1
|
Bobula B, Bąk J, Kania A, Siwiec M, Kiełbiński M, Tokarski K, Pałucha-Poniewiera A, Hess G. Maternal fluoxetine impairs synaptic transmission and plasticity in the medial prefrontal cortex and alters the structure and function of dorsal raphe nucleus neurons in offspring mice. Pharmacol Biochem Behav 2024; 244:173849. [PMID: 39142357 DOI: 10.1016/j.pbb.2024.173849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are commonly prescribed to women during pregnancy and breastfeeding despite posing a risk of adverse cognitive outcomes and affective disorders for the child. The consequences of SSRI-induced excess of 5-HT during development for the brain neuromodulatory 5-HT system remain largely unexplored. In this study, an SSRI - fluoxetine (FLX) - was administered to C57BL/6 J mouse dams during pregnancy and lactation to assess its effects on the offspring. We found that maternal FLX decreased field potentials, impaired long-term potentiation, facilitated long-term depression and tended to increase the density of 5-HTergic fibers in the medial prefrontal cortex (mPFC) of female but not male adolescent offspring. These effects were accompanied by deteriorated performance in the temporal order memory task and reduced sucrose preference with no change in marble burying behavior in FLX-exposed female offspring. We also found that maternal FLX reduced the axodendritic tree complexity of 5-HT dorsal raphe nucleus (DRN) neurons in female but not male offspring, with no changes in the excitability of DRN neurons of either sex. While no effects of maternal FLX on inhibitory postsynaptic currents (sIPSCs) in DRN neurons were found, we observed a significant influence of FLX exposure on kinetics of spontaneous excitatory postsynaptic currents (sEPSCs) in DRN neurons. Finally, we report that no changes in field potentials and synaptic plasticity were evident in the mPFC of the offspring after maternal exposure during pregnancy and lactation to a new antidepressant, vortioxetine. These findings show that in contrast to the mPFC, long-term consequences of maternal FLX exposure on the structure and function of DRN 5-HT neurons are mild and suggest a sex-dependent, distinct sensitivity of cortical and brainstem neurons to FLX exposure in early life. Vortioxetine appears to exert fewer side effects with regards to the mPFC when compared with FLX.
Collapse
Affiliation(s)
- Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Joanna Bąk
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Agnieszka Kania
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Michał Kiełbiński
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Agnieszka Pałucha-Poniewiera
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| |
Collapse
|
2
|
Chaturvedi SM, Sarafinovska S, Selmanovic D, McCullough KB, Swift RG, Maloney SE, Dougherty JD. Chromosomal and gonadal sex have differing effects on social motivation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620727. [PMID: 39554131 PMCID: PMC11565840 DOI: 10.1101/2024.10.28.620727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Sex differences in brain development are thought to lead to sex variation in social behavior. Sex differences are fundamentally driven by both gonadal (i.e., hormonal) and chromosomal sex, yet little is known about the independent effects of each on social behavior. Further, mouse models of the genetic liability for the neurodevelopmental disorder MYT1L Syndrome have shown sex specific deficits in social motivation. In this study, we aimed to determine if hormonal or chromosomal sex primarily mediate the sex differences seen in mouse social behavior, both at baseline and in the context of Myt1l haploinsufficiency. Methods Four-core genotype (FCG) mice, which uncouple gonadal and chromosomal sex, were crossed with MYT1L heterozygous mice to create eight different groups with unique combinations of sex factors and MYT1L genotype. A total of 131 mice from all eight groups were assayed for activity and social behavior via the open field and social operant paradigms. Measures of social seeking and orienting were analyzed for main effects of chromosome, gonads, and their interactions with Myt1l mutation. Results The FCGxMYT1L cross revealed independent effects of both gonadal and chromosomal sex on activity and social behavior. Specifically, the presence of ovaries, and by extension the presence of ovarian hormones, increased overall activity, social seeking, and social orienting regardless of genotype. In contrast, sex chromosomes affected social behavior mainly in the MYT1L heterozygous group, with XX sex karyotype when combined with MYT1L genotype contributing to increased social orienting and seeking. Conclusions Gonadal and chromosomal sex have independent mechanisms of driving increased social motivation in females. Additionally, sex chromosomes may interact with neurodevelopmental mutations to influence sex variation in atypical social behavior.
Collapse
Affiliation(s)
- Sneha M. Chaturvedi
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simona Sarafinovska
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B. McCullough
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raylynn G. Swift
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E. Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
3
|
Bobula B, Kusek M, Hess G. The 5-HT 7 receptor antagonist SB 269970 ameliorates maternal fluoxetine exposure-induced impairment of synaptic plasticity in the prefrontal cortex of the offspring female mice. Pharmacol Biochem Behav 2024; 240:173779. [PMID: 38688436 DOI: 10.1016/j.pbb.2024.173779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The use of a selective serotonin reuptake inhibitor fluoxetine in depression during pregnancy and the postpartum period might increase the risk of affective disorders and cognitive symptoms in progeny. In animal models, maternal exposure to fluoxetine throughout gestation and lactation negatively affects the behavior of the offspring. Little is known about the effects of maternal fluoxetine on synaptic transmission and plasticity in the offspring cerebral cortex. During pregnancy and lactation C57BL/6J mouse dams received fluoxetine (7.5 mg/kg/day) with drinking water. Female offspring mice received intraperitoneal injections of the selective 5-HT7 receptor antagonist SB 269970 (2.5 mg/kg) for 7 days. Whole-cell and field potential electrophysiological recordings were performed in the medial prefrontal cortex (mPFC) ex vivo brain slices. Perinatal exposure to fluoxetine resulted in decreased field potentials and impaired long-term potentiation (LTP) in layer II/III of the mPFC of female young adult offspring. Neither the intrinsic excitability nor spontaneous excitatory postsynaptic currents were altered in layer II/III mPFC pyramidal neurons. In mPFC slices obtained from fluoxetine-treated mice that were administered SB 269970 both field potentials and LTP magnitude were restored and did not differ from controls. Treatment of fluoxetine-exposed mice with a selective 5-HT7 receptor antagonist, SB 269970, normalizes synaptic transmission and restores the potential for plasticity in the mPFC of mice exposed in utero and postnatally to fluoxetine.
Collapse
Affiliation(s)
- Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Magdalena Kusek
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
4
|
Lan Z, Tachibana RO, Kanno K. Chronic exposure of female mice to selective serotonin reuptake inhibitors during lactation induces vocal behavior deficits in pre-weaned offspring. Pharmacol Biochem Behav 2023; 230:173606. [PMID: 37516283 DOI: 10.1016/j.pbb.2023.173606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Developmental factors for autism spectrum disorders (ASDs) have been an ongoing debate despite an increasing number of reports on genetic factors. Recent studies have suggested maternal intake of selective serotonin reuptake inhibitors (SSRIs) as a possible developmental factor elevating the risk for ASD in offspring. Here, we show that maternal exposure of mice to an SSRI, Fluoxetine (FLX), induces abnormal ultrasonic vocalizations (USVs), an indicator of ASD-related behavior. We tested the effect of FLX intake during pregnancy, lactation, or both. We found that the lactation and both conditions decreased the number of USVs emitted by offspring pups. An index for assessing the syllables' frequency modulation revealed that highly modulated syllables appeared to be inhibited only in both conditions. Furthermore, we found that the number of serotonergic neurons at adulthood was reduced in the progeny of mice treated with FLX in all conditions. In addition, maternal exposure to FLX through pregnancy and lactation induced a high death rate of early post-natal pups. These suggest that the maternal exposure to SSRIs affects early development of offsprings as well as the serotonergic system. Focusing on vocal communication, our results indicate that intake of an SSRI during lactation increases the risk of abnormal USVs in pups, and provides potential insights into the development of ASD.
Collapse
Affiliation(s)
- Ziguo Lan
- Laboratory of Neuroscience, Course of Psychology, Department of Humanities, Faculty of Law, Economics and Humanities, Kagoshima University, Kagoshima, Japan; Division of Neurobiology and Physiology, Department of Neuroscience, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke O Tachibana
- Center for Evolutionary Cognitive Sciences, Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Meguro, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kouta Kanno
- Laboratory of Neuroscience, Course of Psychology, Department of Humanities, Faculty of Law, Economics and Humanities, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
5
|
Nygaard KR, Maloney SE, Swift RG, McCullough KB, Wagner RE, Fass SB, Garbett K, Mirnics K, Veenstra‐VanderWeele J, Dougherty JD. Extensive characterization of a Williams syndrome murine model shows Gtf2ird1-mediated rescue of select sensorimotor tasks, but no effect on enhanced social behavior. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12853. [PMID: 37370259 PMCID: PMC10393419 DOI: 10.1111/gbb.12853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Williams syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1, which encodes a transcription factor suggested to play a role in the behavioral profile of Williams syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A "complete deletion" mouse, heterozygously eliminating the syntenic Williams syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1, which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the complete deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams syndrome critical region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.
Collapse
Affiliation(s)
- Kayla R. Nygaard
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Susan E. Maloney
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Intellectual & Developmental Disabilities Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Raylynn G. Swift
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Katherine B. McCullough
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Rachael E. Wagner
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Stuart B. Fass
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Karoly Mirnics
- Psychiatry, Biochemistry & Molecular Biology, Pharmacology & Experimental Neuroscience, Munroe‐Meyer Institute for Genetics and RehabilitationUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jeremy Veenstra‐VanderWeele
- Departments of Psychiatry and PediatricsColumbia University, New York State Psychiatric Institute, and Center for Autism and the Developing Brain, New York‐Presbyterian HospitalNew York CityNew YorkUSA
| | - Joseph D. Dougherty
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Intellectual & Developmental Disabilities Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
6
|
Nygaard KR, Maloney SE, Swift RG, McCullough KB, Wagner RE, Fass SB, Garbett K, Mirnics K, Veenstra-VanderWeele J, Dougherty JD. Extensive characterization of a Williams Syndrome murine model shows Gtf2ird1 -mediated rescue of select sensorimotor tasks, but no effect on enhanced social behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.523029. [PMID: 36711815 PMCID: PMC9882309 DOI: 10.1101/2023.01.18.523029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Williams Syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams Syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1 , which encodes a transcription factor suggested to play a role in the behavioral profile of Williams Syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias, and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A 'Complete Deletion' mouse, heterozygously eliminating the syntenic Williams Syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1 , which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the Complete Deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams Syndrome Critical Region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.
Collapse
Affiliation(s)
- Kayla R. Nygaard
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E. Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual & Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raylynn G. Swift
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B. McCullough
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachael E. Wagner
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stuart B. Fass
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Karoly Mirnics
- Psychiatry, Biochemistry & Molecular Biology, Pharmacology & Experimental Neuroscience, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center Omaha, NE 68198-5450
| | - Jeremy Veenstra-VanderWeele
- Departments of Psychiatry and Pediatrics, Columbia University; New York State Psychiatric Institute; and Center for Autism and the Developing Brain, New York-Presbyterian Hospital
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Minakova E, Mikati MO, Madasu MK, Conway SM, Baldwin JW, Swift RG, McCullough KB, Dougherty JD, Maloney SE, Al-Hasani R. Perinatal oxycodone exposure causes long-term sex-dependent changes in weight trajectory and sensory processing in adult mice. Psychopharmacology (Berl) 2022; 239:3859-3873. [PMID: 36269379 DOI: 10.1007/s00213-022-06257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
RATIONALE In utero opioid exposure is associated with lower weight and a neonatal opioid withdrawal syndrome (NOWS) at birth, along with longer-term adverse neurodevelopmental outcomes and mood disorders. While NOWS is sometimes treated with continued opioids, clinical studies have not addressed if long-term neurobehavioral outcomes are worsened with continued postnatal exposure to opioids. In addition, pre-clinical studies comparing in utero only opioid exposure to continued post-natal opioid administration for withdrawal mitigation are lacking. OBJECTIVES Here, we sought to understand the impact of continued postnatal opioid exposure on long term behavioral consequences. METHODS We implemented a rodent perinatal opioid exposure model of oxycodone (Oxy) exposure that included Oxy exposure until birth (short Oxy) and continued postnatal opioid exposure (long Oxy) spanning gestation through birth and lactation. RESULTS Short Oxy exposure was associated with a sex-specific increase in weight gain trajectory in adult male mice. Long Oxy exposure caused an increased weight gain trajectory in adult males and alterations in nociceptive processing in females. Importantly, there was no evidence of long-term social behavioral deficits, anxiety, hyperactivity, or memory deficits following short or long Oxy exposure. CONCLUSIONS Our findings suggest that offspring with prolonged opioid exposure experienced some long-term sequelae compared to pups with opioid cessation at birth. These results highlight the potential long-term consequences of opioid administration as a mitigation strategy for clinical NOWS symptomology and suggest alternatives should be explored.
Collapse
Affiliation(s)
- Elena Minakova
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwa O Mikati
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8232, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Management Center, Washington University School of Medicine, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA
| | - Manish K Madasu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Management Center, Washington University School of Medicine, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA
| | - Sineadh M Conway
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Management Center, Washington University School of Medicine, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA
| | - Justin W Baldwin
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Raylynn G Swift
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8232, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine B McCullough
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8232, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8232, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8232, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA. .,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ream Al-Hasani
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA. .,Washington University Pain Management Center, Washington University School of Medicine, St. Louis, MO, USA. .,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
8
|
Maloney SE, Tabachnick DR, Jakes C, Avdagic S, Bauernfeind AL, Dougherty JD. Fluoxetine exposure throughout neurodevelopment differentially influences basilar dendritic morphology in the motor and prefrontal cortices. Sci Rep 2022; 12:7605. [PMID: 35534532 PMCID: PMC9085735 DOI: 10.1038/s41598-022-11614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
The significance of serotonin (5HT) in mental health is underscored by the serotonergic action of many classes of psychiatric medication. 5HT is known to have a significant role in neurodevelopment, thus 5HT disruption during development may have a long term impact on brain structure and circuits. We previously generated a model of 5HT alteration throughout neurodevelopment by maternal administration of the selective serotonin reuptake inhibitor fluoxetine. We found resulting social behavior alterations in the offspring during both postnatal and adult ages. Previous work by others has indicated that early 5HT disruption influences neuronal morphology. Therefore, in the current study we sought to determine if dendritic morphological changes occur in areas involved in the social behavior deficits we previously observed, specifically the primary motor (M1) and medial prefrontal (mPFC) cortices. We quantified dendritic morphology of projection neurons in M1 and mPFC at postnatal day (P)10 and P79 in mice exposed to fluoxetine. Basilar dendritic complexity and spine density were persistently decreased in M1 fluoxetine-exposed neurons while in the mPFC, similar reductions were observed at P79 but were not present at P10. Our findings underscore that the developing brain, specifically the projection cortex, is vulnerable to 5HT system perturbation, which may be related to later behavioral disruptions.
Collapse
Affiliation(s)
- Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA. .,Intellectual and Developmental Disorders Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Dora R Tabachnick
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christine Jakes
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Selma Avdagic
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amy L Bauernfeind
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Anthropology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA.,Intellectual and Developmental Disorders Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
9
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
10
|
Chen J, Lambo ME, Ge X, Dearborn JT, Liu Y, McCullough KB, Swift RG, Tabachnick DR, Tian L, Noguchi K, Garbow JR, Constantino JN, Gabel HW, Hengen KB, Maloney SE, Dougherty JD. A MYT1L syndrome mouse model recapitulates patient phenotypes and reveals altered brain development due to disrupted neuronal maturation. Neuron 2021; 109:3775-3792.e14. [PMID: 34614421 PMCID: PMC8668036 DOI: 10.1016/j.neuron.2021.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/07/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
Human genetics have defined a new neurodevelopmental syndrome caused by loss-of-function mutations in MYT1L, a transcription factor known for enabling fibroblast-to-neuron conversions. However, how MYT1L mutation causes intellectual disability, autism, ADHD, obesity, and brain anomalies is unknown. Here, we developed a Myt1l haploinsufficient mouse model that develops obesity, white-matter thinning, and microcephaly, mimicking common clinical phenotypes. During brain development we discovered disrupted gene expression, mediated in part by loss of Myt1l gene-target activation, and identified precocious neuronal differentiation as the mechanism for microcephaly. In contrast, in adults we discovered that mutation results in failure of transcriptional and chromatin maturation, echoed in disruptions in baseline physiological properties of neurons. Myt1l haploinsufficiency also results in behavioral anomalies, including hyperactivity, muscle weakness, and social alterations, with more severe phenotypes in males. Overall, our findings provide insight into the mechanistic underpinnings of this disorder and enable future preclinical studies.
Collapse
Affiliation(s)
- Jiayang Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary E Lambo
- Department of Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Joshua T Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine B McCullough
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Raylynn G Swift
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Dora R Tabachnick
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lucy Tian
- Department of Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA; Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO USA
| | - John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Kopp ND, Nygaard KR, Liu Y, McCullough KB, Maloney SE, Gabel HW, Dougherty JD. Functions of Gtf2i and Gtf2ird1 in the developing brain: transcription, DNA binding and long-term behavioral consequences. Hum Mol Genet 2021; 29:1498-1519. [PMID: 32313931 DOI: 10.1093/hmg/ddaa070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
Gtf2ird1 and Gtf2i are two transcription factors (TFs) among the 28 genes deleted in Williams syndrome, and prior mouse models of each TF show behavioral phenotypes. Here we identify their genomic binding sites in the developing brain and test for additive effects of their mutation on transcription and behavior. GTF2IRD1 binding targets were enriched for transcriptional and chromatin regulators and mediators of ubiquitination. GTF2I targets were enriched for signal transduction proteins, including regulators of phosphorylation and WNT. Both TFs are highly enriched at promoters, strongly overlap CTCF binding and topological associating domain boundaries and moderately overlap each other, suggesting epistatic effects. Shared TF targets are enriched for reactive oxygen species-responsive genes, synaptic proteins and transcription regulators such as chromatin modifiers, including a significant number of highly constrained genes and known ASD genes. We next used single and double mutants to test whether mutating both TFs will modify transcriptional and behavioral phenotypes of single Gtf2ird1 mutants, though with the caveat that our Gtf2ird1 mutants, like others previously reported, do produce low levels of a truncated protein product. Despite little difference in DNA binding and transcriptome-wide expression, homozygous Gtf2ird1 mutation caused balance, marble burying and conditioned fear phenotypes. However, mutating Gtf2i in addition to Gtf2ird1 did not further modify transcriptomic or most behavioral phenotypes, suggesting Gtf2ird1 mutation alone was sufficient for the observed phenotypes.
Collapse
Affiliation(s)
- Nathan D Kopp
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kayla R Nygaard
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B McCullough
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Meurer YDSR, Linhares SSG, Lima ADC, de Aquino ACQ, Brandão LEM, Nôga DA, Campelo CLDC, Lima RH, Cavalcante JDS, Engelberth RCGJ, Ribeiro AM, Silva RH. Postnatal exposure to fluoxetine led to cognitive-emotional alterations and decreased parvalbumin positive neurons in the hippocampus of juvenile Wistar rats. Int J Dev Neurosci 2021; 81:616-632. [PMID: 34196404 DOI: 10.1002/jdn.10139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 12/31/2022] Open
Abstract
The exposure to selective serotonin reuptake inhibitors (SSRIs) during development results in behavioural impairment in adulthood in humans and animal models. Indeed, serotonergic overexpression in early life leads to structural and functional changes in brain circuits that control cognition and emotion. However, the effects of developmental exposure to these substances on the behaviour of adolescent rats are conflicting and remain poorly characterised. We performed a behavioural screening to investigate the effects of postnatal exposure to fluoxetine on memory and behaviours related to anxiety, anhedonia, and depression, as well we evaluate the parvalbumin expression in hippocampus of juvenile (~PND45) female and male rats. Fluoxetine (daily 20 mg/kg s.c. injections from PND7-PND21)- or vehicle-treated adolescent rats went through several behavioural tasks (from PND 38 to PND52) and were subject to transcardial perfusion and brain removal for immunohistochemical analysis (PND53). We found that postnatal exposure to fluoxetine increased anxiety- and depression-like behaviours in the open field and sucrose preference and forced swimming tests, respectively. In addition, this treatment induced working memory and short-term (but not long-term) recognition memory impairments, and reduced parvalbumin-positive interneurons in the hippocampus. In addition, the results revealed developmental sex-dependent effects of fluoxetine postnatal treatment on adolescent rats' behaviour. These outcomes indicate that affective disorders and mnemonic alterations caused by SSRIs perinatal exposure can be present at adolescence.
Collapse
Affiliation(s)
- Ywlliane da Silva Rodrigues Meurer
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Memory and Cognition Studies Laboratory, Post-graduate Program of Cognitive Neuroscience and Behavior, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil.,Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sara Sophia Guedes Linhares
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Alvaro da Costa Lima
- Memory and Cognition Studies Laboratory, Post-graduate Program of Cognitive Neuroscience and Behavior, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Antonio Carlos Queiroz de Aquino
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Ramon Hypólito Lima
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Jeferson de Souza Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Alessandra Mussi Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | - Regina Helena Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Minakova E, Sarafinovska S, Mikati MO, Barclay KM, McCullough KB, Dougherty JD, Al-Hasani R, Maloney SE. Ontogenetic Oxycodone Exposure Affects Early Life Communicative Behaviors, Sensorimotor Reflexes, and Weight Trajectory in Mice. Front Behav Neurosci 2021; 15:615798. [PMID: 33692675 PMCID: PMC7937712 DOI: 10.3389/fnbeh.2021.615798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Nationwide, opioid misuse among pregnant women has risen four-fold from 1999 to 2014, with commensurate increase in neonates hospitalized for neonatal abstinence syndrome (NAS). NAS occurs when a fetus exposed to opioids in utero goes into rapid withdrawal after birth. NAS treatment via continued post-natal opioid exposure has been suggested to worsen neurodevelopmental outcomes. We developed a novel model to characterize the impact of in utero and prolonged post-natal oxycodone (Oxy) exposure on early behavior and development. Via subcutaneous pump implanted before breeding, C57BL/6J dams were infused with Oxy at 10 mg/kg/day from conception through pup-weaning. At birth, in utero oxy-exposed pups were either cross-fostered (paired with non-Oxy exposed dams) to model opioid abstinence (in utero Oxy) or reared by their biological dams still receiving Oxy to model continued post-natal opioid exposure (prolonged Oxy). Offspring from vehicle-exposed dams served as cross-fostered (in utero Veh) or biologically reared (prolonged Veh) controls. In utero Oxy exposure resulted in sex-dependent weight reductions and altered spectrotemporal features of isolation-induced ultrasonic vocalization (USV). Meanwhile, prolonged Oxy pups exhibited reduced weight and sex-differential delays in righting reflex. Specifically, prolonged Oxy female offspring exhibited increased latency to righting. Prolonged Oxy pups also showed decreases in number of USV calls and changes to spectrotemporal USV features. Overall, ontogenetic Oxy exposure was associated with impaired attainment of gross and sensorimotor milestones, as well as alterations in communication and affective behaviors, indicating a need for therapeutic interventions. The model developed here will enable studies of withdrawal physiology and opioid-mediated mechanisms underlying these neurodevelopmental deficits.
Collapse
Affiliation(s)
- Elena Minakova
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - Simona Sarafinovska
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO, United States
| | - Marwa O. Mikati
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- Center for Clinical Pharmacology, St. Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis, MO, United States
| | - Kia M. Barclay
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- Center for Clinical Pharmacology, St. Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis, MO, United States
| | - Katherine B. McCullough
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Joseph D. Dougherty
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Intellectual and Developmental Disabilities Research Center, Washington University In St. Louis, St. Louis, MO, United States
| | - Ream Al-Hasani
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- Center for Clinical Pharmacology, St. Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis, MO, United States
| | - Susan E. Maloney
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Intellectual and Developmental Disabilities Research Center, Washington University In St. Louis, St. Louis, MO, United States
| |
Collapse
|
14
|
Van der Knaap N, Wiedermann D, Schubert D, Hoehn M, Homberg JR. Perinatal SSRI exposure affects brain functional activity associated with whisker stimulation in adolescent and adult rats. Sci Rep 2021; 11:1680. [PMID: 33462357 PMCID: PMC7814075 DOI: 10.1038/s41598-021-81327-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI), such as fluoxetine, are used as first-line antidepressant medication during pregnancy. Since SSRIs cross the placenta the unborn child is exposed to the maternal SSRI medication, resulting in, amongst others, increased risk for autism in offspring. This likely results from developmental changes in brain function. Studies employing rats lacking the serotonin transporter have shown that elevations in serotonin levels particularly affect the development of the whisker related part of the primary somatosensory (barrel) cortex. Therefore, we hypothesized that serotonin level disturbances during development alter brain activity related to whisker stimulation. We treated female dams with fluoxetine or vehicle from gestational day 11 onwards for 21 days. We investigated offspring's brain activity during whisker stimulation using functional magnetic resonance imaging (fMRI) at adolescence and adulthood. Our results indicate that adolescent offspring displayed increased activity in hippocampal subareas and the mammillary body in the thalamus. Adult offspring exhibited increased functional activation of areas associated with (higher) sensory processing and memory such as the hippocampus, perirhinal and entorhinal cortex, retrospinal granular cortex, piriform cortex and secondary visual cortex. Our data imply that perinatal SSRI exposure leads to complex alterations in brain networks involved in sensory perception and processing.
Collapse
Affiliation(s)
- Noortje Van der Knaap
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Wiedermann
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Dirk Schubert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Mathias Hoehn
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Judith R Homberg
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Carvajal-Oliveros A, Campusano JM. Studying the Contribution of Serotonin to Neurodevelopmental Disorders. Can This Fly? Front Behav Neurosci 2021; 14:601449. [PMID: 33510625 PMCID: PMC7835640 DOI: 10.3389/fnbeh.2020.601449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Serotonin is a biogenic amine that acts as neurotransmitter in different brain regions and is involved in complex behaviors, such as aggression or mood regulation. Thus, this amine is found in defined circuits and activates specific receptors in different target regions. Serotonin actions depend on extracellular levels of this amine, which are regulated by its synthetic enzymes and the plasma membrane transporter, SERT. Serotonin acts also as a neurotrophic signal in ontogeny and in the mature brain, controlling cell proliferation, differentiation, neurogenesis, and neural plasticity. Interestingly, early alterations in serotonergic signaling have been linked to a diversity of neurodevelopmental disorders, including autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), or mental illnesses like schizophrenia or depression. It has been proposed that given the complex and numerous actions of serotonin, animal models could better serve to study the complexity of serotonin actions, while providing insights on how hindering serotonergic signaling could contribute to brain disorders. In this mini-review, it will be examined what the general properties of serotonin acting as a neurotransmitter in animals are, and furthermore, whether it is possible that Drosophila could be used to study the contribution of this amine to neurodevelopmental and mental disorders.
Collapse
Affiliation(s)
- Angel Carvajal-Oliveros
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jorge M Campusano
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencia UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, Liu C, Kolk SM, Homberg JR. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int J Mol Sci 2020; 21:E5850. [PMID: 32824000 PMCID: PMC7461571 DOI: 10.3390/ijms21165850] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands;
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Otto G. Muilwijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Sharon M. Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| |
Collapse
|
17
|
Kopp N, McCullough K, Maloney SE, Dougherty JD. Gtf2i and Gtf2ird1 mutation do not account for the full phenotypic effect of the Williams syndrome critical region in mouse models. Hum Mol Genet 2020; 28:3443-3465. [PMID: 31418010 DOI: 10.1093/hmg/ddz176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/04/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a 1.5-1.8 Mbp deletion on chromosome 7q11.23, affecting the copy number of 26-28 genes. Phenotypes of WS include cardiovascular problems, craniofacial dysmorphology, deficits in visual-spatial cognition and a characteristic hypersocial personality. There are still no genes in the region that have been consistently linked to the cognitive and behavioral phenotypes, although human studies and mouse models have led to the current hypothesis that the general transcription factor 2 I family of genes, GTF2I and GTF2IRD1, are responsible. Here we test the hypothesis that these two transcription factors are sufficient to reproduce the phenotypes that are caused by deletion of the WS critical region (WSCR). We compare a new mouse model with loss of function mutations in both Gtf2i and Gtf2ird1 to an established mouse model lacking the complete WSCR. We show that the complete deletion (CD) model has deficits across several behavioral domains including social communication, motor functioning and conditioned fear that are not explained by loss of function mutations in Gtf2i and Gtf2ird1. Furthermore, transcriptome profiling of the hippocampus shows changes in synaptic genes in the CD model that are not seen in the double mutants. Thus, we have thoroughly defined a set of molecular and behavioral consequences of complete WSCR deletion and shown that genes or combinations of genes beyond Gtf2i and Gtf2ird1 are necessary to produce these phenotypic effects.
Collapse
Affiliation(s)
- Nathan Kopp
- Department of Genetics.,Department of Psychiatry
| | | | - Susan E Maloney
- Department of Psychiatry.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics.,Department of Psychiatry.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Maternal Fluoxetine Exposure Alters Cortical Hemodynamic and Calcium Response of Offspring to Somatosensory Stimuli. eNeuro 2019; 6:ENEURO.0238-19.2019. [PMID: 31843753 PMCID: PMC6978917 DOI: 10.1523/eneuro.0238-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/04/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022] Open
Abstract
Epidemiological studies have found an increased incidence of neurodevelopmental disorders in populations prenatally exposed to selective serotonin reuptake inhibitors (SSRIs). Optical imaging provides a minimally invasive way to determine if perinatal SSRI exposure has long-term effects on cortical function. Herein we probed the functional neuroimaging effects of perinatal SSRI exposure in a fluoxetine (FLX)-exposed mouse model. Epidemiological studies have found an increased incidence of neurodevelopmental disorders in populations prenatally exposed to selective serotonin reuptake inhibitors (SSRIs). Optical imaging provides a minimally invasive way to determine if perinatal SSRI exposure has long-term effects on cortical function. Herein we probed the functional neuroimaging effects of perinatal SSRI exposure in a fluoxetine (FLX)-exposed mouse model. While resting-state homotopic contralateral functional connectivity was unperturbed, the evoked cortical response to forepaw stimulation was altered in FLX mice. The stimulated cortex showed decreased activity for FLX versus controls, by both hemodynamic responses [oxyhemoglobin (HbO2)] and neuronal calcium responses (Thy1-GCaMP6f fluorescence). Significant alterations in both cortical HbO2 and calcium response amplitude were seen in the cortex ipsilateral to the stimulated paw in FLX as compared to controls. The cortical regions of largest difference in activation between FLX and controls also were consistent between HbO2 and calcium contrasts at the end of stimulation. Taken together, these results suggest a global loss of response signal amplitude in FLX versus controls. These findings indicate that perinatal SSRI exposure has long-term consequences on somatosensory cortical responses.
Collapse
|
19
|
Maloney SE, Rieger MA, Al-Hasani R, Bruchas MR, Wozniak DF, Dougherty JD. Loss of CELF6 RNA binding protein impairs cocaine conditioned place preference and contextual fear conditioning. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12593. [PMID: 31215739 PMCID: PMC7059558 DOI: 10.1111/gbb.12593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/13/2019] [Accepted: 06/02/2019] [Indexed: 12/21/2022]
Abstract
In addition to gene expression differences in distinct cell types, there is substantial post-transcriptional regulation driven in part by RNA binding proteins (RBPs). Loss-of-function RBP mutations have been associated with neurodevelopmental disorders, such as Fragile-X syndrome and syndromic autism. Work performed in animal models to elucidate the influence of neurodevelopmental disorder-associated RBPs on distinct behaviors has showed a connection between normal post-transcriptional regulation and conditioned learning. We previously reported cognitive inflexibility in a mouse model null for the RBP CUG-BP, Elav-like factor 6 (CELF6), which we also found to be associated with human autism. Specifically, these mice failed to potentiate exploratory hole-poking behavior in response to familiarization to a rewarding stimuli. Characterization of Celf6 gene expression showed high levels in monoaminergic populations such as the dopaminergic midbrain populations. To better understand the underlying behavioral disruption mediating the resistance to change exploratory behavior in the holeboard task, we tested three hypotheses: Does Celf6 loss lead to global restricted patterns of behavior, failure of immediate response to reward or failure to alter behavior in response to reward (conditioning). We found the acute response to reward was intact, yet Celf6 mutant mice exhibited impaired conditioned learning to both reward and aversive stimuli. Thus, we found that the resistance to change by the Celf6 mutant in the holeboard was most parsimoniously explained as a failure of conditioning, as the mice had blunted responses even to potent rewarding stimuli such as cocaine. These findings further support the role of RBPs in conditioned learning.
Collapse
Affiliation(s)
- Susan E. Maloney
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael A. Rieger
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Michael R. Bruchas
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F. Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Nygaard KR, Maloney SE, Dougherty JD. Erroneous inference based on a lack of preference within one group: Autism, mice, and the social approach task. Autism Res 2019; 12:1171-1183. [PMID: 31187603 DOI: 10.1002/aur.2154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
The Social Approach Task is commonly used to identify sociability deficits when modeling liability factors for autism spectrum disorder (ASD) in mice. It was developed to expand upon existing assays to examine distinct aspects of social behavior in rodents and has become a standard component of mouse ASD-relevant phenotyping pipelines. However, there is variability in the statistical analysis and interpretation of results from this task. A common analytical approach is to conduct within-group comparisons only, and then interpret a difference in significance levels as if it were a group difference, without any direct comparison. As an efficient shorthand, we named this approach EWOCs: Erroneous Within-group Only Comparisons. Here, we examined the prevalence of EWOCs and used simulations to test whether this approach could produce misleading inferences. Our review of Social Approach studies of high-confidence ASD genes revealed 45% of papers sampled used only this analytical approach. Through simulations, we then demonstrate how a lack of significant difference within one group often does not correspond to a significant difference between groups, and show this erroneous interpretation increases the rate of false positives up to 25%. Finally, we define a simple solution: use an index, like a social preference score, with direct statistical comparisons between groups to identify significant differences. We also provide power calculations to guide sample size in future studies. Overall, elimination of EWOCs and adoption of direct comparisons should result in more accurate, reliable, and reproducible data interpretations from the Social Approach Task across ASD liability models. Autism Res 2019, 12: 1171-1183. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: The Social Approach Task is widely used to assess social behavior in mice and is frequently used in studies modeling autism. However, reviewing published studies showed nearly half do not use correct comparisons to interpret these data. Using simulated and original data, we argue the correct statistical approach is a direct comparison of scores between groups. This simple solution should reduce false positives and improve consistency of results across studies.
Collapse
Affiliation(s)
- Kayla R Nygaard
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
21
|
Maloney SE, Yuede CM, Creeley CE, Williams SL, Huffman JN, Taylor GT, Noguchi KN, Wozniak DF. Repeated neonatal isoflurane exposures in the mouse induce apoptotic degenerative changes in the brain and relatively mild long-term behavioral deficits. Sci Rep 2019; 9:2779. [PMID: 30808927 PMCID: PMC6391407 DOI: 10.1038/s41598-019-39174-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies suggest exposures to anesthetic agents and/or sedative drugs (AASDs) in children under three years old, or pregnant women during the third trimester, may adversely affect brain development. Evidence suggests lengthy or repeated AASD exposures are associated with increased risk of neurobehavioral deficits. Animal models have been valuable in determining the type of acute damage in the developing brain induced by AASD exposures, as well as in elucidating long-term functional consequences. Few studies examining very early exposure to AASDs suggest this may be a critical period for inducing long-term functional consequences, but the impact of repeated exposures at these ages has not yet been assessed. To address this, we exposed mouse pups to a prototypical general anesthetic, isoflurane (ISO, 1.5% for 3 hr), at three early postnatal ages (P3, P5 and P7). We quantified the acute neuroapoptotic response to a single versus repeated exposure, and found age- and brain region-specific effects. We also found that repeated early exposures to ISO induced subtle, sex-specific disruptions to activity levels, motor coordination, anxiety-related behavior and social preference. Our findings provide evidence that repeated ISO exposures may induce behavioral disturbances that are subtle in nature following early repeated exposures to a single AASD.
Collapse
Affiliation(s)
- Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Psychology, University of Missouri - St. Louis, St. Louis, MO, 63121, USA
- Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Catherine E Creeley
- Department of Psychology, State University of New York at Fredonia, Fredonia, NY, 14063, USA
| | - Sasha L Williams
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jacob N Huffman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - George T Taylor
- Department of Psychology, University of Missouri - St. Louis, St. Louis, MO, 63121, USA
| | - Kevin N Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
- Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|