1
|
Huilgol D, Levine JM, Galbavy W, Wang BS, Josh Huang Z. Orderly specification and precise laminar deployment of cortical glutamatergic projection neuron types through intermediate progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582863. [PMID: 38645016 PMCID: PMC11027211 DOI: 10.1101/2024.03.01.582863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model whereby successive generations of PNs sequentially migrate to deep then progressively more superficial layers, but its biological significance remains unclear; and the role of iNG in this process is unknown. Using genetic strategies linking PN birth-dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviate from an inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times. The overarching scheme of iNG is the sequential specification and precise laminar deployment of projection-defined PN types, which may contribute to the orderly assembly of cortical output channels and processing streams. HIGHLIGHTS - Each IP is fate-restricted to generate a pair of near-identical PNs - Corticogenesis involves the orderly generation of fate-restricted IP temporal cohorts - IP temporal cohorts sequentially as well as concurrently specify multiple PN types - The deployment of PN types to specific layers does not follow an inside-out order.
Collapse
|
2
|
Wu X, Sarpong GA, Zhang J, Sugihara I. Divergent topographic projection of cerebral cortical areas to overlapping cerebellar lobules through distinct regions of the pontine nuclei. Heliyon 2023; 9:e14352. [PMID: 37025843 PMCID: PMC10070096 DOI: 10.1016/j.heliyon.2023.e14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The massive axonal projection from the cerebrum to the cerebellum through the pontine nuclei supports the cerebrocerebellar coordination of motor and nonmotor functions. However, the cerebrum and cerebellum have distinct patterns of functional localization in their cortices. We addressed this issue by bidirectional neuronal tracing from 22 various locations of the pontine nuclei in the mouse in a comprehensive manner. Cluster analyses of the distribution patterns of labeled cortical pyramidal cells and cerebellar mossy fiber terminals classified all cases into six groups located in six different subareas of the pontine nuclei. The lateral (insular), mediorostral (cingulate and prefrontal), and caudal (visual and auditory) cortical areas of the cerebrum projected to the medial, rostral, and lateral subareas of the pontine nuclei, respectively. These pontine subareas then projected mainly to the crus I, central vermis, and paraflocculus divergently. The central (motor and somatosensory) cortical areas projected to the centrorostral, centrocaudal and caudal subareas of the pontine nuclei, which then projected mainly to the rostral and caudal lobules with a somatotopic arrangement. The results indicate a new pontine nuclei-centric view of the corticopontocerebellar projection: the generally parallel corticopontine projection to pontine nuclei subareas is relayed to the highly divergent pontocerebellar projection terminating in overlapping specific lobules of the cerebellum. Consequently, the mode of the pontine nuclei relay underlies the cerebellar functional organization.
Collapse
|
3
|
Abecassis ZA, Berceau BL, Win PH, García D, Xenias HS, Cui Q, Pamukcu A, Cherian S, Hernández VM, Chon U, Lim BK, Kim Y, Justice NJ, Awatramani R, Hooks BM, Gerfen CR, Boca SM, Chan CS. Npas1 +-Nkx2.1 + Neurons Are an Integral Part of the Cortico-pallido-cortical Loop. J Neurosci 2020; 40:743-768. [PMID: 31811030 PMCID: PMC6975296 DOI: 10.1523/jneurosci.1199-19.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022] Open
Abstract
Within the basal ganglia circuit, the external globus pallidus (GPe) is critically involved in motor control. Aside from Foxp2+ neurons and ChAT+ neurons that have been established as unique neuron types, there is little consensus on the classification of GPe neurons. Properties of the remaining neuron types are poorly defined. In this study, we leverage new mouse lines, viral tools, and molecular markers to better define GPe neuron subtypes. We found that Sox6 represents a novel, defining marker for GPe neuron subtypes. Lhx6+ neurons that lack the expression of Sox6 were devoid of both parvalbumin and Npas1. This result confirms previous assertions of the existence of a unique Lhx6+ population. Neurons that arise from the Dbx1+ lineage were similarly abundant in the GPe and displayed a heterogeneous makeup. Importantly, tracing experiments revealed that Npas1+-Nkx2.1+ neurons represent the principal noncholinergic, cortically-projecting neurons. In other words, they form the pallido-cortical arm of the cortico-pallido-cortical loop. Our data further show that pyramidal-tract neurons in the cortex collateralized within the GPe, forming a closed-loop system between the two brain structures. Overall, our findings reconcile some of the discrepancies that arose from differences in techniques or the reliance on preexisting tools. Although spatial distribution and electrophysiological properties of GPe neurons reaffirm the diversification of GPe subtypes, statistical analyses strongly support the notion that these neuron subtypes can be categorized under the two principal neuron classes: PV+ neurons and Npas1+ neurons.SIGNIFICANCE STATEMENT The poor understanding of the neuronal composition in the external globus pallidus (GPe) undermines our ability to interrogate its precise behavioral and disease involvements. In this study, 12 different genetic crosses were used, hundreds of neurons were electrophysiologically characterized, and >100,000 neurons were histologically- and/or anatomically-profiled. Our current study further establishes the segregation of GPe neuron classes and illustrates the complexity of GPe neurons in adult mice. Our results support the idea that Npas1+-Nkx2.1+ neurons are a distinct GPe neuron subclass. By providing a detailed analysis of the organization of the cortico-pallidal-cortical projection, our findings establish the cellular and circuit substrates that can be important for motor function and dysfunction.
Collapse
Affiliation(s)
- Zachary A Abecassis
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Brianna L Berceau
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Phyo H Win
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniela García
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Harry S Xenias
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Qiaoling Cui
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Arin Pamukcu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Suraj Cherian
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Uree Chon
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Byung Kook Lim
- Neurobiology Section, Biological Sciences Division, University of California San Diego, La Jolla, California
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Nicholas J Justice
- Center for Metabolic and degenerative disease, Institute of Molecular Medicine, University of Texas, Houston, Texas
- Department of Integrative Pharmacology, University of Texas, Houston, Texas
| | - Raj Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bryan M Hooks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland, and
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, District of Columbia
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,
| |
Collapse
|
5
|
Song H, Zhang X, Chen R, Miao J, Wang L, Cui L, Ji H, Liu Y. Cortical Neuron-Derived Exosomal MicroRNA-181c-3p Inhibits Neuroinflammation by Downregulating CXCL1 in Astrocytes of a Rat Model with Ischemic Brain Injury. Neuroimmunomodulation 2019; 26:217-233. [PMID: 31665717 DOI: 10.1159/000502694] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/08/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Cortical neuron-released exosomes have been demonstrated to block inflammasome activation in the central nervous system. This study aimed to investigate whether cortical neuron-released exosomal microRNA-181c-3p (miR-181c-3p) affected ischemic brain injury (IBI). METHODS An IBI rat model was established by middle cerebral artery occlusion (MCAO). Astrocytes collected from rats were exposed to exosomes derived from cortical neurons to investigate the effect of exosomes on chemokine (C-X-C motif) ligand 1 (CXCL1) expression and inflammatory response. Then, ectopic expression was induced in astrocytes treated with oxygen and glucose deprivation (OGD). RESULTS CXCL1 was identified to be an upregulated gene in IBI by microarray-based gene expression profiling. Additionally, upregulation of CXCL1 and promoted inflammatory response was also found in MCAO rats. miR-181c-3p was downregulated in OGD-treated cortical neurons and exosomes derived from OGD-treated cortical neurons. Exosomes derived from OGD-treated cortical neurons decreased the expression of CXCL1 and inflammatory factors in astrocytes, and exosomes delivered miR-181c-3p to decrease CXCL1 expression in astrocytes. CXCL1 was a target gene of miR-181c-3p. Delivery with miR-181c-3p mimic and siRNA against CXCL1 (si-CXCL1) was shown to inhibit inflammation in astrocytes by downregulating CXCL1. CONCLUSION Collectively, exosomal miR-181c-3p derived from cortical neurons exerts protective effects on neuroinflammation in astrocytes via downregulation of CXCL1 in an IBI rat model.
Collapse
Affiliation(s)
- He Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China,
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China,
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, China,
| | - Rong Chen
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Jiangyong Miao
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Lina Wang
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Lili Cui
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Hui Ji
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Ying Liu
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| |
Collapse
|
6
|
Kuramoto E. Method for labeling and reconstruction of single neurons using Sindbis virus vectors. J Chem Neuroanat 2019; 100:101648. [PMID: 31181303 DOI: 10.1016/j.jchemneu.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/11/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Neuronal dendrites and axons are key substrates for the input and output of information, respectively, so establishing the precise and complete morphological description of dendritic and axonal processes of a single neuron is essential for understanding the neuron's functional role in the neuronal circuits. The whole structure of single neurons was originally revealed using Golgi staining, and later the intracellular labeling method was developed, although this is technically too difficult to stain entire neurons in vivo. Since the late 1980s, molecular biology techniques have been applied to neuroscience research, leading to the development of various virus vectors, such as the Sindbis and adeno-associated virus vectors, which have facilitated the reconstruction of neurons at a single cell level. In the present review, we focus on a method for labeling and reconstruction of single neurons using Sindbis virus vectors that express membrane-targeted fluorescent proteins. We describe in detail a protocol for single-neuron labeling using Sindbis virus vectors, and we provide an example of a recent project at our laboratory in which we successfully applied these methods to study thalamocortical projection neurons. Further, we discuss the strengths and limitations of Sindbis virus vectors for single neuron reconstruction, comparing them with adeno-associated virus vectors.
Collapse
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| |
Collapse
|
7
|
Biswas MS, Luo Y, Sarpong GA, Sugihara I. Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse. J Comp Neurol 2019; 527:1966-1985. [PMID: 30737986 DOI: 10.1002/cne.24662] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/10/2022]
Abstract
The basilar pontine nucleus (PN) is the key relay point for the cerebrocerebellar link. However, the projection pattern of pontocerebellar mossy fiber axons, which is essential in determining the functional organization of the cerebellar cortex, has not been fully clarified. We reconstructed the entire trajectory of 25 single pontocerebellar mossy fiber axons labeled by localized injection of biotinylated dextran amine into various locations in the PN and mapped all their terminals in an unfolded scheme of the cerebellum in 10 mice. The majority of axons (20/25 axons) entered the cerebellum through the middle cerebellar peduncle contralateral to the origin, while others entered through the ipsilateral pathway. A small number of axons (1/25 axons) had collaterals terminating in the cerebellar nuclei. Axons projected mostly to a combination of lobules, often bilaterally, and terminated in multiple zebrin (aldolase C) stripes, more frequently in zebrin-positive stripes (83.9%) than in zebrin-negative stripes, with 66.5 mossy fiber terminals on the average. Axons originating from the rostral (plus medial and lateral), central and caudal PN mainly terminated in the paraflocculus, crus I and lobule VIb-c, in the simplex lobule, crus II and paramedian lobule, and in lobules II-VIa, VIII and copula pyramidis, respectively. The results suggest that the interlobular branching pattern of pontocerebellar axons determines the group of cerebellar lobules that are involved in a related functional localization of the cerebellum. In the hemisphere, crus I may be functionally distinct from neighboring lobules (simple lobule and crus II) in the mouse cerebellum based on the pontocerebellar axonal projection pattern.
Collapse
Affiliation(s)
- Mohammad Shahangir Biswas
- Department of Systems Neurophysiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuanjun Luo
- Department of Systems Neurophysiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gideon Anokye Sarpong
- Department of Systems Neurophysiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|