1
|
Chen Z, Duan S, Li J, Su J, Lei H. T-2 toxin triggers depression-like behaviors via upregulation of dopamine transporter in nucleus accumbens of male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117392. [PMID: 39616663 DOI: 10.1016/j.ecoenv.2024.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/26/2025]
Abstract
The T-2 toxin is a frequent contaminant in the global environment and agricultural production. Existing evidence suggests that the ingested T-2 toxin can enter the brain and exhibit neurotoxicity. However, it is still unknown whether T-2 toxin causes the depression-like behaviors. In this study, the mice were orally administrated with 1.5 mg/kg T-2 toxin daily for 14 d, and the depression-like behaviors were assessed by the tail suspension test (TST) and sucrose preference test (SPT). Here, the results showed that T-2 toxin exposure induced depression-like behaviors, manifested as behavioral despair and anhedonia, without anxiety-like behaviors. In addition, the reduced dopamine (DA) level and elevated dopamine transporter (DAT) level were found in reward center nucleus accumbens (NAc) receiving DAergic projection from ventral tegmental area (VTA) in brain after T-2 toxin administration, while there was no significant alteration in DA synthesis-related tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) in VTA and DA storage-related vesicle monoamine transporter 2 (VMAT2) in NAc. The local administration of DAT inhibitor AHN 1-055 hydrochloride into NAc alleviated T-2 toxin caused the depression-like behaviors. Importantly, the chemogenetic activation of the VTADA-NAc circuit increased the DA content in NAc and reversed the T-2 toxin-produced behavioral despair and anhedonia. Thus, our study for the first time illustrates DA dysregulation by upregulated DAT in NAc mediates T-2 toxin-triggered depression-like symptoms in mice. Meanwhile, this study establishes a novel causal relation between the neurotoxicant T-2 toxin exposure and the etiology of depression-like behaviors, and provides reference for the prevention and treatment for mycotoxin-induced depression-like symptoms.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Shaoyi Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jialu Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jianming Su
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Hongyu Lei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China.
| |
Collapse
|
2
|
Iguchi Y, Benton R, Kobayashi K. A chemogenetic technology using insect Ionotropic Receptors to stimulate target cell populations in the mammalian brain. Neurosci Res 2024:S0168-0102(24)00136-6. [PMID: 39532176 DOI: 10.1016/j.neures.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Chemogenetics uses artificially-engineered proteins to modify the activity of cells, notably neurons, in response to small molecules. Although a common set of chemogenetic tools are the G protein-coupled receptor-based DREADDs, there has been great hope for ligand-gated, ion channel-type chemogenetic tools that directly impact neuronal excitability. We have devised such a technology by exploiting insect Ionotropic Receptors (IRs), a highly divergent subfamily of ionotropic glutamate receptors that evolved to detect diverse environmental chemicals. Here, we review a series of studies developing and applying this "IR-mediated neuronal activation" (IRNA) technology with the Drosophila melanogaster IR84a/IR8a complex, which detects phenyl-containing ligands. We also discuss how variants of IRNA could be produced by modifying the composition of the IR complex, using natural or engineered subunits, which would enable artificial activation of different cell populations in the brain in response to distinct chemicals.
Collapse
Affiliation(s)
- Yoshio Iguchi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| |
Collapse
|
3
|
Cheng JL, Cook AL, Talbot J, Perry S. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Neurotox Res 2024; 42:43. [PMID: 39405005 PMCID: PMC11480214 DOI: 10.1007/s12640-024-00721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Excitotoxicity linked either to environmental causes (pesticide and cyanotoxin exposure), excitatory neurotransmitter imbalance, or to intrinsic neuronal hyperexcitability, is a pathological mechanism central to neurodegeneration in amyotrophic lateral sclerosis (ALS). Investigation of excitotoxic mechanisms using in vitro and in vivo animal models has been central to understanding ALS mechanisms of disease. In particular, advances in induced pluripotent stem cell (iPSC) technologies now provide human cell-based models that are readily amenable to environmental and network-based excitotoxic manipulations. The cell-type specific differentiation of iPSC, combined with approaches to modelling excitotoxicity that include editing of disease-associated gene variants, chemogenetics, and environmental risk-associated exposures make iPSC primed to examine gene-environment interactions and disease-associated excitotoxic mechanisms. Critical to this is knowledge of which neurotransmitter receptor subunits are expressed by iPSC-derived neuronal cultures being studied, how their activity responds to antagonists and agonists of these receptors, and how to interpret data derived from multi-parameter electrophysiological recordings. This review explores how iPSC-based studies have contributed to our understanding of ALS-linked excitotoxicity and highlights novel approaches to inducing excitotoxicity in iPSC-derived neurons to further our understanding of its pathological pathways.
Collapse
Affiliation(s)
- Jan L Cheng
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia.
| |
Collapse
|
4
|
Neřoldová M, Stuchlík A. Chemogenetic Tools and their Use in Studies of Neuropsychiatric Disorders. Physiol Res 2024; 73:S449-S470. [PMID: 38957949 PMCID: PMC11412350 DOI: 10.33549/physiolres.935401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Chemogenetics is a newly developed set of tools that allow for selective manipulation of cell activity. They consist of a receptor mutated irresponsive to endogenous ligands and a synthetic ligand that does not interact with the wild-type receptors. Many different types of these receptors and their respective ligands for inhibiting or excitating neuronal subpopulations were designed in the past few decades. It has been mainly the G-protein coupled receptors (GPCRs) selectively responding to clozapine-N-oxide (CNO), namely Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), that have been employed in research. Chemogenetics offers great possibilities since the activity of the receptors is reversible, inducible on demand by the ligand, and non-invasive. Also, specific groups or types of neurons can be selectively manipulated thanks to the delivery by viral vectors. The effect of the chemogenetic receptors on neurons lasts longer, and even chronic activation can be achieved. That can be useful for behavioral testing. The great advantage of chemogenetic tools is especially apparent in research on brain diseases since they can manipulate whole neuronal circuits and connections between different brain areas. Many psychiatric or other brain diseases revolve around the dysfunction of specific brain networks. Therefore, chemogenetics presents a powerful tool for investigating the underlying mechanisms causing the disease and revealing the link between the circuit dysfunction and the behavioral or cognitive symptoms observed in patients. It could also contribute to the development of more effective treatments.
Collapse
Affiliation(s)
- M Neřoldová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. E-mail:
| | | |
Collapse
|
5
|
Iguchi Y, Fukabori R, Kato S, Takahashi K, Eifuku S, Maejima Y, Shimomura K, Mizuma H, Mawatari A, Doi H, Cui Y, Onoe H, Hikishima K, Osanai M, Nishijo T, Momiyama T, Benton R, Kobayashi K. Chemogenetic activation of mammalian brain neurons expressing insect Ionotropic Receptors by systemic ligand precursor administration. Commun Biol 2024; 7:547. [PMID: 38714803 PMCID: PMC11076466 DOI: 10.1038/s42003-024-06223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/22/2024] [Indexed: 05/10/2024] Open
Abstract
Chemogenetic approaches employing ligand-gated ion channels are advantageous regarding manipulation of target neuronal population functions independently of endogenous second messenger pathways. Among them, Ionotropic Receptor (IR)-mediated neuronal activation (IRNA) allows stimulation of mammalian neurons that heterologously express members of the insect chemosensory IR repertoire in response to their cognate ligands. In the original protocol, phenylacetic acid, a ligand of the IR84a/IR8a complex, was locally injected into a brain region due to its low permeability of the blood-brain barrier. To circumvent this invasive injection, we sought to develop a strategy of peripheral administration with a precursor of phenylacetic acid, phenylacetic acid methyl ester, which is efficiently transferred into the brain and converted to the mature ligand by endogenous esterase activities. This strategy was validated by electrophysiological, biochemical, brain-imaging, and behavioral analyses, demonstrating high utility of systemic IRNA technology in the remote activation of target neurons in the brain.
Collapse
Affiliation(s)
- Yoshio Iguchi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Ryoji Fukabori
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kazumi Takahashi
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Satoshi Eifuku
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hiroshi Mizuma
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Aya Mawatari
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Research, Institute for Drug Discovery Science, Collaborative Creation Research Center, Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keigo Hikishima
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, 305-8564, Japan
| | - Makoto Osanai
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, 565-0871, Japan
| | - Takuma Nishijo
- Department of Pharmacology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Tokyo, 105-8461, Japan
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya-cho, Kasugai, 480-0392, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Tokyo, 105-8461, Japan
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| |
Collapse
|
6
|
Robinson SL, Bendrath SC, Yates EM, Thiele TE. Basolateral amygdala neuropeptide Y system modulates binge ethanol consumption. Neuropsychopharmacology 2024; 49:690-698. [PMID: 37758802 PMCID: PMC10876546 DOI: 10.1038/s41386-023-01742-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Neuropeptide Y (NPY) signaling regulation of corticolimbic communication is known to modulate binge-like ethanol consumption in rodents. In this work we sought to assess the impact of intra-BLA NPY system modulation on binge-like ethanol intake and to assess the role of the NPY1R+ projection from the BLA to the mPFC in this behavior. We used "drinking-in-the-dark" (DID) procedures in C57BL6J mice to address these questions. First, the impact of intra-BLA administration of NPY on binge-like ethanol intake was assessed. Next, the impact of repeated cycles of DID intake on NPY1R expression in the BLA was assessed with use of immunohistochemistry (IHC). Finally, chemogenetic inhibition of BLA→mPFC NPY1R+ projections was assessed to determine if limbic communication with the mPFC was specifically involved in binge-like ethanol intake. Importantly, as both the BLA and NPY system are sexually dimorphic, both sexes were assessed in these studies. Intra-BLA NPY dose-dependently decreased binge-like ethanol intake in males only. Repeated DID reduced NPY1R expression in the BLA of both sexes. Silencing of BLA→mPFC NPY1R+ neurons significantly reduced binge-like ethanol intake in both sexes in a dose-dependent manner. We provide novel evidence that (1) intra-BLA NPY reduces binge-like ethanol intake in males; (2) binge-like ethanol intake reduces NPY1R levels in the BLA; and (3) chemogenetic inhibition of BLA→mPFC NPY1R+ neurons blunts binge-like drinking in male and female mice. These observations provide the first direct evidence that NPY signaling in the BLA, and specifically BLA communication with the mPFC, modulates binge-like ethanol consumption.
Collapse
Affiliation(s)
- Stacey L Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599-7178, USA
| | - Sophie C Bendrath
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599-7178, USA
| | - Elizabeth M Yates
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA.
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599-7178, USA.
| |
Collapse
|
7
|
Bollinger JL, Horchar MJ, Wohleb ES. Repeated Activation of Pyramidal Neurons in the Prefrontal Cortex Alters Microglial Phenotype in Male Mice. J Pharmacol Exp Ther 2024; 388:715-723. [PMID: 38129124 PMCID: PMC10801771 DOI: 10.1124/jpet.123.001759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Aberrant neuronal activity in the cortex alters microglia phenotype and function in several contexts, including chronic psychologic stress and neurodegenerative disease. Recent findings even suggest that heightened levels of neuronal activity spur microglia to phagocytose synapses, with potential impacts on cognition and behavior. Thus, the present studies were designed to determine if activation of neurons alone-independent of disease or dysfunction-is sufficient to alter microglial phenotype in the medial prefrontal cortex (mPFC), a brain region critical in emotion regulation and cognition. In these studies, we used both an adeno-associated virus-mediated and Cre-dependent chemogenetic [designer receptors exclusively activated by designer drugs (DREADD)] approach to repeatedly activate excitatory pyramidal neurons (CaMKIIa+) neurons in the mPFC. Various molecular, cytometric, and behavioral endpoints were examined. Recurrent DREADD-induced neuronal activation led to pronounced changes in microglial density, clustering, and morphology in the mPFC and increased microglia-specific transcripts implicated in synaptic pruning (e.g., Csf1r, Cd11b). Further analyses revealed that the magnitude of DREADD-induced neuronal activation was significantly correlated with measures of microglial morphology in the mPFC. These alterations in microglial phenotype coincided with an increase in microglial lysosome volume in the mPFC and selective deficits in working memory function. Altogether, these findings indicate that repeated neuronal activation alone is sufficient to drive changes in microglia phenotype and function in the mPFC. Future studies using optogenetic and chemogenetic approaches to manipulate neural circuits need to consider microglial and other nonneuronal contributions to physiologic and behavioral outcomes. SIGNIFICANCE STATEMENT: Microglia are highly attuned to fluctuations in neuronal activity. Here we show that repeated activation of pyramidal neurons in the prefrontal cortex induces broad changes in microglia phenotype; this includes upregulation of pathways associated with microglial proliferation, microglia-neuron interactions, and lysosome induction. Our findings suggest that studies using chemogenetic or optogenetic approaches to manipulate neural circuits should be mindful of indirect effects on nonneuronal cells and their potential contribution to measured outcomes.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Matthew J Horchar
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
8
|
Rader Groves AM, Gallimore CG, Hamm JP. Modern Methods for Unraveling Cell- and Circuit-Level Mechanisms of Neurophysiological Biomarkers in Psychiatry. ADVANCES IN NEUROBIOLOGY 2024; 40:157-188. [PMID: 39562445 DOI: 10.1007/978-3-031-69491-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Methods for studying the mammalian brain in vivo have advanced dramatically in the past two decades. State-of-the-art optical and electrophysiological techniques allow direct recordings of the functional dynamics of thousands of neurons across distributed brain circuits with single-cell resolution. With transgenic tools, specific neuron types, pathways, and/or neurotransmitters can be targeted in user-determined brain areas for precise measurement and manipulation. In this chapter, we catalog these advancements. We emphasize that the impact of this methodological revolution on neuropsychiatry remains uncertain. This stems from the fact that these tools remain mostly limited to research in mice. And while translational paradigms are needed, recapitulations of human psychiatric disease states (e.g., schizophrenia) in animal models are inherently challenging to validate and may have limited utility in heterogeneous disease populations. Here we focus on an alternative strategy aimed at the study of neurophysiological biomarkers-the subject of this volume-translated to animal models, where precision neuroscience tools can be applied to provide molecular, cellular, and circuit-level insights and novel therapeutic targets. We summarize several examples of this approach throughout the chapter and emphasize the importance of careful experimental design and choice of dependent measures.
Collapse
Affiliation(s)
- A M Rader Groves
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - C G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - J P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA.
| |
Collapse
|
9
|
Akter M, Hasan M, Ramkrishnan AS, Iqbal Z, Zheng X, Fu Z, Lei Z, Karim A, Li Y. Astrocyte and L-lactate in the anterior cingulate cortex modulate schema memory and neuronal mitochondrial biogenesis. eLife 2023; 12:e85751. [PMID: 37960975 PMCID: PMC10645423 DOI: 10.7554/elife.85751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Astrocyte-derived L-lactate was shown to confer beneficial effects on synaptic plasticity and cognitive functions. However, how astrocytic Gi signaling in the anterior cingulate cortex (ACC) modulates L-lactate levels and schema memory is not clear. Here, using chemogenetic approach and well-established behavioral paradigm, we demonstrate that astrocytic Gi pathway activation in the ACC causes significant impairments in flavor-place paired associates (PAs) learning, schema formation, and PA memory retrieval in rats. It also impairs new PA learning even if a prior associative schema exists. These impairments are mediated by decreased L-lactate in the ACC due to astrocytic Gi activation. Concurrent exogenous L-lactate administration bilaterally into the ACC rescues these impairments. Furthermore, we show that the impaired schema memory formation is associated with a decreased neuronal mitochondrial biogenesis caused by decreased L-lactate level in the ACC upon astrocytic Gi activation. Our study also reveals that L-lactate-mediated mitochondrial biogenesis is dependent on monocarboxylate transporter 2 (MCT2) and NMDA receptor activity - discovering a previously unrecognized signaling role of L-lactate. These findings expand our understanding of the role of astrocytes and L-lactate in the brain functions.
Collapse
Affiliation(s)
- Mastura Akter
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
| | - Mahadi Hasan
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
| | - Aruna Surendran Ramkrishnan
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
| | - Zafar Iqbal
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong Kong SARChina
| | - Xianlin Zheng
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
| | - Zhongqi Fu
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong Kong SARChina
| | - Zhuogui Lei
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
| | - Anwarul Karim
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
| | - Ying Li
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong Kong SARChina
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong KongHong Kong SARChina
| |
Collapse
|
10
|
Bifidobacterium breve Bif11 supplementation improves depression-related neurobehavioural and neuroinflammatory changes in the mouse. Neuropharmacology 2023; 229:109480. [PMID: 36868402 DOI: 10.1016/j.neuropharm.2023.109480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Gut dysbiosis has been closely linked to the onset and progression of several brain-related disorders such as depression. The administration of microbiota-based formulations such as probiotics helps restore healthy gut flora and plays a role in preventing and treating depression-like behavior. Therefore, we evaluated the efficacy of probiotic supplementation using our recently isolated putative probiotic Bifidobacterium breve Bif11 in ameliorating lipopolysaccharide (LPS)-induced depression-like behavior in male Swiss albino mice. Mice were fed orally with B. breve Bif11 (1 × 1010 CFU and 2 × 1010 CFU) for 21 days before being challenged with a single intraperitoneal LPS injection (0.83 mg/kg). Behavioral, biochemical, histological and molecular analysis were done with an emphasis on inflammatory pathways linked to depression-like behavior. Daily supplementation with B. breve Bif11 for 21 days prevented the onset of depression-like behavior induced by LPS injection, besides reducing the levels of inflammatory cytokines such as matrix metalloproteinase-2, c-reactive protein, interleukin-6, tumor necrosis factor-alpha and nuclear factor kappa-light-chain-enhancer of activated B cells. It also prevented the decrease of the brain-derived neurotrophic factor levels and neuronal cell viability in the prefrontal cortex of LPS-treated mice. Furthermore, we observed that gut permeability was reduced, there was an improved short-chain fatty acid profile and reduced gut dysbiosis in the LPS mice fed with B. breve Bif11. Similarly, we observed a decrease in behavioural deficits and restoration of gut permeability in chronic mild stress. Together, these results would help in deciphering the role of probiotics in the management of neurological disorders where depression, anxiety and inflammation are prominent clinical features.
Collapse
|
11
|
Perez-Gianmarco L, Kurt B, Kukley M. Technical approaches and challenges to study AMPA receptors in oligodendrocyte lineage cells: Past, present, and future. Glia 2023; 71:819-847. [PMID: 36453615 DOI: 10.1002/glia.24305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
Receptors for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPARs) are ligand-gated ionotropic receptors for glutamate that is a major excitatory neurotransmitter in the central nervous system. AMPARs are located at postsynaptic sites of neuronal synapses where they mediate fast synaptic signaling and synaptic plasticity. Remarkably, AMPARs are also expressed by glial cells. Their expression by the oligodendrocyte (OL) lineage cells is of special interest because AMPARs mediate fast synaptic communication between neurons and oligodendrocyte progenitor cells (OPCs), modulate proliferation and differentiation of OPCs, and may also be involved in regulation of myelination. On the other hand, during pathological conditions, AMPARs may mediate damage of the OL lineage cells. In the present review, we focus on the technical approaches that have been used to study AMPARs in the OL lineage cells, and discuss future perspectives of AMPAR research in these glial cells.
Collapse
Affiliation(s)
- Lucila Perez-Gianmarco
- Laboratory of Neuronal and Glial Physiology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begüm Kurt
- Laboratory of Neuronal and Glial Physiology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maria Kukley
- Laboratory of Neuronal and Glial Physiology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Kolling LJ, Tatti R, Lowry T, Loeven AM, Fadool JM, Fadool DA. Modulating the Excitability of Olfactory Output Neurons Affects Whole-Body Metabolism. J Neurosci 2022; 42:5966-5990. [PMID: 35710623 PMCID: PMC9337614 DOI: 10.1523/jneurosci.0190-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/29/2023] Open
Abstract
Metabolic state can alter olfactory sensitivity, but it is unknown whether the activity of the olfactory bulb (OB) may fine tune metabolic homeostasis. Our objective was to use CRISPR gene editing in male and female mice to enhance the excitability of mitral/tufted projection neurons (M/TCs) of the OB to test for improved metabolic health. Ex vivo slice recordings of MCs in CRISPR mice confirmed increased excitability due the targeted loss of Kv1.3 channels, which resulted in a less negative resting membrane potential (RMP), enhanced action potential (AP) firing, and insensitivity to the selective channel blocker margatoxin (MgTx). CRISPR mice exhibited enhanced odor discrimination using a habituation/dishabituation paradigm. CRISPR mice were challenged for 25 weeks with a moderately high-fat (MHF) diet, and compared with littermate controls, male mice were resistance to diet-induced obesity (DIO). Female mice did not exhibit DIO. CRISPR male mice gained less body weight, accumulated less white adipose tissue, cleared a glucose challenge more quickly, and had less serum leptin and liver triglycerides. CRISPR male mice consumed equivalent calories as control littermates, and had unaltered energy expenditure (EE) and locomotor activity, but used more fats for metabolic substrate over that of carbohydrates. Counter to CRISPR-engineered mice, by using chemogenetics to decrease M/TC excitability in male mice, activation of inhibitory designer receptors exclusively activated by designer drugs (DREADDs) caused a decrease in odor discrimination, and resulted in a metabolic profile that was obesogenic, mice had reduced EE and oxygen consumption (VO2). We conclude that the activity of M/TC projection neurons canonically carries olfactory information and simultaneously can regulate whole-body metabolism.SIGNIFICANCE STATEMENT The olfactory system drives food choice, and olfactory sensitivity is strongly correlated to hunger and fullness. Olfactory function thereby influences nutritional balance and obesity outcomes. Obesity has become a health and financial crisis in America, shortening life expectancy and increasing the severity of associated illnesses. It is expected that 51% of Americans will be obese by the year 2030. Using CRISPR gene editing and chemogenetic approaches, we discovered that changing the excitability of output neurons in the olfactory bulb (OB) affects metabolism and body weight stabilization in mice. Our results suggest that long-term therapeutic targeting of OB activity to higher processing centers may be a future clinical treatment of obesity or type II Diabetes.
Collapse
Affiliation(s)
- Louis John Kolling
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, Florida 32306
| | - Roberta Tatti
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306
| | - Troy Lowry
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306
| | - Ashley M Loeven
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306
| | - James M Fadool
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306
- Program in Neuroscience, The Florida State University, Tallahassee, Florida 32306
| | - Debra Ann Fadool
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, Florida 32306
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306
- Program in Neuroscience, The Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
13
|
Amer A, Martin JH. Repeated motor cortex theta-burst stimulation produces persistent strengthening of corticospinal motor output and durable spinal cord structural changes in the rat. Brain Stimul 2022; 15:1013-1022. [PMID: 35850438 PMCID: PMC10164459 DOI: 10.1016/j.brs.2022.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The strength of connections between motor cortex (MCX) and muscle can be augmented with a variety of stimulation protocols. Augmenting MCX-to-muscle connection strength by neuromodulation may be a way to enhance the intact motor system's capacity for acquiring motor skills and promote function after injury to strengthen spared connections. But this enhancement must be maintained for functional improvements. OBJECTIVE We determined if brief MCX muscle evoked potential (MEP) enhancement produced by intermittent theta burst stimulation (iTBS) can be converted into a longer and structurally durable form of response enhancement with repeated daily and longer-term application. METHODS Electrical iTBS was delivered through an implanted MCX epidural electrode and MEPs were recorded using implanted EMG electrodes in awake naïve rats. MCX activity was modulated further using chemogenetic (DREADDs) excitation and inhibition. Corticospinal tract (CST) axons were traced and immunochemistry used to measure CST synapses. RESULTS A single MCX iTBS block (600 pulses) produced MEP LTP lasting ∼30-45 min. Concatenating five iTBS blocks within a 30-min session produced MEP LTP lasting 24-48 h, which could be strengthened or weakened by bidirectional MCX activity modulation. Effect duration was not changed. Finally, daily induction of this persistent MEP LTP with daily iTBS for 10-days produced MEP enhancement outlasting the stimulation period by at least 10 days, and accompanied by CST axonal outgrowth and structural changes at the CST-spinal interneuron synapse. CONCLUSION Our findings inform the mechanisms of iTBS and provide a framework for designing neuromodulatory strategies to promote durable enhancement of cortical motor actions.
Collapse
Affiliation(s)
- Alzahraa Amer
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
14
|
Van Steenbergen V, Bareyre FM. Chemogenetic approaches to unravel circuit wiring and related behavior after spinal cord injury. Exp Neurol 2021; 345:113839. [PMID: 34389362 DOI: 10.1016/j.expneurol.2021.113839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 01/21/2023]
Abstract
A critical shortcoming of the central nervous system is its limited ability to repair injured nerve connections. Trying to overcome this limitation is not only relevant to understand basic neurobiological principles but also holds great promise to advance therapeutic strategies related, in particular, to spinal cord injury (SCI). With barely any SCI patients re-gaining complete neurological function, there is a high need to understand how we could target and improve spinal plasticity to re-establish neuronal connections into a functional network. The development of chemogenetic tools has proven to be of great value to understand functional circuit wiring before and after injury and to correlate novel circuit formation with behavioral outcomes. This review covers commonly used chemogenetic approaches based on metabotropic receptors and their use to improve our understanding of circuit wiring following spinal cord injury.
Collapse
Affiliation(s)
- Valérie Van Steenbergen
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany; Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany.
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany; Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
15
|
Domi E, Xu L, Toivainen S, Nordeman A, Gobbo F, Venniro M, Shaham Y, Messing RO, Visser E, van den Oever MC, Holm L, Barbier E, Augier E, Heilig M. A neural substrate of compulsive alcohol use. SCIENCE ADVANCES 2021; 7:eabg9045. [PMID: 34407947 PMCID: PMC8373126 DOI: 10.1126/sciadv.abg9045] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Alcohol intake remains controlled in a majority of users but becomes "compulsive," i.e., continues despite adverse consequences, in a minority who develop alcohol addiction. Here, using a footshock-punished alcohol self-administration procedure, we screened a large population of outbred rats to identify those showing compulsivity operationalized as punishment-resistant self-administration. Using unsupervised clustering, we found that this behavior emerged as a stable trait in a subpopulation of rats and was associated with activity of a brain network that included central nucleus of the amygdala (CeA). Activity of PKCδ+ inhibitory neurons in the lateral subdivision of CeA (CeL) accounted for ~75% of variance in punishment-resistant alcohol taking. Activity-dependent tagging, followed by chemogenetic inhibition of neurons activated during punishment-resistant self-administration, suppressed alcohol taking, as did a virally mediated shRNA knockdown of PKCδ in CeA. These findings identify a previously unknown mechanism for a core element of alcohol addiction and point to a novel candidate therapeutic target.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden.
| | - Li Xu
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
- Psychosomatic Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sanne Toivainen
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| | - Anton Nordeman
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Marco Venniro
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yavin Shaham
- Behavioral Neuroscience Branch Intramural Research Program, National Institute on Drug Abuse (NIDA), NIH, Baltimore, MD 21224, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research and Departments of Neuroscience and Neurology, University of Texas at Austin, Austin, TX 78712, USA
| | - Esther Visser
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Lovisa Holm
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| | - Estelle Barbier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| |
Collapse
|
16
|
Nuno-Perez A, Trusel M, Lalive AL, Congiu M, Gastaldo D, Tchenio A, Lecca S, Soiza-Reilly M, Bagni C, Mameli M. Stress undermines reward-guided cognitive performance through synaptic depression in the lateral habenula. Neuron 2021; 109:947-956.e5. [PMID: 33535028 PMCID: PMC7980092 DOI: 10.1016/j.neuron.2021.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
Weighing alternatives during reward pursuit is a vital cognitive computation that, when disrupted by stress, yields aspects of neuropsychiatric disorders. To examine the neural mechanisms underlying these phenomena, we employed a behavioral task in which mice were confronted by a reward and its omission (i.e., error). The experience of error outcomes engaged neuronal dynamics within the lateral habenula (LHb), a subcortical structure that supports appetitive behaviors and is susceptible to stress. A high incidence of errors predicted low strength of habenular excitatory synapses. Accordingly, stressful experiences increased error choices while decreasing glutamatergic neurotransmission onto LHb neurons. This synaptic adaptation required a reduction in postsynaptic AMPA receptors (AMPARs), irrespective of the anatomical source of glutamate. Bidirectional control of habenular AMPAR transmission recapitulated and averted stress-driven cognitive deficits. Thus, a subcortical synaptic mechanism vulnerable to stress underlies behavioral efficiency during cognitive performance.
Collapse
Affiliation(s)
- Alvaro Nuno-Perez
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Massimo Trusel
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Arnaud L Lalive
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Mauro Congiu
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Denise Gastaldo
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Anna Tchenio
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Claudia Bagni
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland; Inserm, UMR-S 839, 75005 Paris, France.
| |
Collapse
|
17
|
Echagarruga CT, Gheres KW, Norwood JN, Drew PJ. nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in somatosensory cortex of mice. eLife 2020; 9:e60533. [PMID: 33016877 PMCID: PMC7556878 DOI: 10.7554/elife.60533] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cortical neural activity is coupled to local arterial diameter and blood flow. However, which neurons control the dynamics of cerebral arteries is not well understood. We dissected the cellular mechanisms controlling the basal diameter and evoked dilation in cortical arteries in awake, head-fixed mice. Locomotion drove robust arterial dilation, increases in gamma band power in the local field potential (LFP), and increases calcium signals in pyramidal and neuronal nitric oxide synthase (nNOS)-expressing neurons. Chemogenetic or pharmocological modulation of overall neural activity up or down caused corresponding increases or decreases in basal arterial diameter. Modulation of pyramidal neuron activity alone had little effect on basal or evoked arterial dilation, despite pronounced changes in the LFP. Modulation of the activity of nNOS-expressing neurons drove changes in the basal and evoked arterial diameter without corresponding changes in population neural activity.
Collapse
Affiliation(s)
| | - Kyle W Gheres
- Molecular, Cellular, and Integrative Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
| | - Jordan N Norwood
- Cell and Developmental Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
| | - Patrick J Drew
- Bioengineering Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Molecular, Cellular, and Integrative Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Cell and Developmental Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Departments of Engineering Science and Mechanics, Biomedical Engineering, and Neurosurgery, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
18
|
Pati S, Saba K, Salvi SS, Tiwari P, Chaudhari PR, Verma V, Mukhopadhyay S, Kapri D, Suryavanshi S, Clement JP, Patel AB, Vaidya VA. Chronic postnatal chemogenetic activation of forebrain excitatory neurons evokes persistent changes in mood behavior. eLife 2020; 9:56171. [PMID: 32955432 PMCID: PMC7652419 DOI: 10.7554/elife.56171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
Early adversity is a risk factor for the development of adult psychopathology. Common across multiple rodent models of early adversity is increased signaling via forebrain Gq-coupled neurotransmitter receptors. We addressed whether enhanced Gq-mediated signaling in forebrain excitatory neurons during postnatal life can evoke persistent mood-related behavioral changes. Excitatory hM3Dq DREADD-mediated chemogenetic activation of forebrain excitatory neurons during postnatal life (P2–14), but not in juvenile or adult windows, increased anxiety-, despair-, and schizophrenia-like behavior in adulthood. This was accompanied by an enhanced metabolic rate of cortical and hippocampal glutamatergic and GABAergic neurons. Furthermore, we observed reduced activity and plasticity-associated marker expression, and perturbed excitatory/inhibitory currents in the hippocampus. These results indicate that Gq-signaling-mediated activation of forebrain excitatory neurons during the critical postnatal window is sufficient to program altered mood-related behavior, as well as functional changes in forebrain glutamate and GABA systems, recapitulating aspects of the consequences of early adversity. Stress and adversity in early childhood can have long-lasting effects, predisposing people to mental illness and mood disorders in adult life. The weeks immediately before and after birth are critical for establishing key networks of neurons in the brain. Therefore, any disruption to these neural circuits during this time can be detrimental to emotional development. However, it is still unclear which cellular mechanisms cause these lasting changes in behavior. Studies in animals suggest that these long-term effects could result from abnormalities in a few signaling pathways in the brain. For example, it has been proposed that overstimulating the cells that activate circuits in the forebrain – also known as excitatory neurons – may contribute to the behavioral changes that persist into adulthood. To test this theory, Pati et al. used genetic engineering to modulate a signaling pathway in male mice, which is known to stimulate excitatory neurons in the forebrain. The experiments showed that prolonged activation of excitatory neurons in the first two weeks after birth resulted in anxious and despair-like behaviors as the animals aged. The mice also displayed discrepancies in how they responded to certain external sensory information, which is a hallmark of schizophrenia-like behavior. However, engineering the same changes in adolescent and adult mice had no effect on their mood-related behaviors. This animal study reinforces just how critical the first few weeks of life are for optimal brain development. It provides an insight into a possible mechanism of how disruption during this time could alter emotional behavior. The findings are also relevant to psychiatrists interested in the underlying causes of mental illness after early childhood adversity.
Collapse
Affiliation(s)
- Sthitapranjya Pati
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Kamal Saba
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sonali S Salvi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Praachi Tiwari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Pratik R Chaudhari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Sourish Mukhopadhyay
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Darshana Kapri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shital Suryavanshi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Anant B Patel
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
19
|
Hamilton KA, Santhakumar V. Current ex Vivo and in Vitro Approaches to Uncovering Mechanisms of Neurological Dysfunction after Traumatic Brain Injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:18-24. [PMID: 32548365 PMCID: PMC7297186 DOI: 10.1016/j.cobme.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury often leads to progressive alterations at the molecular to circuit levels resulting in epilepsy and memory impairments. Ex vivo and in vitro models have provided a powerful platform for investigating the multimodal alteration after trauma. Recent ex vivo analyses using voltage sensitive dye imaging, optogenetics, and glutamate uncaging have revealed circuit abnormalities following in vivo brain injury. In vitro injury models have enabled examination of early and progressive changes in activity while development of three-dimensional organoids derived from human induced pluripotent stem cells have opened novel avenues for injury research. Here, we highlight recent advances in ex vivo and in vitro systems, focusing on their potential for advancing mechanistic understandings, possible limitations, and implications for therapeutics.
Collapse
Affiliation(s)
- Kelly Andrew Hamilton
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Vijayalakshmi Santhakumar
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
20
|
Kim S, Kyung T, Chung JH, Kim N, Keum S, Lee J, Park H, Kim HM, Lee S, Shin HS, Do Heo W. Non-invasive optical control of endogenous Ca 2+ channels in awake mice. Nat Commun 2020; 11:210. [PMID: 31924789 PMCID: PMC6954201 DOI: 10.1038/s41467-019-14005-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
Optogenetic approaches for controlling Ca2+ channels provide powerful means for modulating diverse Ca2+-specific biological events in space and time. However, blue light-responsive photoreceptors are, in principle, considered inadequate for deep tissue stimulation unless accompanied by optic fiber insertion. Here, we present an ultra-light-sensitive optogenetic Ca2+ modulator, named monSTIM1 encompassing engineered cryptochrome2 for manipulating Ca2+ signaling in the brain of awake mice through non-invasive light delivery. Activation of monSTIM1 in either excitatory neurons or astrocytes of mice brain is able to induce Ca2+-dependent gene expression without any mechanical damage in the brain. Furthermore, we demonstrate that non-invasive Ca2+ modulation in neurons can be sufficiently and effectively translated into changes in behavioral phenotypes of awake mice. Optogenetic applications in the brain of live animals often require the use of optic fibers due to poor tissue-penetration of blue light. Here the authors present monSTIM1, an improved high sensitivity optogenetic tool able to modulate Ca2+ signaling in the brain of awake mice using non-invasive light stimulation.
Collapse
Affiliation(s)
- Sungsoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Taeyoon Kyung
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jae-Hee Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Nury Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sehoon Keum
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jinsu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyerim Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. .,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea. .,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
21
|
Kono R, Kim GL, Nagata H, Ikegaya Y, Koyama R. Induced neuronal activity does not attenuate amyloid beta-induced synaptic loss in vitro. Neuropsychopharmacol Rep 2019; 39:306-311. [PMID: 31376224 PMCID: PMC7292309 DOI: 10.1002/npr2.12074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022] Open
Abstract
Aim The accumulation of amyloid beta (Aβ) is one of the characteristics of Alzheimer's disease. The excessive accumulation of Aβ has been suggested to result in a decrease in the number of synapses. Although the number of synapses is generally modulated by neuronal activity, whether neuronal activity affects Aβ‐induced synapse loss remains unknown. Therefore, we addressed this question using a primary culture of hippocampal neurons. Method The neuronal activity of cultured hippocampal neurons from mouse pups was increased using the chemogenetic technique designer receptors exclusively activated by designer drugs (DREADD). The cultured neurons were treated with Aβ, and synapse density was assessed by immunocytochemistry. Results Aβ decreased the synapse density probably by decreasing postsynapse. On the other hand, enhanced neuronal activity did not affect the synapse density significantly. However, there was a trend that enhanced neuronal activity increased especially presynapse density. Conclusion We found that enhanced neuronal activity did not affect Aβ‐induced synapse loss in vitro. We investigated whether DREADD system‐mediated enhancement of neuronal activity modulates Aβ‐induced synaptic loss in the primary culture of hippocampal neurons, finding that enhanced neuronal activity does not attenuate Aβ‐induced synaptic loss.![]()
Collapse
Affiliation(s)
- Rena Kono
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Gyu Li Kim
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidetaka Nagata
- Platform Technology Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|