1
|
Li H, Li F, Chen Z, Wu E, Dai X, Li D, An H, Zeng S, Wang C, Yang L, Long C. Glutamatergic CYLD deletion leads to aberrant excitatory activity in the basolateral amygdala: association with enhanced cued fear expression. Neural Regen Res 2025; 20:3259-3272. [PMID: 39715097 DOI: 10.4103/nrr.nrr-d-24-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 12/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00029/figure1/v/2024-12-20T164640Z/r/image-tiff Neuronal activity, synaptic transmission, and molecular changes in the basolateral amygdala play critical roles in fear memory. Cylindromatosis (CYLD) is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway. CYLD is well studied in non-neuronal cells, yet under-investigated in the brain, where it is highly expressed. Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses, neuroinflammation, fear memory, and anxiety- and autism-like behaviors. However, the precise role of CYLD in glutamatergic neurons is largely unknown. Here, we first proposed involvement of CYLD in cued fear expression. We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons. Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice. Further, loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation, impaired excitatory synaptic transmission, and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice. Altogether, our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal, synaptic, and microglial activation. This may contribute, at least in part, to cued fear expression.
Collapse
Affiliation(s)
- Huidong Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Faqin Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhaoyi Chen
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Erwen Wu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xiaoxi Dai
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Danni Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Haojie An
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Shiyi Zeng
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Chunyan Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Malvaez M, Liang A, Hall BS, Giovanniello JR, Paredes N, Gonzalez JY, Blair GJ, Sias AC, Murphy MD, Guo W, Wang A, Singh M, Griffin NK, Bridges SP, Wiener A, Pimenta JS, Holley SM, Cepeda C, Levine MS, Blair HT, Wikenheiser AM, Wassum KM. Striatal cell-type specific stability and reorganization underlying agency and habit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634924. [PMID: 39896502 PMCID: PMC11785256 DOI: 10.1101/2025.01.26.634924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Adaptive decision making requires agency, knowledge that actions produce particular outcomes. For well- practiced routines, agency is relinquished in favor of habit. Here, we asked how dorsomedial striatum D1 + and D2/A2A + neurons contribute to agency and habit. We imaged calcium activity of these neurons as mice learned to lever press with agency and formed habits with overtraining. Whereas many D1 + neurons stably encoded actions throughout learning and developed encoding of reward outcomes, A2A + neurons reorganized their encoding of actions from initial action-outcome learning to habit formation. Chemogenetic manipulations indicated that both D1 + and A2A + neurons support action-outcome learning, but only D1 + neurons enable the use of such agency for adaptive, goal-directed decision making. These data reveal coordinated dorsomedial striatum D1 + and A2A + function for the development of agency, cell-type specific stability and reorganization underlying agency and habit, and important insights into the neuronal circuits of how we learn and decide.
Collapse
|
3
|
Romero LR, Acharya N, Nabás JF, Marín I, Andero R. Sex Differences in Neural Circuits Underlying Fear Processing. Curr Top Behav Neurosci 2024. [PMID: 39587012 DOI: 10.1007/7854_2024_543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Neural circuitry involved in anxiety and fear-related disorders exhibits strong sexual modulation. A limited number of studies integrating female and male data have revealed differences in neural networks, and distinct interconnectivity between these brain areas. Despite the efforts to incorporate female or mixed-sex data, there is compelling evidence that sex, as a biological variable, significantly influences fear processing. This chapter presents primary findings on sex differences in fear circuitry. It is imperative to consider this factor to ensure scientific research's integrity and understand how fear is processed in the central nervous system.
Collapse
Affiliation(s)
| | - Neha Acharya
- Institut de Neurociències, Universistat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ignacio Marín
- Institut de Neurociències, Universistat Autònoma de Barcelona, Barcelona, Spain
| | - Raül Andero
- Departament de Psicobiologia i Metodología de les Ciències de la Salut, Universistat Autònoma de Barcelona, Barcelona, Spain.
- Centro de investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Unitat de Neurociència Translational, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universistat Autònoma de Barcelona, Bellaterra, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
4
|
Giovanniello JR, Paredes N, Wiener A, Ramírez-Armenta K, Oragwam C, Uwadia HO, Yu AL, Lim K, Pimenta JS, Vilchez GE, Nnamdi G, Wang A, Sehgal M, Reis FM, Sias AC, Silva AJ, Adhikari A, Malvaez M, Wassum KM. A dual-pathway architecture enables chronic stress to disrupt agency and promote habit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560731. [PMID: 37873076 PMCID: PMC10592885 DOI: 10.1101/2023.10.03.560731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic stress can change how we learn and, thus, how we make decisions. Here we investigated the neuronal circuit mechanisms that enable this. Using a multifaceted systems neuroscience approach in male and female mice, we reveal a dual pathway, amygdala-striatal neuronal circuit architecture by which a recent history of chronic stress disrupts the action-outcome learning underlying adaptive agency and promotes the formation of inflexible habits. We found that the basolateral amygdala projection to the dorsomedial striatum is activated by rewarding events to support the action-outcome learning needed for flexible, goal-directed decision making. Chronic stress attenuates this to disrupt action-outcome learning and, therefore, agency. Conversely, the central amygdala projection to the dorsomedial striatum mediates habit formation. Following stress this pathway is progressively recruited to learning to promote the premature formation of inflexible habits. Thus, stress exerts opposing effects on two amygdala-striatal pathways to disrupt agency and promote habit. These data provide neuronal circuit insights into how chronic stress shapes learning and decision making, and help understand how stress can lead to the disrupted decision making and pathological habits that characterize substance use disorders and mental health conditions.
Collapse
Affiliation(s)
| | | | - Anna Wiener
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | | | | | - Abigail L Yu
- Dept. of Physiology, UCLA, Los Angeles, CA 90095
| | - Kayla Lim
- Dept. of Biological Chemistry, UCLA, Los Angeles, CA 90095
| | | | | | - Gift Nnamdi
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alicia Wang
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Megha Sehgal
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | - Ana C Sias
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alcino J Silva
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Avishek Adhikari
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Kate M Wassum
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Santoni G, Astori S, Leleu M, Glauser L, Zamora SA, Schioppa M, Tarulli I, Sandi C, Gräff J. Chromatin plasticity predetermines neuronal eligibility for memory trace formation. Science 2024; 385:eadg9982. [PMID: 39052786 DOI: 10.1126/science.adg9982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Memories are encoded by sparse populations of neurons but how such sparsity arises remains largely unknown. We found that a neuron's eligibility to be recruited into the memory trace depends on its epigenetic state prior to encoding. Principal neurons in the mouse lateral amygdala display intrinsic chromatin plasticity, which when experimentally elevated favors neuronal allocation into the encoding ensemble. Such chromatin plasticity occurred at genomic regions underlying synaptic plasticity and was accompanied by increased neuronal excitability in single neurons in real time. Lastly, optogenetic silencing of the epigenetically altered neurons prevented memory expression, revealing a cell-autonomous relationship between chromatin plasticity and memory trace formation. These results identify the epigenetic state of a neuron as a key factor enabling information encoding.
Collapse
Affiliation(s)
- Giulia Santoni
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Simone Astori
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marion Leleu
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Liliane Glauser
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Simon A Zamora
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Myriam Schioppa
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- The institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Isabella Tarulli
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Marron Fernandez de Velasco E, Tipps ME, Haider B, Souders A, Aguado C, Rose TR, Vo BN, DeBaker MC, Luján R, Wickman K. Ethanol-Induced Suppression of G Protein-Gated Inwardly Rectifying K +-Dependent Signaling in the Basal Amygdala. Biol Psychiatry 2023; 94:863-874. [PMID: 37068702 PMCID: PMC10576835 DOI: 10.1016/j.biopsych.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND The basolateral amygdala (BLA) regulates mood and associative learning and has been linked to the development and persistence of alcohol use disorder. The GABABR (gamma-aminobutyric acid B receptor) is a promising therapeutic target for alcohol use disorder, and previous work suggests that exposure to ethanol and other drugs can alter neuronal GABABR-dependent signaling. The effect of ethanol on GABABR-dependent signaling in the BLA is unknown. METHODS GABABR-dependent signaling in the mouse BLA was examined using slice electrophysiology following repeated ethanol exposure. Neuron-specific viral genetic manipulations were then used to understand the relevance of ethanol-induced neuroadaptations in the basal amygdala subregion (BA) to mood-related behavior. RESULTS The somatodendritic inhibitory effect of GABABR activation on principal neurons in the basal but not the lateral subregion of the BLA was diminished following ethanol exposure. This adaptation was attributable to the suppression of GIRK (G protein-gated inwardly rectifying K+) channel activity and was mirrored by a redistribution of GABABR and GIRK channels from the surface membrane to internal sites. While GIRK1 and GIRK2 subunits are critical for GIRK channel formation in BA principal neurons, GIRK3 is necessary for the ethanol-induced neuroadaptation. Viral suppression of GIRK channel activity in BA principal neurons from ethanol-naïve mice recapitulated some mood-related behaviors observed in C57BL/6J mice during ethanol withdrawal. CONCLUSIONS The ethanol-induced suppression of GIRK-dependent signaling in BA principal neurons contributes to some of the mood-related behaviors associated with ethanol withdrawal in mice. Approaches designed to prevent this neuroadaptation and/or strengthen GIRK-dependent signaling may prove useful for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
| | - Megan E Tipps
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Bushra Haider
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Anna Souders
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Carolina Aguado
- Departmento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha, Campus Biosanitario, La Mancha, Albacete, Spain
| | - Timothy R Rose
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Baovi N Vo
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Margot C DeBaker
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Rafael Luján
- Departmento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha, Campus Biosanitario, La Mancha, Albacete, Spain
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
7
|
Jiang J, Tan S, Feng X, Peng Y, Long C, Yang L. Distinct ACC Neural Mechanisms Underlie Authentic and Transmitted Anxiety Induced by Maternal Separation in Mice. J Neurosci 2023; 43:8201-8218. [PMID: 37845036 PMCID: PMC10697407 DOI: 10.1523/jneurosci.0558-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
It is known that humans and rodents are capable of transmitting stress to their naive partners via social interaction. However, a comprehensive understanding of transmitted stress, which may differ from authentic stress, thus revealing unique neural mechanisms of social interaction resulting from transmitted stress and the associated anxiety, is missing. We used, in the present study, maternal separation (MS) as a stress model to investigate whether MS causes abnormal behavior in adolescence. A key concern in the analysis of stress transmission is whether the littermates of MS mice who only witness MS stress ("Partners") exhibit behavioral abnormalities similar to those of MS mice themselves. Of special interest is the establishment of the neural mechanisms underlying transmitted stress and authentic stress. The results show that Partners, similar to MS mice, exhibit anxiety-like behavior and hyperalgesia after witnessing littermates being subjected to early-life repetitive MS. Electrophysiological analysis revealed that mice subjected to MS demonstrate a reduction in both the excitatory and inhibitory synaptic activities of parvalbumin interneurons (PVINs) in the anterior cingulate cortex (ACC). However, Partners differed from MS mice in showing an increase in the number and excitability of GABAergic PVINs in the ACC and in the ability of chemogenetic PVIN inactivation to eliminate abnormal behavior. Furthermore, the social transfer of anxiety-like behavior required intact olfactory, but not visual, perception. This study suggests a functional involvement of ACC PVINs in mediating the distinct neural basis of transmitted anxiety.SIGNIFICANCE STATEMENT The anterior cingulate cortex (ACC) is a critical brain area in physical and social pain and contributes to the exhibition of abnormal behavior. ACC glutamatergic neurons have been shown to encode transmitted stress, but it remains unclear whether inhibitory ACC neurons also play a role. We evaluate, in this study, ACC neuronal, synaptic and network activities and uncover a critical role of parvalbumin interneurons (PVINs) in the expression of transmitted stress in adolescent mice who had witnessed MS of littermates in infancy. Furthermore, inactivation of ACC PVINs blocks transmitted stress. The results suggest that emotional contagion has a severe effect on brain function, and identify a potential target for the treatment of transmitted anxiety.
Collapse
Affiliation(s)
- Jinxiang Jiang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoyi Feng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yigang Peng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
LeDuke DO, Borio M, Miranda R, Tye KM. Anxiety and depression: A top-down, bottom-up model of circuit function. Ann N Y Acad Sci 2023; 1525:70-87. [PMID: 37129246 PMCID: PMC10695657 DOI: 10.1111/nyas.14997] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A functional interplay of bottom-up and top-down processing allows an individual to appropriately respond to the dynamic environment around them. These processing modalities can be represented as attractor states using a dynamical systems model of the brain. The transition probability to move from one attractor state to another is dependent on the stability, depth, neuromodulatory tone, and tonic changes in plasticity. However, how does the relationship between these states change in disease states, such as anxiety or depression? We describe bottom-up and top-down processing from Marr's computational-algorithmic-implementation perspective to understand depressive and anxious disease states. We illustrate examples of bottom-up processing as basolateral amygdala signaling and projections and top-down processing as medial prefrontal cortex internal signaling and projections. Understanding these internal processing dynamics can help us better model the multifaceted elements of anxiety and depression.
Collapse
Affiliation(s)
- Deryn O. LeDuke
- Salk Institute for Biological Studies, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Matilde Borio
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Raymundo Miranda
- Salk Institute for Biological Studies, La Jolla, California, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Kay M. Tye
- Salk Institute for Biological Studies, La Jolla, California, USA
- Howard Hughes Medical Institute, La Jolla, California, USA
- Kavli Institute for the Brain and Mind, La Jolla, California, USA
| |
Collapse
|
9
|
Fossati G, Kiss-Bodolay D, Prados J, Chéreau R, Husi E, Cadilhac C, Gomez L, Silva BA, Dayer A, Holtmaat A. Bimodal modulation of L1 interneuron activity in anterior cingulate cortex during fear conditioning. Front Neural Circuits 2023; 17:1138358. [PMID: 37334059 PMCID: PMC10272719 DOI: 10.3389/fncir.2023.1138358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The anterior cingulate cortex (ACC) plays a crucial role in encoding, consolidating and retrieving memories related to emotionally salient experiences, such as aversive and rewarding events. Various studies have highlighted its importance for fear memory processing, but its circuit mechanisms are still poorly understood. Cortical layer 1 (L1) of the ACC might be a particularly important site of signal integration, since it is a major entry point for long-range inputs, which is tightly controlled by local inhibition. Many L1 interneurons express the ionotropic serotonin receptor 3a (5HT3aR), which has been implicated in post-traumatic stress disorder and in models of anxiety. Hence, unraveling the response dynamics of L1 interneurons and subtypes thereof during fear memory processing may provide important insights into the microcircuit organization regulating this process. Here, using 2-photon laser scanning microscopy of genetically encoded calcium indicators through microprisms in awake mice, we longitudinally monitored over days the activity of L1 interneurons in the ACC in a tone-cued fear conditioning paradigm. We observed that tones elicited responses in a substantial fraction of the imaged neurons, which were significantly modulated in a bidirectional manner after the tone was associated to an aversive stimulus. A subpopulation of these neurons, the neurogliaform cells (NGCs), displayed a net increase in tone-evoked responses following fear conditioning. Together, these results suggest that different subpopulations of L1 interneurons may exert distinct functions in the ACC circuitry regulating fear learning and memory.
Collapse
Affiliation(s)
- Giuliana Fossati
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniel Kiss-Bodolay
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
- Lemanic Neuroscience Doctoral School, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Ronan Chéreau
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Elodie Husi
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christelle Cadilhac
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Lucia Gomez
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Bianca A. Silva
- Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
- National Research Council of Italy, Institute of Neuroscience, Milan, Italy
| | - Alexandre Dayer
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Singh S, Topolnik L. Inhibitory circuits in fear memory and fear-related disorders. Front Neural Circuits 2023; 17:1122314. [PMID: 37035504 PMCID: PMC10076544 DOI: 10.3389/fncir.2023.1122314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Fear learning and memory rely on dynamic interactions between the excitatory and inhibitory neuronal populations that make up the prefrontal cortical, amygdala, and hippocampal circuits. Whereas inhibition of excitatory principal cells (PCs) by GABAergic neurons restrains their excitation, inhibition of GABAergic neurons promotes the excitation of PCs through a process called disinhibition. Specifically, GABAergic interneurons that express parvalbumin (PV+) and somatostatin (SOM+) provide inhibition to different subcellular domains of PCs, whereas those that express the vasoactive intestinal polypeptide (VIP+) facilitate disinhibition of PCs by inhibiting PV+ and SOM+ interneurons. Importantly, although the main connectivity motifs and the underlying network functions of PV+, SOM+, and VIP+ interneurons are replicated across cortical and limbic areas, these inhibitory populations play region-specific roles in fear learning and memory. Here, we provide an overview of the fear processing in the amygdala, hippocampus, and prefrontal cortex based on the evidence obtained in human and animal studies. Moreover, focusing on recent findings obtained using genetically defined imaging and intervention strategies, we discuss the population-specific functions of PV+, SOM+, and VIP+ interneurons in fear circuits. Last, we review current insights that integrate the region-specific inhibitory and disinhibitory network patterns into fear memory acquisition and fear-related disorders.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Quebec City, QC, Canada
- Neuroscience Axis, CRCHUQ, Laval University, Quebec City, QC, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Quebec City, QC, Canada
- Neuroscience Axis, CRCHUQ, Laval University, Quebec City, QC, Canada
- *Correspondence: Lisa Topolnik
| |
Collapse
|
11
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
12
|
Lee K, Jung Y, Vyas Y, Skelton I, Abraham WC, Hsueh YP, Montgomery JM. Dietary zinc supplementation rescues fear-based learning and synaptic function in the Tbr1 +/- mouse model of autism spectrum disorders. Mol Autism 2022; 13:13. [PMID: 35303947 PMCID: PMC8932001 DOI: 10.1186/s13229-022-00494-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a dyad of behavioural symptoms-social and communication deficits and repetitive behaviours. Multiple aetiological genetic and environmental factors have been identified as causing or increasing the likelihood of ASD, including serum zinc deficiency. Our previous studies revealed that dietary zinc supplementation can normalise impaired social behaviours, excessive grooming, and heightened anxiety in a Shank3 mouse model of ASD, as well as the amelioration of synapse dysfunction. Here, we have examined the efficacy and breadth of dietary zinc supplementation as an effective therapeutic strategy utilising a non-Shank-related mouse model of ASD-mice with Tbr1 haploinsufficiency. METHODS We performed behavioural assays, amygdalar slice whole-cell patch-clamp electrophysiology, and immunohistochemistry to characterise the synaptic mechanisms underlying the ASD-associated behavioural deficits observed in Tbr1+/- mice and the therapeutic potential of dietary zinc supplementation. Two-way analysis of variance (ANOVA) with Šídák's post hoc test and one-way ANOVA with Tukey's post hoc multiple comparisons were performed for statistical analysis. RESULTS Our data show that dietary zinc supplementation prevents impairments in auditory fear memory and social interaction, but not social novelty, in the Tbr1+/- mice. Tbr1 haploinsufficiency did not induce excessive grooming nor elevate anxiety in mice. At the synaptic level, dietary zinc supplementation reversed α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) hypofunction and normalised presynaptic function at thalamic-lateral amygdala (LA) synapses that are crucial for auditory fear memory. In addition, the zinc supplemented diet significantly restored the synaptic puncta density of the GluN1 subunit essential for functional NMDARs as well as SHANK3 expression in both the basal and lateral amygdala (BLA) of Tbr1+/- mice. LIMITATIONS The therapeutic effect of dietary zinc supplementation observed in rodent models may not reproduce the same effects in human patients. The effect of dietary zinc supplementation on synaptic function in other brain structures affected by Tbr1 haploinsufficiency including olfactory bulb and anterior commissure will also need to be examined. CONCLUSIONS Our data further the understanding of the molecular mechanisms underlying the effect of dietary zinc supplementation and verify the efficacy and breadth of its application as a potential treatment strategy for ASD.
Collapse
Affiliation(s)
- Kevin Lee
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Yewon Jung
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Yukti Vyas
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Imogen Skelton
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Section 2, Academia Rd., Taipei, 11529, Taiwan
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
| |
Collapse
|
13
|
Kusek M, Siwiec M, Sowa JE, Bobula B, Bilecki W, Ciurej I, Kaczmarczyk M, Kowalczyk T, Maćkowiak M, Hess G, Tokarski K. 5-HT 7 receptors enhance inhibitory synaptic input to principal neurons in the mouse basal amygdala. Neuropharmacology 2021; 198:108779. [PMID: 34481835 DOI: 10.1016/j.neuropharm.2021.108779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022]
Abstract
The basal amygdala (BA) has been implicated in encoding fear and its extinction. The level of serotonin (5-HT) in the BA increases due to arousal and stress related to aversive stimuli. The effects of 5-HT7 receptor (5-HT7R) activation and blockade on the activity of BA neurons have not yet been investigated. In the present study, a transgenic mouse line carrying green fluorescent protein (GFP) reporter gene was used to identify neurons that express the 5-HT7R. GFP immunoreactivity was present mainly in cells that also expressed GAD67 or parvalbumin (PV), the phenotypic markers for GABAergic interneurons. Most cells showing GFP fluorescence demonstrated firing patterns characteristic of BA inhibitory interneurons. Activation of 5-HT7Rs resulted in a depolarization and/or occurrence of spontaneous spiking activity of BA interneurons that was accompanied by an increase in the mean frequency and mean amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from BA principal neurons. These effects were blocked by a specific 5-HT7R antagonist, SB269970 and were absent in slices from 5-HT7R knockout mice. Activation of 5-HT7Rs also decreased the mean frequency of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from BA principal neurons, which was blocked by the GABAA receptor antagonist picrotoxin. Neither inhibitory nor excitatory miniature postsynaptic currents (mIPSCs/mEPSCs) were affected by 5-HT7R activation. These results show that in the BA 5-HT7Rs stimulate an activity-dependent enhancement of inhibitory input from local interneurons to BA principal neurons and provide insights about the possible involvement of BA serotonergic receptors in neuronal mechanisms underlying fear memory.
Collapse
Affiliation(s)
- Magdalena Kusek
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Joanna Ewa Sowa
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Wiktor Bilecki
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Izabela Ciurej
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str., 30-387, Kraków, Poland
| | - Maria Kaczmarczyk
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Tomasz Kowalczyk
- Department of Neurobiology, University of Łódź, Pomorska Str. No 141/143, 91-236, Łódź, Poland
| | - Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland.
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland.
| |
Collapse
|
14
|
Vo BN, Marron Fernandez de Velasco E, Rose TR, Oberle H, Luo H, Hopkins CR, Wickman K. Bidirectional Influence of Limbic GIRK Channel Activation on Innate Avoidance Behavior. J Neurosci 2021; 41:5809-5821. [PMID: 34039657 PMCID: PMC8265807 DOI: 10.1523/jneurosci.2787-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Systemic administration of ML297, a selective activator of G-protein-gated inwardly rectifying K+ (GIRK) channels, decreases innate avoidance behavior in male C57BL/6J mice. The cellular mechanisms mediating the ML297-induced suppression of avoidance behavior are unknown. Here, we show that systemic ML297 administration suppresses elevated plus maze (EPM)-induced neuronal activation in the ventral hippocampus (vHPC) and basolateral amygdala (BLA) and that ML297 activates GIRK1-containing GIRK channels in these limbic structures. While intracranial infusion of ML297 into the vHPC suppressed avoidance behavior in the EPM test, mirroring the effect of systemic ML297, intra-BLA administration of ML297 provoked the opposite effect. Using neuron-specific viral genetic and chemogenetic approaches, we found that the combined inhibition of excitatory neurons in CA3 and dentate gyrus (DG) subregions of the vHPC was sufficient to decrease innate avoidance behavior in the EPM, open-field, and light-dark tests in male C57BL/6J mice, while performance in the marble-burying test was not impacted. Furthermore, genetic ablation of GIRK channels in CA3/DG excitatory neurons precluded the suppression of avoidance behavior evoked by systemic ML297 in the EPM test. Thus, acute inhibition of excitatory neurons in the ventral CA3 and DG subregions of the vHPC is necessary for the apparent anxiolytic efficacy of systemic ML297 and is sufficient to decrease innate avoidance behavior in male C57BL/6J mice.SIGNIFICANCE STATEMENT We interrogated the cellular mechanisms underlying the apparent anxiolytic efficacy of ML297, a selective activator of G-protein-gated inwardly rectifying K+ (GIRK) channels and promising lead compound. Intracranial infusion of ML297 into the ventral hippocampus (vHPC) and basolateral amygdala (BLA) complex exerted opposing influence on innate avoidance behavior in male C57BL/6J mice, the former recapitulating the suppression of avoidance behavior evoked by systemic ML297. Using viral genetic and chemogenetic approaches, we showed that combined inhibition of excitatory neurons in CA3 and dentate gyrus (DG) subregions of the vHPC is sufficient to decrease innate avoidance behavior in male mice and mediates the decrease in avoidance behavior evoked by systemic ML297. These findings establish a foundation for future investigations into the therapeutic potential of GIRK channel modulation in anxiety disorders.
Collapse
Affiliation(s)
- Baovi N Vo
- Graduate Program in Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - Timothy R Rose
- Graduate Program in Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Hannah Oberle
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Haichang Luo
- Graduate Program in Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
15
|
Bouton ME, Maren S, McNally GP. BEHAVIORAL AND NEUROBIOLOGICAL MECHANISMS OF PAVLOVIAN AND INSTRUMENTAL EXTINCTION LEARNING. Physiol Rev 2021; 101:611-681. [PMID: 32970967 PMCID: PMC8428921 DOI: 10.1152/physrev.00016.2020] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the behavioral neuroscience of extinction, the phenomenon in which a behavior that has been acquired through Pavlovian or instrumental (operant) learning decreases in strength when the outcome that reinforced it is removed. Behavioral research indicates that neither Pavlovian nor operant extinction depends substantially on erasure of the original learning but instead depends on new inhibitory learning that is primarily expressed in the context in which it is learned, as exemplified by the renewal effect. Although the nature of the inhibition may differ in Pavlovian and operant extinction, in either case the decline in responding may depend on both generalization decrement and the correction of prediction error. At the neural level, Pavlovian extinction requires a tripartite neural circuit involving the amygdala, prefrontal cortex, and hippocampus. Synaptic plasticity in the amygdala is essential for extinction learning, and prefrontal cortical inhibition of amygdala neurons encoding fear memories is involved in extinction retrieval. Hippocampal-prefrontal circuits mediate fear relapse phenomena, including renewal. Instrumental extinction involves distinct ensembles in corticostriatal, striatopallidal, and striatohypothalamic circuits as well as their thalamic returns for inhibitory (extinction) and excitatory (renewal and other relapse phenomena) control over operant responding. The field has made significant progress in recent decades, although a fully integrated biobehavioral understanding still awaits.
Collapse
Affiliation(s)
- Mark E Bouton
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
16
|
Impact of Acute and Persistent Excitation of Prelimbic Pyramidal Neurons on Motor Activity and Trace Fear Learning. J Neurosci 2021; 41:960-971. [PMID: 33402420 DOI: 10.1523/jneurosci.2606-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 11/21/2022] Open
Abstract
Drug-induced neuroadaptations in the mPFC have been implicated in addictive behaviors. Repeated cocaine exposure has been shown to increase pyramidal neuron excitability in the prelimbic (PL) region of the mouse mPFC, an adaptation attributable to a suppression of G protein-gated inwardly rectifying K+ (GIRK) channel activity. After establishing that this neuroadaptation is not seen in adjacent GABA neurons, we used viral GIRK channel ablation and complementary chemogenetic approaches to selectively enhance PL pyramidal neuron excitability in adult mice, to evaluate the impact of this form of plasticity on PL-dependent behaviors. GIRK channel ablation decreased somatodendritic GABAB receptor-dependent signaling and rheobase in PL pyramidal neurons. This manipulation also enhanced the motor-stimulatory effect of cocaine but did not impact baseline activity or trace fear learning. In contrast, selective chemogenetic excitation of PL pyramidal neurons, or chemogenetic inhibition of PL GABA neurons, increased baseline and cocaine-induced activity and disrupted trace fear learning. These effects were mirrored in male mice by selective excitation of PL pyramidal neurons projecting to the VTA, but not NAc or BLA. Collectively, these data show that manipulations enhancing the excitability of PL pyramidal neurons, and specifically those projecting to the VTA, recapitulate behavioral hallmarks of repeated cocaine exposure in mice.SIGNIFICANCE STATEMENT Prolonged exposure to drugs of abuse triggers neuroadaptations that promote core features of addiction. Understanding these neuroadaptations and their implications may suggest interventions capable of preventing or treating addiction. While previous work showed that repeated cocaine exposure increased the excitability of pyramidal neurons in the prelimbic cortex (PL), the behavioral implications of this neuroadaptation remained unclear. Here, we used neuron-specific manipulations to evaluate the impact of increased PL pyramidal neuron excitability on PL-dependent behaviors. Acute or persistent excitation of PL pyramidal neurons potentiated cocaine-induced motor activity and disrupted trace fear conditioning, effects replicated by selective excitation of the PL projection to the VTA. Our work suggests that hyperexcitability of this projection drives key behavioral hallmarks of addiction.
Collapse
|
17
|
Simonetti M, Paldy E, Njoo C, Bali KK, Worzfeld T, Pitzer C, Kuner T, Offermanns S, Mauceri D, Kuner R. The impact of Semaphorin 4C/Plexin-B2 signaling on fear memory via remodeling of neuronal and synaptic morphology. Mol Psychiatry 2021; 26:1376-1398. [PMID: 31444474 PMCID: PMC7985029 DOI: 10.1038/s41380-019-0491-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
Abstract
Aberrant fear is a cornerstone of several psychiatric disorders. Consequently, there is large interest in elucidation of signaling mechanisms that link extracellular cues to changes in neuronal function and structure in brain pathways that are important in the generation and maintenance of fear memory and its behavioral expression. Members of the Plexin-B family of receptors for class 4 semaphorins play important roles in developmental plasticity of neurons, and their expression persists in some areas of the adult nervous system. Here, we aimed to elucidate the role of Semaphorin 4C (Sema4C) and its cognate receptor, Plexin-B2, in the expression of contextual and cued fear memory, setting a mechanistic focus on structural plasticity and exploration of contributing signaling pathways. We observed that Plexin-B2 and Sema4C are expressed in forebrain areas related to fear memory, such as the anterior cingulate cortex, amygdala and the hippocampus, and their expression is regulated by aversive stimuli that induce fear memory. By generating forebrain-specific Plexin-B2 knockout mice and analyzing fear-related behaviors, we demonstrate that Sema4C-PlexinB2 signaling plays a crucial functional role in the recent and remote recall of fear memory. Detailed neuronal morphological analyses revealed that Sema4C-PlexinB2 signaling largely mediates fear-induced structural plasticity by enhancing dendritic ramifications and modulating synaptic density in the adult hippocampus. Analyses on signaling-related mutant mice showed that these functions are mediated by PlexinB2-dependent RhoA activation. These results deliver important insights into the mechanistic understanding of maladaptive plasticity in fear circuits and have implications for novel therapeutic strategies against fear-related disorders.
Collapse
Affiliation(s)
- Manuela Simonetti
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Eszter Paldy
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Christian Njoo
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Kiran Kumar Bali
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Thomas Worzfeld
- grid.10253.350000 0004 1936 9756Institute of Pharmacology, Marburg University, Karl-von-Frisch-Str. 1, 35043 Marburg, Germany ,grid.418032.c0000 0004 0491 220XDepartment of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Claudia Pitzer
- grid.7700.00000 0001 2190 4373Interdisciplinary Neurobehavioral Core, Heidelberg University, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Thomas Kuner
- grid.7700.00000 0001 2190 4373Anatomy and Cell Biology Institute, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Stefan Offermanns
- grid.418032.c0000 0004 0491 220XDepartment of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Daniela Mauceri
- grid.7700.00000 0001 2190 4373Department of Neurobiology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Abstract
Fear is a response to impending threat that prepares a subject to make appropriate defensive responses, whether to freeze, fight, or flee to safety. The neural circuits that underpin how subjects learn about cues that signal threat, and make defensive responses, have been studied using Pavlovian fear conditioning in laboratory rodents as well as humans. These studies have established the amygdala as a key player in the circuits that process fear and led to a model where fear learning results from long-term potentiation of inputs that convey information about the conditioned stimulus to the amygdala. In this review, we describe the circuits in the basolateral amygdala that mediate fear learning and its expression as the conditioned response. We argue that while the evidence linking synaptic plasticity in the basolateral amygdala to fear learning is strong, there is still no mechanism that fully explains the changes that underpin fear conditioning.
Collapse
Affiliation(s)
- Yajie Sun
- Queensland Brain Institute, University of Queensland, Queensland, Australia
| | - Helen Gooch
- Queensland Brain Institute, University of Queensland, Queensland, Australia
| | - Pankaj Sah
- Queensland Brain Institute, University of Queensland, Queensland, Australia.,Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
19
|
Hartley ND, Gaulden AD, Báldi R, Winters ND, Salimando GJ, Rosas-Vidal LE, Jameson A, Winder DG, Patel S. Dynamic remodeling of a basolateral-to-central amygdala glutamatergic circuit across fear states. Nat Neurosci 2019; 22:2000-2012. [PMID: 31712775 PMCID: PMC6884697 DOI: 10.1038/s41593-019-0528-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2019] [Indexed: 11/09/2022]
Abstract
Acquisition and extinction of learned fear responses utilize conserved but flexible neural circuits. Here we show that acquisition of conditioned freezing behavior is associated with dynamic remodeling of relative excitatory drive from the basolateral amygdala (BLA) away from corticotropin releasing factor-expressing (CRF+) centrolateral amygdala neurons, and toward non-CRF+ (CRF-) and somatostatin-expressing (SOM+) neurons, while fear extinction training remodels this circuit back toward favoring CRF+ neurons. Importantly, BLA activity is required for this experience-dependent remodeling, while directed inhibition of the BLA-centrolateral amygdala circuit impairs both fear memory acquisition and extinction memory retrieval. Additionally, ectopic excitation of CRF+ neurons impairs fear memory acquisition and facilities extinction, whereas CRF+ neuron inhibition impairs extinction memory retrieval, supporting the notion that CRF+ neurons serve to inhibit learned freezing behavior. These data suggest that afferent-specific dynamic remodeling of relative excitatory drive to functionally distinct subcortical neuronal output populations represents an important mechanism underlying experience-dependent modification of behavioral selection.
Collapse
Affiliation(s)
- Nolan D Hartley
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Andrew D Gaulden
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rita Báldi
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathan D Winters
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregory J Salimando
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Luis Eduardo Rosas-Vidal
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexis Jameson
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|