1
|
Yewbrey R, Kornysheva K. The Hippocampus Preorders Movements for Skilled Action Sequences. J Neurosci 2024; 44:e0832242024. [PMID: 39317474 DOI: 10.1523/jneurosci.0832-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Plasticity in the subcortical motor basal ganglia-thalamo-cerebellar network plays a key role in the acquisition and control of long-term memory for new procedural skills, from the formation of population trajectories controlling trained motor skills in the striatum to the adaptation of sensorimotor maps in the cerebellum. However, recent findings demonstrate the involvement of a wider cortical and subcortical brain network in the consolidation and control of well-trained actions, including a brain region traditionally associated with declarative memory-the hippocampus. Here, we probe which role these subcortical areas play in skilled motor sequence control, from sequence feature selection during planning to their integration during sequence execution. An fMRI dataset (N = 24; 14 females) collected after participants learnt to produce four finger press sequences entirely from memory with high movement and timing accuracy over several days was examined for both changes in BOLD activity and their informational content in subcortical regions of interest. Although there was a widespread activity increase in effector-related striatal, thalamic, and cerebellar regions, in particular during sequence execution, the associated activity did not contain information on the motor sequence identity. In contrast, hippocampal activity increased during planning and predicted the order of the upcoming sequence of movements. Our findings suggest that the hippocampus preorders movements for skilled action sequences, thus contributing to the higher-order control of skilled movements that require flexible retrieval. These findings challenge the traditional taxonomy of episodic and procedural memory and carry implications for the rehabilitation of individuals with neurodegenerative disorders.
Collapse
Affiliation(s)
- Rhys Yewbrey
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Bangor Imaging Unit, Bangor University, Bangor LL57 2AS, United Kingdom
| | - Katja Kornysheva
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Bangor Imaging Unit, Bangor University, Bangor LL57 2AS, United Kingdom
| |
Collapse
|
2
|
Lee JY, Lee S, Mishra A, Yan X, McMahan B, Gaisford B, Kobashigawa C, Qu M, Xie C, Kao JC. Non-invasive brain-machine interface control with artificial intelligence copilots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.615886. [PMID: 39416032 PMCID: PMC11482823 DOI: 10.1101/2024.10.09.615886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Motor brain-machine interfaces (BMIs) decode neural signals to help people with paralysis move and communicate. Even with important advances in the last two decades, BMIs face key obstacles to clinical viability. Invasive BMIs achieve proficient cursor and robotic arm control but require neurosurgery, posing significant risk to patients. Non-invasive BMIs do not have neurosurgical risk, but achieve lower performance, sometimes being prohibitively frustrating to use and preventing widespread adoption. We take a step toward breaking this performance-risk tradeoff by building performant non-invasive BMIs. The critical limitation that bounds decoder performance in non-invasive BMIs is their poor neural signal-to-noise ratio. To overcome this, we contribute (1) a novel EEG decoding approach and (2) artificial intelligence (AI) copilots that infer task goals and aid action completion. We demonstrate that with this "AI-BMI," in tandem with a new adaptive decoding approach using a convolutional neural network (CNN) and ReFIT-like Kalman filter (KF), healthy users and a paralyzed participant can autonomously and proficiently control computer cursors and robotic arms. Using an AI copilot improves goal acquisition speed by up to 4.3× in the standard center-out 8 cursor control task and enables users to control a robotic arm to perform the sequential pick-and-place task, moving 4 randomly placed blocks to 4 randomly chosen locations. As AI copilots improve, this approach may result in clinically viable non-invasive AI-BMIs.
Collapse
Affiliation(s)
- Johannes Y. Lee
- Dept of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90024, United States
| | - Sangjoon Lee
- Dept of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90024, United States
| | - Abhishek Mishra
- Dept of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90024, United States
| | - Xu Yan
- Dept of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90024, United States
| | - Brandon McMahan
- Dept of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90024, United States
| | - Brent Gaisford
- Dept of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90024, United States
| | - Charles Kobashigawa
- Dept of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90024, United States
| | - Mike Qu
- Dept of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90024, United States
| | - Chang Xie
- Dept of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90024, United States
| | - Jonathan C. Kao
- Dept of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90024, United States
- Neurosciences Program, University of California, Los Angeles, CA, 90024, United States
| |
Collapse
|
3
|
Schimel M, Kao TC, Hennequin G. When and why does motor preparation arise in recurrent neural network models of motor control? eLife 2024; 12:RP89131. [PMID: 39316044 PMCID: PMC11421851 DOI: 10.7554/elife.89131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing inputs during movement, which may lessen the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast delayed reaches is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By studying a variety of network architectures, we could dissect and predict the situations in which it is beneficial for a network to prepare. Finally, we show that optimal input-driven control of neural dynamics gives rise to multiple phases of preparation during reach sequences, providing a novel explanation for experimentally observed features of monkey M1 activity in double reaching.
Collapse
Affiliation(s)
- Marine Schimel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Ta-Chu Kao
- Meta Reality Labs, Burlingame, United States
| | - Guillaume Hennequin
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Atkinson C, Lombardi L, Lang M, Keesey R, Hawthorn R, Seitz Z, Leuthardt EC, Brunner P, Seáñez I. Development and evaluation of a non-invasive brain-spine interface using transcutaneous spinal cord stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612897. [PMID: 39345398 PMCID: PMC11429779 DOI: 10.1101/2024.09.16.612897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Motor rehabilitation is a therapeutic process to facilitate functional recovery in people with spinal cord injury (SCI). However, its efficacy is limited to areas with remaining sensorimotor function. Spinal cord stimulation (SCS) creates a temporary prosthetic effect that may allow further rehabilitation-induced recovery in individuals without remaining sensorimotor function, thereby extending the therapeutic reach of motor rehabilitation to individuals with more severe injuries. In this work, we report our first steps in developing a non-invasive brain-spine interface (BSI) based on electroencephalography (EEG) and transcutaneous spinal cord stimulation (tSCS). The objective of this study was to identify EEG-based neural correlates of lower limb movement in the sensorimotor cortex of unimpaired individuals and to quantify the performance of a linear discriminant analysis (LDA) decoder in detecting movement onset from these neural correlates. Our results show that initiation of knee extension was associated with event-related desynchronization in the central-medial cortical regions at frequency bands between 4-44 Hz. Our neural decoder using µ (8-12 Hz), low β (16-20 Hz), and high β (24-28 Hz) frequency bands achieved an average area under the curve (AUC) of 0.83 ± 0.06 s.d. (n = 7) during a cued movement task offline. Generalization to imagery and uncued movement tasks served as positive controls to verify robustness against movement artifacts and cue-related confounds, respectively. With the addition of real-time decoder-modulated tSCS, the neural decoder performed with an average AUC of 0.81 ± 0.05 s.d. (n = 9) on cued movement and 0.68 ± 0.12 s.d. (n = 9) on uncued movement. Our results suggest that the decrease in decoder performance in uncued movement may be due to differences in underlying cortical strategies between conditions. Furthermore, we explore alternative applications of the BSI system by testing neural decoders trained on uncued movement and imagery tasks. By developing a non-invasive BSI, tSCS can be timed to be delivered only during voluntary effort, which may have implications for improving rehabilitation.
Collapse
|
5
|
Colins Rodriguez A, Perich MG, Miller LE, Humphries MD. Motor Cortex Latent Dynamics Encode Spatial and Temporal Arm Movement Parameters Independently. J Neurosci 2024; 44:e1777232024. [PMID: 39060178 PMCID: PMC11358606 DOI: 10.1523/jneurosci.1777-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The fluid movement of an arm requires multiple spatiotemporal parameters to be set independently. Recent studies have argued that arm movements are generated by the collective dynamics of neurons in motor cortex. An untested prediction of this hypothesis is that independent parameters of movement must map to independent components of the neural dynamics. Using a task where three male monkeys made a sequence of reaching movements to randomly placed targets, we show that the spatial and temporal parameters of arm movements are independently encoded in the low-dimensional trajectories of population activity in motor cortex: each movement's direction corresponds to a fixed neural trajectory through neural state space and its speed to how quickly that trajectory is traversed. Recurrent neural network models show that this coding allows independent control over the spatial and temporal parameters of movement by separate network parameters. Our results support a key prediction of the dynamical systems view of motor cortex, and also argue that not all parameters of movement are defined by different trajectories of population activity.
Collapse
Affiliation(s)
| | - Matt G Perich
- Département de neurosciences, Faculté de médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- Québec Artificial Intelligence Institute (Mila), Montreal, Quebec H2S 3H1, Canada
| | - Lee E Miller
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois 60208
| | - Mark D Humphries
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
6
|
Kirk EA, Hope KT, Sober SJ, Sauerbrei BA. An output-null signature of inertial load in motor cortex. Nat Commun 2024; 15:7309. [PMID: 39181866 PMCID: PMC11344817 DOI: 10.1038/s41467-024-51750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Coordinated movement requires the nervous system to continuously compensate for changes in mechanical load across different conditions. For voluntary movements like reaching, the motor cortex is a critical hub that generates commands to move the limbs and counteract loads. How does cortex contribute to load compensation when rhythmic movements are sequenced by a spinal pattern generator? Here, we address this question by manipulating the mass of the forelimb in unrestrained mice during locomotion. While load produces changes in motor output that are robust to inactivation of motor cortex, it also induces a profound shift in cortical dynamics. This shift is minimally affected by cerebellar perturbation and significantly larger than the load response in the spinal motoneuron population. This latent representation may enable motor cortex to generate appropriate commands when a voluntary movement must be integrated with an ongoing, spinally-generated rhythm.
Collapse
Affiliation(s)
- Eric A Kirk
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Keenan T Hope
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Britton A Sauerbrei
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
7
|
Sabatini DA, Kaufman MT. Reach-dependent reorientation of rotational dynamics in motor cortex. Nat Commun 2024; 15:7007. [PMID: 39143078 PMCID: PMC11325044 DOI: 10.1038/s41467-024-51308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
During reaching, neurons in motor cortex exhibit complex, time-varying activity patterns. Though single-neuron activity correlates with movement parameters, movement correlations explain neural activity only partially. Neural responses also reflect population-level dynamics thought to generate outputs. These dynamics have previously been described as "rotational," such that activity orbits in neural state space. Here, we reanalyze reaching datasets from male Rhesus macaques and find two essential features that cannot be accounted for with standard dynamics models. First, the planes in which rotations occur differ for different reaches. Second, this variation in planes reflects the overall location of activity in neural state space. Our "location-dependent rotations" model fits nearly all motor cortex activity during reaching, and high-quality decoding of reach kinematics reveals a quasilinear relationship with spiking. Varying rotational planes allows motor cortex to produce richer outputs than possible under previous models. Finally, our model links representational and dynamical ideas: representation is present in the state space location, which dynamics then convert into time-varying command signals.
Collapse
Affiliation(s)
- David A Sabatini
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Matthew T Kaufman
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
8
|
Rostami V, Rost T, Schmitt FJ, van Albada SJ, Riehle A, Nawrot MP. Spiking attractor model of motor cortex explains modulation of neural and behavioral variability by prior target information. Nat Commun 2024; 15:6304. [PMID: 39060243 PMCID: PMC11282312 DOI: 10.1038/s41467-024-49889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
When preparing a movement, we often rely on partial or incomplete information, which can decrement task performance. In behaving monkeys we show that the degree of cued target information is reflected in both, neural variability in motor cortex and behavioral reaction times. We study the underlying mechanisms in a spiking motor-cortical attractor model. By introducing a biologically realistic network topology where excitatory neuron clusters are locally balanced with inhibitory neuron clusters we robustly achieve metastable network activity across a wide range of network parameters. In application to the monkey task, the model performs target-specific action selection and accurately reproduces the task-epoch dependent reduction of trial-to-trial variability in vivo where the degree of reduction directly reflects the amount of processed target information, while spiking irregularity remained constant throughout the task. In the context of incomplete cue information, the increased target selection time of the model can explain increased behavioral reaction times. We conclude that context-dependent neural and behavioral variability is a signum of attractor computation in the motor cortex.
Collapse
Affiliation(s)
- Vahid Rostami
- Institute of Zoology, University of Cologne, Cologne, Germany
| | - Thomas Rost
- Institute of Zoology, University of Cologne, Cologne, Germany
| | | | - Sacha Jennifer van Albada
- Institute of Zoology, University of Cologne, Cologne, Germany
- Institute for Advanced Simulation (IAS-6), Jülich Research Center, Jülich, Germany
| | - Alexa Riehle
- Institute for Advanced Simulation (IAS-6), Jülich Research Center, Jülich, Germany
- UMR7289 Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université (AMU), Marseille, France
| | | |
Collapse
|
9
|
Bardella G, Giuffrida V, Giarrocco F, Brunamonti E, Pani P, Ferraina S. Response inhibition in premotor cortex corresponds to a complex reshuffle of the mesoscopic information network. Netw Neurosci 2024; 8:597-622. [PMID: 38952814 PMCID: PMC11168728 DOI: 10.1162/netn_a_00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 07/03/2024] Open
Abstract
Recent studies have explored functional and effective neural networks in animal models; however, the dynamics of information propagation among functional modules under cognitive control remain largely unknown. Here, we addressed the issue using transfer entropy and graph theory methods on mesoscopic neural activities recorded in the dorsal premotor cortex of rhesus monkeys. We focused our study on the decision time of a Stop-signal task, looking for patterns in the network configuration that could influence motor plan maturation when the Stop signal is provided. When comparing trials with successful inhibition to those with generated movement, the nodes of the network resulted organized into four clusters, hierarchically arranged, and distinctly involved in information transfer. Interestingly, the hierarchies and the strength of information transmission between clusters varied throughout the task, distinguishing between generated movements and canceled ones and corresponding to measurable levels of network complexity. Our results suggest a putative mechanism for motor inhibition in premotor cortex: a topological reshuffle of the information exchanged among ensembles of neurons.
Collapse
Affiliation(s)
- Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Franco Giarrocco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Bardella G, Franchini S, Pan L, Balzan R, Ramawat S, Brunamonti E, Pani P, Ferraina S. Neural Activity in Quarks Language: Lattice Field Theory for a Network of Real Neurons. ENTROPY (BASEL, SWITZERLAND) 2024; 26:495. [PMID: 38920504 PMCID: PMC11203154 DOI: 10.3390/e26060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Brain-computer interfaces have seen extraordinary surges in developments in recent years, and a significant discrepancy now exists between the abundance of available data and the limited headway made in achieving a unified theoretical framework. This discrepancy becomes particularly pronounced when examining the collective neural activity at the micro and meso scale, where a coherent formalization that adequately describes neural interactions is still lacking. Here, we introduce a mathematical framework to analyze systems of natural neurons and interpret the related empirical observations in terms of lattice field theory, an established paradigm from theoretical particle physics and statistical mechanics. Our methods are tailored to interpret data from chronic neural interfaces, especially spike rasters from measurements of single neuron activity, and generalize the maximum entropy model for neural networks so that the time evolution of the system is also taken into account. This is obtained by bridging particle physics and neuroscience, paving the way for particle physics-inspired models of the neocortex.
Collapse
Affiliation(s)
- Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Simone Franchini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Liming Pan
- School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230026, China;
| | - Riccardo Balzan
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, UFR Biomédicale et des Sciences de Base, Université Paris Descartes-CNRS, PRES Paris Sorbonne Cité, 75006 Paris, France;
| | - Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy (E.B.); (P.P.); (S.F.)
| |
Collapse
|
11
|
Lee WH, Karpowicz BM, Pandarinath C, Rouse AG. Identifying Distinct Neural Features between the Initial and Corrective Phases of Precise Reaching Using AutoLFADS. J Neurosci 2024; 44:e1224232024. [PMID: 38538142 PMCID: PMC11097258 DOI: 10.1523/jneurosci.1224-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Many initial movements require subsequent corrective movements, but how the motor cortex transitions to make corrections and how similar the encoding is to initial movements is unclear. In our study, we explored how the brain's motor cortex signals both initial and corrective movements during a precision reaching task. We recorded a large population of neurons from two male rhesus macaques across multiple sessions to examine the neural firing rates during not only initial movements but also subsequent corrective movements. AutoLFADS, an autoencoder-based deep-learning model, was applied to provide a clearer picture of neurons' activity on individual corrective movements across sessions. Decoding of reach velocity generalized poorly from initial to corrective submovements. Unlike initial movements, it was challenging to predict the velocity of corrective movements using traditional linear methods in a single, global neural space. We identified several locations in the neural space where corrective submovements originated after the initial reaches, signifying firing rates different than the baseline before initial movements. To improve corrective movement decoding, we demonstrate that a state-dependent decoder incorporating the population firing rates at the initiation of correction improved performance, highlighting the diverse neural features of corrective movements. In summary, we show neural differences between initial and corrective submovements and how the neural activity encodes specific combinations of velocity and position. These findings are inconsistent with assumptions that neural correlations with kinematic features are global and independent, emphasizing that traditional methods often fall short in describing these diverse neural processes for online corrective movements.
Collapse
Affiliation(s)
- Wei-Hsien Lee
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045
| | - Brianna M Karpowicz
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322
| | - Chethan Pandarinath
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322
- Department of Neurosurgery, Emory University, Atlanta, Georgia 30322
| | - Adam G Rouse
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045
- Neurosurgery Department, University of Kansas Medical Center, Kansas City, Kansas 66160
- Electrical Engineering and Computer Science Department, University of Kansas, Lawrence, Kansas 66045
- Cell Biology and Physiology Department, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
12
|
Lemke SM, Celotto M, Maffulli R, Ganguly K, Panzeri S. Information flow between motor cortex and striatum reverses during skill learning. Curr Biol 2024; 34:1831-1843.e7. [PMID: 38604168 PMCID: PMC11078609 DOI: 10.1016/j.cub.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
The coordination of neural activity across brain areas during a specific behavior is often interpreted as neural communication involved in controlling the behavior. However, whether information relevant to the behavior is actually transferred between areas is often untested. Here, we used information-theoretic tools to quantify how motor cortex and striatum encode and exchange behaviorally relevant information about specific reach-to-grasp movement features during skill learning in rats. We found a temporal shift in the encoding of behaviorally relevant information during skill learning, as well as a reversal in the primary direction of behaviorally relevant information flow, from cortex-to-striatum during naive movements to striatum-to-cortex during skilled movements. Standard analytical methods that quantify the evolution of overall neural activity during learning-such as changes in neural signal amplitude or the overall exchange of information between areas-failed to capture these behaviorally relevant information dynamics. Using these standard methods, we instead found a consistent coactivation of overall neural signals during movement production and a bidirectional increase in overall information propagation between areas during learning. Our results show that skill learning is achieved through a transformation in how behaviorally relevant information is routed across cortical and subcortical brain areas and that isolating the components of neural activity relevant to and informative about behavior is critical to uncover directional interactions within a coactive and coordinated network.
Collapse
Affiliation(s)
- Stefan M Lemke
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy; Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA; Neuroscience Center, University of North Carolina, Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599, USA.
| | - Marco Celotto
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | - Roberto Maffulli
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA
| | - Stefano Panzeri
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
13
|
Kay K, Biderman N, Khajeh R, Beiran M, Cueva CJ, Shohamy D, Jensen G, Wei XX, Ferrera VP, Abbott LF. Emergent neural dynamics and geometry for generalization in a transitive inference task. PLoS Comput Biol 2024; 20:e1011954. [PMID: 38662797 PMCID: PMC11125559 DOI: 10.1371/journal.pcbi.1011954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/24/2024] [Accepted: 02/28/2024] [Indexed: 05/25/2024] Open
Abstract
Relational cognition-the ability to infer relationships that generalize to novel combinations of objects-is fundamental to human and animal intelligence. Despite this importance, it remains unclear how relational cognition is implemented in the brain due in part to a lack of hypotheses and predictions at the levels of collective neural activity and behavior. Here we discovered, analyzed, and experimentally tested neural networks (NNs) that perform transitive inference (TI), a classic relational task (if A > B and B > C, then A > C). We found NNs that (i) generalized perfectly, despite lacking overt transitive structure prior to training, (ii) generalized when the task required working memory (WM), a capacity thought to be essential to inference in the brain, (iii) emergently expressed behaviors long observed in living subjects, in addition to a novel order-dependent behavior, and (iv) expressed different task solutions yielding alternative behavioral and neural predictions. Further, in a large-scale experiment, we found that human subjects performing WM-based TI showed behavior inconsistent with a class of NNs that characteristically expressed an intuitive task solution. These findings provide neural insights into a classical relational ability, with wider implications for how the brain realizes relational cognition.
Collapse
Affiliation(s)
- Kenneth Kay
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
| | - Natalie Biderman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Psychology, Columbia University, New York, New York, United States of America
| | - Ramin Khajeh
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Manuel Beiran
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Christopher J. Cueva
- Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Daphna Shohamy
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Psychology, Columbia University, New York, New York, United States of America
- The Kavli Institute for Brain Science, Columbia University, New York, New York, United States of America
| | - Greg Jensen
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University Medical Center, New York, New York, United States of America
- Department of Psychology at Reed College, Portland, Oregon, United States of America
| | - Xue-Xin Wei
- Departments of Neuroscience and Psychology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Vincent P. Ferrera
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University Medical Center, New York, New York, United States of America
- Department of Psychiatry, Columbia University Medical Center, New York, New York, United States of America
| | - LF Abbott
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- The Kavli Institute for Brain Science, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
14
|
Dekleva BM, Chowdhury RH, Batista AP, Chase SM, Yu BM, Boninger ML, Collinger JL. Motor cortex retains and reorients neural dynamics during motor imagery. Nat Hum Behav 2024; 8:729-742. [PMID: 38287177 PMCID: PMC11089477 DOI: 10.1038/s41562-023-01804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/13/2023] [Indexed: 01/31/2024]
Abstract
The most prominent characteristic of motor cortex is its activation during movement execution, but it is also active when we simply imagine movements in the absence of actual motor output. Despite decades of behavioural and imaging studies, it is unknown how the specific activity patterns and temporal dynamics in motor cortex during covert motor imagery relate to those during motor execution. Here we recorded intracortical activity from the motor cortex of two people who retain some residual wrist function following incomplete spinal cord injury as they performed both actual and imagined isometric wrist extensions. We found that we could decompose the population activity into three orthogonal subspaces, where one was similarly active during both action and imagery, and the others were active only during a single task type-action or imagery. Although they inhabited orthogonal neural dimensions, the action-unique and imagery-unique subspaces contained a strikingly similar set of dynamic features. Our results suggest that during motor imagery, motor cortex maintains the same overall population dynamics as during execution by reorienting the components related to motor output and/or feedback into a unique, output-null imagery subspace.
Collapse
Affiliation(s)
- Brian M Dekleva
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Raeed H Chowdhury
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron P Batista
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Chase
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Byron M Yu
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Churchland MM, Shenoy KV. Preparatory activity and the expansive null-space. Nat Rev Neurosci 2024; 25:213-236. [PMID: 38443626 DOI: 10.1038/s41583-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
The study of the cortical control of movement experienced a conceptual shift over recent decades, as the basic currency of understanding shifted from single-neuron tuning towards population-level factors and their dynamics. This transition was informed by a maturing understanding of recurrent networks, where mechanism is often characterized in terms of population-level factors. By estimating factors from data, experimenters could test network-inspired hypotheses. Central to such hypotheses are 'output-null' factors that do not directly drive motor outputs yet are essential to the overall computation. In this Review, we highlight how the hypothesis of output-null factors was motivated by the venerable observation that motor-cortex neurons are active during movement preparation, well before movement begins. We discuss how output-null factors then became similarly central to understanding neural activity during movement. We discuss how this conceptual framework provided key analysis tools, making it possible for experimenters to address long-standing questions regarding motor control. We highlight an intriguing trend: as experimental and theoretical discoveries accumulate, the range of computational roles hypothesized to be subserved by output-null factors continues to expand.
Collapse
Affiliation(s)
- Mark M Churchland
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
Orellana V. D, Donoghue JP, Vargas-Irwin CE. Low frequency independent components: Internal neuromarkers linking cortical LFPs to behavior. iScience 2024; 27:108310. [PMID: 38303697 PMCID: PMC10831875 DOI: 10.1016/j.isci.2023.108310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/08/2022] [Accepted: 10/10/2023] [Indexed: 02/03/2024] Open
Abstract
Local field potentials (LFPs) in the primate motor cortex have been shown to reflect information related to volitional movements. However, LFPs are composite signals that receive contributions from multiple neural sources, producing a complex mix of component signals. Using a blind source separation approach, we examined the components of neural activity recorded using multielectrode arrays in motor areas of macaque monkeys during a grasping and lifting task. We found a set of independent components in the low-frequency LFP with high temporal and spatial consistency associated with each task stage. We observed that ICs often arise from electrodes distributed across multiple cortical areas and provide complementary information to external behavioral markers, specifically in task stage detection and trial alignment. Taken together, our results show that it is possible to separate useful independent components of the LFP associated with specific task-related events, potentially representing internal markers of transition between cortical network states.
Collapse
Affiliation(s)
- Diego Orellana V.
- Engineering Faculty, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Faculty of Energy, Universidad Nacional de Loja, Loja 110101, Ecuador
| | - John P. Donoghue
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Robert J and Nancy D Carney Institute for Brain Science, Providence, RI 02912, USA
- Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, Department of Veterans Affairs Medical Center, Providence, RI 02908, USA
| | - Carlos E. Vargas-Irwin
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Robert J and Nancy D Carney Institute for Brain Science, Providence, RI 02912, USA
- Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, Department of Veterans Affairs Medical Center, Providence, RI 02908, USA
| |
Collapse
|
17
|
Vahidi P, Sani OG, Shanechi MM. Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior. Proc Natl Acad Sci U S A 2024; 121:e2212887121. [PMID: 38335258 PMCID: PMC10873612 DOI: 10.1073/pnas.2212887121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/03/2023] [Indexed: 02/12/2024] Open
Abstract
Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.
Collapse
Affiliation(s)
- Parsa Vahidi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| | - Omid G. Sani
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| | - Maryam M. Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA90089
- Thomas Lord Department of Computer Science and Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
18
|
Zimnik AJ, Cora Ames K, An X, Driscoll L, Lara AH, Russo AA, Susoy V, Cunningham JP, Paninski L, Churchland MM, Glaser JI. Identifying Interpretable Latent Factors with Sparse Component Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578988. [PMID: 38370650 PMCID: PMC10871230 DOI: 10.1101/2024.02.05.578988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In many neural populations, the computationally relevant signals are posited to be a set of 'latent factors' - signals shared across many individual neurons. Understanding the relationship between neural activity and behavior requires the identification of factors that reflect distinct computational roles. Methods for identifying such factors typically require supervision, which can be suboptimal if one is unsure how (or whether) factors can be grouped into distinct, meaningful sets. Here, we introduce Sparse Component Analysis (SCA), an unsupervised method that identifies interpretable latent factors. SCA seeks factors that are sparse in time and occupy orthogonal dimensions. With these simple constraints, SCA facilitates surprisingly clear parcellations of neural activity across a range of behaviors. We applied SCA to motor cortex activity from reaching and cycling monkeys, single-trial imaging data from C. elegans, and activity from a multitask artificial network. SCA consistently identified sets of factors that were useful in describing network computations.
Collapse
Affiliation(s)
- Andrew J Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - K Cora Ames
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Xinyue An
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA
| | - Laura Driscoll
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Allen Institute for Neural Dynamics, Allen Institute, Seattle, CA, USA
| | - Antonio H Lara
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Abigail A Russo
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Vladislav Susoy
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John P Cunningham
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Liam Paninski
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Mark M Churchland
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY, USA
| | - Joshua I Glaser
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| |
Collapse
|
19
|
Lee WH, Karpowicz BM, Pandarinath C, Rouse AG. Identifying distinct neural features between the initial and corrective phases of precise reaching using AutoLFADS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.30.547252. [PMID: 38352314 PMCID: PMC10862710 DOI: 10.1101/2023.06.30.547252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Many initial movements require subsequent corrective movements, but how motor cortex transitions to make corrections and how similar the encoding is to initial movements is unclear. In our study, we explored how the brain's motor cortex signals both initial and corrective movements during a precision reaching task. We recorded a large population of neurons from two male rhesus macaques across multiple sessions to examine the neural firing rates during not only initial movements but also subsequent corrective movements. AutoLFADS, an auto-encoder-based deep-learning model, was applied to provide a clearer picture of neurons' activity on individual corrective movements across sessions. Decoding of reach velocity generalized poorly from initial to corrective submovements. Unlike initial movements, it was challenging to predict the velocity of corrective movements using traditional linear methods in a single, global neural space. We identified several locations in the neural space where corrective submovements originated after the initial reaches, signifying firing rates different than the baseline before initial movements. To improve corrective movement decoding, we demonstrate that a state-dependent decoder incorporating the population firing rates at the initiation of correction improved performance, highlighting the diverse neural features of corrective movements. In summary, we show neural differences between initial and corrective submovements and how the neural activity encodes specific combinations of velocity and position. These findings are inconsistent with assumptions that neural correlations with kinematic features are global and independent, emphasizing that traditional methods often fall short in describing these diverse neural processes for online corrective movements. Significance Statement We analyzed submovement neural population dynamics during precision reaching. Using an auto- encoder-based deep-learning model, AutoLFADS, we examined neural activity on a single-trial basis. Our study shows distinct neural dynamics between initial and corrective submovements. We demonstrate the existence of unique neural features within each submovement class that encode complex combinations of position and reach direction. Our study also highlights the benefit of state-specific decoding strategies, which consider the neural firing rates at the onset of any given submovement, when decoding complex motor tasks such as corrective submovements.
Collapse
|
20
|
Denyer R, Greeley B, Greenhouse I, Boyd LA. Interhemispheric inhibition between dorsal premotor and primary motor cortices is released during preparation of unimanual but not bimanual movements. Eur J Neurosci 2024; 59:415-433. [PMID: 38145976 DOI: 10.1111/ejn.16224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
Previous research applying transcranial magnetic stimulation during unimanual reaction time tasks indicates a transient change in the inhibitory influence of the dorsal premotor cortex over the contralateral primary motor cortex shortly after the presentation of an imperative stimulus. The degree of interhemispheric inhibition from the dorsal premotor cortex to the contralateral primary motor cortex shifts depending on whether the targeted effector representation in the primary motor cortex is selected for movement. Further, the timing of changes in inhibition covaries with the selection demands of the reaction time task. Less is known about modulation of dorsal premotor to primary motor cortex interhemispheric inhibition during the preparation of bimanual movements. In this study, we used a dual coil transcranial magnetic stimulation to measure dorsal premotor to primary motor cortex interhemispheric inhibition between both hemispheres during unimanual and bimanual simple reaction time trials. Interhemispheric inhibition was measured early and late in the 'pre-movement period' (defined as the period immediately after the onset of the imperative stimulus and before the beginning of voluntary muscle activity). We discovered that interhemispheric inhibition was more facilitatory early in the pre-movement period compared with late in the pre-movement period during unimanual reaction time trials. In contrast, interhemispheric inhibition was unchanged throughout the pre-movement period during symmetrical bimanual reaction time trials. These results suggest that there is greater interaction between the dorsal premotor cortex and contralateral primary motor cortex during the preparation of unimanual actions compared to bimanual actions.
Collapse
Affiliation(s)
- Ronan Denyer
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Greeley
- Fraser Health Authority, Surrey, British Columbia, Canada
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Weber J, Solbakk AK, Blenkmann AO, Llorens A, Funderud I, Leske S, Larsson PG, Ivanovic J, Knight RT, Endestad T, Helfrich RF. Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior. Nat Commun 2024; 15:637. [PMID: 38245516 PMCID: PMC10799948 DOI: 10.1038/s41467-023-44571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Contextual cues and prior evidence guide human goal-directed behavior. The neurophysiological mechanisms that implement contextual priors to guide subsequent actions in the human brain remain unclear. Using intracranial electroencephalography (iEEG), we demonstrate that increasing uncertainty introduces a shift from a purely oscillatory to a mixed processing regime with an additional ramping component. Oscillatory and ramping dynamics reflect dissociable signatures, which likely differentially contribute to the encoding and transfer of different cognitive variables in a cue-guided motor task. The results support the idea that prefrontal activity encodes rules and ensuing actions in distinct coding subspaces, while theta oscillations synchronize the prefrontal-motor network, possibly to guide action execution. Collectively, our results reveal how two key features of large-scale neural population activity, namely continuous ramping dynamics and oscillatory synchrony, jointly support rule-guided human behavior.
Collapse
Affiliation(s)
- Jan Weber
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Tübingen, Germany
| | - Anne-Kristin Solbakk
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Alejandro O Blenkmann
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Anais Llorens
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, USA
| | - Ingrid Funderud
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Sabine Leske
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Musicology, University of Oslo, Oslo, Norway
| | | | | | - Robert T Knight
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, USA
- Department of Psychology, UC Berkeley, Berkeley, CA, USA
| | - Tor Endestad
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
de Lafuente V, Jazayeri M, Merchant H, García-Garibay O, Cadena-Valencia J, Malagón AM. Keeping time and rhythm by internal simulation of sensory stimuli and behavioral actions. SCIENCE ADVANCES 2024; 10:eadh8185. [PMID: 38198556 PMCID: PMC10780886 DOI: 10.1126/sciadv.adh8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Effective behavior often requires synchronizing our actions with changes in the environment. Rhythmic changes in the environment are easy to predict, and we can readily time our actions to them. Yet, how the brain encodes and maintains rhythms is not known. Here, we trained primates to internally maintain rhythms of different tempos and performed large-scale recordings of neuronal activity across the sensory-motor hierarchy. Results show that maintaining rhythms engages multiple brain areas, including visual, parietal, premotor, prefrontal, and hippocampal regions. Each recorded area displayed oscillations in firing rates and oscillations in broadband local field potential power that reflected the temporal and spatial characteristics of an internal metronome, which flexibly encoded fast, medium, and slow tempos. The presence of widespread metronome-related activity, in the absence of stimuli and motor activity, suggests that internal simulation of stimuli and actions underlies timekeeping and rhythm maintenance.
Collapse
Affiliation(s)
- Victor de Lafuente
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugo Merchant
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Otto García-Garibay
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Jaime Cadena-Valencia
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
- Faculty of Science and Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg 1700, Switzerland
- Cognitive Neuroscience Laboratory, German Primate Center—Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Ana M. Malagón
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| |
Collapse
|
23
|
Kirk EA, Hope KT, Sober SJ, Sauerbrei BA. An output-null signature of inertial load in motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565869. [PMID: 37986810 PMCID: PMC10659339 DOI: 10.1101/2023.11.06.565869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Coordinated movement requires the nervous system to continuously compensate for changes in mechanical load across different contexts. For voluntary movements like reaching, the motor cortex is a critical hub that generates commands to move the limbs and counteract loads. How does cortex contribute to load compensation when rhythmic movements are clocked by a spinal pattern generator? Here, we address this question by manipulating the mass of the forelimb in unrestrained mice during locomotion. While load produces changes in motor output that are robust to inactivation of motor cortex, it also induces a profound shift in cortical dynamics, which is minimally affected by cerebellar perturbation and significantly larger than the response in the spinal motoneuron population. This latent representation may enable motor cortex to generate appropriate commands when a voluntary movement must be integrated with an ongoing, spinally-generated rhythm.
Collapse
Affiliation(s)
- Eric A. Kirk
- CaseWestern Reserve University School ofMedicine, Department of Neurosciences
| | - Keenan T. Hope
- CaseWestern Reserve University School ofMedicine, Department of Neurosciences
| | | | | |
Collapse
|
24
|
Verhein JR, Vyas S, Shenoy KV. Methylphenidate modulates motor cortical dynamics and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562405. [PMID: 37905157 PMCID: PMC10614820 DOI: 10.1101/2023.10.15.562405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Methylphenidate (MPH, brand: Ritalin) is a common stimulant used both medically and non-medically. Though typically prescribed for its cognitive effects, MPH also affects movement. While it is known that MPH noncompetitively blocks the reuptake of catecholamines through inhibition of dopamine and norepinephrine transporters, a critical step in exploring how it affects behavior is to understand how MPH directly affects neural activity. This would establish an electrophysiological mechanism of action for MPH. Since we now have biologically-grounded network-level hypotheses regarding how populations of motor cortical neurons plan and execute movements, there is a unique opportunity to make testable predictions regarding how systemic MPH administration - a pharmacological perturbation - might affect neural activity in motor cortex. To that end, we administered clinically-relevant doses of MPH to Rhesus monkeys as they performed an instructed-delay reaching task. Concomitantly, we measured neural activity from dorsal premotor and primary motor cortex. Consistent with our predictions, we found dose-dependent and significant effects on reaction time, trial-by-trial variability, and movement speed. We confirmed our hypotheses that changes in reaction time and variability were accompanied by previously established population-level changes in motor cortical preparatory activity and the condition-independent signal that precedes movements. We expected changes in speed to be a result of changes in the amplitude of motor cortical dynamics and/or a translation of those dynamics in activity space. Instead, our data are consistent with a mechanism whereby the neuromodulatory effect of MPH is to increase the gain and/or the signal-to-noise of motor cortical dynamics during reaching. Continued work in this domain to better understand the brain-wide electrophysiological mechanism of action of MPH and other psychoactive drugs could facilitate more targeted treatments for a host of cognitive-motor disorders.
Collapse
Affiliation(s)
- Jessica R Verhein
- Medical Scientist Training Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Neurosciences Graduate Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Current affiliations: Psychiatry Research Residency Training Program, University of California, San Francisco, San Francisco, CA
| | - Saurabh Vyas
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Krishna V Shenoy
- Neurosciences Graduate Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
- Department of Electrical Engineering, Stanford University, Stanford, CA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA
- Department of Neurobiology, Stanford University, Stanford, CA
- Bio-X Program, Stanford University, Stanford, CA
| |
Collapse
|
25
|
Boucher PO, Wang T, Carceroni L, Kane G, Shenoy KV, Chandrasekaran C. Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex. Nat Commun 2023; 14:6510. [PMID: 37845221 PMCID: PMC10579235 DOI: 10.1038/s41467-023-41752-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
We used a dynamical systems perspective to understand decision-related neural activity, a fundamentally unresolved problem. This perspective posits that time-varying neural activity is described by a state equation with an initial condition and evolves in time by combining at each time step, recurrent activity and inputs. We hypothesized various dynamical mechanisms of decisions, simulated them in models to derive predictions, and evaluated these predictions by examining firing rates of neurons in the dorsal premotor cortex (PMd) of monkeys performing a perceptual decision-making task. Prestimulus neural activity (i.e., the initial condition) predicted poststimulus neural trajectories, covaried with RT and the outcome of the previous trial, but not with choice. Poststimulus dynamics depended on both the sensory evidence and initial condition, with easier stimuli and fast initial conditions leading to the fastest choice-related dynamics. Together, these results suggest that initial conditions combine with sensory evidence to induce decision-related dynamics in PMd.
Collapse
Affiliation(s)
- Pierre O Boucher
- Department of Biomedical Engineering, Boston University, Boston, 02115, MA, USA
| | - Tian Wang
- Department of Biomedical Engineering, Boston University, Boston, 02115, MA, USA
| | - Laura Carceroni
- Undergraduate Program in Neuroscience, Boston University, Boston, 02115, MA, USA
| | - Gary Kane
- Department of Psychological and Brain Sciences, Boston University, Boston, 02115, MA, USA
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
- Department of Neurobiology, Stanford University, Stanford, 94305, CA, USA
- Howard Hughes Medical Institute, HHMI, Chevy Chase, 20815-6789, MD, USA
- Department of Bioengineering, Stanford University, Stanford, 94305, CA, USA
- Stanford Neurosciences Institute, Stanford University, Stanford, 94305, CA, USA
- Bio-X Program, Stanford University, Stanford, 94305, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, 94305, CA, USA
| | - Chandramouli Chandrasekaran
- Department of Biomedical Engineering, Boston University, Boston, 02115, MA, USA.
- Department of Psychological and Brain Sciences, Boston University, Boston, 02115, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, 02115, MA, USA.
- Department of Anatomy & Neurobiology, Boston University, Boston, 02118, MA, USA.
| |
Collapse
|
26
|
Stephen EP, Li Y, Metzger S, Oganian Y, Chang EF. Latent neural dynamics encode temporal context in speech. Hear Res 2023; 437:108838. [PMID: 37441880 PMCID: PMC11182421 DOI: 10.1016/j.heares.2023.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Direct neural recordings from human auditory cortex have demonstrated encoding for acoustic-phonetic features of consonants and vowels. Neural responses also encode distinct acoustic amplitude cues related to timing, such as those that occur at the onset of a sentence after a silent period or the onset of the vowel in each syllable. Here, we used a group reduced rank regression model to show that distributed cortical responses support a low-dimensional latent state representation of temporal context in speech. The timing cues each capture more unique variance than all other phonetic features and exhibit rotational or cyclical dynamics in latent space from activity that is widespread over the superior temporal gyrus. We propose that these spatially distributed timing signals could serve to provide temporal context for, and possibly bind across time, the concurrent processing of individual phonetic features, to compose higher-order phonological (e.g. word-level) representations.
Collapse
Affiliation(s)
- Emily P Stephen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, United States; Department of Mathematics and Statistics, Boston University, Boston, MA 02215, United States
| | - Yuanning Li
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, United States; School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Sean Metzger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Yulia Oganian
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, United States; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Edward F Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
27
|
Denyer R, Greenhouse I, Boyd LA. PMd and action preparation: bridging insights between TMS and single neuron research. Trends Cogn Sci 2023; 27:759-772. [PMID: 37244800 DOI: 10.1016/j.tics.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Transcranial magnetic stimulation (TMS) research has furthered understanding of human dorsal premotor cortex (PMd) function due to its unrivalled ability to measure the inhibitory and facilitatory influences of PMd over the primary motor cortex (M1) in a temporally precise manner. TMS research indicates that PMd transiently modulates inhibitory output to effector representations within M1 during motor preparation, with the direction of modulation depending on which effectors are selected for response, and the timing of modulations co-varying with task selection demands. In this review, we critically assess this literature in the context of a dynamical systems approach used to model nonhuman primate (NHP) PMd/M1 single-neuron recordings during action preparation. Through this process, we identify gaps in the literature and propose future experiments.
Collapse
Affiliation(s)
- Ronan Denyer
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, V6T1Z3, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR 97401, USA
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, V6T1Z3, Canada
| |
Collapse
|
28
|
Kleinman M, Wang T, Xiao D, Feghhi E, Lee K, Carr N, Li Y, Hadidi N, Chandrasekaran C, Kao JC. A cortical information bottleneck during decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548742. [PMID: 37502862 PMCID: PMC10369960 DOI: 10.1101/2023.07.12.548742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Decision-making emerges from distributed computations across multiple brain areas, but it is unclear why the brain distributes the computation. In deep learning, artificial neural networks use multiple areas (or layers) to form optimal representations of task inputs. These optimal representations are sufficient to perform the task well, but minimal so they are invariant to other irrelevant variables. We recorded single neurons and multiunits in dorsolateral prefrontal cortex (DLPFC) and dorsal premotor cortex (PMd) in monkeys during a perceptual decision-making task. We found that while DLPFC represents task-related inputs required to compute the choice, the downstream PMd contains a minimal sufficient, or optimal, representation of the choice. To identify a mechanism for how cortex may form these optimal representations, we trained a multi-area recurrent neural network (RNN) to perform the task. Remarkably, DLPFC and PMd resembling representations emerged in the early and late areas of the multi-area RNN, respectively. The DLPFC-resembling area partially orthogonalized choice information and task inputs and this choice information was preferentially propagated to downstream areas through selective alignment with inter-area connections, while remaining task information was not. Our results suggest that cortex uses multi-area computation to form minimal sufficient representations by preferential propagation of relevant information between areas.
Collapse
Affiliation(s)
- Michael Kleinman
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Tian Wang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Derek Xiao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
| | - Ebrahim Feghhi
- Neurosciences Program, University of California, Los Angeles, CA, USA
| | - Kenji Lee
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Nicole Carr
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Yuke Li
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Nima Hadidi
- Neurosciences Program, University of California, Los Angeles, CA, USA
| | - Chandramouli Chandrasekaran
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jonathan C. Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
- Neurosciences Program, University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Bachschmid-Romano L, Hatsopoulos NG, Brunel N. Interplay between external inputs and recurrent dynamics during movement preparation and execution in a network model of motor cortex. eLife 2023; 12:77690. [PMID: 37166452 PMCID: PMC10174693 DOI: 10.7554/elife.77690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2023] [Indexed: 05/12/2023] Open
Abstract
The primary motor cortex has been shown to coordinate movement preparation and execution through computations in approximately orthogonal subspaces. The underlying network mechanisms, and the roles played by external and recurrent connectivity, are central open questions that need to be answered to understand the neural substrates of motor control. We develop a recurrent neural network model that recapitulates the temporal evolution of neuronal activity recorded from the primary motor cortex of a macaque monkey during an instructed delayed-reach task. In particular, it reproduces the observed dynamic patterns of covariation between neural activity and the direction of motion. We explore the hypothesis that the observed dynamics emerges from a synaptic connectivity structure that depends on the preferred directions of neurons in both preparatory and movement-related epochs, and we constrain the strength of both synaptic connectivity and external input parameters from data. While the model can reproduce neural activity for multiple combinations of the feedforward and recurrent connections, the solution that requires minimum external inputs is one where the observed patterns of covariance are shaped by external inputs during movement preparation, while they are dominated by strong direction-specific recurrent connectivity during movement execution. Our model also demonstrates that the way in which single-neuron tuning properties change over time can explain the level of orthogonality of preparatory and movement-related subspaces.
Collapse
Affiliation(s)
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
- Committee on Computational Neuroscience, University of Chicago, Chicago, United States
| | - Nicolas Brunel
- Department of Neurobiology, Duke University, Durham, United States
- Department of Physics, Duke University, Durham, United States
- Duke Institute for Brain Sciences, Duke University, Durham, United States
- Center for Cognitive Neuroscience, Duke University, Durham, United States
| |
Collapse
|
30
|
Balasubramanian K, Arce-McShane FI, Dekleva BM, Collinger JL, Hatsopoulos NG. Propagating motor cortical patterns of excitability are ubiquitous across human and non-human primate movement initiation. iScience 2023; 26:106518. [PMID: 37070071 PMCID: PMC10105290 DOI: 10.1016/j.isci.2023.106518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/17/2022] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
A spatiotemporal pattern of excitability propagates across the primary motor cortex prior to the onset of a reaching movement in non-human primates. If this pattern is a necessary component of voluntary movement initiation, it should be present across a variety of motor tasks, end-effectors, and even species. Here, we show that propagating patterns of excitability occur during the initiation of precision grip force and tongue protrusion in non-human primates, and even isometric wrist extension in a human participant. In all tasks, the directions of propagation across the cortical sheet were bimodally distributed across trials with modes oriented roughly opposite to one another. Propagation speed was unimodally distributed with similar mean speeds across tasks and species. Additionally, propagation direction and speed did not vary systematically with any behavioral measures except response times indicating that this propagating pattern is invariant to kinematic or kinetic details and may be a generic movement initiation signal.
Collapse
Affiliation(s)
| | - Fritzie I. Arce-McShane
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Department of Oral Health Sciences, School of Dentistry, Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Brian M. Dekleva
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Jennifer L. Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Human Engineering Research Labs, VA Center of Excellence, Department of Veterans Affairs, Pittsburgh, PA 15260, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Nicholas G. Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
31
|
Marciniak Dg Agra K, Dg Agra P. F = ma. Is the macaque brain Newtonian? Cogn Neuropsychol 2023; 39:376-408. [PMID: 37045793 DOI: 10.1080/02643294.2023.2191843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intuitive Physics, the ability to anticipate how the physical events involving mass objects unfold in time and space, is a central component of intelligent systems. Intuitive physics is a promising tool for gaining insight into mechanisms that generalize across species because both humans and non-human primates are subject to the same physical constraints when engaging with the environment. Physical reasoning abilities are widely present within the animal kingdom, but monkeys, with acute 3D vision and a high level of dexterity, appreciate and manipulate the physical world in much the same way humans do.
Collapse
Affiliation(s)
- Karolina Marciniak Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| | - Pedro Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| |
Collapse
|
32
|
Goudar V, Peysakhovich B, Freedman DJ, Buffalo EA, Wang XJ. Schema formation in a neural population subspace underlies learning-to-learn in flexible sensorimotor problem-solving. Nat Neurosci 2023; 26:879-890. [PMID: 37024575 DOI: 10.1038/s41593-023-01293-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/27/2023] [Indexed: 04/08/2023]
Abstract
Learning-to-learn, a progressive speedup of learning while solving a series of similar problems, represents a core process of knowledge acquisition that draws attention in both neuroscience and artificial intelligence. To investigate its underlying brain mechanism, we trained a recurrent neural network model on arbitrary sensorimotor mappings known to depend on the prefrontal cortex. The network displayed an exponential time course of accelerated learning. The neural substrate of a schema emerges within a low-dimensional subspace of population activity; its reuse in new problems facilitates learning by limiting connection weight changes. Our work highlights the weight-driven modifications of the vector field, which determines the population trajectory of a recurrent network and behavior. Such plasticity is especially important for preserving and reusing the learned schema in spite of undesirable changes of the vector field due to the transition to learning a new problem; the accumulated changes across problems account for the learning-to-learn dynamics.
Collapse
Affiliation(s)
- Vishwa Goudar
- Center for Neural Science, New York University, New York, NY, USA
| | | | - David J Freedman
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
33
|
Libedinsky C. Comparing representations and computations in single neurons versus neural networks. Trends Cogn Sci 2023; 27:517-527. [PMID: 37005114 DOI: 10.1016/j.tics.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Abstract
Single-neuron-level explanations have been the gold standard in neuroscience for decades. Recently, however, neural-network-level explanations have become increasingly popular. This increase in popularity is driven by the fact that the analysis of neural networks can solve problems that cannot be addressed by analyzing neurons independently. In this opinion article, I argue that while both frameworks employ the same general logic to link physical and mental phenomena, in many cases the neural network framework provides better explanatory objects to understand representations and computations related to mental phenomena. I discuss what constitutes a mechanistic explanation in neural systems, provide examples, and conclude by highlighting a number of the challenges and considerations associated with the use of analyses of neural networks to study brain function.
Collapse
|
34
|
Vahidi P, Sani OG, Shanechi MM. Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532554. [PMID: 36993213 PMCID: PMC10055042 DOI: 10.1101/2023.03.14.532554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other regions. To avoid misinterpreting temporally-structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of a specific behavior. We first show how training dynamical models of neural activity while considering behavior but not input, or input but not behavior may lead to misinterpretations. We then develop a novel analytical learning method that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the new capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of task while other methods can be influenced by the change in task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the three subjects and two tasks whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.
Collapse
|
35
|
D'Aleo R, Rouse AG, Schieber MH, Sarma SV. Cortico-cortical drive in a coupled premotor-primary motor cortex dynamical system. Cell Rep 2022; 41:111849. [PMID: 36543147 PMCID: PMC11271678 DOI: 10.1016/j.celrep.2022.111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory "planning" period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement.
Collapse
Affiliation(s)
- Raina D'Aleo
- Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Computational Medicine, Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas, Kansas City, KS 66160, USA
| | - Marc H Schieber
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Sridevi V Sarma
- Institute for Computational Medicine, Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
36
|
Thura D, Cabana JF, Feghaly A, Cisek P. Integrated neural dynamics of sensorimotor decisions and actions. PLoS Biol 2022; 20:e3001861. [PMID: 36520685 PMCID: PMC9754259 DOI: 10.1371/journal.pbio.3001861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022] Open
Abstract
Recent theoretical models suggest that deciding about actions and executing them are not implemented by completely distinct neural mechanisms but are instead two modes of an integrated dynamical system. Here, we investigate this proposal by examining how neural activity unfolds during a dynamic decision-making task within the high-dimensional space defined by the activity of cells in monkey dorsal premotor (PMd), primary motor (M1), and dorsolateral prefrontal cortex (dlPFC) as well as the external and internal segments of the globus pallidus (GPe, GPi). Dimensionality reduction shows that the four strongest components of neural activity are functionally interpretable, reflecting a state transition between deliberation and commitment, the transformation of sensory evidence into a choice, and the baseline and slope of the rising urgency to decide. Analysis of the contribution of each population to these components shows meaningful differences between regions but no distinct clusters within each region, consistent with an integrated dynamical system. During deliberation, cortical activity unfolds on a two-dimensional "decision manifold" defined by sensory evidence and urgency and falls off this manifold at the moment of commitment into a choice-dependent trajectory leading to movement initiation. The structure of the manifold varies between regions: In PMd, it is curved; in M1, it is nearly perfectly flat; and in dlPFC, it is almost entirely confined to the sensory evidence dimension. In contrast, pallidal activity during deliberation is primarily defined by urgency. We suggest that these findings reveal the distinct functional contributions of different brain regions to an integrated dynamical system governing action selection and execution.
Collapse
Affiliation(s)
- David Thura
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Jean-François Cabana
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Albert Feghaly
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Paul Cisek
- Groupe de recherche sur la signalisation neurale et la circuiterie, Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
37
|
Zhu F, Grier HA, Tandon R, Cai C, Agarwal A, Giovannucci A, Kaufman MT, Pandarinath C. A deep learning framework for inference of single-trial neural population dynamics from calcium imaging with subframe temporal resolution. Nat Neurosci 2022; 25:1724-1734. [PMID: 36424431 PMCID: PMC9825112 DOI: 10.1038/s41593-022-01189-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
In many areas of the brain, neural populations act as a coordinated network whose state is tied to behavior on a millisecond timescale. Two-photon (2p) calcium imaging is a powerful tool to probe such network-scale phenomena. However, estimating the network state and dynamics from 2p measurements has proven challenging because of noise, inherent nonlinearities and limitations on temporal resolution. Here we describe Recurrent Autoencoder for Discovering Imaged Calcium Latents (RADICaL), a deep learning method to overcome these limitations at the population level. RADICaL extends methods that exploit dynamics in spiking activity for application to deconvolved calcium signals, whose statistics and temporal dynamics are quite distinct from electrophysiologically recorded spikes. It incorporates a new network training strategy that capitalizes on the timing of 2p sampling to recover network dynamics with high temporal precision. In synthetic tests, RADICaL infers the network state more accurately than previous methods, particularly for high-frequency components. In 2p recordings from sensorimotor areas in mice performing a forelimb reach task, RADICaL infers network state with close correspondence to single-trial variations in behavior and maintains high-quality inference even when neuronal populations are substantially reduced.
Collapse
Affiliation(s)
- Feng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Harrison A Grier
- Committee on Computational Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Raghav Tandon
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Changjia Cai
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | | - Andrea Giovannucci
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Closed-Loop Engineering for Advanced Rehabilitation (CLEAR), North Carolina State University, Raleigh, NC, USA.
| | - Matthew T Kaufman
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
| | - Chethan Pandarinath
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Neurosurgery, Emory University, Atlanta, GA, USA.
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
38
|
Keshtkaran MR, Sedler AR, Chowdhury RH, Tandon R, Basrai D, Nguyen SL, Sohn H, Jazayeri M, Miller LE, Pandarinath C. A large-scale neural network training framework for generalized estimation of single-trial population dynamics. Nat Methods 2022; 19:1572-1577. [PMID: 36443486 PMCID: PMC9825111 DOI: 10.1038/s41592-022-01675-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Achieving state-of-the-art performance with deep neural population dynamics models requires extensive hyperparameter tuning for each dataset. AutoLFADS is a model-tuning framework that automatically produces high-performing autoencoding models on data from a variety of brain areas and tasks, without behavioral or task information. We demonstrate its broad applicability on several rhesus macaque datasets: from motor cortex during free-paced reaching, somatosensory cortex during reaching with perturbations, and dorsomedial frontal cortex during a cognitive timing task.
Collapse
Affiliation(s)
- Mohammad Reza Keshtkaran
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Sedler
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
| | - Raeed H Chowdhury
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raghav Tandon
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
| | - Diya Basrai
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Physiology and Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Sarah L Nguyen
- College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hansem Sohn
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lee E Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Chethan Pandarinath
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Neurosurgery, Emory University, Atlanta, GA, USA.
| |
Collapse
|
39
|
Transition of distinct context-dependent ensembles from secondary to primary motor cortex in skilled motor performance. Cell Rep 2022; 41:111494. [DOI: 10.1016/j.celrep.2022.111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
|
40
|
Yang W, Tipparaju SL, Chen G, Li N. Thalamus-driven functional populations in frontal cortex support decision-making. Nat Neurosci 2022; 25:1339-1352. [PMID: 36171427 PMCID: PMC9534763 DOI: 10.1038/s41593-022-01171-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/18/2022] [Indexed: 12/02/2022]
Abstract
Neurons in frontal cortex exhibit diverse selectivity representing sensory, motor and cognitive variables during decision-making. The neural circuit basis for this complex selectivity remains unclear. We examined activity mediating a tactile decision in mouse anterior lateral motor cortex in relation to the underlying circuits. Contrary to the notion of randomly mixed selectivity, an analysis of 20,000 neurons revealed organized activity coding behavior. Individual neurons exhibited prototypical response profiles that were repeatable across mice. Stimulus, choice and action were coded nonrandomly by distinct neuronal populations that could be delineated by their response profiles. We related distinct selectivity to long-range inputs from somatosensory cortex, contralateral anterior lateral motor cortex and thalamus. Each input connects to all functional populations but with differing strength. Task selectivity was more strongly dependent on thalamic inputs than cortico-cortical inputs. Our results suggest that the thalamus drives subnetworks within frontal cortex coding distinct features of decision-making.
Collapse
Affiliation(s)
- Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
41
|
Ganguly K, Khanna P, Morecraft RJ, Lin DJ. Modulation of neural co-firing to enhance network transmission and improve motor function after stroke. Neuron 2022; 110:2363-2385. [PMID: 35926452 PMCID: PMC9366919 DOI: 10.1016/j.neuron.2022.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Stroke is a leading cause of disability. While neurotechnology has shown promise for improving upper limb recovery after stroke, efficacy in clinical trials has been variable. Our central thesis is that to improve clinical translation, we need to develop a common neurophysiological framework for understanding how neurotechnology alters network activity. Our perspective discusses principles for how motor networks, both healthy and those recovering from stroke, subserve reach-to-grasp movements. We focus on neural processing at the resolution of single movements, the timescale at which neurotechnologies are applied, and discuss how this activity might drive long-term plasticity. We propose that future studies should focus on cross-area communication and bridging our understanding of timescales ranging from single trials within a session to across multiple sessions. We hope that this perspective establishes a combined path forward for preclinical and clinical research with the goal of more robust clinical translation of neurotechnology.
Collapse
Affiliation(s)
- Karunesh Ganguly
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Neurology Service, SFVAHCS, San Francisco, CA, USA.
| | - Preeya Khanna
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Neurology Service, SFVAHCS, San Francisco, CA, USA
| | - Robert J Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, USA
| | - David J Lin
- Center for Neurotechnology and Neurorecovery, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
| |
Collapse
|
42
|
Pani P, Giamundo M, Giarrocco F, Mione V, Fontana R, Brunamonti E, Mattia M, Ferraina S. Neuronal population dynamics during motor plan cancellation in nonhuman primates. Proc Natl Acad Sci U S A 2022; 119:e2122395119. [PMID: 35867763 PMCID: PMC9282441 DOI: 10.1073/pnas.2122395119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 01/11/2023] Open
Abstract
To understand the cortical neuronal dynamics behind movement generation and control, most studies have focused on tasks where actions were planned and then executed using different instances of visuomotor transformations. However, to fully understand the dynamics related to movement control, one must also study how movements are actively inhibited. Inhibition, indeed, represents the first level of control both when different alternatives are available and only one solution could be adopted and when it is necessary to maintain the current position. We recorded neuronal activity from a multielectrode array in the dorsal premotor cortex (PMd) of monkeys performing a countermanding reaching task that requires, in a subset of trials, them to cancel a planned movement before its onset. In the analysis of the neuronal state space of PMd, we found a subspace in which activities conveying temporal information were confined during active inhibition and position holding. Movement execution required activities to escape from this subspace toward an orthogonal subspace and, furthermore, surpass a threshold associated with the maturation of the motor plan. These results revealed further details in the neuronal dynamics underlying movement control, extending the hypothesis that neuronal computation confined in an "output-null" subspace does not produce movements.
Collapse
Affiliation(s)
- Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Margherita Giamundo
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Franco Giarrocco
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Valentina Mione
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Roberto Fontana
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Maurizio Mattia
- National Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
43
|
Inagaki HK, Chen S, Daie K, Finkelstein A, Fontolan L, Romani S, Svoboda K. Neural Algorithms and Circuits for Motor Planning. Annu Rev Neurosci 2022; 45:249-271. [PMID: 35316610 DOI: 10.1146/annurev-neuro-092021-121730] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits.
Collapse
Affiliation(s)
| | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Kayvon Daie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| | - Arseny Finkelstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lorenzo Fontolan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| |
Collapse
|
44
|
Gong R, Mühlberg C, Wegscheider M, Fricke C, Rumpf JJ, Knösche TR, Classen J. Cross-frequency phase-amplitude coupling in repetitive movements in patients with Parkinson's disease. J Neurophysiol 2022; 127:1606-1621. [PMID: 35544757 PMCID: PMC9190732 DOI: 10.1152/jn.00541.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bradykinesia is a cardinal motor symptom in Parkinson’s disease (PD), the pathophysiology of which is not fully understood. We analyzed the role of cross-frequency coupling of oscillatory cortical activity in motor impairment in patients with PD and healthy controls. High-density EEG signals were recorded during various motor activities and at rest. Patients performed a repetitive finger-pressing task normally, but were slower than controls during tapping. Phase-amplitude coupling (PAC) between β (13–30 Hz) and broadband γ (50–150 Hz) was computed from individual EEG source signals in the premotor, primary motor, and primary somatosensory cortices, and the primary somatosensory complex. In all four regions, averaging the entire movement period resulted in higher PAC in patients than in controls for the resting condition and the pressing task (similar performance between groups). However, this was not the case for the tapping tasks where patients performed slower. This suggests the strength of state-related β-γ PAC does not determine Parkinsonian bradykinesia. Examination of the dynamics of oscillatory EEG signals during motor transitions revealed a distinctive motif of PAC rise and decay around press onset. This pattern was also present at press offset and slow tapping onset, linking such idiosyncratic PAC changes to transitions between different movement states. The transition-related PAC modulation in patients was similar to controls in the pressing task but flattened during slow tapping, which related to normal and abnormal performance, respectively. These findings suggest that the dysfunctional evolution of neuronal population dynamics during movement execution is an important component of the pathophysiology of Parkinsonian bradykinesia. NEW & NOTEWORTHY Our findings using noninvasive EEG recordings provide evidence that PAC dynamics might play a role in the physiological cortical control of movement execution and may encode transitions between movement states. Results in patients with Parkinson’s disease suggest that bradykinesia is related to a deficit of the dynamic regulation of PAC during movement execution rather than its absolute strength. Our findings may contribute to the development of a new concept of the pathophysiology of bradykinesia.
Collapse
Affiliation(s)
- Ruxue Gong
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany.,Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christoph Mühlberg
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Mirko Wegscheider
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Christopher Fricke
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Thomas R Knösche
- Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
45
|
Currie SP, Ammer JJ, Premchand B, Dacre J, Wu Y, Eleftheriou C, Colligan M, Clarke T, Mitchell L, Faisal AA, Hennig MH, Duguid I. Movement-specific signaling is differentially distributed across motor cortex layer 5 projection neuron classes. Cell Rep 2022; 39:110801. [PMID: 35545038 PMCID: PMC9620742 DOI: 10.1016/j.celrep.2022.110801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 11/15/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Motor cortex generates descending output necessary for executing a wide range of limb movements. Although movement-related activity has been described throughout motor cortex, the spatiotemporal organization of movement-specific signaling in deep layers remains largely unknown. Here we record layer 5B population dynamics in the caudal forelimb area of motor cortex while mice perform a forelimb push/pull task and find that most neurons show movement-invariant responses, with a minority displaying movement specificity. Using cell-type-specific imaging, we identify that invariant responses dominate pyramidal tract (PT) neuron activity, with a small subpopulation representing movement type, whereas a larger proportion of intratelencephalic (IT) neurons display movement-type-specific signaling. The proportion of IT neurons decoding movement-type peaks prior to movement initiation, whereas for PT neurons, this occurs during movement execution. Our data suggest that layer 5B population dynamics largely reflect movement-invariant signaling, with information related to movement-type being routed through relatively small, distributed subpopulations of projection neurons.
Collapse
Affiliation(s)
- Stephen P Currie
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Julian J Ammer
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Brian Premchand
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Joshua Dacre
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Yufei Wu
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Constantinos Eleftheriou
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Matt Colligan
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Thomas Clarke
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Leah Mitchell
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - A Aldo Faisal
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Department of Computing, Imperial College London, London SW7 2AZ, UK; MRC London Institute of Medical Sciences, London W12 0NN, UK
| | - Matthias H Hennig
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Ian Duguid
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
46
|
Aflalo T, Zhang C, Revechkis B, Rosario E, Pouratian N, Andersen RA. Implicit mechanisms of intention. Curr Biol 2022; 32:2051-2060.e6. [PMID: 35390282 PMCID: PMC9090994 DOI: 10.1016/j.cub.2022.03.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
High-level cortical regions encode motor decisions before or even absent awareness, suggesting that neural processes predetermine behavior before conscious choice. Such early neural encoding challenges popular conceptions of human agency. It also raises fundamental questions for brain-machine interfaces (BMIs) that traditionally assume that neural activity reflects the user's conscious intentions. Here, we study the timing of human posterior parietal cortex single-neuron activity recorded from implanted microelectrode arrays relative to the explicit urge to initiate movement. Participants were free to choose when to move, whether to move, and what to move, and they retrospectively reported the time they felt the urge to move. We replicate prior studies by showing that posterior parietal cortex (PPC) neural activity sharply rises hundreds of milliseconds before the reported urge. However, we find that this "preconscious" activity is part of a dynamic neural population response that initiates much earlier, when the participant first chooses to perform the task. Together with details of neural timing, our results suggest that PPC encodes an internal model of the motor planning network that transforms high-level task objectives into appropriate motor behavior. These new data challenge traditional interpretations of early neural activity and offer a more holistic perspective on the interplay between choice, behavior, and their neural underpinnings. Our results have important implications for translating BMIs into more complex real-world environments. We find that early neural dynamics are sufficient to drive BMI movements before the participant intends to initiate movement. Appropriate algorithms ensure that BMI movements align with the subject's awareness of choice.
Collapse
Affiliation(s)
- Tyson Aflalo
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd., Pasadena, CA 91125, USA; California Institute of Technology, Tianqiao and Chrissy Chen Brain-Machine Interface Center, 1200 E California Blvd., Pasadena, CA 91125, USA.
| | - Carey Zhang
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Boris Revechkis
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Emily Rosario
- Casa Colina Hospital and Centers for Rehabilitation, 255 E Bonita Ave, Pomona, CA 91767, USA
| | - Nader Pouratian
- University of California, Los Angeles, Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Richard A Andersen
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd., Pasadena, CA 91125, USA; California Institute of Technology, Tianqiao and Chrissy Chen Brain-Machine Interface Center, 1200 E California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
47
|
Gmaz JM, van der Meer MAA. Context coding in the mouse nucleus accumbens modulates motivationally relevant information. PLoS Biol 2022; 20:e3001338. [PMID: 35486662 PMCID: PMC9094556 DOI: 10.1371/journal.pbio.3001338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/11/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Neural activity in the nucleus accumbens (NAc) is thought to track fundamentally value-centric quantities linked to reward and effort. However, the NAc also contributes to flexible behavior in ways that are difficult to explain based on value signals alone, raising the question of if and how nonvalue signals are encoded in NAc. We recorded NAc neural ensembles while head-fixed mice performed an odor-based biconditional discrimination task where an initial discrete cue modulated the behavioral significance of a subsequently presented reward-predictive cue. We extracted single-unit and population-level correlates related to the cues and found value-independent coding for the initial, context-setting cue. This context signal occupied a population-level coding space orthogonal to outcome-related representations and was predictive of subsequent behaviorally relevant responses to the reward-predictive cues. Together, these findings support a gating model for how the NAc contributes to behavioral flexibility and provide a novel population-level perspective from which to view NAc computations.
Collapse
Affiliation(s)
- Jimmie M. Gmaz
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, United States of America
| | - Matthijs A. A. van der Meer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, United States of America
- * E-mail:
| |
Collapse
|
48
|
Pandarinath C, Bensmaia SJ. The science and engineering behind sensitized brain-controlled bionic hands. Physiol Rev 2022; 102:551-604. [PMID: 34541898 PMCID: PMC8742729 DOI: 10.1152/physrev.00034.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in our understanding of brain function, along with the development of neural interfaces that allow for the monitoring and activation of neurons, have paved the way for brain-machine interfaces (BMIs), which harness neural signals to reanimate the limbs via electrical activation of the muscles or to control extracorporeal devices, thereby bypassing the muscles and senses altogether. BMIs consist of reading out motor intent from the neuronal responses monitored in motor regions of the brain and executing intended movements with bionic limbs, reanimated limbs, or exoskeletons. BMIs also allow for the restoration of the sense of touch by electrically activating neurons in somatosensory regions of the brain, thereby evoking vivid tactile sensations and conveying feedback about object interactions. In this review, we discuss the neural mechanisms of motor control and somatosensation in able-bodied individuals and describe approaches to use neuronal responses as control signals for movement restoration and to activate residual sensory pathways to restore touch. Although the focus of the review is on intracortical approaches, we also describe alternative signal sources for control and noninvasive strategies for sensory restoration.
Collapse
Affiliation(s)
- Chethan Pandarinath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois
| |
Collapse
|
49
|
Skyberg R, Tanabe S, Chen H, Cang J. Coarse-to-fine processing drives the efficient coding of natural scenes in mouse visual cortex. Cell Rep 2022; 38:110606. [PMID: 35354030 PMCID: PMC9189856 DOI: 10.1016/j.celrep.2022.110606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/07/2022] [Accepted: 03/10/2022] [Indexed: 12/01/2022] Open
Abstract
The visual system processes sensory inputs sequentially, perceiving coarse information before fine details. Here we study the neural basis of coarse-to-fine processing and its computational benefits in natural vision. We find that primary visual cortical neurons in awake mice respond to natural scenes in a coarse-to-fine manner, primarily driven by individual neurons rapidly shifting their spatial frequency preference from low to high over a brief response period. This shift transforms the population response in a way that counteracts the statistical regularities of natural scenes, thereby reducing redundancy and generating a more efficient neural representation. The increase in representational efficiency does not occur in either dark-reared or anesthetized mice, which show significantly attenuated coarse-to-fine spatial processing. Collectively, these results illustrate that coarse-to-fine processing is state dependent, develops postnatally via visual experience, and provides a computational advantage by generating more efficient representations of the complex spatial statistics of ethologically relevant natural scenes. Skyberg et al. show that the visual cortex of mice processes natural scenes in a coarse-to-fine manner, driven by individual neuron’s temporal dynamics. These response dynamics, which require visual experience to develop, reduce redundancy in the neural code and lead to more efficient representations of complex visual stimuli.
Collapse
Affiliation(s)
- Rolf Skyberg
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Seiji Tanabe
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Hui Chen
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Jianhua Cang
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
50
|
Inagaki HK, Chen S, Ridder MC, Sah P, Li N, Yang Z, Hasanbegovic H, Gao Z, Gerfen CR, Svoboda K. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell 2022; 185:1065-1081.e23. [PMID: 35245431 PMCID: PMC8990337 DOI: 10.1016/j.cell.2022.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/15/2021] [Accepted: 02/03/2022] [Indexed: 01/06/2023]
Abstract
Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circuits that link an auditory "Go cue" and the transition from planning to execution of directional licking. Ascending glutamatergic neurons in the midbrain reticular and pedunculopontine nuclei show short latency and phasic changes in spike rate that are selective for the Go cue. This signal is transmitted via the thalamus to the motor cortex, where it triggers a rapid reorganization of motor cortex state from planning-related activity to a motor command, which in turn drives appropriate movement. Our studies show how midbrain can control cortical dynamics via the thalamus for rapid and precise motor behavior.
Collapse
Affiliation(s)
- Hidehiko K Inagaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Margreet C Ridder
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zidan Yang
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Hana Hasanbegovic
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | | | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Allen Institute for Neural Dynamics, Seattle, WA 98109, USA.
| |
Collapse
|