hits inhibited growth in Staphylococcus aureus, Enterococcus faecium, Bacillus subtilis, and Bacillus anthracis, with MICs in the 12.5- to 25-μg/ml (20 to 60 μM) range. The four primary hits were further used to probe B. subtilis, and their action was partially characterized with respect to the dependence of induced autolysis on specific autolysins.
Collapse
|
48
|
Tomašić T, Šink R, Zidar N, Fic A, Contreras-Martel C, Dessen A, Patin D, Blanot D, Müller-Premru M, Gobec S, Zega A, Kikelj D, Mašič LP. Dual Inhibitor of MurD and MurE Ligases from Escherichia coli and Staphylococcus aureus. ACS Med Chem Lett 2012; 3:626-30. [PMID: 24900523 DOI: 10.1021/ml300047h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/27/2012] [Indexed: 01/16/2023] Open
Abstract
MurD and MurE ligases, consecutive enzymes participating in the intracellular steps of bacterial peptidoglycan biosynthesis, are important targets for antibacterial drug discovery. We have designed, synthesized, and evaluated the first d-glutamic acid-containing dual inhibitor of MurD and MurE ligases from Escherichia coli and Staphylococcus aureus (IC50 values between 6.4 and 180 μM) possessing antibacterial activity against Gram-positive S. aureus and its methicillin-resistant strain (MRSA) with minimal inhibitory concentration (MIC) values of 8 μg/mL. The inhibitor was also found to be noncytotoxic for human HepG2 cells at concentrations below 200 μM.
Collapse
Affiliation(s)
- Tihomir Tomašić
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Roman Šink
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Anja Fic
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Carlos Contreras-Martel
- Institut de Biologie Structurale,
Bacterial Pathogenesis Group, Université Grenoble I, 38027 Grenoble, France
- Commissariat à l'Energie Atomique (CEA), IBS, 38027 Grenoble, France
- Centre National de la Recherche Scientifique (CNRS), IBS, 41 rue Jules
Horowitz, 38027 Grenoble, France
| | - Andréa Dessen
- Institut de Biologie Structurale,
Bacterial Pathogenesis Group, Université Grenoble I, 38027 Grenoble, France
- Commissariat à l'Energie Atomique (CEA), IBS, 38027 Grenoble, France
- Centre National de la Recherche Scientifique (CNRS), IBS, 41 rue Jules
Horowitz, 38027 Grenoble, France
| | - Delphine Patin
- Univ Paris-Sud, Laboratoire des Enveloppes
Bactériennes et Antibiotiques,
Institut de Biochimie et Biophysique Moléculaire et Cellulaire,
UMR 8619, 91405 Orsay, France
- CNRS, 91405
Orsay, France
| | - Didier Blanot
- Univ Paris-Sud, Laboratoire des Enveloppes
Bactériennes et Antibiotiques,
Institut de Biochimie et Biophysique Moléculaire et Cellulaire,
UMR 8619, 91405 Orsay, France
- CNRS, 91405
Orsay, France
| | - Manica Müller-Premru
- Institute
of Microbiology and
Immunology, Medical Faculty, University of Ljubljana, 1105 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7,
1000 Ljubljana, Slovenia
| | | |
Collapse
|
49
|
Interaction with lipid II induces conformational changes in bovicin HC5 structure. Antimicrob Agents Chemother 2012; 56:4586-93. [PMID: 22687503 DOI: 10.1128/aac.00295-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovicin HC5 is a lantibiotic produced by Streptococcus bovis HC5 that targets the cell wall precursor lipid II. An understanding of the modes of action against target bacteria can help broadening the clinical applicability of lantibiotics in human and veterinary medicine. In this study, the interaction of bovicin HC5 with lipid II was examined using tryptophan fluorescence and circular dichroism spectroscopy with model membrane systems that do or do not allow pore formation by bovicin HC5. In the presence of lipid II, a blue-shift of 12 nm could be observed for the fluorescence emission maximum of the tryptophan residue for all of the membrane systems tested. This change in fluorescence emission was paralleled by a decrease in accessibility toward acrylamide and phospholipids carrying a spin-label at the acyl chain; the tryptophan residue of bovicin HC5 was located near the twelfth position of the membrane phospholipid acyl chains. Moreover, the binding of lipid II by bovicin HC5 induced remarkable conformational changes in the bovicin HC5 structure. The interaction of bovicin HC5 with lipid II was highly stable even at pH 2.0. These results indicate that bovicin HC5 interacts directly with lipid II and that the topology of this interaction changes under different conditions, which is relevant for the biological activity of the peptide. To our knowledge, bovicin HC5 is the only bacteriocin described thus far that is able to interact with its target in extreme pH values, and this fact might be related to its unique structure and stability.
Collapse
|
50
|
Green OM, McKenzie AR, Shapiro AB, Otterbein L, Ni H, Patten A, Stokes S, Albert R, Kawatkar S, Breed J. Inhibitors of acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). Part 1: Hit to lead evaluation of a novel arylsulfonamide series. Bioorg Med Chem Lett 2012; 22:1510-9. [DOI: 10.1016/j.bmcl.2012.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 11/30/2022]
|