1
|
Rahdan F, Saberi A, Saraygord-Afshari N, Hadizadeh M, Fayeghi T, Ghanbari E, Dianat-Moghadam H, Alizadeh E. Deciphering the multifaceted role of microRNAs in hepatocellular carcinoma: Integrating literature review and bioinformatics analysis for therapeutic insights. Heliyon 2024; 10:e39489. [PMID: 39498055 PMCID: PMC11532857 DOI: 10.1016/j.heliyon.2024.e39489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant global health challenge, necessitating innovative therapeutic strategies. MicroRNAs (miRNAs) have emerged as pivotal regulators of HCC pathogenesis, influencing key processes such as self-renewal, angiogenesis, glycolysis, autophagy, and metastasis. This article integrates findings from a comprehensive literature review and bioinformatics analysis to elucidate the role of miRNAs in HCC. We discuss how dysregulation of miRNAs can drive HCC initiation, progression, and metastasis by modulating various signaling pathways and target genes. Moreover, leveraging high-throughput technology and bioinformatics tools, we identify key miRNAs involved in multiple cancer hallmarks, offering insights into potential combinatorial therapeutic strategies. Through our analysis considering p-values and signaling pathways associated with key features, we unveil miRNAs with simultaneous roles across critical cancer characteristics, providing a basis for the development of high-performance biomarkers. The microRNAs, miR-34a-5p, miR-373-3p, miR-21-5p, miR-214-5p, miR-195-5p, miR-139-5p were identified to be shared microRNAs in stemness, angiogenesis, glycolysis, autophagy, EMT, and metastasis of HCC. However, challenges such as miRNA stability and delivery hinder the translation of miRNA-based therapeutics into clinical practice. This review underscores the importance of further research to overcome existing barriers and realize the full potential of miRNA-based interventions for HCC management.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahura Fayeghi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghanbari
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Effect of an experimental desensitizing gel on bleaching-induced tooth sensitivity after in-office bleaching—a double-blind, randomized controlled trial. Clin Oral Investig 2022; 27:1567-1576. [PMID: 36418502 PMCID: PMC9685084 DOI: 10.1007/s00784-022-04778-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate the risk and intensity of tooth sensitivity (TS), and the efficacy of in-office bleaching after applying an experimental desensitizing gel composed of 10% calcium gluconate, 0.1% dexamethasone acetate, 10% potassium nitrate, and 5% glutaraldehyde. MATERIAL AND METHODS In a split-mouth, double-blind, placebo-controlled study, 50 participants had their upper hemiarches randomized into experimental and placebo groups. Desensitizing and placebo gels were applied for 10 min before in-office bleaching (35% hydrogen peroxide, 1 × 50 min; two bleaching sessions; 1-week interval). TS was recorded immediately after bleaching, 1, 24, and 48 h after each session, with a 0-10 visual analogue scale (VAS) and a five-point numerical rating scale (NRS). The color was recorded in all groups at baseline, 1 week after each session, and 1 month after the end of bleaching using shade guide units (ΔSGUs) and a spectrophotometer (ΔEab, ΔE00, and ΔWID). RESULTS Most participants (96%) felt some discomfort during treatment regardless of the study group. The odds ratio for pain was 0.65 (95% CI 0.1 to 4.1; p = 1.0). The intensity of TS did not differ between groups (p > 0.31), and it was only 0.34 VAS units lower in the experimental group. A significant color change occurred in both groups regardless of the group. CONCLUSIONS The desensitizing experimental gel applied before in-office bleaching did not reduce the risk and the intensity of TS and did not affect color change. CLINICAL RELEVANCE Although the experimental desensitizing agent with varying mechanisms of action did not jeopardize the color change, it did not reduce the risk or intensity of in-office bleaching. CLINICAL TRIAL REGISTRATION NUMBER RBR-7T7D4D.
Collapse
|
3
|
Petkova AI, Kubajewska I, Vaideanu A, Schätzlein AG, Uchegbu IF. Gene Targeting to the Cerebral Cortex Following Intranasal Administration of Polyplexes. Pharmaceutics 2022; 14:pharmaceutics14061136. [PMID: 35745709 PMCID: PMC9231247 DOI: 10.3390/pharmaceutics14061136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Gene delivery to the cerebral cortex is challenging due to the blood brain barrier and the labile and macromolecular nature of DNA. Here we report gene delivery to the cortex using a glycol chitosan—DNA polyplex (GCP). In vitro, GCPs carrying a reporter plasmid DNA showed approximately 60% of the transfection efficiency shown by Lipofectamine lipoplexes (LX) in the U87 glioma cell line. Aiming to maximise penetration through the brain extracellular space, GCPs were coated with hyaluronidase (HYD) to form hyaluronidase-coated polyplexes (GCPH). The GCPH formulation retained approximately 50% of the in vitro hyaluronic acid (HA) digestion potential but lost its transfection potential in two-dimensional U87 cell lines. However, intranasally administered GCPH (0.067 mg kg−1 DNA) showed high levels of gene expression (IVIS imaging of protein expression) in the brain regions. In a separate experiment, involving GCP, LX and naked DNA, the intranasal administration of the GCP formulation (0.2 mg kg−1 DNA) resulted in protein expression predominantly in the cerebral cortex, while a similar dose of intranasal naked DNA led to protein expression in the cerebellum. Intranasal LX formulations did not show any evidence of protein expression. GCPs may provide a means to target protein expression to the cerebral cortex via the intranasal route.
Collapse
Affiliation(s)
- Asya I. Petkova
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
| | - Ilona Kubajewska
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
| | - Alexandra Vaideanu
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
| | - Andreas G. Schätzlein
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
| | - Ijeoma F. Uchegbu
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
- Correspondence:
| |
Collapse
|
4
|
Datta B, Paul D, Pal U, Rakshit T. Intriguing Biomedical Applications of Synthetic and Natural Cell-Derived Vesicles: A Comparative Overview. ACS APPLIED BIO MATERIALS 2021; 4:2863-2885. [PMID: 35014382 DOI: 10.1021/acsabm.0c01480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The significant role of a vesicle is well recognized; however, only lately has the advancement in biomedical applications started to uncover their usefulness. Although the concept of vesicles originates from cell biology, it later transferred to chemistry and material science to develop nanoscale artificial vesicles for biomedical applications. Herein, we examine different synthetic and biological vesicles and their applications in the biomedical field in general. As our understanding of biological vesicles increases, more suitable biomimicking synthetic vesicles will be developed. The comparative discussion between synthetic and natural vesicles for biomedical applications is a relevant topic, and we envision this could enable the development of a proper approach to realize the next-generation treatment goals.
Collapse
Affiliation(s)
- Brateen Datta
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Debashish Paul
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Tatini Rakshit
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
5
|
Vilela AP, Rezende M, Terra RMO, da Silva KL, Sutil E, Calixto AL, Reis A, D Loguercio A, Farago PV. Effect of topical application of nanoencapsulated eugenol on dental sensitivity reduction after in-office dental bleaching: a randomized, triple-blind clinical trial. J ESTHET RESTOR DENT 2021; 33:660-667. [PMID: 33694253 DOI: 10.1111/jerd.12728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE This randomized, split-mouth, triple-blind clinical study evaluated the effect of application of nanoencapsulated eugenol (NE) on the absolute risk and intensity of tooth sensitivity (TS) resulting from in-office bleaching. METHODS Fifty-six patients received a NE in one hemiarch and a placebo gel in the other hemiarch, determined by random sequence, before in-office bleaching. A visual analogue scale (VAS) (0-10) and a numeric rating scale (NRS) (0-4) were used to record TS during bleaching and 1 and 48 h after bleaching. The tooth color was performed from baseline to 2 weeks after bleaching with shade guides (ΔSGU) and a spectrophotometer (∆Eab , ∆E00, and WID ). The TS was assessed through the McNemar test (α = 0.05) and by the Wilcoxon signed-rank test (NRS) and paired t-test (VAS). The paired test-t was employed to compare the color changes (ΔSGU and ΔEab , ∆E00, and WID ). The significance level was 5%. RESULTS No statistically significant difference was found in the absolute risk or intensity of TS between both groups (p > 0.05). A significant color change was observed in both groups (p > 0.05). CONCLUSION Administration of the gel containing NE before the in-office dental bleaching did not reduce the TS and did not interfere in the bleaching effect. CLINICAL RELEVANCE STATEMENT The use of desensitizing gel containing NE did not reduce in-office bleaching-induced tooth sensitivity.
Collapse
Affiliation(s)
- Ana Paula Vilela
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Márcia Rezende
- School of Dentistry, School Paulo Picanço, Fortaleza, Ceará, Brazil
| | - Renata Maria Oleniki Terra
- School of Dentistry, Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, Parana, Brazil
| | - Karine Letícia da Silva
- School of Dentistry, Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, Parana, Brazil
| | - Elisama Sutil
- School of Dentistry, Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, Parana, Brazil
| | - Abraham L Calixto
- School of Dentistry, Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, Parana, Brazil
| | - Alessandra Reis
- School of Dentistry, Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, Parana, Brazil
| | - Alessandro D Loguercio
- School of Dentistry, Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, Parana, Brazil
| | - Paulo Vitor Farago
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
6
|
Chibh S, Katoch V, Kour A, Khanam F, Yadav AS, Singh M, Kundu GC, Prakash B, Panda JJ. Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core-shell like microstructures for pH switchable on-demand anti-cancer drug delivery. Biomater Sci 2021; 9:942-959. [PMID: 33559658 DOI: 10.1039/d0bm01386b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric nanostructures such as nanobowls (NBs) can exhibit superior drug delivery performances owing to their concave structure and interior asymmetric cavities. Here, we present a facile one-step method for the fabrication of NB like structures from a mere single amino acid mimetic, N-(9-fluorenylmethoxycarbonyl)-S-triphenylmethyl-l-cysteine following continuous-flow microfluidics enabled supramolecular self-assembly. Following fabrication, NBs were further infused into a vesicular shell consisting of the amino acid N-(tert-butoxycarbonyl)-S-triphenylmethyl-l-cysteine, carrying dual acid labile groups, the triphenylmethyl and the tert-butyloxycarbonyl groups. The NB infused core-shell like microstructures formed after the shell coating will now be addressed as NB-shells. Presence of pH-responsive shells bestowed the core-shell NB like structures with the ability to actively tune their surface pore opening and closing in response to environmental pH switch. To illustrate the potential use of the NB-shells in the field of anticancer drug delivery, the particles were loaded with doxorubicin (Dox) with an encapsulation efficiency of 42% and Dox loaded NB-shells exhibited enhanced efficacy in C6 glioma cells. Additionally, when tested in an animal model of glioblastoma, the nanoformulations demonstrated significantly higher retardation of tumour growth as compared to free Dox. Thus, this work strives to provide a new research area in the development of well turned-out and neatly fabricated pH switchable on/off anti-cancer drug delivery systems with significant translational potential.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Vibhav Katoch
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Avneet Kour
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Farheen Khanam
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Amit Singh Yadav
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Manish Singh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Gopal C Kundu
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Bhanu Prakash
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
7
|
Araste F, Aliabadi A, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment. J Control Release 2021; 330:502-528. [DOI: 10.1016/j.jconrel.2020.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
|
8
|
Ganguly S, Margel S. Review: Remotely controlled magneto-regulation of therapeutics from magnetoelastic gel matrices. Biotechnol Adv 2020; 44:107611. [PMID: 32818552 DOI: 10.1016/j.biotechadv.2020.107611] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
|
9
|
Giordano L, Porta GD, Peretti GM, Maffulli N. Therapeutic potential of microRNA in tendon injuries. Br Med Bull 2020; 133:79-94. [PMID: 32219416 DOI: 10.1093/bmb/ldaa002] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The regulatory role of microRNA (miRNA) in several conditions has been studied, but their function in tendon healing remains elusive. This review summarizes how miRNAs are related to the pathogenesis of tendon injuries and highlights their clinical potential, focusing on the issues related to their delivery for clinical purposes. SOURCES OF DATA We searched multiple databases to perform a systematic review on miRNA in relation to tendon injuries. We included in the present work a total of 15 articles. AREAS OF AGREEMENT The mechanism of repair of tendon injuries is probably mediated by resident tenocytes. These maintain a fine equilibrium between anabolic and catabolic events of the extracellular matrix. Specific miRNAs regulate cytokine expression and orchestrate proliferation and differentiation of stromal cell lines involved in the composition of the extracellular matrix. AREAS OF CONTROVERSY The lack of effective delivery systems poses serious obstacles to the clinical translation of these basic science findings. GROWING POINT In vivo studies should be planned to better explore the relationship between miRNA and tendon injuries and evaluate the most suitable delivery system for these molecules. AREAS TIMELY FOR DEVELOPING RESEARCH Investigations ex vivo suggest therapeutic opportunities of miRNA for the management of tendon injuries. Given the poor pharmacokinetic properties of miRNAs, these must be delivered by an adequate adjuvant transport system.
Collapse
Affiliation(s)
- Lorenzo Giordano
- Department of Musculoskeletal Disorder, Faculty of Medicine, Surgery and Dentistry, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
| | - Giovanna Della Porta
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Giuseppe M Peretti
- Department of Biomedical Sciences for Health, University of Milan, Via Riccardo Galeazzi 4, 20161, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorder, Faculty of Medicine, Surgery and Dentistry, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy.,Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, England.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5B, England
| |
Collapse
|
10
|
Chang R, Xiong L, Li M, Chen H, Xiao J, Wang S, Qiu L, Bian X, Sun C, Sun Q. Preparation of octenyl succinic anhydride-modified debranched starch vesicles for loading of hydrophilic functional ingredients. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Picos-Corrales LA, Garcia-Carrasco M, Licea-Claverie A, Chavez-Santoscoy RA, Serna-Saldívar SO. NIPAAm-containing amphiphilic block copolymers with tailored LCST: Aggregation behavior, cytotoxicity and evaluation as carriers of indomethacin, tetracycline and doxorubicin. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1586440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Melissa Garcia-Carrasco
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, México
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, México
| | - Rocio A. Chavez-Santoscoy
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California-Campus Tijuana, Tijuana, México
| | - Sergio O. Serna-Saldívar
- Escuela de Biotecnología y Alimentos, Centro de Biotecnología FEMSA, Tecnológico de Monterrey-Campus Monterrey, Monterrey, México
| |
Collapse
|
12
|
Li B, Wu Y, Wang Y, Zhang M, Chen H, Li J, Liu R, Ding Y, Hu A. Light-Cross-linked Enediyne Small-Molecule Micelle-Based Drug-Delivery System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8896-8903. [PMID: 30730704 DOI: 10.1021/acsami.8b22516] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Light-cross-linked small-molecule micelles with enediyne units are designed for developing efficient drug-delivery systems. Gemcitabine (GEM) is chosen as a model hydrophilic drug and tethered with a maleimide-based enediyne (EDY) as a hydrophobic tail in the preparation of amphiphilic EDY-GEM. The stable micellar particles are obtained by cross-linking the enediyne moieties via photoinduced Bergman cyclization polymerization in aqueous media. The light-cross-linked spherical micelles with a size of 80 nm are characterized with dynamic light scattering and electron microscopy, showing robust micellar stability, bright fluorescent emission due to their intrinsic conjugated structure, and potential passive tumor-targeting ability through the enhanced permeability and retention effect. The drug-loaded micelles, as an example of light-cross-linked small-molecule micelle-based drug-delivery system, exhibit high drug-loading contents (50%) and greatly improved cytotoxicity toward A549 cells (decreasing the IC50 value of Gemcitabine by 10 times), thanks to the greatly increased cellular uptake of the drug-loaded micelles as confirmed by confocal laser scanning microscopy. The light-cross-linked enediyne-based small-molecule micelles system therefore provides a simple yet efficient drug-delivery platform for cancer chemotherapy.
Collapse
|
13
|
Chaudhary V, Jangra S, Yadav NR. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J Nanobiotechnology 2018; 16:40. [PMID: 29653577 PMCID: PMC5897953 DOI: 10.1186/s12951-018-0368-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/07/2018] [Indexed: 12/31/2022] Open
Abstract
Nanobiotechnology has the potential to revolutionize diverse sectors including medicine, agriculture, food, textile and pharmaceuticals. Disease diagnostics, therapeutics and crop protection strategies are fast emerging using nanomaterials preferably nanobiomaterials. It has potential for development of novel nanobiomolecules which offer several advantages over conventional treatment methods. RNA nanoparticles with many unique features are promising candidates in disease treatment. The miRNAs are involved in many biochemical and developmental pathways and their regulation in plants and animals. These appear to be a powerful tool for controlling various pathological diseases in human, plants and animals, however there are challenges associated with miRNA based nanotechnology. Several advancements made in the field of miRNA therapeutics make it an attractive approach, but a lot more has to be explored in nanotechnology assisted miRNA therapy. The miRNA based technologies can be employed for detection and combating crop diseases as well. Despite these potential advantages, nanobiotechnology applications in the agricultural sector are still in its infancy and have not yet made its mark in comparison with healthcare sector. The review provides a platform to discuss nature, role and use of miRNAs in nanobiotechnology applications.
Collapse
Affiliation(s)
- Vrantika Chaudhary
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Sumit Jangra
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Neelam R. Yadav
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| |
Collapse
|
14
|
Kapoor B, Gupta R, Singh SK, Gulati M, Singh S. Prodrugs, phospholipids and vesicular delivery - An effective triumvirate of pharmacosomes. Adv Colloid Interface Sci 2018; 253:35-65. [PMID: 29454464 DOI: 10.1016/j.cis.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022]
Abstract
With the advent from the laboratory bench to patient bedside in last five decades, vesicular systems have now come to be widely accepted as pragmatic means for controlled delivery of drugs. Their success stories include those of liposomes, niosomes and even the lately developed ethosomes and transferosomes. Pharmacosomes, which, as delivery systems offer numerous advantages and have been widely researched, however, remain largely unacknowledged as a successful delivery system. Though a large number of drugs have been derivatized and formulated into self-assembled vesicular systems, the term pharmacosomes has not been widely used while reporting them. Therefore, their relative obscurity may be attributed to the non-usage of the nomenclature of pharmacosomes by the researchers working in the area. We present a review on the scenario that lead to origin of these bio-inspired vesicles composed of self-assembling amphiphilic molecules. Various drugs that have been formulated into pharmacosomes, their characterization techniques, their properties relative to those of other vesicular delivery systems, and the success achieved so far are also discussed.
Collapse
|
15
|
Zhao L, Xiao C, Wang L, Gai G, Ding J. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chem Commun (Camb) 2018; 52:7633-52. [PMID: 27194104 DOI: 10.1039/c6cc02202b] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucose-sensitive drug delivery systems, which can continuously and automatically regulate drug release based on the concentration of glucose, have attracted much interest in recent years. Self-regulated drug delivery platforms have potential application in diabetes treatment to reduce the intervention and improve the quality of life for patients. At present, there are three types of glucose-sensitive drug delivery systems based on glucose oxidase (GOD), concanavalin A (Con A), and phenylboronic acid (PBA) respectively. This review covers the recent advances in GOD-, Con A-, or PBA-mediated glucose-sensitive nanoscale drug delivery systems, and provides their major challenges and opportunities.
Collapse
Affiliation(s)
- Li Zhao
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Liyan Wang
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Guangqing Gai
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
16
|
Singh S, Kamal SS, Sharma A, Kaur D, Katual MK, Kumar R. Formulation and In-Vitro Evaluation of Solid Lipid Nanoparticles Containing Levosulpiride. ACTA ACUST UNITED AC 2017. [DOI: 10.2174/1875933501704010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objectives:
The present study aims on preparing Levosulpiride loaded solid lipid nanoparticles (SLNs) to reduce the dose, frequency of dosing, reduce side effects and to increase the bioavailable fraction of drug (<30% orally in general).
Methods:
Levosulpiride was characterized by preformulation studies like physical appearance, melting point, assay, calibration curve, FTIR analysis and DSC analysis. The calibration curve of the drug was prepared in pH 6.8 phosphate buffer. Two lipids (Stearic acid and Palmitic acid) were used as lipid phase to prepare SLNs. Factorial design (23) was applied to formulate 16 formulations (8 for each lipid i.e. SF1-SF8 and PF1-PF8). Levosulpiride SLNs were prepared by solvent evaporation method followed by homogenization.
Results:
The optimized formulations were characterized by particle size analysis, zeta potential analysis, in vitro drug release and drug release kinetics. Drug-excipient interaction in optimized formulation was characterized by FTIR, DSC and TEM analysis.
Conclusion:
On the basis of evaluation parameters, the formulation SF1 (containing Stearic acid) and PF1 (containing Palimitic acid) found to be better formulations amongst their groups with a controlled drug release after a period of 24 hrs.
Collapse
|
17
|
Bartenstein JE, Liu X, Lange K, Claesson PM, Briscoe WH. Polymersomes at the solid-liquid interface: Dynamic morphological transformation and lubrication. J Colloid Interface Sci 2017; 512:260-271. [PMID: 29073467 DOI: 10.1016/j.jcis.2017.10.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Polymersomes are hollow spheres self-assembled from amphiphilic block copolymers of certain molecular architecture. Whilst they have been widely studied for biomedical applications, relatively few studies have reported their interfacial properties. In particular, lubrication by polymersomes has not been previously reported. Here, interfacial properties of polymersomes self-assembled from poly(butadiene)-poly(ethylene oxide) (PBD-PEO; molecular weight 10,400 g mol-1) have been studied at both hydrophilic and hydrophobic surfaces. Their morphology at silica and mica surfaces was imaged with quantitative nanomechanical property mapping atomic force microscopy (QNM AFM), and friction and surface forces they mediate under confinement between two surfaces were studied using colloidal probe AFM (CP-AFM). We find that the polymersomes remained intact but adopted flattened conformation once adsorbed to mica, with a relatively low coverage. However, on silica these polymersomes were unstable, rupturing to form donut shaped residues or patchy bilayers. On a silica surface hydrophobized with a 19 nm polystyrene (PS) film, the polymer vesicles formed a more stable layer with a higher surface coverage as compared to the hydrophilic surface, and the interfacial structure also evolved over time. Moreover, friction was greatly reduced on hydrophobized silica surfaces in the presence of polymersomes, suggesting their potential as effective aqueous lubricants.
Collapse
Affiliation(s)
- Julia E Bartenstein
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Xiaoyan Liu
- Surface and Corrosion Science, Drottning Kristinas Väg 51, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Kathrin Lange
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Per M Claesson
- Surface and Corrosion Science, Drottning Kristinas Väg 51, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
18
|
Glucose Oxidase-Based Glucose-Sensitive Drug Delivery for Diabetes Treatment. Polymers (Basel) 2017; 9:polym9070255. [PMID: 30970930 PMCID: PMC6432078 DOI: 10.3390/polym9070255] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 11/21/2022] Open
Abstract
The glucose-sensitive drug delivery systems based on glucose oxidase (GOD), which exhibit highly promising applications in diabetes therapy, have attracted much more interest in recent years. The self-regulated drug delivery systems regulate drug release by glucose concentration automatically and continuously to control the blood glucose level (BGL) in normoglycemic state. This review covers the recent advances at the developments of GOD-based glucose-sensitive drug delivery systems and their in vivo applications for diabetes treatment. The applications of GOD-immobilized platforms, such as self-assembly layer-by-layer (LbL) films and polymer vesicles, cross-linking hydrogels and microgels, hybrid mesoporous silica nanoparticles, and microdevices fabricated with insulin reservoirs have been surveyed. The glucose-sensitive drug delivery systems based on GOD are expected to be a typical candidate for smart platforms for potential applications in diabetes therapy.
Collapse
|
19
|
Patnaik S. Nanomedicine Magic Bullet for Human Cancer. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nanotechnology is the new tool that has changed healthcare, engineering, and space science. The technology involves nanoparticles that are effectively a bridge between bulk materials and atomic or molecular structures. The properties of materials change its surface plasmon resonance in metals, supermagnetism in magnetic materials as their size approaches to nanoscale. Taking in to account of their small sizes (less than 100nm) and their miraculous properties, unlike their precursor bulk material, nanoparticles are exploited to create new diagnostics and therapeutics with respect to several human diseases. Nanomedicine is generating a new generation of innovative revolution in nanoscale drug delivery strategies, site-specific drug delivery, and personalized therapy in cancer by releasing the drug at a specific site. This chapter discusses the evolution of nanomedicine to several advancements in the field of nanoparticle technologies, targeting and controlled release strategies, with the desire of generating robust and efficient nanotherapeutic tools against cancer.
Collapse
|
20
|
Bartenstein JE, Robertson J, Battaglia G, Briscoe WH. Stability of polymersomes prepared by size exclusion chromatography and extrusion. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Li X, Zhu X, Qiu L. Constructing aptamer anchored nanovesicles for enhanced tumor penetration and cellular uptake of water soluble chemotherapeutics. Acta Biomater 2016; 35:269-79. [PMID: 26873366 DOI: 10.1016/j.actbio.2016.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 12/20/2022]
Abstract
Polymersomes represent a promising pharmaceutical vehicle for the delivery of hydrophilic therapeutic agents. However, modification of polymersomes with molecules that confer targeting functions remains challenging because of the strict requirements regarding the weight fractions of the hydrophilic and hydrophobic block polymers. In this study, based on the compatibility between cholesterol and polymeric carriers, polymersomes self-assembled by amphiphilic graft polyphosphazenes were endowed with a targeting function by incorporating the cholesterol-linked aptamer through a simple dialysis method. The aqueous interior of the polymersomes was employed to encapsulate water-soluble doxorubicin hydrochloride. In vivo experiments in tumor-bearing mice showed that the aptamer-anchored vesicle targeted accumulation at the tumor site, favorable penetration through tumor tissue, and incremental endocytosis into tumor cells. Correspondingly, the aptamer-anchored vesicle decreased systemic toxicity and effectively suppressed the growth of subcutaneous MCF-7 xenografts. These findings suggested that vesicles modified with targeted groups via hydrophobic supermolecular interactions could provide a platform for selective delivery of hydrophilic drug. STATEMENT OF SIGNIFICANCE Polymersomes have represented a promising type of pharmaceutical vehicles due to their predominant physical properties. However, it is still a challenge to endow polymersomes with active target function because of strict requirements of the weight fractions of hydrophilic polymer block to hydrophobic one. In this research, by taking advantage of the supermolecular interactions between amphiphilic graft polyphosphazene and cholesterol which was linked to aptamer AS1411, we prepared a targeted functional polymersome (PEP-DOX·HCl-Ap) through a simple method with high loading of water soluble anti-cancer drug doxorubicin hydrochloride. The in vivo experiments in MCF-7 tumor-bearing mice demonstrated several advantages of PEP-DOX·HCl-Ap vesicle such as prolonged circulation time in blood, targeted accumulation at tumor site, permeation through the tumor tissue and incremental endocytosis by tumor cells, which consequently resulted in the significantly improved anti-cancer efficacy. Moreover, this novel polymersome designed in this study has built a research platform to achieve targeted delivery of hydrophilic chemotherapeutics for cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiumei Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
22
|
Ong SM, Biswas SK, Wong SC. MicroRNA-mediated immune modulation as a therapeutic strategy in host-implant integration. Adv Drug Deliv Rev 2015; 88:92-107. [PMID: 26024977 DOI: 10.1016/j.addr.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 05/05/2015] [Accepted: 05/21/2015] [Indexed: 12/29/2022]
Abstract
The concept of implanting an artificial device into the human body was once the preserve of science fiction, yet this approach is now often used to replace lost or damaged biological structures in human patients. However, assimilation of medical devices into host tissues is a complex process, and successful implant integration into patients is far from certain. The body's immediate response to a foreign object is immune-mediated reaction, hence there has been extensive research into biomaterials that can reduce or even ablate anti-implant immune responses. There have also been attempts to embed or coat anti-inflammatory drugs and pro-regulatory molecules onto medical devices with the aim of preventing implant rejection by the host. In this review, we summarize the key immune mediators of medical implant reaction, and we evaluate the potential of microRNAs to regulate these processes to promote wound healing, and prolong host-implant integration.
Collapse
Affiliation(s)
- Siew-Min Ong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building, Level 4, Biopolis, Singapore 138648, Singapore
| | - Subhra K Biswas
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building, Level 4, Biopolis, Singapore 138648, Singapore
| | - Siew-Cheng Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building, Level 4, Biopolis, Singapore 138648, Singapore.
| |
Collapse
|
23
|
Design of hemocompatible poly(DMAEMA-co-PEGMA) hydrogels for controlled release of insulin. J Appl Polym Sci 2015. [DOI: 10.1002/app.42365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Dang K, Myers KA. The role of hypoxia-induced miR-210 in cancer progression. Int J Mol Sci 2015; 16:6353-72. [PMID: 25809609 PMCID: PMC4394536 DOI: 10.3390/ijms16036353] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/23/2022] Open
Abstract
Prolonged hypoxia, the event of insufficient oxygen, is known to upregulate tumor development and growth by promoting the formation of a neoplastic environment. The recent discovery that a subset of cellular microRNAs (miRs) are upregulated during hypoxia, where they function to promote tumor development, highlights the importance of hypoxia-induced miRs as targets for continued investigation. miRs are short, non-coding transcripts involved in gene expression and regulation. Under hypoxic conditions, miR-210 becomes highly upregulated in response to hypoxia inducing factors (HIFs). HIF-1α drives miR-210’s overexpression and the resultant alteration of cellular processes, including cell cycle regulation, mitochondria function, apoptosis, angiogenesis and metastasis. Here we discuss hypoxia-induced dysregulation of miR-210 and the resultant changes in miR-210 protein targets that regulate cancer progression. Potential methods of targeting miR-210 as a therapeutic tool are also explored.
Collapse
Affiliation(s)
- Kyvan Dang
- Department of Biological Sciences, University of the Sciences, 600 S. 43rd Str., Philadelphia, PA 19104, USA.
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences, 600 S. 43rd Str., Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Pahovnik D, Grujić M, Cegnar M, Kerč J, Žagar E. Synthesis of alkyl-modified poly(sodium glutamate)s for preparation of polymer-protein nanoparticles in combination withN,N,N-trimethyl chitosan. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- David Pahovnik
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology; Hajdrihova 19 SI-1001 Ljubljana Slovenia
| | - Milijana Grujić
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology; Hajdrihova 19 SI-1001 Ljubljana Slovenia
| | - Mateja Cegnar
- Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia; Verovškova 57 SI-1526 Ljubljana Slovenia
| | - Janez Kerč
- Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia; Verovškova 57 SI-1526 Ljubljana Slovenia
- University of Ljubljana, Faculty of Pharmacy; Aškerčeva 7 SI-1000 Ljubljana Slovenia
| | - Ema Žagar
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology; Hajdrihova 19 SI-1001 Ljubljana Slovenia
| |
Collapse
|
26
|
Pippa N, Mariaki M, Pispas S, Demetzos C. Preparation, development and in vitro release evaluation of amphotericin B-loaded amphiphilic block copolymer vectors. Int J Pharm 2014; 473:80-6. [PMID: 24998505 DOI: 10.1016/j.ijpharm.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/08/2023]
Abstract
The aim of this work is to design and develop a suitable polymeric formulation incorporating amphotericin B (Ampho B) in order to overcome its water insolubility problem. To this end, we have chosen the poly(isoprene-b-ethylene oxide) amphiphilic block copolymer (IEO) family. We investigate the self assembly behavior and the stability kinetics of IEO copolymer based nanostructures formed in HPLC grade water and in phosphate buffer saline (PBS). The IEO block copolymer samples investigated have different molecular weights and compositions. A gamut of light scattering techniques (static, dynamic and electrophoretic) were used in order to extract information on the size, ζ-potential and morphological characteristics of the structures formed, as a function of the molar ratio of incorporated lipophilic drug Ampho B. The amphiphilic character and the colloidal stability of the particular polymeric drug vectors indicate that these nanostructures can be utilized as effective containers for the particular hydrophobic drug. The incorporation of Ampho B led to alteration of the physicochemical and morphological characteristics of the pure polymeric carriers. It is observed that the in vitro release of Ampho B from the prepared vectors IEO-b:Ampho B was quite slow, while the IEO-a carriers did not release Ampho B.
Collapse
Affiliation(s)
- Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Mariaki
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
27
|
Khandelwal P, Singh DK, Sadhu S, Poddar P. Modulation of Reaction Kinetics for the Tuneable Synthesis of Gold Nanoparticles and Quantum Clusters: Application of Gold Quantum Clusters as “Turn-Off” Sensing Probe for Sn4+Ions. Chempluschem 2013; 79:134-142. [DOI: 10.1002/cplu.201300319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Indexed: 11/07/2022]
|
28
|
Progress in microRNA delivery. J Control Release 2013; 172:962-74. [PMID: 24075926 DOI: 10.1016/j.jconrel.2013.09.015] [Citation(s) in RCA: 445] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are non-coding endogenous RNAs that direct post-transcriptional regulation of gene expression by several mechanisms. Activity is primarily through binding to the 3' untranslated regions (UTRs) of messenger RNAs (mRNA) resulting in degradation and translation repression. Unlike other small-RNAs, miRNAs do not require perfect base pairing, and thus, can regulate a network of broad, yet specific, genes. Although we have only just begun to gain insights into the full range of biologic functions of miRNA, their involvement in the onset and progression of disease has generated significant interest for therapeutic development. Mounting evidence suggests that miRNA-based therapies, either restoring or repressing miRNAs expression and activity, hold great promise. However, despite the early promise and exciting potential, critical hurdles often involving delivery of miRNA-targeting agents remain to be overcome before transition to clinical applications. Limitations that may be overcome by delivery include, but are not limited to, poor in vivo stability, inappropriate biodistribution, disruption and saturation of endogenous RNA machinery, and untoward side effects. Both viral vectors and nonviral delivery systems can be developed to circumvent these challenges. Viral vectors are efficient delivery agents but toxicity and immunogenicity limit their clinical usage. Herein, we review the recent advances in the mechanisms and strategies of nonviral miRNA delivery systems and provide a perspective on the future of miRNA-based therapeutics.
Collapse
|
29
|
Zheng Q, Yang H, Wei J, Tong JL, Shu YQ. The role and mechanisms of nanoparticles to enhance radiosensitivity in hepatocellular cell. Biomed Pharmacother 2013; 67:569-75. [DOI: 10.1016/j.biopha.2013.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 04/08/2013] [Indexed: 12/31/2022] Open
|
30
|
Uchegbu IF, Siew A. Nanomedicines and Nanodiagnostics Come of Age. J Pharm Sci 2013; 102:305-10. [DOI: 10.1002/jps.23377] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/24/2012] [Accepted: 10/24/2012] [Indexed: 12/28/2022]
|
31
|
Li W, Li H, Li J, Wang H, Zhao H, Zhang L, Xia Y, Ye Z, Gao J, Dai J, Wang H, Guo Y. Self-assembled supramolecular nano vesicles for safe and highly efficient gene delivery to solid tumors. Int J Nanomedicine 2012; 7:4661-77. [PMID: 22977303 PMCID: PMC3430442 DOI: 10.2147/ijn.s34675] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The main obstacles for cationic polyplexes in gene delivery are in vivo instability and low solid-tumor accumulation. Safe vectors with high transfection efficiency and in vivo tumor accumulation are therefore highly desirable. In this study, the amphiphilic block copolymer poly(n-butyl methacrylate)-b-poly(N-acryloylmorpholine) was synthesized by reversible addition–fragmentation chain-transfer (RAFT) radical polymerization. The corresponding well-defined vesicles with narrow size distribution were tailored by finely regulating the packing parameter (β) of copolymer (1/2 < β < 1). Compared with traditional “gold-standard” polycation (polyethylenimine, 25 kDa), plasmid DNA condensing efficiency, DNase I degradation protection, and cellular uptake were improved by the supramolecular nano vesicles. In addition, the plasmid DNA transferring efficiency in 10% fetal bovine serum medium was enlarged five times to that of polyethylenimine in renal tubular epithelial and human hepatocellular carcinoma cell lines. This improved in vitro transfection was mainly attributed to the densely packed bilayer. This stealth polyplex showed high serum stability via entropic repulsion, which further protected the polyplex from being destroyed during sterilization. As indicated by the IVIS® Lumina II Imaging System (Caliper Life Sciences, Hopkinton, MA) 24 hours post-intravenous administration, intra-tumor accumulation of the stealth polyplex was clearly promoted. This study successfully circumvented the traditional dilemma of efficient gene transfection at a high nitrogen-from-polyethylenimine to phosphate-from-DNA ratio that is accompanied with site cytotoxicity and low stability. As such, these simply tailored noncytotoxic nano vesicles show significant potential for use in practical gene therapy.
Collapse
Affiliation(s)
- Wei Li
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
A review on comb-shaped amphiphilic polymers for hydrophobic drug solubilization. Ther Deliv 2012; 3:59-79. [PMID: 22833933 DOI: 10.4155/tde.11.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comb-shaped amphiphilic polymers are rapidly emerging as an alternative approach to amphiphilic block copolymers for hydrophobic drug solubilization. These polymers consist of a homopolymer or copolymer backbone to which hydrophobic and hydrophilic pendant groups can be grafted resulting in a comb-like architecture. The hydrophobic pendants may consist of homopolymers, copolymers and other low-molecular weight hydrophobic structures. In this review, we focus on hydrophobically modified preformed homopolymers. Comb-shaped amphiphilic polymers possess reduced critical aggregation concentration values compared with traditional surfactant micelles indicating increased stability with decreased disruption experienced on dilution. They have been fabricated with diverse architectures and multifunctional properties such as site-specific targeting and external stimuli-responsive nature. The application of comb-shaped amphiphilic polymers is expanding; here we report on the progress achieved so far in hydrophobic drug solubilization for both intravenous and oral delivery.
Collapse
|
33
|
Lalatsa A, Schätzlein AG, Mazza M, Le TBH, Uchegbu IF. Amphiphilic poly(l-amino acids) — New materials for drug delivery. J Control Release 2012; 161:523-36. [DOI: 10.1016/j.jconrel.2012.04.046] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 01/16/2023]
|
34
|
Malinova V, Nallani M, Meier W, Sinner E. Synthetic biology, inspired by synthetic chemistry. FEBS Lett 2012; 586:2146-56. [DOI: 10.1016/j.febslet.2012.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/12/2022]
|
35
|
Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc Chem Res 2011; 44:1039-49. [PMID: 21608994 DOI: 10.1021/ar200036k] [Citation(s) in RCA: 496] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One strategy in modern medicine is the development of new platforms that combine multifunctional compounds with stable, safe carriers in patient-oriented therapeutic strategies. The simultaneous detection and treatment of pathological events through interactions manipulated at the molecular level offer treatment strategies that can decrease side effects resulting from conventional therapeutic approaches. Several types of nanocarriers have been proposed for biomedical purposes, including inorganic nanoparticles, lipid aggregates, including liposomes, and synthetic polymeric systems, such as vesicles, micelles, or nanotubes. Polymeric vesicles--structures similar to lipid vesicles but created using synthetic block copolymers--represent an excellent candidate for new nanocarriers for medical applications. These structures are more stable than liposomes but retain their low immunogenicity. Significant efforts have been made to improve the size, membrane flexibility, and permeability of polymeric vesicles and to enhance their target specificity. The optimization of these properties will allow researchers to design smart compartments that can co-encapsulate sensitive molecules, such as RNA, enzymes, and proteins, and their membranes allow insertion of membrane proteins rather than simply serving as passive carriers. In this Account, we illustrate the advances that are shifting these molecular systems from simple polymeric carriers to smart-complex protein-polymer assemblies, such as nanoreactors or synthetic organelles. Polymeric vesicles generated by the self-assembly of amphiphilic copolymers (polymersomes) offer the advantage of simultaneous encapsulation of hydrophilic compounds in their aqueous cavities and the insertion of fragile, hydrophobic compounds in their membranes. This strategy has permitted us and others to design and develop new systems such as nanoreactors and artificial organelles in which active compounds are simultaneously protected and allowed to act in situ. In recent years, we have created a variety of multifunctional, proteinpolymersomes combinations for biomedical applications. The insertion of membrane proteins or biopores into the polymer membrane supported the activity of co-encapsulated enzymes that act in tandem inside the cavity or of combinations of drugs and imaging agents. Surface functionalization of these nanocarriers permitted specific targeting of the desired biological compartments. Polymeric vesicles alone are relatively easy to prepare and functionalize. Those features, along with their stability and multifunctionality, promote their use in the development of new theranostic strategies. The combination of polymer vesicles and biological entities will serve as tools to improve the observation and treatment of pathological events and the overall condition of the patient.
Collapse
Affiliation(s)
- Pascal Tanner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Patric Baumann
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Ramona Enea
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Ozana Onaca
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
36
|
The Use of Nano Polymeric Self-Assemblies Based on Novel Amphiphilic Polymers for Oral Hydrophobic Drug Delivery. Pharm Res 2011; 29:782-94. [DOI: 10.1007/s11095-011-0602-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022]
|
37
|
Braun J, Bruns N, Pfohl T, Meier W. Phase Behavior of Vesicle-Forming Block Copolymers in Aqueous Solutions. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201100012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Agrati C, Marianecci C, Sennato S, Carafa M, Bordoni V, Cimini E, Tempestilli M, Pucillo LP, Turchi F, Martini F, Borioni G, Bordi F. Multicompartment vectors as novel drug delivery systems: selective activation of Tγδ lymphocytes after zoledronic acid delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:153-61. [DOI: 10.1016/j.nano.2010.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/20/2010] [Accepted: 10/09/2010] [Indexed: 11/16/2022]
|
39
|
Egli S, Nussbaumer MG, Balasubramanian V, Chami M, Bruns N, Palivan C, Meier W. Biocompatible Functionalization of Polymersome Surfaces: A New Approach to Surface Immobilization and Cell Targeting Using Polymersomes. J Am Chem Soc 2011; 133:4476-83. [DOI: 10.1021/ja110275f] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stefan Egli
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Martin G. Nussbaumer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | | | - Mohamed Chami
- Centre for Cellular Imaging and Nano Analytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nico Bruns
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
40
|
|
41
|
Chooi KW, Gray AI, Tetley L, Fan Y, Uchegbu IF. The molecular shape of poly(propylenimine) dendrimer amphiphiles has a profound effect on their self assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:2301-2316. [PMID: 19860445 DOI: 10.1021/la9027282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The shape of dendrimer amphiphiles has an unexpected effect on their self-assembly. A series of diaminobutane poly(propylenimine) generation 3 dendrimer (DAB-dendr-(NH(2))(16)) amphiphiles has been synthesized, bearing an average of five (PD5), three (PD3) and one (PD1) palmitoyl group(s) per dendrimer molecule. Additionally DAB-dendr-(NH(2))(16) was derivatized with a layer of poly(ethylene glycol) (PEG, degree of polymerization = 12) groups and conjugated to an average of 1 palmitoyl group at the PEG end (PPD1). A final amphiphile resulted from the conjugation of DAB-dendr-(NH(2))(16) with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-succinimidylpropionate (DSPE-PEG(3400)-SPA), i.e.: DPD5 (with 4 DSPE-PEG arms). The critical micellar concentration in aqueous media followed the trend: DPD5 < PD5 = PD3 < PD1 < PPD1 and amphiphiles eventually formed 10-20 nm monomolecular or multimolecular micelles and/or 200 nm spheres or tubules. Aggregation was entropy driven, as expected, for DPD5, PD5 and PD1 and enthalpy driven with the most hydrophilic compound PPD1, but was unexpectedly enthalpy driven for PD3. PD3 aggregates formed low capacity hydrophobic domains with a limited capacity for encapsulation of cyclosporine A; encapsulation levels (mole drug per mole polymer) were 0.099, 0.014, 0.099, and 0.735 for PD1, PD3, PD5, and DPD5 and, respectively. We conclude that star shaped amphiphiles such as PD3 are sterically hindered from self-assembling into high capacity hydrophobic domains in aqueous media. Amphiphile-membrane interactions were promoted by hydrophobic groups, but diminished by PEG moieties. DPD5 is the most suitable amphiphile for biomedical applications.
Collapse
Affiliation(s)
- Kar Wai Chooi
- Department of Pharmaceutics, The School of Pharmacy, University of London, London WC1N 1AX, UK
| | | | | | | | | |
Collapse
|
42
|
Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 2010. [DOI: 10.1016/j.jare.2010.02.002] [Citation(s) in RCA: 1295] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
43
|
Abstract
Nanoparticles as drug delivery systems enable unique approaches for cancer treatment. Over the last two decades, a large number of nanoparticle delivery systems have been developed for cancer therapy, including organic and inorganic materials. Many liposomal, polymer-drug conjugates, and micellar formulations are part of the state of the art in the clinics, and an even greater number of nanoparticle platforms are currently in the preclinical stages of development. More recently developed nanoparticles are demonstrating the potential sophistication of these delivery systems by incorporating multifunctional capabilities and targeting strategies in an effort to increase the efficacy of these systems against the most difficult cancer challenges, including drug resistance and metastatic disease. In this chapter, we will review the available preclinical and clinical nanoparticle technology platforms and their impact for cancer therapy.
Collapse
|
44
|
Hameed N, Salim NV, Guo Q. Microphase separation through competitive hydrogen bonding in self-assembled A-b-B/C diblock copolymer/homopolymer complexes. J Chem Phys 2009; 131:214905. [PMID: 19968367 DOI: 10.1063/1.3268779] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nishar Hameed
- Institute for Technology, Research and Innovation, Deakin University, Geelong, Victoria 3217, Australia
| | | | | |
Collapse
|
45
|
Balasubramanian V, Onaca O, Enea R, Hughes DW, Palivan CG. Protein delivery: from conventional drug delivery carriers to polymeric nanoreactors. Expert Opin Drug Deliv 2009; 7:63-78. [DOI: 10.1517/17425240903394520] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Omidi Y, Barar J. Induction of human alveolar epithelial cell growth factor receptors by dendrimeric nanostructures. Int J Toxicol 2009; 28:113-22. [PMID: 19482835 DOI: 10.1177/1091581809335177] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although nonviral dendrimeric nanostructures have been widely used as gene delivery systems, key questions about target cells responses to these nanostructures are yet to be answered. Here, we report the responsiveness of A431 and A549 cells upon treatment with polypropylenimine diaminobutane (DAB) dendrimers nanosystems. Complexation of DAB dendrimers with DNA reduced the zeta potential of nanostructures, but increased their size. Fluorescence microscopy revealed high transfection efficiency in both cell lines treated with DAB dendrimers with induced cytotoxicity evidenced by MTT assay. The A549 cells showed upregulation of epidermal growth factor receptor (EGFR) and its downstream signalling biomolecule Akt kinase upon treatment with DAB dendrimers, while no changes were observed in A431 cells. Based on our findings, the biological impacts of these nanosystems appeared to be cell dependent. Thus, the biological responses of target cells should be taken into account when these nanostructures are used as gene delivery system.
Collapse
Affiliation(s)
- Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
47
|
Kasuya T, Kuroda S. Nanoparticles for human liver-specific drug and gene delivery systems: in vitro and in vivo advances. Expert Opin Drug Deliv 2009; 6:39-52. [PMID: 19236207 DOI: 10.1517/17425240802622096] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A wide variety of nanoparticles (NPs) that can deliver incorporated therapeutic materials such as compounds, proteins, genes and siRNAs to the human liver have been developed to treat liver-related diseases. This review describes NP-based drug and gene delivery systems such as liposomes (including lipoplex), polymer micelles, polymers (including polyplex) and viral vectors. It focuses upon the modification of these NPs to enhance liver specificity or delivery efficiency in vitro and in vivo. We discuss recent advances in drug and gene delivery systems specific to the human liver utilizing bio-nanocapsules comprising hepatitis B virus (HBV) envelope L protein, which has a pivotal role in HBV infection. These NP-based medicines may offer novel strategies for the treatment of liver-related diseases and contribute to the development of nanomedicines targeting other tissues.
Collapse
Affiliation(s)
- Takeshi Kasuya
- Osaka University, Institute of Scientific and Industrial Research, Department of Structural Molecular Biology, Ibaraki, Japan
| | | |
Collapse
|
48
|
Branco MC, Schneider JP. Self-assembling materials for therapeutic delivery. Acta Biomater 2009; 5:817-31. [PMID: 19010748 PMCID: PMC2729065 DOI: 10.1016/j.actbio.2008.09.018] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/06/2008] [Accepted: 09/23/2008] [Indexed: 01/18/2023]
Abstract
A growing number of medications must be administered through parenteral delivery, i.e., intravenous, intramuscular, or subcutaneous injection, to ensure effectiveness of the therapeutic. For some therapeutics, the use of delivery vehicles in conjunction with this delivery mechanism can improve drug efficacy and patient compliance. Macromolecular self-assembly has been exploited recently to engineer materials for the encapsulation and controlled delivery of therapeutics. Self-assembled materials offer the advantages of conventional crosslinked materials normally used for release, but also provide the ability to tailor specific bulk material properties, such as release profiles, at the molecular level via monomer design. As a result, the design of materials from the "bottom up" approach has generated a variety of supramolecular devices for biomedical applications. This review provides an overview of self-assembling molecules, their resultant structures, and their use in therapeutic delivery. It highlights the current progress in the design of polymer- and peptide-based self-assembled materials.
Collapse
Affiliation(s)
- Monica C. Branco
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Joel P. Schneider
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
49
|
Lee JH, Danino D, Raghavan SR. Polymerizable vesicles based on a single-tailed fatty acid surfactant: a simple route to robust nanocontainers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1566-1571. [PMID: 19138066 DOI: 10.1021/la802373j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vesicles with polymerizable bilayers have attracted interest because of their increased robustness, which is advantageous for applications. However, to prepare such vesicles, lipids with polymerizable moieties usually need to be synthesized, and this often involves cumbersome, multistep reactions. Here, we present an alternative, simpler approach based on a commercially available, single-tailed surfactant, viz. 10-undecenoic acid (UDA), a fatty acid with a terminal double bond. Previously, the polymerization of UDA micelles in water has been studied. We show that UDA can also be induced to form vesicles by adjusting the pH: vesicles form at intermediate pH (6-8), whereas at higher pH (>11), the vesicles are transformed into micelles. The presence of UDA vesicles in the pH 6-8 range is confirmed using small-angle neutron scattering (SANS) and cryotransmission electron microscopy (cryo-TEM). Subsequent thermal polymerization of UDA bilayers is done using 2,2-dimethoxy-2-phenylacetophenone (DMPA) as initiator. A partial polymerization of the bilayers is achieved, and polymerized UDA vesicles resist disruption into micelles when the solution pH is increased. To make the bilayers more robust, the vesicles are copolymerized with divinylbenzene (DVB), a hydrophobic cross-linker that partitions into the bilayer. DVB-cross-linked UDA vesicles are very stable and cannot be disrupted by detergents like Triton X-100.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742-2111, USA
| | | | | |
Collapse
|
50
|
Hameed N, Guo Q. Nanostructure and hydrogen bonding in interpolyelectrolyte complexes of poly(ɛ-caprolactone)-block-poly(2-vinyl pyridine) and poly(acrylic acid). POLYMER 2008. [DOI: 10.1016/j.polymer.2008.09.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|