1
|
Lyu Z, Kinkade JA, Bivens NJ, Roberts RM, Joshi T, Rosenfeld CS. Effects of oxycodone on placental lineages: Evidence from the transcriptome profile of mouse trophoblast giant cells. Proc Natl Acad Sci U S A 2024; 121:e2412349121. [PMID: 39475633 PMCID: PMC11551428 DOI: 10.1073/pnas.2412349121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/28/2024] [Indexed: 11/13/2024] Open
Abstract
Pregnant women are often prescribed or abuse opioid drugs. The placenta is likely the key to understanding how opioids cause adverse pregnancy outcomes. Maternal oxycodone (OXY) exposure of pregnant mice leads to disturbances in the layer of invasive parietal trophoblast giant cells (pTGC) that forms the interface between the placenta and uterus. These cells are analogous to extravillous trophoblasts of the human placenta. They are crucial to coordinating the metabolic needs of the conceptus with those of the mother and are primary participants in the placenta-brain axis. Their large nuclear size, however, has precluded both single-cell (sc) and single-nucleus (sn) RNA-seq analyses beyond embryonic day (E) 8.5. Here, we compared the transcriptomes of placentas from pregnant mice exposed to OXY with unexposed controls at E12.5, with particular emphasis on the pTGC. The nonfluidic Parse snRNA-seq approach permitted characterization of the nuclear transcriptomes of all the major placental cell lineages and their presumed progenitors at E12.5. OXY exposure had a negligible effect on components of the placental labyrinth, including the two syncytial cell layers, but caused transcriptomic changes consistent with metabolic stress throughout the spongiotrophoblast. Most notably, there was loss of the majority of pTGC, whose normal gene expression is consistent with elevated energy demand relating to biosynthesis of multiple secretory products, especially hormones, and endoduplication of DNA. This unusual sensitivity of pTGC presumably puts the pregnancy and future health of the offspring at particular risk to OXY exposure.
Collapse
Affiliation(s)
- Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO65211
| | - Jessica A. Kinkade
- Department of Biomedical Sciences. University of Missouri, Columbia, MO65211
| | - Nathan J. Bivens
- Department of Genomics Technology Core Facility, University of Missouri, Columbia, MO65211
| | - R. Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
- Department of Biochemistry, University of Missouri, Columbia, MO65211
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO65211
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri, Columbia, MO65211
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211
| | - Cheryl S. Rosenfeld
- Department of Biomedical Sciences. University of Missouri, Columbia, MO65211
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO65211
- Department of Genetics Area Program, University of Missouri, Columbia, MO65211
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO65211
| |
Collapse
|
2
|
Nyberg H, Bogen IL, Nygaard E, Andersen JM. Effects of prenatal exposure to methadone or buprenorphine and maternal separation on anxiety-like behavior in rats. Drug Alcohol Depend 2024; 262:111367. [PMID: 39003831 DOI: 10.1016/j.drugalcdep.2024.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The use of medications for opioid use disorder such as methadone or buprenorphine is increasing among pregnant women. However, long-term effects of this treatment on the children's health are not well understood. A key challenge is distinguishing the effects of opioid exposure from other confounding factors associated with human opioid use, such as reduced maternal care. In this study, we therefore used a multi-risk factor design to examine anxiety-like behavior in rats prenatally exposed to methadone or buprenorphine, with or without maternal separation the first two weeks after birth. METHODS Female Sprague Dawley rats were exposed to methadone (10mg/kg/day), buprenorphine (1mg/kg/day) or sterile water throughout gestation. Half of the offspring in each litter experienced maternal separation for 3h per day from postnatal day 2 to 12. Male and female offspring (6-9 weeks) were tested in the open field, light-dark transition and elevated plus maze tests to assess anxiety-like behavior. RESULTS Offspring exposed to buprenorphine and not subjected to maternal separation displayed increased anxiety-like behavior in 3 out of 6 outcomes in the light-dark transition and elevated plus maze tests. Maternal separation did not exacerbate, but rather diminished this behavior. Males and females responded differently to methadone, with a trend towards reduced anxiety for males and increased anxiety for females. CONCLUSIONS Prenatal exposure to methadone or buprenorphine may increase the risk of developing anxiety-like behavior later in life, but the effect depends on specific subgroup characteristics. Further research is required to draw definitive conclusions.
Collapse
Affiliation(s)
- Henriette Nyberg
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway.
| | - Inger Lise Bogen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
| | - Egil Nygaard
- PROMENTA, Department of Psychology, Faculty of Social Sciences, University of Oslo, P.O. Box 1094 Blindern, Oslo 0317, Norway
| | - Jannike Mørch Andersen
- Section of Forensic Research, Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4950 Nydalen, Oslo 0424, Norway; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
| |
Collapse
|
3
|
Flores A, Nguyen NM, Devanaboyina M, Sanketh S, Athota P, Jagadesan S, Guda C, Yelamanchili SV, Pendyala G. Neurobehavioral Characterization of Perinatal Oxycodone-Exposed Offspring in Early Adolescence. J Neuroimmune Pharmacol 2024; 19:29. [PMID: 38874861 DOI: 10.1007/s11481-024-10129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
The opioid epidemic has received considerable attention, but the impact on perinatal opioid-exposed (POE) offspring remains underexplored. This study addresses the emerging public health challenge of understanding and treating POE children. We examined two scenarios using preclinical models: offspring exposed to oxycodone (OXY) in utero (IUO) and acute postnatal OXY (PNO). We hypothesized exposure to OXY during pregnancy primes offspring for neurodevelopmental deficits and severity of deficits is dependent on timing of exposure. Notable findings include reduced head size and brain weight in offspring. Molecular analyses revealed significantly lower levels of inflammasome-specific genes in the prefrontal cortex (PFC). Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) highlighted the enrichment of genes associated with mitochondrial and synapse dysfunction in POE offspring. Western blot analysis validated IPA predictions of mitochondrial dysfunction in PFC-derived synaptosomes. Behavioral studies identified significant social deficits in POE offspring. This study presents the first comparative analysis of acute PNO- and IUO-offspring during early adolescence finding acute PNO-offspring have considerably greater deficits. The striking difference in deficit severity in acute PNO-offspring suggests that exposure to opioids in late pregnancy pose the greatest risk for offspring well-being.
Collapse
Affiliation(s)
- Adrian Flores
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE, 68198, USA
| | - Nghi M Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, 68198, USA
- Child Health Research Institute, Omaha, NE, 68198, USA
| | - Murali Devanaboyina
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Samarth Sanketh
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Pranavi Athota
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | | | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, 68198, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, 68198, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA.
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, 68198, USA.
- Child Health Research Institute, Omaha, NE, 68198, USA.
- National Strategic Research Institute, UNMC, Omaha, NE, USA.
| |
Collapse
|
4
|
Ferrante JR, Blendy JA. Advances in animal models of prenatal opioid exposure. Trends Neurosci 2024; 47:367-382. [PMID: 38614891 PMCID: PMC11096018 DOI: 10.1016/j.tins.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
Neonatal opioid withdrawal syndrome (NOWS) is a growing public health concern. The complexity of in utero opioid exposure in clinical studies makes it difficult to investigate underlying mechanisms that could ultimately inform early diagnosis and treatments. Clinical studies are unable to dissociate the influence of maternal polypharmacy or the environment from direct effects of in utero opioid exposure, highlighting the need for effective animal models. Early animal models of prenatal opioid exposure primarily used the prototypical opioid, morphine, and opioid exposure that was often limited to a narrow period during gestation. In recent years, the number of preclinical studies has grown rapidly. Newer models utilize both prescription and nonprescription opioids and vary the onset and duration of opioid exposure. In this review, we summarize novel prenatal opioid exposure models developed in recent years and attempt to reconcile results between studies while critically identifying gaps within the current literature.
Collapse
Affiliation(s)
- Julia R Ferrante
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Zhang Y, Butelman ER, Kreek MJ. Effect of prenatal and early post-natal oxycodone exposure on the reinforcing and antinociceptive effects of oxycodone in adult C57BL/6 J mice. Psychopharmacology (Berl) 2024; 241:359-377. [PMID: 38086926 DOI: 10.1007/s00213-023-06493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/25/2023] [Indexed: 01/24/2024]
Abstract
Abuse of opioids (mu-opioid agonists such as oxycodone) among parents during the gestation and early post-natal period is a concern for the long-term health of the offspring, beyond potential neonatal withdrawal symptoms. However, there is only limited information on such effects. OBJECTIVES We examined how prenatal, and early-post natal oxycodone exposure affected opioid addiction behaviors. METHODS Adult male and female C57BL/CJ mice housed separately were first injected with ascending doses of oxycodone 1 time/day (1 mg/kg × 10 days, 1.5 mg/kg × 10 days, 2 mg/kg × 10 days, s.c.) whereas control mice were injected with saline. Newly formed parental dyads were then housed together and continued to receive ascending doses of oxycodone (3 mg/kg × 10 days, 4 mg/kg × 10 days, 5 mg/kg × 10 days, 6 mg/kg × 10 days or saline, s.c.) or saline during mating and gestation until the birth of the litter. The dams continued to receive oxycodone or saline through lactation, until F1 offspring were weaned. Upon reaching adulthood (12 weeks of age), male and female F1 offspring were examined in intravenous self-administration (IVSA) of oxycodone, on oxycodone-induced conditioned place preference (CPP) and oxycodone-induced antinociception. RESULTS Adult F1 male and female offspring of parental dyads exposed to oxycodone self-administered more oxycodone, compared to offspring of control parental dyads. Ventral and dorsal striatal mRNA levels of genes such as Fkbp5 and Oprm1 were altered following oxycodone self-administration. CONCLUSION Prenatal and early post-natal oxycodone exposure enhanced oxycodone self-administration during adulthood in the C57BL/6 J mice.
Collapse
Affiliation(s)
- Yong Zhang
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY, 10065, USA.
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY, 10065, USA
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY, 10065, USA
| |
Collapse
|
6
|
Abu YF, Singh S, Tao J, Chupikova I, Singh P, Meng J, Roy S. Opioid-induced dysbiosis of maternal gut microbiota during gestation alters offspring gut microbiota and pain sensitivity. Gut Microbes 2024; 16:2292224. [PMID: 38108125 PMCID: PMC10730209 DOI: 10.1080/19490976.2023.2292224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a rapid increase in neonates born with a history of prenatal opioid exposure. How prenatal opioid exposure affects pain sensitivity in offspring is of interest, as this may perpetuate the opioid epidemic. While few studies have reported hypersensitivity to thermal pain, potential mechanisms have not been described. This study posits that alterations in the gut microbiome may underly hypersensitivity to pain in prenatally methadone-exposed 3-week-old male offspring, which were generated using a mouse model of prenatal methadone exposure. Fecal samples collected from dams and their offspring were subjected to 16s rRNA sequencing. Thermal and mechanical pain were assessed using the tail flick and Von Frey assays. Transcriptomic changes in whole brain samples of opioid or saline-exposed offspring were investigated using RNA-sequencing, and midbrain sections from these animals were subjected to qPCR profiling of genes related to neuropathic and inflammatory pain pathways. Prenatal methadone exposure increased sensitivity to thermal and mechanical pain and elevated serum levels of IL-17a. Taxonomical analysis revealed that prenatal methadone exposure resulted in significant alterations in fecal gut microbiota composition, including depletion of Lactobacillus, Bifidobacterium, and Lachnospiracea sp and increased relative abundance of Akkermansia, Clostridium sensu stricto 1, and Lachnoclostridium. Supplementation of the probiotic VSL#3 in dams rescued hypersensitivity to thermal and mechanical pain in prenatally methadone-exposed offspring. Similarly, cross-fostering prenatally methadone-exposed offspring to control dams also attenuated hypersensitivity to thermal pain in opioid-exposed offspring. Modulation of the maternal and neonatal gut microbiome with probiotics resulted in transcriptional changes in genes related to neuropathic and immune-related signaling in whole brain and midbrain samples of prenatally methadone-exposed offspring. Together, our work provides compelling evidence of the gut-brain-axis in mediating pain sensitivity in prenatally opioid-exposed offspring.
Collapse
Affiliation(s)
- Yaa F. Abu
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, University of Miami, Miami, FL, USA
| | | | - Praveen Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL, USA
| |
Collapse
|
7
|
Borrelli KN, Wingfield KK, Yao EJ, Zamorano CA, Sena KD, Beierle JA, Roos MA, Zhang H, Wachman EM, Bryant CD. Decreased myelin-related gene expression in the nucleus accumbens during spontaneous neonatal opioid withdrawal in the absence of long-term behavioral effects in adult outbred CFW mice. Neuropharmacology 2023; 240:109732. [PMID: 37774943 PMCID: PMC10598517 DOI: 10.1016/j.neuropharm.2023.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Prenatal opioid exposure is a major health concern in the United States, with the incidence of neonatal opioid withdrawal syndrome (NOWS) escalating in recent years. NOWS occurs upon cessation of in utero opioid exposure and is characterized by increased irritability, disrupted sleep patterns, high-pitched crying, and dysregulated feeding. The main pharmacological strategy for alleviating symptoms is treatment with replacement opioids. The neural mechanisms mediating NOWS and the long-term neurobehavioral effects are poorly understood. We used a third trimester-approximate model in which neonatal outbred pups (Carworth Farms White; CFW) were administered once-daily morphine (15 mg/kg, s.c.) from postnatal day (P) day 1 through P14 and were then assessed for behavioral and transcriptomic adaptations within the nucleus accumbens (NAc) on P15. We also investigated the long-term effects of perinatal morphine exposure on adult learning and reward sensitivity. We observed significant weight deficits, spontaneous thermal hyperalgesia, and altered ultrasonic vocalization (USV) profiles following repeated morphine and during spontaneous withdrawal. Transcriptome analysis of NAc from opioid-withdrawn P15 neonates via bulk mRNA sequencing identified an enrichment profile consistent with downregulation of myelin-associated transcripts. Despite the neonatal behavioral and molecular effects, there were no significant long-term effects of perinatal morphine exposure on adult spatial memory function in the Barnes Maze, emotional learning in fear conditioning, or in baseline or methamphetamine-potentiated reward sensitivity as measured via intracranial self-stimulation. Thus, the once daily third trimester-approximate exposure regimen, while inducing NOWS model traits and significant transcriptomic effects in neonates, had no significant long-term effects on adult behaviors.
Collapse
Affiliation(s)
- Kristyn N Borrelli
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Av, Boston, MA, 02215, USA; T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian & Avedisian School of Medicine, USA; Boston University's Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA, 02118, USA
| | - Kelly K Wingfield
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian & Avedisian School of Medicine, USA; Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Emily J Yao
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Catalina A Zamorano
- Boston University's Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5th floor, Boston, MA, 02215, USA
| | - Katherine D Sena
- Boston University's Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5th floor, Boston, MA, 02215, USA
| | - Jacob A Beierle
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian & Avedisian School of Medicine, USA; Boston University's Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA, 02118, USA; Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Michelle A Roos
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA, 02118, USA
| | - Elisha M Wachman
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, 1 Boston Medical Center Pl, Boston, MA, 02118, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Flores A, Nguyen NM, Pendyala G. Developmental outcomes with perinatal exposure (DOPE) to prescription opioids. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:339-351. [PMID: 38058996 PMCID: PMC10696573 DOI: 10.1515/nipt-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Researchers have found considerable evidence in the past 20 years that perinatal opioid exposure leads to an increased risk of developmental disorders in offspring that persist into adulthood. The use of opioids to treat pain concerning pregnancy, delivery, and postpartum complications has been rising. As a result, communities have reported a 300-400 % increase in Neonatal Opioid Withdrawal Syndrome (NOWS). NOWS represents the initial stage of several behavioral, phenotypic, and synaptic deficits. This review article summarizes the Developmental Outcomes of Perinatal Exposure (DOPE) to prescription opioids. Moreover, we also seek to connect these findings to clinical research that describes DOPE at multiple stages of life. Since specific mechanisms that underlie DOPE remain unclear, this article aims to provide a framework for conceptualizing across all ages and highlight the implications they may have for longevity.
Collapse
Affiliation(s)
- Adrian Flores
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE, USA
| | - Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, USA
- Child Health Research Institute, Omaha, NE, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| |
Collapse
|
9
|
Borrelli KN, Wingfield KK, Yao EJ, Zamorano CA, Sena KD, Beierle JA, Roos MA, Zhang H, Wachman EM, Bryant CD. Decreased myelin-related gene expression in the nucleus accumbens during spontaneous neonatal opioid withdrawal in the absence of long-term behavioral effects in adult outbred CFW mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552033. [PMID: 37609129 PMCID: PMC10441327 DOI: 10.1101/2023.08.04.552033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Prenatal opioid exposure is a major health concern in the United States, with the incidence of neonatal opioid withdrawal syndrome (NOWS) escalating in recent years. NOWS occurs upon cessation of in utero opioid exposure and is characterized by increased irritability, disrupted sleep patterns, high-pitched crying, and dysregulated feeding. The main pharmacological strategy for alleviating symptoms is treatment with replacement opioids. The neural mechanisms mediating NOWS and the long-term neurobehavioral effects are poorly understood. We used a third trimester-approximate model in which neonatal outbred pups (Carworth Farms White; CFW) were administered once-daily morphine (15 mg/kg, s.c.) from postnatal day (P) day 1 through P14 and were then assessed for behavioral and transcriptomic adaptations within the nucleus accumbens (NAc) on P15. We also investigated the long-term effects of perinatal morphine exposure on adult learning and reward sensitivity. We observed significant weight deficits, spontaneous thermal hyperalgesia, and altered ultrasonic vocalization (USV) profiles following repeated morphine and during spontaneous withdrawal. Transcriptome analysis of NAc from opioid-withdrawn P15 neonates via bulk mRNA sequencing identified an enrichment profile consistent with downregulation of myelin-associated transcripts. Despite the neonatal behavioral and molecular effects, there were no significant long-term effects of perinatal morphine exposure on adult spatial memory function in the Barnes Maze, emotional learning in fear conditioning, or in baseline or methamphetamine-potentiated reward sensitivity as measured via intracranial self-stimulation. Thus, the once daily third trimester-approximate exposure regimen, while inducing NOWS model traits and significant transcriptomic effects in neonates, had no significant long-term effects on adult behaviors. HIGHLIGHTS We replicated some NOWS model traits via 1x-daily morphine (P1-P14).We found a downregulation of myelination genes in nucleus accumbens on P15.There were no effects on learning/memory or reward sensitivity in adults.
Collapse
Affiliation(s)
- Kristyn N. Borrelli
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Av, Boston, MA 02215
- Boston University’s Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA 02118
| | - Kelly K. Wingfield
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian and Avedisian School of Medicine
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
| | - Catalina A. Zamorano
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Boston University’s Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5 floor, Boston, MA 02215
| | - Katherine D. Sena
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Boston University’s Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5 floor, Boston, MA 02215
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian and Avedisian School of Medicine
- Boston University’s Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA 02118
| | - Michelle A. Roos
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118
| | - Elisha M. Wachman
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, 1 Boston Medical Center Pl, Boston, MA 02118
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118
| |
Collapse
|
10
|
Flores A, Gowen A, Schaal VL, Koul S, Hernandez JB, Yelamanchili SV, Pendyala G. An Integrated Systems Approach to Decode the Impact of Adolescent Nicotine Exposure in Utero and Postnatally Oxycodone Exposed Offspring. RESEARCH SQUARE 2023:rs.3.rs-2753084. [PMID: 37066266 PMCID: PMC10104203 DOI: 10.21203/rs.3.rs-2753084/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Perinatal exposure to prescription opioids pose a critical public health risk. Notably, research has found significant neurodevelopmental and behavioral deficits between in utero (IUO) and postnatal (PNO) oxycodone-exposed offspring but there is a notable gap in knowledge regarding the interaction of these groups to other drug exposure, particularly nicotine exposure. Nicotine's widespread use represents a ubiquitous clinical interaction that current research does not address. Children often experiment with drugs and risky behavior; therefore, adolescence is a key timepoint to characterize. This study employed an integrated systems approach to investigate escalating nicotine exposure in adolescence and subsequent nicotine withdrawal in the IUO- and PNO-offspring. Western blot analysis found alterations of the blood-brain barrier (B.B.B.) and synaptic proteins. RT-qPCR further validated immune dysfunction in the central nervous system (CNS) consistent with compromised B.B.B. Peripheral nicotine metabolism was consistent with increased catabolism of nicotine concerning PNO & IUO, a predictor of greater addiction risk. Lastly, behavioral assays found subtle deficits to withdrawal in nociception and anxiety-like behavior. This study showed, for the first time, the vulnerabilities of PNO- and IUO-exposed groups concerning nicotine use during early adolescence and withdrawal.
Collapse
Affiliation(s)
| | | | | | - Sneh Koul
- University of Nebraska Medical Center (UNMC)
| | | | | | | |
Collapse
|
11
|
Simmons SC, Grecco GG, Atwood BK, Nugent FS. Effects of prenatal opioid exposure on synaptic adaptations and behaviors across development. Neuropharmacology 2023; 222:109312. [PMID: 36334764 PMCID: PMC10314127 DOI: 10.1016/j.neuropharm.2022.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
In this review, we focus on prenatal opioid exposure (POE) given the significant concern for the mental health outcomes of children with parents affected by opioid use disorder (OUD) in the view of the current opioid crisis. We highlight some of the less explored interactions between developmental age and sex on synaptic plasticity and associated behavioral outcomes in preclinical POE research. We begin with an overview of the rich literature on hippocampal related behaviors and plasticity across POE exposure paradigms. We then discuss recent work on reward circuit dysregulation following POE. Additional risk factors such as early life stress (ELS) could further influence synaptic and behavioral outcomes of POE. Therefore, we include an overview on the use of preclinical ELS models where ELS exposure during key critical developmental periods confers considerable vulnerability to addiction and stress psychopathology. Here, we hope to highlight the similarity between POE and ELS on development and maintenance of opioid-induced plasticity and altered opioid-related behaviors where similar enduring plasticity in reward circuits may occur. We conclude the review with some of the limitations that should be considered in future investigations. This article is part of the Special Issue on 'Opioid-induced addiction'.
Collapse
Affiliation(s)
- Sarah C Simmons
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Greg G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fereshteh S Nugent
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
12
|
Minakova E, Mikati MO, Madasu MK, Conway SM, Baldwin JW, Swift RG, McCullough KB, Dougherty JD, Maloney SE, Al-Hasani R. Perinatal oxycodone exposure causes long-term sex-dependent changes in weight trajectory and sensory processing in adult mice. Psychopharmacology (Berl) 2022; 239:3859-3873. [PMID: 36269379 DOI: 10.1007/s00213-022-06257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
RATIONALE In utero opioid exposure is associated with lower weight and a neonatal opioid withdrawal syndrome (NOWS) at birth, along with longer-term adverse neurodevelopmental outcomes and mood disorders. While NOWS is sometimes treated with continued opioids, clinical studies have not addressed if long-term neurobehavioral outcomes are worsened with continued postnatal exposure to opioids. In addition, pre-clinical studies comparing in utero only opioid exposure to continued post-natal opioid administration for withdrawal mitigation are lacking. OBJECTIVES Here, we sought to understand the impact of continued postnatal opioid exposure on long term behavioral consequences. METHODS We implemented a rodent perinatal opioid exposure model of oxycodone (Oxy) exposure that included Oxy exposure until birth (short Oxy) and continued postnatal opioid exposure (long Oxy) spanning gestation through birth and lactation. RESULTS Short Oxy exposure was associated with a sex-specific increase in weight gain trajectory in adult male mice. Long Oxy exposure caused an increased weight gain trajectory in adult males and alterations in nociceptive processing in females. Importantly, there was no evidence of long-term social behavioral deficits, anxiety, hyperactivity, or memory deficits following short or long Oxy exposure. CONCLUSIONS Our findings suggest that offspring with prolonged opioid exposure experienced some long-term sequelae compared to pups with opioid cessation at birth. These results highlight the potential long-term consequences of opioid administration as a mitigation strategy for clinical NOWS symptomology and suggest alternatives should be explored.
Collapse
Affiliation(s)
- Elena Minakova
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwa O Mikati
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8232, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Management Center, Washington University School of Medicine, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA
| | - Manish K Madasu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Management Center, Washington University School of Medicine, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA
| | - Sineadh M Conway
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Management Center, Washington University School of Medicine, St. Louis, MO, USA.,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA
| | - Justin W Baldwin
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Raylynn G Swift
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8232, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine B McCullough
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8232, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8232, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8232, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA. .,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ream Al-Hasani
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA. .,Washington University Pain Management Center, Washington University School of Medicine, St. Louis, MO, USA. .,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
13
|
Meyer D, Athota P, Gowen A, Nguyen NM, Schaal VL, Yelamanchili SV, Pendyala G. Effect of Combined Methamphetamine and Oxycodone Use on the Synaptic Proteome in an In Vitro Model of Polysubstance Use. Genes (Basel) 2022; 13:genes13101816. [PMID: 36292701 PMCID: PMC9601452 DOI: 10.3390/genes13101816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 01/03/2023] Open
Abstract
Polysubstance use (PSU) generally involves the simultaneous use of an opioid along with a stimulant. In recent years, this problem has escalated into a nationwide epidemic. Understanding the mechanisms and effects underlying the interaction between these drugs is essential for the development of treatments for those suffering from addiction. Currently, the effect of PSU on synapses-critical points of contact between neurons-remains poorly understood. Using an in vitro model of primary neurons, we examined the combined effects of the psychostimulant methamphetamine (METH) and the prescription opioid oxycodone (oxy) on the synaptic proteome using quantitative mass-spectrometry-based proteomics. A further ClueGO analysis and Ingenuity Pathway Analysis (IPA) indicated the dysregulation of several molecular functions, biological processes, and pathways associated with neural plasticity and structural development. We identified one key synaptic protein, Striatin-1, which plays a vital role in many of these processes and functions, to be downregulated following METH+oxy treatment. This downregulation of Striatin-1 was further validated by Western blot. Overall, the present study indicates several damaging effects of the combined use of METH and oxy on neural function and warrants further detailed investigation into mechanisms contributing to synaptic dysfunction.
Collapse
Affiliation(s)
- Daniel Meyer
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranavi Athota
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Austin Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy; University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Victoria L. Schaal
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy; University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy; University of Nebraska Medical Center, Omaha, NE 68198, USA
- National Strategic Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-559-8690
| |
Collapse
|
14
|
Long-Term Effects of Developmental Exposure to Oxycodone on Gut Microbiota and Relationship to Adult Behaviors and Metabolism. mSystems 2022; 7:e0033622. [PMID: 35862801 PMCID: PMC9426609 DOI: 10.1128/msystems.00336-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Opioid drugs are commonly prescribed analgesic to pregnant women. Direct exposure to such drugs may slow gut motility, alter gut permeability, and affect the gut microbiome. While such drugs affect gut microbiome in infants, no study to date has determined whether developmental exposure to such drugs results in longstanding effects on gut microbiota and correspondingly on host responses. We hypothesized developmental exposure to oxycodone (OXY) leads to enduring effects on gut microbiota and such changes are associated with adult neurobehavioral and metabolic changes. Female mice were treated daily with 5 mg OXY/kg or saline solution (control [CTL]) for 2 weeks prior to breeding and then throughout gestation. Male and female offspring pups were weaned, tested with a battery of behavioral and metabolic tests, and fecal boli were collected adulthood (120 days of age). In females, relative abundance of Butyricimonas spp., Bacteroidetes, Anaeroplasma spp., TM7, Enterococcus spp., and Clostridia were greater in OXY versus CTL individuals. In males, relative abundance of Coriobacteriaceae, Roseburia spp., Sutterella spp., and Clostridia were elevated in OXY exposed individuals. Bacterial changes were also associated with predictive metabolite pathway alterations that also varied according to sex. In males and females, affected gut microbiota correlated with metabolic but not behavioral alterations. The findings suggest that developmental exposure to OXY leads to lasting effects on adult gut microbiota that might affect host metabolism, possibly through specific bacterial metabolites or other bacterial-derived products. Further work is needed to characterize how developmental exposure to OXY affects host responses through the gut microbiome. IMPORTANCE This is the first work to show in a rodent model that in utero exposure to an opioid drug can lead to longstanding effects on the gut microbiota when examined at adulthood. Further, such bacterial changes are associated with metabolic host responses. Given the similarities between rodent and human microbiomes, it raises cause for concern that similar effects may become evident in children born to mothers taking oxycodone and other opioid drugs.
Collapse
|
15
|
Rosenfeld CS. The placenta as a target of opioid drugs†. Biol Reprod 2022; 106:676-686. [PMID: 35024817 PMCID: PMC9040663 DOI: 10.1093/biolre/ioac003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 01/14/2023] Open
Abstract
Opioid drugs are analgesics increasingly being prescribed to control pain associated with a wide range of causes. Usage of pregnant women has dramatically increased in the past decades. Neonates born to these women are at risk for neonatal abstinence syndrome (also referred to as neonatal opioid withdrawal syndrome). Negative birth outcomes linked with maternal opioid use disorder include compromised fetal growth, premature birth, reduced birthweight, and congenital defects. Such infants require lengthier hospital stays necessitating rising health care costs, and they are at greater risk for neurobehavioral and other diseases. Thus, it is essential to understand the genesis of such disorders. As the primary communication organ between mother and conceptus, the placenta itself is susceptible to opioid effects but may be key to understanding how these drugs affect long-term offspring health and potential avenue to prevent later diseases. In this review, we will consider the evidence that placental responses are regulated through an endogenous opioid system. However, maternal consumption of opioid drugs can also bind and act through opioid receptors express by trophoblast cells of the placenta. Thus, we will also discuss the current human and rodent studies that have examined the effects of opioids on the placenta. These drugs might affect placental hormones associated with maternal recognition of pregnancy, including placental lactogens and human chorionic gonadotropin in rodents and humans, respectively. A further understanding of how such drugs affect the placenta may open up new avenues for early diagnostic and remediation approaches.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| |
Collapse
|