1
|
Tampé JF, Monni E, Palma-Tortosa S, Brogårdh E, Böiers C, Lindgren AG, Kokaia Z. Human monocyte subtype expression of neuroinflammation- and regeneration-related genes is linked to age and sex. PLoS One 2024; 19:e0300946. [PMID: 39475881 PMCID: PMC11524521 DOI: 10.1371/journal.pone.0300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Aging profoundly affects the immune system leading to an increased propensity for inflammation. Age-related dysregulation of immune cells is implicated in the development and progression of numerous age-related diseases such as: cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Monocytes and monocyte-derived macrophages, being important players in the inflammatory response, significantly influence the aging process and the associated increase in inflammatory disease risk. Ischemic stroke is among age-related diseases where inflammation, particularly monocyte-derived macrophages, plays an important deteriorating role but could also strongly promote post-stroke recovery. Also, biological sex influences the incidence, presentation, and outcomes of ischemic stroke, reflecting both biological differences between men and women. Here, we studied whether human peripheral blood monocyte subtype (classical, intermediate, and non-classical) expression of genes implicated in stroke-related inflammation and post-stroke tissue regeneration depends on age and sex. A flow cytometry analysis of blood samples from 44 healthy volunteers (male and female, aged 28 to 98) showed that in contrast to other immune cells, the proportion of NK-cells increased in females. The proportion of B-cells decreased in both sexes with age. Gene expression analysis by qPCR identified several genes differentially correlating with age and sex within different monocyte subtypes. Interestingly, ANXA1 and CD36 showed a consistent increase with aging in all monocytes, specifically in intermediate (CD36) and intermediate and non-classical (ANXA1) subtypes. Other genes (IL-1β, S100A8, TNFα, CD64, CD33, TGFβ1, TLR8, CD91) were differentially changed in monocyte subtypes with increasing age. Most age-dependent gene changes were differentially expressed in female monocytes. Our data shed light on the nuanced interplay of age and sex in shaping the expression of inflammation- and regeneration-related genes within distinct monocyte subtypes. Understanding these dynamics could pave the way for targeted interventions and personalized approaches in post-stroke care, particularly for the aging population and individuals of different sexes.
Collapse
Affiliation(s)
- Juliane F. Tampé
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emanuela Monni
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sara Palma-Tortosa
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emil Brogårdh
- Department of Neurology, Skåne University Hospital; Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Arne G. Lindgren
- Department of Neurology, Skåne University Hospital; Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Italia S, Vivarelli S, Teodoro M, Costa C, Fenga C, Giambò F. Effects of pesticide exposure on the expression of selected genes in normal and cancer samples: Identification of predictive biomarkers for risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104524. [PMID: 39098443 DOI: 10.1016/j.etap.2024.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Pesticides pivotal in controlling pests, can represent a threat for human health. Regulatory agencies constantly monitor their harmful effects, regulating their use. Several studies support a positive association between long-term exposure to pesticides and chronic pathologies, such as cancer. Geno-toxicological biomonitoring has proven to be valuable to assess genetic risks associated with exposure to pesticides, representing a promising tool to improve preventive measures and identify workers at higher risk. In this study, a differential gene expression analysis of 70 candidate genes deregulated upon pesticide exposure, was performed in 10 GEO human gene expression DataSets. It was found that six genes (PMAIP1, GCLM, CD36, SQSTM1, ABCC3, NR4A2) had significant AUC predictive values. Also, CD36 was upregulated in non-transformed cell samples and healthy workers, but downregulated in cancer cells. Further validation in larger groups of workers will corroborate the importance of the identified candidates as biomarkers of exposure/effect.
Collapse
Affiliation(s)
- Sebastiano Italia
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| | - Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy.
| | - Federica Giambò
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| |
Collapse
|
3
|
Hou X, Qu X, Chen W, Sang X, Ye Y, Wang C, Guo Y, Shi H, Yang C, Zhu K, Zhang Y, Xu H, Lv L, Zhang D, Hou L. CD36 deletion prevents white matter injury by modulating microglia polarization through the Traf5-MAPK signal pathway. J Neuroinflammation 2024; 21:148. [PMID: 38840180 PMCID: PMC11155181 DOI: 10.1186/s12974-024-03143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND White matter injury (WMI) represents a significant etiological factor contributing to neurological impairment subsequent to Traumatic Brain Injury (TBI). CD36 receptors are recognized as pivotal participants in the pathogenesis of neurological disorders, including stroke and spinal cord injury. Furthermore, dynamic fluctuations in the phenotypic polarization of microglial cells have been intimately associated with the regenerative processes within the injured tissue following TBI. Nevertheless, there is a paucity of research addressing the impact of CD36 receptors on WMI and microglial polarization. This investigation aims to elucidate the functional role and mechanistic underpinnings of CD36 in modulating microglial polarization and WMI following TBI. METHODS TBI models were induced in murine subjects via controlled cortical impact (CCI). The spatiotemporal patterns of CD36 expression were examined through quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunofluorescence staining. The extent of white matter injury was assessed via transmission electron microscopy, Luxol Fast Blue (LFB) staining, and immunofluorescence staining. Transcriptome sequencing was employed to dissect the molecular mechanisms underlying CD36 down-regulation and its influence on white matter damage. Microglial polarization status was ascertained using qPCR, Western blot analysis, and immunofluorescence staining. In vitro, a Transwell co-culture system was employed to investigate the impact of CD36-dependent microglial polarization on oligodendrocytes subjected to oxygen-glucose deprivation (OGD). RESULTS Western blot and qPCR analyses revealed that CD36 expression reached its zenith at 7 days post-TBI and remained sustained at this level thereafter. Immunofluorescence staining exhibited robust CD36 expression in astrocytes and microglia following TBI. Genetic deletion of CD36 ameliorated TBI-induced white matter injury, as evidenced by a reduced SMI-32/MBP ratio and G-ratio. Transcriptome sequencing unveiled differentially expressed genes enriched in processes linked to microglial activation, regulation of neuroinflammation, and the TNF signaling pathway. Additionally, bioinformatics analysis pinpointed the Traf5-p38 axis as a critical signaling pathway. In vivo and in vitro experiments indicated that inhibition of the CD36-Traf5-MAPK axis curtailed microglial polarization toward the pro-inflammatory phenotype. In a Transwell co-culture system, BV2 cells treated with LPS + IFN-γ exacerbated the damage of post-OGD oligodendrocytes, which could be rectified through CD36 knockdown in BV2 cells. CONCLUSIONS This study illuminates that the suppression of CD36 mitigates WMI by constraining microglial polarization towards the pro-inflammatory phenotype through the down-regulation of the Traf5-MAPK signaling pathway. Our findings present a potential therapeutic strategy for averting neuroinflammatory responses and ensuing WMI damage resulting from TBI.
Collapse
Affiliation(s)
- Xiaoxiang Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Xiaolin Qu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Wen Chen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Xianzheng Sang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Yichao Ye
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Chengqing Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Yangu Guo
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Hantong Shi
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Chengzi Yang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Kaixin Zhu
- Department of Neurosurgery, The First Naval Hospital of Southern Theater Command, Zhanjiang, China
| | - Yelei Zhang
- Department of Neurosurgery, Xishan People's Hospital of Wuxi City, Wuxi, China
| | - Haoxiang Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Liquan Lv
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China.
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Rd, Shanghai, China.
| |
Collapse
|
4
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
5
|
Tampé JF, Monni E, Palma-Tortosa S, Brogårdh E, Böiers C, Lindgren AG, Kokaia Z. Human monocyte subtype expression of neuroinflammation and regeneration-related genes is linked to age and sex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584323. [PMID: 38559207 PMCID: PMC10979900 DOI: 10.1101/2024.03.10.584323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Stroke is a leading cause of disability and the third cause of death. The immune system plays an essential role in post-stroke recovery. After an ischemic stroke, monocytes infiltrate the injured brain tissue and can exacerbate or mitigate the damage. Ischemic stroke is more prevalent in the aged population, and the aging brain exhibits an altered immune response. There are also sex disparities in ischemic stroke incidence, outcomes, and recovery, and these differences may be hormone-driven and determined by genetic and epigenetic factors. Here, we studied whether human peripheral blood monocyte subtype (classical, intermediate, and non-classical) expression of neuronal inflammation- and regeneration-related genes depends on age and sex. A FACS analysis of blood samples from 44 volunteers (male and female, aged 28 to 98) showed that in contrast to other immune cells, the proportion of natural killer cells increased in females. The proportion of B-cells decreased in both sexes with age, and subtypes of monocytes were not linked to age or sex. Gene expression analysis by qPCR identified several genes differentially correlating with age and sex within different monocyte subtypes. Interestingly, ANXA1 and CD36 showed a consistent increase with aging in all monocytes, specifically in intermediate (CD36) and intermediate and non-classical (ANXA1) subtypes. Other genes (IL-1β, S100A8, TNFα, CD64, CD33, TGFβ1, TLR8, CD91) were differentially changed in monocyte subtypes with increased aging. Most age-dependent gene changes were differentially expressed in female monocytes. Our data shed light on the nuanced interplay of age and sex in shaping the expression of inflammation- and regeneration-related genes within distinct monocyte subtypes. Understanding these dynamics could pave the way for targeted interventions and personalized approaches in post-stroke care, particularly for the aging population and individuals of different sexes.
Collapse
Affiliation(s)
- Juliane F. Tampé
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emanuela Monni
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sara Palma-Tortosa
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emil Brogårdh
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Arne G. Lindgren
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Feng M, Zhou Q, Xie H, Liu C, Zheng M, Zhang S, Zhou S, Zhao J. Role of CD36 in central nervous system diseases. Neural Regen Res 2024; 19:512-518. [PMID: 37721278 PMCID: PMC10581564 DOI: 10.4103/1673-5374.380821] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 09/19/2023] Open
Abstract
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases. CD36 was recently found to be widely expressed in various cell types in the nervous system, including endothelial cells, pericytes, astrocytes, and microglia. CD36 mediates a number of regulatory processes, such as endothelial dysfunction, oxidative stress, mitochondrial dysfunction, and inflammatory responses, which are involved in many central nervous system diseases, such as stroke, Alzheimer's disease, Parkinson's disease, and spinal cord injury. CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand, thereby achieving inhibition of CD36-mediated pathways or functions. Here, we reviewed the mechanisms of action of CD36 antagonists, such as Salvianolic acid B, tanshinone IIA, curcumin, sulfosuccinimidyl oleate, antioxidants, and small-molecule compounds. Moreover, we predicted the structures of binding sites between CD36 and antagonists. These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Min Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huimin Xie
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shuyu Zhang
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Di Martino E, Rayasam A, Vexler ZS. Brain Maturation as a Fundamental Factor in Immune-Neurovascular Interactions in Stroke. Transl Stroke Res 2024; 15:69-86. [PMID: 36705821 PMCID: PMC10796425 DOI: 10.1007/s12975-022-01111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 01/28/2023]
Abstract
Injuries in the developing brain cause significant long-term neurological deficits. Emerging clinical and preclinical data have demonstrated that the pathophysiology of neonatal and childhood stroke share similar mechanisms that regulate brain damage, but also have distinct molecular signatures and cellular pathways. The focus of this review is on two different diseases-neonatal and childhood stroke-with emphasis on similarities and distinctions identified thus far in rodent models of these diseases. This includes the susceptibility of distinct cell types to brain injury with particular emphasis on the role of resident and peripheral immune populations in modulating stroke outcome. Furthermore, we discuss some of the most recent and relevant findings in relation to the immune-neurovascular crosstalk and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we comment on the current state of treatments geared toward inducing neuroprotection and promoting brain repair after injury and highlight that future prophylactic and therapeutic strategies for stroke should be age-specific and consider gender differences in order to achieve optimal translational success.
Collapse
Affiliation(s)
- Elena Di Martino
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Aditya Rayasam
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
8
|
Mallard C, Ferriero DM, Vexler ZS. Immune-Neurovascular Interactions in Experimental Perinatal and Childhood Arterial Ischemic Stroke. Stroke 2024; 55:506-518. [PMID: 38252757 DOI: 10.1161/strokeaha.123.043399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Emerging clinical and preclinical data have demonstrated that the pathophysiology of arterial ischemic stroke in the adult, neonates, and children share similar mechanisms that regulate brain damage but also have distinct molecular signatures and involved cellular pathways due to the maturational stage of the central nervous system and the immune system at the time of the insult. In this review, we discuss similarities and differences identified thus far in rodent models of 2 different diseases-neonatal (perinatal) and childhood arterial ischemic stroke. In particular, we review acquired knowledge of the role of resident and peripheral immune populations in modulating outcomes in models of perinatal and childhood arterial ischemic stroke and the most recent and relevant findings in relation to the immune-neurovascular crosstalk, and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we discuss the current state of treatments geared toward age-appropriate therapies that signal via the immune-neurovascular interaction and consider sex differences to achieve successful translation.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden (C.M.)
| | - Donna M Ferriero
- Department of Pediatrics, UCSF, San Francisco, CA (D.M.F.)
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| | - Zinaida S Vexler
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| |
Collapse
|
9
|
Heinzl GC, Eriksen DB, Johnsen PR, Scarafoni A, Frøkiær H. Protein Concentration Affects the Food Allergen γ-Conglutin Uptake and Bacteria-Induced Cytokine Production in Dendritic Cells. Biomolecules 2023; 13:1531. [PMID: 37892213 PMCID: PMC10605286 DOI: 10.3390/biom13101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
γ-Conglutin (γ-C) from lupin seeds has been identified as a potent allergen with cross reactivity to peanuts. Here, we investigated how γ-C affected the response in bone marrow-derived dendritic cells (DCs) to bacterial stimuli. γ-C enhanced L. acidophilus NCFM (LaNCFM)-induced IL-12, IL-10, and IL-23 dose-dependently. In contrast, together with E. coli Nissle or LPS, γ-C reduced the production of IL-12 but not of IL-23 and IL-10. Enzyme-hydrolyzed γ-C also enhanced LaNCFM-induced IL-12 and IL-23 production. All preparations induced ROS production in the DCs. The mannose receptor ligands mannan and dextran and the clathrin inhibitor monodansylcadaverine partly inhibited the endocytosis of γ-C. Kunitz trypsin inhibitor and the scavenger receptor ligand polyG also enhanced LaNCFM-induced IL-12, indicating the involvement of receptors other than C-type lectin receptors. The endocytosis of labeled γ-C increased dose-dependently by addition of unlabeled γ-C, which coincided with γ-C's tendency to aggregate. Taken together, γ-C aggregation affects endocytosis and affects the cytokine production induced by gram-positive and gram-negative bacteria differently. We suggest that γ-C is taken up by the same mechanism as other food proteins but due to aggregation is present in higher concentration in the DCs. This could influence the resulting T-cell response in a microbial stimuli-dependent way.
Collapse
Affiliation(s)
- Giuditta C Heinzl
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Danny Blichfeldt Eriksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Peter Riber Johnsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| |
Collapse
|
10
|
Cheng J, Wang W, Xia Y, Li Y, Jia J, Xiao G. Regulators of phagocytosis as pharmacologic targets for stroke treatment. Front Pharmacol 2023; 14:1122527. [PMID: 37601043 PMCID: PMC10433754 DOI: 10.3389/fphar.2023.1122527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Stroke, including ischemic and hemorrhagic stroke, causes massive cell death in the brain, which is followed by secondary inflammatory injury initiated by disease-associated molecular patterns released from dead cells. Phagocytosis, a cellular process of engulfment and digestion of dead cells, promotes the resolution of inflammation and repair following stroke. However, professional or non-professional phagocytes also phagocytose stressed but viable cells in the brain or excessively phagocytose myelin sheaths or prune synapses, consequently exacerbating brain injury and impairing repair following stroke. Phagocytosis includes the smell, eating and digestion phases. Notably, efficient phagocytosis critically depends on phagocyte capacity to take up dead cells continually due to the limited number of phagocytes vs. dead cells after injury. Moreover, phenotypic polarization of phagocytes occurring after phagocytosis is also essential to the proresolving and prorepair properties of phagocytosis. Much has been learned about the molecular signals and regulatory mechanisms governing the sense and recognition of dead cells by phagocytes during the smell and eating phase following stroke. However, some key areas remain extremely understudied, including the mechanisms involved in digestion regulation, continual phagocytosis and phagocytosis-induced phenotypic switching following stroke. Here, we summarize new discoveries related to the molecular mechanisms and multifaceted effects of phagocytosis on brain injury and repair following stroke and highlight the knowledge gaps in poststroke phagocytosis. We suggest that advancing the understanding of poststroke phagocytosis will help identify more biological targets for stroke treatment.
Collapse
Affiliation(s)
- Jian Cheng
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wei Wang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiqing Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yi Li
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Jia Jia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guodong Xiao
- Suzhou Clinical Research Center of Neurological Disease, Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Kim ID, Ju H, Minkler J, Jiang R, Singh A, Sharma R, Febbraio M, Cho S. Endothelial cell CD36 mediates stroke-induced brain injury via BBB dysfunction and monocyte infiltration in normal and obese conditions. J Cereb Blood Flow Metab 2023; 43:843-855. [PMID: 36703604 PMCID: PMC10196754 DOI: 10.1177/0271678x231154602] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
CD36 expressed in multiple cell types regulates inflammation, vascular function, and innate immunity. Specifically, CD36 in microvascular endothelial cells (ECs) signals to elicit inflammation and causes EC death. This study investigated roles for EC-CD36 on acute stroke pathology in normal and obese conditions. Obesity induced by a high-fat diet (HD) selectively increased CD36 expression in ECs, not in monocytes/macrophages, in the post-ischemic brain. Mice deficient CD36 in ECs (ECCD36-/-) showed reduced injury size and vascular permeability in normal conditions. While control mice fed a HD developed obesity and aggravated stroke injury, ECCD36-/- mice were resistant to develop an obesity phenotype. Subjecting ECCD36-/- mice to stroke resulted in reduced injury size and BBB disruption. Moreover, the mice had reduced MCP-1 and CCR2 gene expression, resulting in reduced monocyte trafficking with improved survival and acute motor function. Reduced MCP-1 and CCR2 expression was still evident in ECCD36-/- mice subjected to severe stroke, suggesting that monocyte trafficking is an infarct-independent metabolic effect associated with specific EC-CD36 deletion. Our findings demonstrate the importance of EC-CD36 in developing vascular comorbidities and suggest that targeting EC-CD36 is a potential preventative strategy to normalize vascular risk factors, leading to improved acute stroke outcomes.
Collapse
Affiliation(s)
- Il-doo Kim
- Burke Neurological Institute, White Plains,
NY, USA
| | - Hyunwoo Ju
- Burke Neurological Institute, White Plains,
NY, USA
| | | | | | | | - Roopa Sharma
- Burke Neurological Institute, White Plains,
NY, USA
| | - Maria Febbraio
- Department of Dentistry, University of
Alberta, Edmonton, Alberta, Canada
| | - Sunghee Cho
- Burke Neurological Institute, White Plains,
NY, USA
- Feil Brain Mind Research Institute, Weill
Cornell Medicine, New York, NY
| |
Collapse
|
12
|
Thom SR, Bhopale VM, Bhat AR, Arya AK, Ruhela D, Qiao G, Li X, Tang S, Xu S. Neuroinflammation with increased glymphatic flow in a murine model of decompression sickness. J Neurophysiol 2023; 129:662-671. [PMID: 36752495 PMCID: PMC10010924 DOI: 10.1152/jn.00005.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
This project investigated glial-based lymphatic (glymphatic) function and its role in a murine model of decompression sickness (DCS). DCS pathophysiology is traditionally viewed as being related to gas bubble formation from insoluble gas on decompression. However, a body of work implicates a role for a subset of inflammatory extracellular vesicles, 0.1 to 1 µm microparticles (MPs) that are elevated in human and rodent models in response to high gas pressure and rise further after decompression. Herein, we describe immunohistochemical and Western blot evidence showing that following high air pressure exposure, there are elevations of astrocyte NF-κB and microglial-ionized calcium-binding adaptor protein-1 (IBA-1) along with fluorescence contrast and MRI findings of an increase in glymphatic flow. Concomitant elevations of central nervous system-derived MPs coexpressing thrombospondin-1 (TSP) drain to deep cervical nodes and then to blood where they cause neutrophil activation. A new set of blood-borne MPs are generated that express filamentous actin at the surface that exacerbate neutrophil activation. Blood-brain barrier integrity is disrupted due to activated neutrophil sequestration that causes further astrocyte and microglial perturbation. When postdecompression node or blood MPs are injected into naïve mice, the same spectrum of abnormalities occur and they are blocked with coadministration of antibody to TSP. We conclude that high pressure/decompression causes neuroinflammation with an increased glymphatic flow. The resulting systemic liberation of TSP-expressing MPs sustains the neuroinflammatory cycle lasting for days.NEW & NOTEWORTHY A murine model of central nervous system (CNS) decompression sickness demonstrates that high gas pressure activates astrocytes and microglia triggering inflammatory microparticle (MP) production. Thrombospondin-expressing MPs are released from the CNS via enhanced glymphatic flow to the systemic circulation where they activate neutrophils. Secondary production of neutrophil-derived MPs causes further cell activation and neutrophil adherence to the brain microvasculature establishing a feed-forward neuroinflammatory cycle.
Collapse
Affiliation(s)
- Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Veena M Bhopale
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Abid R Bhat
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Awadhesh K Arya
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Deepa Ruhela
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Guanda Qiao
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Xin Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
13
|
CD36 neutralisation blunts TLR2-IRF7 but not IRF3 pathway in neonatal mouse brain and immature human microglia following innate immune challenge. Sci Rep 2023; 13:2304. [PMID: 36759676 PMCID: PMC9911392 DOI: 10.1038/s41598-023-29423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Innate immune response in neonatal brain is associated with a robust microglial activation and induction of Toll-like Receptors (TLRs). To date, the role of the scavenger receptor CD36 in TLRs modulation, particularly TLR2 signaling, has been well established in adult brain. However, the crosstalk between TLR4, TLR2 and CD36 and its immunogenic influence in the neonatal brain remains unclear. In this study, using a CD36 blocking antibody (anti-CD36) at post-natal day 8, we evaluated the response of neonates to systemic endotoxin (lipopolysaccharide; LPS) challenge. We visualized the TLR2 response by bioluminescence imaging using the transgenic mouse model bearing the dual reporter system luciferase/green fluorescent protein under transcriptional control of a murine TLR2 promoter. The anti-CD36 treatment modified the LPS induced inflammatory profile in neonatal brains, causing a significant decrease in inflammatory cytokine levels and the TLR2 and TLR3 mediated signalling.The interferon regulatory factor 3 (IRF3) pathway remained unaffected. Treatment of the LPS-challenged human immature microglia with anti-CD36 induced a marked decrease in TLR2/TLR3 expression levels while TLR4 and IRF3 expression was not affected, suggesting the shared CD36 regulatory mechanisms in human and mouse microglia. Collectively, our results indicate that blocking CD36 alters LPS-induced inflammatory profile of mouse and human microglia, suggesting its role in fine-tuning of neuroinflammation.
Collapse
|
14
|
Qu J, Li D, Jin J, Sun N, Wu J, Yang C, Wu L, Zhuang S, Wu H, Chen R, Ren Y, Zhong C, Ying L, Zhang Y, Yuan X, Zhang M. Hypoxia-Inducible Factor 2α Attenuates Renal Ischemia-Reperfusion Injury by Suppressing CD36-Mediated Lipid Accumulation in Dendritic Cells in a Mouse Model. J Am Soc Nephrol 2023; 34:73-87. [PMID: 36719147 PMCID: PMC10101615 DOI: 10.1681/asn.0000000000000027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hypoxia and hypoxia-inducible factors (HIFs) play essential and multiple roles in renal ischemia-reperfusion injury (IRI). Dendritic cells (DCs) comprise a major subpopulation of the immunocytes in the kidney and are key initiators and effectors of the innate immune responses after IRI. The role of HIF-2α in DCs remains unclear in the context of renal IRI. METHODS To investigate the importance of HIF-2α in DCs upon renal IRI, we examined the effects of DC-specific HIF-2α ablation in a murine model. Bone marrow-derived DCs (BMDCs) from DC-specific HIF-2α-ablated mice and wild-type mice were used for functional studies and transcriptional profiling. RESULTS DC-specific ablation of HIF-2α led to hyperactivation of natural killer T (NKT) cells, ultimately exacerbating murine renal IRI. HIF-2α deficiency in DCs triggered IFN-γ and IL-4 production in NKT cells, along with upregulation of type I IFN and chemokine responses that were critical for NKT cell activation. Mechanistically, loss of HIF-2α in DCs promoted their expression of CD36, a scavenger receptor for lipid uptake, increasing cellular lipid accumulation. Furthermore, HIF-2α bound directly to a reverse hypoxia-responsive element (rHRE) in the CD36 promoter. Importantly, CD36 blockade by sulfo-N-succinimidyl oleate (SSO) reduced NKT cell activation and abolished the exacerbation of renal IRI elicited by HIF-2α knockout. CONCLUSIONS Our study reveals a previously unrecognized role of the HIF-2α/CD36 regulatory axis in rewiring DC lipid metabolism under IRI-associated hypoxia. These findings suggest a potential therapeutic target to resolve long-standing obstacles in treatment of this severe complication.
Collapse
Affiliation(s)
- Junwen Qu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Dawei Li
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jingsi Jin
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Nan Sun
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiajin Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chao Yang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lingling Wu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shaoyong Zhuang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haoyu Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ruoyang Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yaofei Ren
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chen Zhong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Liang Ying
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yan Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xiaodong Yuan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Role of alarmins in poststroke inflammation and neuronal repair. Semin Immunopathol 2022:10.1007/s00281-022-00961-5. [PMID: 36161515 DOI: 10.1007/s00281-022-00961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Severe loss of cerebral blood flow causes hypoxia and glucose deprivation in the brain tissue, resulting in necrotic cell death in the ischemic brain. Several endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), are extracellularly released from the dead cells to activate pattern recognition receptors (PRRs) in immune cells that infiltrate into ischemic brain tissue following the disruption of the blood-brain barrier (BBB) after stroke onset. The activated immune cells produce various inflammatory cytokines and chemokines, triggering sterile cerebral inflammation in the ischemic brain that causes further neuronal cell death. Poststroke inflammation is resolved within several days after stroke onset, and neurological functions are restored to some extent as neural repair occurs around peri-infarct neurons. Clearance of DAMPs from the injured brain is necessary for the resolution of poststroke inflammation. Neurons and glial cells also express PRRs and receive DAMP signaling. Although the role of PRRs in neural cells in the ischemic brain has not yet been clarified, the signaling pathway is likely to be contribute to stroke pathology and neural repair after ischemic stroke. This review describes the molecular dynamics, signaling pathways, and functions of DAMPs in poststroke inflammation and its resolution.
Collapse
|
16
|
Nirwane A, Yao Y. SMA low/undetectable pericytes differentiate into microglia- and macrophage-like cells in ischemic brain. Cell Mol Life Sci 2022; 79:264. [PMID: 35482211 PMCID: PMC11073453 DOI: 10.1007/s00018-022-04322-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022]
Abstract
Pericytes are multipotent perivascular cells that play important roles in CNS injury. However, controversial findings exist on how pericytes change and whether they differentiated into microglia-like cells after ischemic stroke. This discrepancy is mainly due to the lack of pericyte-specific markers: the "pericyte" population identified in previous studies contained vascular smooth muscle cells (vSMCs) and/or fibroblasts. Therefore, it remains unclear which cell type differentiates into microglia-like cells after stroke. In this study, lineage-tracing technique was used to mark α-smooth muscle actin (SMA)low/undetectable pericytes, vSMCs, and fibroblasts, and their fates were analyzed after ischemic stroke. We found that SMAlow/undetectable pericytes and fibroblasts but not vSMCs substantially proliferated at the subacute phase after injury, and that SMAlow/undetectable pericyte but not vSMCs or fibroblasts differentiated into Iba1+ cells after ischemic stroke. Further imaging flow cytometry analysis revealed that SMAlow/undetectable pericytes differentiated into both microglia and macrophages at day 7 after stroke. These results demonstrate that SMAlow/undetectable pericytes rather than vSMCs or fibroblasts differentiate into both microglia-like and macrophage-like cells after stroke, suggesting that these pericytes may be targeted in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC8, Tampa, FL, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC8, Tampa, FL, 33612, USA.
| |
Collapse
|
17
|
Rayasam A, Mottahedin A, Faustino J, Mallard C, Vexler ZS. Scavenger receptor CD36 governs recruitment of myeloid cells to the blood-CSF barrier after stroke in neonatal mice. J Neuroinflammation 2022; 19:47. [PMID: 35148760 PMCID: PMC8840310 DOI: 10.1186/s12974-022-02388-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background Ischemic stroke induces the activation and recruitment of peripheral leukocytes to the injured brain. These cells can infiltrate the brain through multiple routes, either by penetrating blood–brain barrier or via blood–CSF barriers at the meninges or the choroid plexus (CP). We previously showed that myeloid cell trafficking via the CP occurs early after neonatal arterial stroke and modulates injury. CD36 is a receptor that mediates function of endothelial cells and cells of the monocyte lineage under various neurodegenerative conditions and can influence brain injury after neonatal stroke. Here we asked whether CD36 impacts injury by altering leukocyte trafficking through the CP in neonatal mice subjected to transient middle cerebral artery occlusion (tMCAO). Methods In neonatal mice with intact or globally disrupted CD36 signalling (CD36 KO), we characterized the phenotypes of myeloid cells by flow cytometry and the underlying gene expression signatures in the CPs contralateral and ipsilateral to tMCAO by RNA sequencing analyses, focussing on early post-reperfusion time window. Results Flow cytometry in the isolated CPs revealed that CD36 mediates stepwise recruitment of myeloid cells to the CP ipsilateral to tMCAO early after reperfusion, with a predominant increase first in inflammatory monocyte subsets and neutrophils followed by patrolling monocytes. RNA sequencing analyses demonstrated marked changes in gene expression in the CP ipsilateral compared to the CP contralateral to tMCAO in wild type mice. Changes were further modified by lack of CD36, including distinction in several clusters of genes involved in inflammatory, metabolic and extracellular matrix signalling in the CP ipsilateral to tMCAO. Conclusion Altogether, our data suggest cooperation between blood–CSF–brain interface via the CP through CD36-mediated signalling following neonatal stroke with a key role for inflammatory monocytes and neutrophils. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02388-z.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Amin Mottahedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Faustino
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
18
|
Zong P, Lin Q, Feng J, Yue L. A Systemic Review of the Integral Role of TRPM2 in Ischemic Stroke: From Upstream Risk Factors to Ultimate Neuronal Death. Cells 2022; 11:491. [PMID: 35159300 PMCID: PMC8834171 DOI: 10.3390/cells11030491] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemic stroke causes a heavy health burden worldwide, with over 10 million new cases every year. Despite the high prevalence and mortality rate of ischemic stroke, the underlying molecular mechanisms for the common etiological factors of ischemic stroke and ischemic stroke itself remain unclear, which results in insufficient preventive strategies and ineffective treatments for this devastating disease. In this review, we demonstrate that transient receptor potential cation channel, subfamily M, member 2 (TRPM2), a non-selective ion channel activated by oxidative stress, is actively involved in all the important steps in the etiology and pathology of ischemic stroke. TRPM2 could be a promising target in screening more effective prophylactic strategies and therapeutic medications for ischemic stroke.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA;
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| |
Collapse
|
19
|
Ge YL, Gong SY, Wang PZ, Yan JH, Li W, Zhang JR, Jin H, Zhuang S, Hu L, Ding CW, Yang YP, Wang F, Li D, Chen J, Mao CJ, Zhang YC, Li K, Liu CF. Cognitive Performance is Associated with Altered Cerebral Hemodynamics Assessed by Transcranial Ultrasound in Parkinson's Disease. Neuropsychiatr Dis Treat 2022; 18:1421-1431. [PMID: 35855751 PMCID: PMC9288215 DOI: 10.2147/ndt.s358150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Cognitive impairment (CI) is a common but debilitating non-motor symptom in Parkinson's disease (PD). Although cerebrovascular functions are related to cognitive performance in healthy individuals, such a relation in PD remains elusive. This study aims to assess the association between cerebrovascular function and cognitive performance in PD individuals. PATIENTS AND METHODS Two-hundred-and-one PD individuals were retrospectively included. They were subsequently divided into two groups: PD with normal cognition (PD-NC) and PD with CI (PD-CI). Cerebral hemodynamic characteristics of the middle cerebral arteries were assessed by transcranial ultrasound. The association between scores in each cognitive domain and cerebral hemodynamic parameters was further analyzed using regression analyses. Additionally, a binary logistic regression model with backward stepwise procedure was applied to build the model for discriminating CI in PD individuals. An independent dataset of additional 46 PD individuals was used further. RESULTS The PD-CI group showed a relatively lower end-diastolic blood flow velocity (EDV, p < 0.05) and a higher resistive index (RI, p < 0.05) compared to the PD-NC group. RI showed significant associations with the memory item score of Montreal Cognitive Assessment (p < 0.05). A model combining clinical and hemodynamic variables was established with optimal efficiency (area under the curve, AUC = 0.651). Further replication of the model in an independent dataset yielded a great consistency (AUC = 0.704). CONCLUSION In our study, cerebrovascular functions were significantly associated with the cognitive performance in PD individuals, especially with the memory task. The established model was effective in identifying CI in PD individuals, which might be a potentially useful tool to screen the cognitive decline in PD individuals at an early stage of the disease. Further studies with larger sample sizes in different populations are warranted.
Collapse
Affiliation(s)
- Yi-Lun Ge
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Si-Yi Gong
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Pu-Zhi Wang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jia-Hui Yan
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Wen Li
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jin-Ru Zhang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Hong Jin
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Sheng Zhuang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Lei Hu
- Department of Ultrasound, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Chang-Wei Ding
- Department of Ultrasound, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ya-Ping Yang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Dan Li
- Department of Neurology, Suqian First Hospital, Suqian, People's Republic of China
| | - Jing Chen
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Cheng-Jie Mao
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Neurology, Suqian First Hospital, Suqian, People's Republic of China
| | - Ying-Chun Zhang
- Department of Ultrasound, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Kai Li
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Chun-Feng Liu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Neurology, Suqian First Hospital, Suqian, People's Republic of China
| |
Collapse
|
20
|
Ruhela D, Bhopale VM, Kalakonda S, Thom SR. Astrocyte-derived microparticles initiate a neuroinflammatory cycle due to carbon monoxide poisoning. Brain Behav Immun Health 2021; 18:100398. [PMID: 34917988 PMCID: PMC8645452 DOI: 10.1016/j.bbih.2021.100398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
We hypothesized that carbon monoxide (CO) establishes an inflammatory cycle mediated by microparticles (MPs). Mice exposed to a CO protocol (1000 ppm for 40 min and then 3000 ppm for 20 min) that causes neuroinflammation exhibit NF-κB activation in astrocytes leading to generation of MPs expressing thrombospondin-1(TSP-1) that collect in deep cervical lymph nodes draining the brain glymphatic system. TSP-1 bearing MPs gain access to the blood stream where they activate neutrophils to generate a new family of MPs, and also stimulate endothelial cells as documented by leakage of intravenous 2000 kDa dextran. At the brain microvasculature, neutrophil and MPs sequestration, and myeloperoxidase activity result in elevations of the p65 subunit of NF-κB, serine 536 phosphorylated p65, CD36, and loss of astrocyte aquaporin-4 that persist for at least 7 days. Knock-out mice lacking the CD36 membrane receptor are resistant to all CO inflammatory changes. Events triggered by CO are recapitulated in naïve wild type mice injected with cervical node MPs from CO-exposed mice, but not control mice. All MPs-mediated events are inhibited with a NF-κB inhibitor, a myeloperoxidase inhibitor, or anti-TSP-1 antibodies. We conclude that astrocyte-derived MPs expressing TSP-1 establish a feed-forward neuroinflammatory cycle involving endothelial CD36-to-astrocyte NF-κB crosstalk. As there is currently no treatment for CO-induced neurological sequelae, these findings pose several possible sites for therapeutic interventions. Carbon monoxide (CO) causes neurological injuries poorly correlated to hypoxic stress. Astrocyte NF-κB triggers thrombospondin-1(TSP-1) microparticle (MP) production. TSP-1 MPs enter the blood stream, stimulating neutrophils and endothelium. Circulating MPs linkage to endothelial cell CD36 causes vascular damage. Endothelial CD36-to-astrocyte NF-κB crosstalk establishes a neuroinflammatory cycle.
Collapse
Key Words
- 4-methyl-N1-(3-phenyl-propyl)-benzene-1,2-diamine, JSH-23
- Acetyl-lysyltyrosylcysteine
- Aquaporin-4
- Aquaporin-4, AQP4
- Astrocyte
- CD36
- Carbon monoxide, CO
- Carboxyhemoglobin, COHb
- Glial fibrillary acidic protein, GFAP
- Glymphatics
- Magnetic resonance imaging, MRI
- Microparticles, MPs
- Myelin basic protein, MBP
- Myeloperoxidase
- Myeloperoxidase, MPO
- Neuronal pentraxin receptor, NPR
- Neutrophil
- Nod-like receptor pyrin containing 3, NLRP3
- Nuclear factor- κB, NF-κB
- Phosphate buffered saline, PBS
- Phosphatidylserine, (PS)
- Thrombospondin-1
- Thrombospondin-1, TSP-1
- Transmembrane protein119, TMEM
- acetyl-lysyltyrosylcysteine, KYC
Collapse
Affiliation(s)
- Deepa Ruhela
- Department of Emergency Medicine, University of Maryland School of Medicine, USA
| | - Veena M Bhopale
- Department of Emergency Medicine, University of Maryland School of Medicine, USA
| | - Sudhakar Kalakonda
- Department of Emergency Medicine, University of Maryland School of Medicine, USA
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine, USA
| |
Collapse
|
21
|
Rekhi UR, Omar M, Alexiou M, Delyea C, Immaraj L, Elahi S, Febbraio M. Endothelial Cell CD36 Reduces Atherosclerosis and Controls Systemic Metabolism. Front Cardiovasc Med 2021; 8:768481. [PMID: 34888367 PMCID: PMC8650007 DOI: 10.3389/fcvm.2021.768481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023] Open
Abstract
High-fat Western diets contribute to tissue dysregulation of fatty acid and glucose intake, resulting in obesity and insulin resistance and their sequelae, including atherosclerosis. New therapies are desperately needed to interrupt this epidemic. The significant idea driving this research is that the understudied regulation of fatty acid entry into tissues at the endothelial cell (EC) interface can provide novel therapeutic targets that will greatly modify health outcomes and advance health-related knowledge. Dysfunctional endothelium, defined as activated, pro-inflammatory, and pro-thrombotic, is critical in atherosclerosis initiation, in modulating thrombotic events that could result in myocardial infarction and stroke, and is a hallmark of insulin resistance. Dyslipidemia from high-fat diets overwhelmingly contributes to the development of dysfunctional endothelium. CD36 acts as a receptor for pathological ligands generated by high-fat diets and in fatty acid uptake, and therefore, it may additionally contribute to EC dysfunction. We created EC CD36 knockout (CD36°) mice using cre-lox technology and a cre-promoter that does not eliminate CD36 in hematopoietic cells (Tie2e cre). These mice were studied on different diets, and crossed to the low density lipoprotein receptor (LDLR) knockout for atherosclerosis assessment. Our data show that EC CD36° and EC CD36°/LDLR° mice have metabolic changes suggestive of an uncompensated role for EC CD36 in fatty acid uptake. The mice lacking expression of EC CD36 had increased glucose clearance compared with controls when fed with multiple diets. EC CD36° male mice showed increased carbohydrate utilization and decreased energy expenditure by indirect calorimetry. Female EC CD36°/LDLR° mice have reduced atherosclerosis. Taken together, these data support a significant role for EC CD36 in systemic metabolism and reveal sex-specific impact on atherosclerosis and energy substrate use.
Collapse
Affiliation(s)
- Umar R Rekhi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mohamed Omar
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Alexiou
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cole Delyea
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Linnet Immaraj
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Mishra A, Bandopadhyay R, Singh PK, Mishra PS, Sharma N, Khurana N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab Brain Dis 2021; 36:1591-1626. [PMID: 34387831 DOI: 10.1007/s11011-021-00806-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is one of the host defensive mechanisms through which the nervous system protects itself from pathogenic and or infectious insults. Moreover, neuroinflammation occurs as one of the most common pathological outcomes in various neurological disorders, makes it the promising target. The present review focuses on elaborating the recent advancement in understanding molecular mechanisms of neuroinflammation and its role in the etiopathogenesis of various neurological disorders, especially Alzheimer's disease (AD), Parkinson's disease (PD), and Epilepsy. Furthermore, the current status of anti-inflammatory agents in neurological diseases has been summarized in light of different preclinical and clinical studies. Finally, possible limitations and future directions for the effective use of anti-inflammatory agents in neurological disorders have been discussed.
Collapse
Affiliation(s)
- Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Prabhakar Kumar Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Pragya Shakti Mishra
- Department of Nuclear Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, 226014, India
| | - Neha Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Navneet Khurana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
23
|
Rayasam A, Fukuzaki Y, Vexler ZS. Microglia-leucocyte axis in cerebral ischaemia and inflammation in the developing brain. Acta Physiol (Oxf) 2021; 233:e13674. [PMID: 33991400 DOI: 10.1111/apha.13674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Development of the Central Nervous System (CNS) is reliant on the proper function of numerous intricately orchestrated mechanisms that mature independently, including constant communication between the CNS and the peripheral immune system. This review summarizes experimental knowledge of how cerebral ischaemia in infants and children alters physiological communication between leucocytes, brain immune cells, microglia and the neurovascular unit (NVU)-the "microglia-leucocyte axis"-and contributes to acute and long-term brain injury. We outline physiological development of CNS barriers in relation to microglial and leucocyte maturation and the plethora of mechanisms by which microglia and peripheral leucocytes communicate during postnatal period, including receptor-mediated and intracellular inflammatory signalling, lipids, soluble factors and extracellular vesicles. We focus on the "microglia-leucocyte axis" in rodent models of most common ischaemic brain diseases in the at-term infants, hypoxic-ischaemic encephalopathy (HIE) and focal arterial stroke and discuss commonalities and distinctions of immune-neurovascular mechanisms in neonatal and childhood stroke compared to stroke in adults. Given that hypoxic and ischaemic brain damage involve Toll-like receptor (TLR) activation, we discuss the modulatory role of viral and bacterial TLR2/3/4-mediated infection in HIE, perinatal and childhood stroke. Furthermore, we provide perspective of the dynamics and contribution of the axis in cerebral ischaemia depending on the CNS maturational stage at the time of insult, and modulation independently and in consort by individual axis components and in a sex dependent ways. Improved understanding on how to modify crosstalk between microglia and leucocytes will aid in developing age-appropriate therapies for infants and children who suffered cerebral ischaemia.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Yumi Fukuzaki
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Zinaida S. Vexler
- Department of Neurology University of California San Francisco San Francisco CA USA
| |
Collapse
|
24
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
25
|
Garcia-Bonilla L, Sciortino R, Shahanoor Z, Racchumi G, Janakiraman M, Montaner J, Zhou P, Anrather J, Iadecola C. Role of microglial and endothelial CD36 in post-ischemic inflammasome activation and interleukin-1β-induced endothelial activation. Brain Behav Immun 2021; 95:489-501. [PMID: 33872708 PMCID: PMC8187325 DOI: 10.1016/j.bbi.2021.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebral ischemia is associated with an acute inflammatory response that contributes to the resulting injury. The innate immunity receptor CD36, expressed in microglia and endothelium, and the pro-inflammatory cytokine interleukin-1β (IL-1β) are involved in the mechanisms of ischemic injury. Since CD36 has been implicated in activation of the inflammasome, the main source of IL-1β, we investigated whether CD36 mediates brain injury through the inflammasome and IL-1β. We found that active caspase-1, a key inflammasome component, is decreased in microglia of CD36-deficient mice subjected to transient middle cerebral artery occlusion, an effect associated with a reduction in brain IL-1β. Conditional deletion of CD36 either in microglia or endothelium reduced ischemic injury in mice, attesting to the pathogenic involvement of CD36 in both cell types. Application of an ischemic brain extract to primary brain endothelial cell cultures from wild type (WT) mice induced IL-1β-dependent endothelial activation, reflected by increases in the cytokine colony stimulating factor-3, a response markedly attenuated in CD36-deficient endothelia. Similarly, the increase in colony stimulating factor-3 induced by recombinant IL-1β was attenuated in CD36-deficient compared to WT endothelia. We conclude that microglial CD36 is a key determinant of post-ischemic IL-1β production by regulating caspase-1 activity, whereas endothelial CD36 is required for the full expression of the endothelial activation induced by IL-1β. The data identify microglial and endothelial CD36 as critical upstream components of the acute inflammatory response to cerebral ischemia and viable putative therapeutic targets.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Rose Sciortino
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ziasmin Shahanoor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gianfranco Racchumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mathangi Janakiraman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joan Montaner
- Neurovascular Lab, Vall d́Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
26
|
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial Cells as Therapeutic Approaches in Brain Ischemia-Reperfusion Injury. Cells 2021; 10:1639. [PMID: 34208834 PMCID: PMC8305833 DOI: 10.3390/cells10071639] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is the second cause of mortality and the first cause of long-term disability constituting a serious socioeconomic burden worldwide. Approved treatments include thrombectomy and rtPA intravenous administration, which, despite their efficacy in some cases, are not suitable for a great proportion of patients. Glial cell-related therapies are progressively overcoming inefficient neuron-centered approaches in the preclinical phase. Exploiting the ability of microglia to naturally switch between detrimental and protective phenotypes represents a promising therapeutic treatment, in a similar way to what happens with astrocytes. However, the duality present in many of the roles of these cells upon ischemia poses a notorious difficulty in disentangling the precise pathways to target. Still, promoting M2/A2 microglia/astrocyte protective phenotypes and inhibiting M1/A1 neurotoxic profiles is globally rendering promising results in different in vivo models of stroke. On the other hand, described oligodendrogenesis after brain ischemia seems to be strictly beneficial, although these cells are the less studied players in the stroke paradigm and negative effects could be described for oligodendrocytes in the next years. Here, we review recent advances in understanding the precise role of mentioned glial cell types in the main pathological events of ischemic stroke, including inflammation, blood brain barrier integrity, excitotoxicity, reactive oxygen species management, metabolic support, and neurogenesis, among others, with a special attention to tested therapeutic approaches.
Collapse
Affiliation(s)
- Ivó H Hernández
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Mario Villa-González
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gerardo Martín
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Soto
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María José Pérez-Álvarez
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
27
|
Rekhi UR, Catunda RQ, Alexiou M, Sharma M, Fong A, Febbraio M. Impact of a CD36 inhibitor on Porphyromonas gingivalis mediated atherosclerosis. Arch Oral Biol 2021; 126:105129. [PMID: 33934042 DOI: 10.1016/j.archoralbio.2021.105129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To determine if AP5055 drug, an inhibitor of CD36, prevents the increase in Porphyromonas gingivalis (P. gingivalis) mediated atherosclerosis in low-density lipoprotein receptor knockout (LDLR KO) mice by targeting CD36. METHODS Male LDLR KO mice were infected with P. gingivalis by oral lavage to induce periodontal disease and fed a western diet to induce atherosclerosis. Mice were treated with the CD36 inhibitor, AP5055 (1 mg/kg), or vehicle (1% DMSO). Aortae were dissected and stained with oil red-O for morphometric analysis; blood/plasma was collected to determine markers of inflammation by cytokine array and cholesterol levels. P. gingivalis-induced bone loss in mandibles was assessed using micro-CT. P. gingivalis lipopolysaccharide stimulated nuclear factor-kappa B (NF-κB) activity was measured using a reporter gene (secreted alkaline phosphatase) assay in AP5055 treated or untreated RAW-Blue macrophages. RESULTS Isolated aortae showed a significant decrease in lesion area in the AP5055 treated group as compared to the control group. Mechanistically, in vitro analysis demonstrated that AP5055 inhibited NF-κB activity. Cytokine array showed a decrease in the expression of pro-inflammatory cytokines and decreased levels of plasma cholesterol in AP5055 treated mice. Micro-CT measurements of bone loss were not significant between the two groups. CONCLUSION CD36 inhibitor AP5055 abrogates atherosclerotic lesion burden associated with periodontal disease, accompanied by a reduction in markers of inflammation. These experiments may support the development of drugs targeting CD36 for human disease.
Collapse
Affiliation(s)
- Umar Rauf Rekhi
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Raisa Queiroz Catunda
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Alexiou
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Monika Sharma
- Department of Neurology, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA; Advanced Center for Parkinson's Disease Research of Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Aaron Fong
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Febbraio
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Balkaya M, Kim ID, Shakil F, Cho S. CD36 deficiency reduces chronic BBB dysfunction and scar formation and improves activity, hedonic and memory deficits in ischemic stroke. J Cereb Blood Flow Metab 2021; 41:486-501. [PMID: 32404022 PMCID: PMC7922745 DOI: 10.1177/0271678x20924099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 01/06/2023]
Abstract
Ameliorating blood-brain barrier disruption and altering scar formation dynamics are potential strategies that may improve post-stroke recovery. CD36 is a class B scavenger receptor that plays a role in innate immunity, inflammation and vascular dysfunction and regulates post-stroke injury, neovascularization, reactive astrogliosis and scar formation. By subjecting WT and CD36KO mice to different MCAo occlusion durations to generate comparable acute lesion sizes, we addressed the role of CD36 in BBB dysfunction, scar formation and recovery. The majority of stroke recovery studies primarily focus on motor function. Here, we employed an extensive behavioral test arsenal to evaluate psychological and cognitive endpoints. While not evident during the acute phase, CD36 deficient mice displayed significantly attenuated BBB leakage and scar formation at three months after stroke compared to wild-type littermates. Assessment of motor (open field, rotarod), anxiety (plus maze, light-dark box), depression (forced swim, sucrose preference) and memory tests (water maze) revealed that CD36 deficiency ameliorated stroke-induced behavioral impairments in activity, hedonic responses and spatial learning and strategy switching. Our findings indicate that CD36 contributes to stroke-induced BBB dysfunction and scar formation in an injury-independent manner, as well as to the chronic motor and neurophysiological deficits in chronic stroke.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke Neurological Research Institute, White Plains, NY,
USA
| | - Il-doo Kim
- Burke Neurological Research Institute, White Plains, NY,
USA
| | - Faariah Shakil
- Burke Neurological Research Institute, White Plains, NY,
USA
| | - Sunghee Cho
- Burke Neurological Research Institute, White Plains, NY,
USA
- Feil Family Brain and Mind Research Institute, Weill Cornell
Medicine at Burke Neurological Research Institute, White Plains, NY USA
| |
Collapse
|
29
|
Ioghen O, Chițoiu L, Gherghiceanu M, Ceafalan LC, Hinescu ME. CD36 - A novel molecular target in the neurovascular unit. Eur J Neurosci 2021; 53:2500-2510. [PMID: 33560561 PMCID: PMC8247892 DOI: 10.1111/ejn.15147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
CD36 is an integral membrane protein primarily known for its function as a fatty acid transporter, yet also playing other biological roles from lipid metabolism to inflammation modulation. These pleiotropic effects are explained by the existence of multiple different ligands and the extensive distribution in numerous cell types. Moreover, the receptor is related to various pathologies and it may prove to be a good target for prospective therapeutic strategies. In the neurovascular unit (NVU), CD36 is expressed in cells like microglia, microvascular endothelial cells, astrocytes and neurons. In the normal brain, CD36 was proven to be involved in phagocytosis of apoptotic cells, oro‐sensory detection of dietary lipids, and fatty acid transport across the blood brain barrier (BBB). CD36 was also acknowledged as a potentially important player in central nervous system (CNS) disorders, such as Alzheimer Disease‐associated vascular dysfunction and oxidative stress and the neuroinflammatory response in stroke. Despite continuous efforts, the therapeutic arsenal for such diseases is still scarce and there is an increasing interest in discovering new molecular targets for more specific therapeutic approaches. In this review, we summarize the role of CD36 in the normal function of the NVU and in several CNS disorders, focusing on the dysregulation of the NVU and the potential therapeutic modulation.
Collapse
Affiliation(s)
- Octavian Ioghen
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| | - Leona Chițoiu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, School of Medicine, Carol Davila Faculty of Medicine, Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, School of Medicine, Carol Davila Faculty of Medicine, Bucharest, Romania.,Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Department of Cellular and Molecular Biology and Histology, School of Medicine, Carol Davila Faculty of Medicine, Bucharest, Romania.,Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| |
Collapse
|
30
|
Microglia-Mediated Neurodegeneration in Perinatal Brain Injuries. Biomolecules 2021; 11:biom11010099. [PMID: 33451166 PMCID: PMC7828679 DOI: 10.3390/biom11010099] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Perinatal brain injuries, including encephalopathy related to fetal growth restriction, encephalopathy of prematurity, neonatal encephalopathy of the term neonate, and neonatal stroke, are a major cause of neurodevelopmental disorders. They trigger cellular and molecular cascades that lead in many cases to permanent motor, cognitive, and/or behavioral deficits. Damage includes neuronal degeneration, selective loss of subclasses of interneurons, blocked maturation of oligodendrocyte progenitor cells leading to dysmyelination, axonopathy and very likely synaptopathy, leading to impaired connectivity. The nature and severity of changes vary according to the type and severity of insult and maturation stage of the brain. Microglial activation has been demonstrated almost ubiquitously in perinatal brain injuries and these responses are key cell orchestrators of brain pathology but also attempts at repair. These divergent roles are facilitated by a diverse suite of transcriptional profiles and through a complex dialogue with other brain cell types. Adding to the complexity of understanding microglia and how to modulate them to protect the brain is that these cells have their own developmental stages, enabling them to be key participants in brain building. Of note, not only do microglia help build the brain and respond to brain injury, but they are a key cell in the transduction of systemic inflammation into neuroinflammation. Systemic inflammatory exposure is a key risk factor for poor neurodevelopmental outcomes in preterm born infants. Based on these observations, microglia appear as a key cell target for neuroprotection in perinatal brain injuries. Numerous strategies have been developed experimentally to modulate microglia and attenuate brain injury based on these strong supporting data and we will summarize these.
Collapse
|
31
|
Zhang D, Cai G, Liu K, Zhuang Z, Jia K, Pei S, Wang X, Wang H, Xu S, Cui C, Sun M, Guo S, Song W, Cai G. Microglia exosomal miRNA-137 attenuates ischemic brain injury through targeting Notch1. Aging (Albany NY) 2021; 13:4079-4095. [PMID: 33461167 PMCID: PMC7906161 DOI: 10.18632/aging.202373] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Microglia are the resident immune cells in the central nervous system and play an essential role in brain homeostasis and neuroprotection in brain diseases. Exosomes are crucial in intercellular communication by transporting bioactive miRNAs. Thus, this study aimed to investigate the function of microglial exosome in the presence of ischemic injury and related mechanism. Oxygen-glucose deprivation (OGD)-treated neurons and transient middle cerebral artery occlusion (TMCAO)-treated mice were applied in this study. Western blotting, RT-PCR, RNA-seq, luciferase reporter assay, transmission electron microscope, nanoparticle tracking analysis, immunohistochemistry, TUNEL and LDH assays, and behavioral assay were applied in mechanistic and functional studies. The results demonstrated that exosomes derived from microglia in M2 phenotype (BV2-Exo) were internalized by neurons and attenuated neuronal apoptosis in response to ischemic injury in vitro and in vivo. BV2-Exo also decreased infarct volume and behavioral deficits in ischemic mice. Exosomal miRNA-137 was upregulated in BV2-Exo and participated in the partial neuroprotective effect of BV2-Exo. Furthermore, Notch1 was a directly targeting gene of exosomal miRNA-137. In conclusion, these results suggest that BV2-Exo alleviates ischemia-reperfusion brain injury through transporting exosomal miRNA-137. This study provides novel insight into microglial exosomes-based therapies for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Dianquan Zhang
- Department of Rehabilitation Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Guoliang Cai
- Postdoctoral Research Workstation of Harbin Sport University, Harbin 150008, China.,Harbin Sport University, Harbin 150008, China
| | - Kai Liu
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Zhe Zhuang
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Kunping Jia
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Siying Pei
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Xiuzhen Wang
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Hong Wang
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
| | - Shengnan Xu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Cheng Cui
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Manchao Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Sihui Guo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Wenli Song
- Harbin Sport University, Harbin 150008, China
| | - Guofeng Cai
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China.,Postdoctoral Research Station of Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
32
|
CD36 deficiency affects depressive-like behaviors possibly by modifying gut microbiota and the inflammasome pathway in mice. Transl Psychiatry 2021; 11:16. [PMID: 33414380 PMCID: PMC7791141 DOI: 10.1038/s41398-020-01130-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Both inflammatory processes and gut microbiota have been implicated in the pathophysiology of depressive disorders. The class B scavenger receptor CD36 is involved in the cytotoxicity associated with inflammation. However, its role in depression has not yet been examined. In this study, we investigated whether CD36 affects depression by modulating the microbiota-gut-inflammasome-brain axis. We used CD36-/- (knockout) mice subjected to chronic social defeat stress, and measured the expression of CD36 in these depressed mice and in patients with depression. The hippocampus of CD36-/- mice was used to investigate changes in the NLRP3 inflammasome signaling pathway. The 16S rRNA gene sequence-based approach was used to compare the cecal microbial communities in CD36-/- and WT mice. The CD36 deficiency in CD36-/- mice alleviated chronic stress-induced depression-like behaviors. CD36 was upregulated in depressed mice as well as in depressed patients. Furthermore, the NLRP3 inflammasome signaling pathway was downregulated in the hippocampus of CD36-/- mice. The Simpson Diversity Index revealed increased cecal bacterial alpha-diversity in the CD36-/- mice. Among genera, Bacteroides, Rikenella, and Alloprevotella were significantly more abundant in the CD36-/- mice, whereas Allobaculum was less abundant, consistent with the attenuated inflammation in the hippocampus of CD36-/- mice. Our findings suggest that CD36 deficiency changes the gut microbiota composition, which in turn may impact depressive-like behaviors by affecting the inflammasome pathway.
Collapse
|
33
|
Kanoke A, Nishijima Y, Ljungberg M, Omodaka S, Yang SY, Wong S, Rabiller G, Tominaga T, Hsieh CL, Liu J. The effect of type 2 diabetes on CD36 expression and the uptake of oxLDL: Diabetes affects CD36 and oxLDL uptake. Exp Neurol 2020; 334:113461. [PMID: 32926860 PMCID: PMC8504205 DOI: 10.1016/j.expneurol.2020.113461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/07/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
We investigated whether type 2 diabetes mellitus (T2DM), a risk factor of stroke, affects the level of scavenger receptor CD36 and the uptake of its ligand, oxidized LDL (oxLDL); and whether pioglitazone, a drug that enhances CD36, promotes oxLDL uptake. Compared to normoglycemic db/+ mice, adult db/db mice showed a pronounced reduction in surface CD36 expression on myeloid cells from the blood, brain, and bone marrow as detected by flow cytometry, which correlated with elevated plasma soluble-CD36 as determined by ELISA. Increased CD36 expression was found in brain macrophages and microglia of both genotypes 7 days after ischemic stroke. In juvenile db/db mice, prior to obesity and hyperglycemia, only a mild reduction of surface CD36 was found in blood neutrophils, while all other myeloid cells showed no difference relative to the db/+ strain. In vivo, oral pioglitazone treatment for four weeks increased CD36 levels on myeloid cells in db/db mice. In vitro, uptake of oxLDL by bone marrow derived macrophages (BMDMs) of db/db mice was reduced relative to db/+ mice in normal glucose medium. OxLDL uptake inversely correlated with glucose levels in the medium in db/+ BMDMs. Furthermore, pioglitazone restored oxLDL uptake by BMDMs from db/db mice cultured in high glucose. Our data suggest that T2DM is associated with reduced CD36 on adult myeloid cells, and pioglitazone enhances CD36 expression in db/db cells. T2DM or high glucose reduces oxLDL uptake while pioglitazone enhances oxLDL uptake. Our findings provide new insight into the mechanism by which pioglitazone may be beneficial in the treatment of insulin resistance.
Collapse
Affiliation(s)
- Atsushi Kanoke
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA; SFVAMC, San Francisco, CA 94121, USA; Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yasuo Nishijima
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA; SFVAMC, San Francisco, CA 94121, USA; Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Magnus Ljungberg
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA; SFVAMC, San Francisco, CA 94121, USA; Linköping University, Linköping SE-581 83, Sweden
| | - Shunsuke Omodaka
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA; SFVAMC, San Francisco, CA 94121, USA; Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shih Yen Yang
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA; SFVAMC, San Francisco, CA 94121, USA
| | - Suwai Wong
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA; SFVAMC, San Francisco, CA 94121, USA
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA; SFVAMC, San Francisco, CA 94121, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Christine L Hsieh
- SFVAMC, San Francisco, CA 94121, USA; Department of Medicine, UCSF, San Francisco, CA 94121, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA; SFVAMC, San Francisco, CA 94121, USA.
| |
Collapse
|
34
|
Dobri AM, Dudău M, Enciu AM, Hinescu ME. CD36 in Alzheimer's Disease: An Overview of Molecular Mechanisms and Therapeutic Targeting. Neuroscience 2020; 453:301-311. [PMID: 33212223 DOI: 10.1016/j.neuroscience.2020.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
CD36 is a membrane protein with wide distribution in the human body, is enriched in the monocyte-macrophage system and endothelial cells, and is involved in the cellular uptake of long chain fatty acids (LCFA) and oxidized low-density lipoproteins. It is also a scavenger receptor, binding hydrophobic amyloid fibrils found in the Alzheimer's disease (AD) brain. In neurobiology research, it has been mostly studied in relationship with chronic ischemia and stroke, but it was also related to amyloid clearance by microglial phagocytosis. In AD animal models, amyloid binding to CD36 has been consistently correlated with a pro-inflammatory response. Therapeutic approaches have two main focuses: CD36 blockade with monoclonal antibodies or small molecules, which is beneficial in terms of the inflammatory milieu, and upregulation of CD36 for increased amyloid clearance. The balance of the two approaches, centered on microglia, is poorly understood. Furthermore, CD36 evaluation in AD clinical studies is still at a very early stage and there is a gap in the knowledge regarding the impact of LCFA on AD progression and CD36 expression and genetic phenotype. This review summarizes the role played by CD36 in the pathogenic amyloid cascade and explore the translatability of preclinical data towards clinical research.
Collapse
Affiliation(s)
- Ana-Maria Dobri
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Maria Dudău
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Mihail Eugen Hinescu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania
| |
Collapse
|
35
|
Grajchen E, Wouters E, van de Haterd B, Haidar M, Hardonnière K, Dierckx T, Van Broeckhoven J, Erens C, Hendrix S, Kerdine-Römer S, Hendriks JJA, Bogie JFJ. CD36-mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation. J Neuroinflammation 2020; 17:224. [PMID: 32718316 PMCID: PMC7384221 DOI: 10.1186/s12974-020-01899-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background The presence of foamy macrophages and microglia containing intracellular myelin remnants is a pathological hallmark of neurodegenerative disorders such as multiple sclerosis (MS). Despite the importance of myelin internalization in affecting both central nervous system repair and neuroinflammation, the receptors involved in myelin clearance and their impact on the phagocyte phenotype and lesion progression remain to be clarified. Methods Flow cytometry, quantitative PCR, and immunohistochemistry were used to define the mRNA and protein abundance of CD36 in myelin-containing phagocytes. The impact of CD36 and nuclear factor erythroid 2–related factor 2 (NRF2) on the phagocytic and inflammatory features of macrophages and microglia was assessed using a pharmacological CD36 inhibitor (sulfo-N-succinimidyl oleate) and Nrf2−/− bone marrow-derived macrophages. Finally, the experimental autoimmune encephalomyelitis (EAE) model was used to establish the impact of CD36 inhibition on neuroinflammation and myelin phagocytosis in vivo. Results Here, we show that the fatty acid translocase CD36 is required for the uptake of myelin debris by macrophages and microglia, and that myelin internalization increased CD36 expression through NRF2. Pharmacological inhibition of CD36 promoted the inflammatory properties of myelin-containing macrophages and microglia in vitro, which was paralleled by a reduced activity of the anti-inflammatory lipid-sensing liver X receptors and peroxisome proliferator-activated receptors. By using the EAE model, we provide evidence that CD36 is essential for myelin debris clearance in vivo. Importantly, CD36 inhibition markedly increased the neuroinflammatory burden and disease severity in the EAE model. Conclusion Altogether, we show for the first time that CD36 is crucial for clearing myelin debris and suppressing neuroinflammation in demyelinating disorders such as MS.
Collapse
Affiliation(s)
- Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Elien Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Britt van de Haterd
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Kévin Hardonnière
- Inflammation, Microbiome and Immunosurveillance, INSERM UMR99, Université Paris-Saclay, Châtenay-Malabry, France
| | - Tess Dierckx
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Celine Erens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Saadia Kerdine-Römer
- Inflammation, Microbiome and Immunosurveillance, INSERM UMR99, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
36
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
37
|
Kim E, Yang J, Woo Park K, Cho S. Preventative, but not post-stroke, inhibition of CD36 attenuates brain swelling in hyperlipidemic stroke. J Cereb Blood Flow Metab 2020; 40:885-894. [PMID: 31092085 PMCID: PMC7168788 DOI: 10.1177/0271678x19850004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lack of inclusion of comorbidities in animal models of stroke may underlie the limited development of therapy in stroke. Previous studies in mice deficient of CD36, an immune receptor, indicated its contribution to stroke-induced inflammation and injury in hyperlipidemic conditions. The current study, therefore, tested whether pharmacological inhibition of CD36 provides neuroprotection in hyperlipidemic stroke. The hyperlipidemic mice subjected to stroke showed an exacerbation of infarct size and profound brain swelling. However, post-stroke treatment with CD36 inhibitors did not reduce, and in some cases worsened, acute stroke outcome, suggesting potential benefits of elevated CD36 in the post-stroke brain in a hyperlipidemic condition. On the other hand, chronic treatment of a CD36 inhibitor prior to stroke significantly reduced stroke-induced brain swelling. There was a trend toward infarct reduction, although it did not reach statistical significance. The observed benefit of preventative CD36 inhibition is in line with previously reported smaller infarct volume and swelling in CD36 KO mice. Thus, the current findings suggest that insights gained from the genetic models should be carefully considered before the implementation of pharmacological interventions, as a potential therapeutic strategy may depend on preventative treatment or a post-stroke acute treatment paradigm.
Collapse
Affiliation(s)
- Eunhee Kim
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.,Vivian L Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiwon Yang
- Burke Neurological Institute, White Plains, NY, USA
| | | | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
38
|
A Review of Adropin as the Medium of Dialogue between Energy Regulation and Immune Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3947806. [PMID: 32190172 PMCID: PMC7073478 DOI: 10.1155/2020/3947806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/26/2020] [Accepted: 02/10/2020] [Indexed: 11/18/2022]
Abstract
Adropin is a secretory protein encoded by the energy balance gene and is closely associated with regulation of energy metabolism and insulin resistance. The clinical findings demonstrated its decreased expression in various inflammatory diseases, its negative correlation with the expression levels of inflammatory cytokines, and its potential anti-inflammatory effects. We speculate that adropin plays a pivotal regulatory role in immune cells and inflammatory factors. In this study, we reviewed the advances in researches concentrated on immunological effects of adropin.
Collapse
|
39
|
Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front Immunol 2020; 11:294. [PMID: 32174916 PMCID: PMC7055422 DOI: 10.3389/fimmu.2020.00294] [Citation(s) in RCA: 332] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke, which accounts for 75-80% of all strokes, is the predominant cause of morbidity and mortality worldwide. The post-stroke immune response has recently emerged as a new breakthrough target in the treatment strategy for ischemic stroke. Glial cells, including microglia, astrocytes, and oligodendrocytes, are the primary components of the peri-infarct environment in the central nervous system (CNS) and have been implicated in post-stroke immune regulation. However, increasing evidence suggests that glial cells exert beneficial and detrimental effects during ischemic stroke. Microglia, which survey CNS homeostasis and regulate innate immune responses, are rapidly activated after ischemic stroke. Activated microglia release inflammatory cytokines that induce neuronal tissue injury. By contrast, anti-inflammatory cytokines and neurotrophic factors secreted by alternatively activated microglia are beneficial for recovery after ischemic stroke. Astrocyte activation and reactive gliosis in ischemic stroke contribute to limiting brain injury and re-establishing CNS homeostasis. However, glial scarring hinders neuronal reconnection and extension. Neuroinflammation affects the demyelination and remyelination of oligodendrocytes. Myelin-associated antigens released from oligodendrocytes activate peripheral T cells, thereby resulting in the autoimmune response. Oligodendrocyte precursor cells, which can differentiate into oligodendrocytes, follow an ischemic stroke and may result in functional recovery. Herein, we discuss the mechanisms of post-stroke immune regulation mediated by glial cells and the interaction between glial cells and neurons. In addition, we describe the potential roles of various glial cells at different stages of ischemic stroke and discuss future intervention targets.
Collapse
Affiliation(s)
- Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Rekhi U, Piche JE, Immaraj L, Febbraio M. Neointimal hyperplasia: are fatty acid transport proteins a new therapeutic target? Curr Opin Lipidol 2019; 30:377-382. [PMID: 31348024 DOI: 10.1097/mol.0000000000000627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW High-fat diets contribute to hyperlipidemia and dysregulated metabolism underlying insulin resistant states and cardiovascular diseases. Neointimal hyperplasia is a significant resulting morbidity. Increased fatty acid (FA) levels lead to dysfunctional endothelium, defined as activated, proinflammatory and prothrombotic. The purpose of this review is to assess the recent literature on the emerging concept that uptake of FA into many tissues is regulated at the endothelial level, and this in turn contributes to endothelial dysfunction, an initiating factor in insulin resistant states, atherosclerosis and neointimal hyperplasia. RECENT FINDINGS Studies support the role of endothelial FA uptake proteins as an additional level of regulation in tissue FA uptake. These proteins include CD36, FA transport proteins, FA-binding proteins and caveolin-1. In many cases, inappropriate expression of these proteins can result in a change in FA and glucose uptake, storage and utilization. Accumulation of plasma FA is one mechanism by which alterations in expression of FA uptake proteins can lead to endothelial dysfunction; changes in tissue substrate metabolism leading to inflammation are also implicated. SUMMARY Identification of the critical players and regulators can lead to therapeutic targeting to reduce endothelial dysfunction and sequela such as insulin resistance and neointimal hyperplasia.
Collapse
Affiliation(s)
- Umar Rekhi
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, 7020M Katz Group Centre for Pharmacy & Health Research, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
41
|
Qin L, Actor-Engel HS, Woo MS, Shakil F, Chen YW, Cho S, Aoki C. An Increase of Excitatory-to-Inhibitory Synaptic Balance in the Contralateral Cortico-Striatal Pathway Underlies Improved Stroke Recovery in BDNF Val66Met SNP Mice. Neurorehabil Neural Repair 2019; 33:989-1002. [PMID: 31524060 DOI: 10.1177/1545968319872997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite negative association in cognition and memory, mice harboring Val66Met BDNF SNP (BDNFM/M) exhibit enhanced motor recovery accompanied by elevated excitatory synaptic markers VGLUT1 and VGLUT2 in striatum contralateral to unilateral ischemic stroke. The cortico-striatal pathway is a critical gateway for plasticity of motor/gait function. We hypothesized that enhanced excitability of the cortico-striatal pathway, especially of the contralateral hemisphere, underlies improved motor recovery. To test this hypothesis, we examined the key molecules involving excitatory synaptogenesis: Thrombospondins (TSP1/2) and their neuronal receptor α2δ-1. In WT brains, stroke induced expressions of TSP1/2-mRNA. The contralateral hemisphere of BDNFM/M mice showed heightened TSP2 and α2δ-1 mRNA and protein specifically at 6 months post-stroke. Immunoreactivities of TSPs and α2δ-1 were increased in cortical layers 1/2 of stroked BDNFM/M animals compared with BDNFM/M sham brains at this time. Areal densities of excitatory synapses in cortical layer 1 and striatum were also increased in stroked BDNFM/M brains, relative to stroked WT brains. Notably, the frequency of GABAergic synapses was greatly reduced along distal dendrites in cortical layer 1 in BDNFM/M brains, whether or not stroked, compared with WT brains. There was no effect of genotype or treatment on the density of GABAergic synapses onto striatal medium spiny neurons. The study identified molecular and synaptic substrates in the contralateral hemisphere of BDNFM/M mice, especially in cortical layers 1/2, which indicates selective region-related synaptic plasticity. The study suggests that an increase in excitatory-to-inhibitory synaptic balance along the contralateral cortico-striatal pathway underlies the enhanced functional recovery of BDNFM/M mice.
Collapse
Affiliation(s)
- Luye Qin
- Burke Neurological Institute, White Plains, NY, USA.,State University of New York at Buffalo, Buffalo, NY, USA
| | | | | | | | | | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Chiye Aoki
- New York University, New York, NY, USA.,NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
42
|
Zhu Z, Zheng L, Li Y, Huang T, Chao YC, Pan L, Zhu H, Zhao Y, Yu W, Li P. Potential Immunotherapeutic Targets on Myeloid Cells for Neurovascular Repair After Ischemic Stroke. Front Neurosci 2019; 13:758. [PMID: 31447626 PMCID: PMC6696904 DOI: 10.3389/fnins.2019.00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Neurological deficits and cognitive dysfunctions caused by acute ischemic stroke pose enormous burden to the stroke families and the communities. Restoration of the normal function of the neurovascular unit following ischemic stroke is critical for improving neurological recovery and cognitive functions after stroke. Recent evidence suggests that the myeloid cells including both the resident microglia and infiltrating monocytes/macrophages and neutrophils are highly plastic in response to the environmental cues. They intimately interact with multiple components of the neurovascular unit in response to the alarmins, danger associated pattern molecules (DAMPs) and other signals released from the ischemic brain. The aim of this review is to discuss the reciprocal interactions between the myeloid cells and the ischemic neurovascular unit during the late repair phase of cerebral ischemic stroke. We also summarize potential immunotherapeutic targets on myeloid cells and new therapeutic approaches targeting myeloid cells, such as cell transplantation, mitochondrial dynamic and extracellular vesicles-based therapy et al to enhance neurovascular repair for better stroke recovery.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Chieh Chao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lijun Pan
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanhua Zhao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
43
|
Prasad GVRK, Dhar V, Mukhopadhaya A. Vibrio cholerae OmpU Mediates CD36-Dependent Reactive Oxygen Species Generation Triggering an Additional Pathway of MAPK Activation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2019; 202:2431-2450. [PMID: 30867241 DOI: 10.4049/jimmunol.1800389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 02/06/2019] [Indexed: 01/18/2023]
Abstract
OmpU, one of the porins of Gram-negative bacteria Vibrio cholerae, induces TLR1/2-MyD88-NF-κB-dependent proinflammatory cytokine production by monocytes and macrophages of human and mouse origin. In this study, we report that in both the cell types, OmpU-induced proinflammatory responses involve activation of MAPKs (p38 and JNK). Interestingly, we observed that in OmpU-treated macrophages, p38 activation is TLR2 dependent, but JNK activation happens through a separate pathway involving reactive oxygen species (ROS) generation by NADPH oxidase complex and mitochondrial ROS. Further, we observed that OmpU-mediated mitochondrial ROS generation probably depends on OmpU translocation to mitochondria and NADPH oxidase-mediated ROS production is due to activation of scavenger receptor CD36. For the first time, to our knowledge, we are reporting that a Gram-negative bacterial protein can activate CD36 as a pattern recognition receptor. Additionally, we found that in OmpU-treated monocytes, both JNK and p38 activation is linked to the TLR2 activation only. Therefore, the ability of macrophages to employ multiple receptors such as TLR2 and CD36 to recognize a single ligand, as in this case OmpU, probably explains the very basic nature of macrophages being more proinflammatory than monocytes.
Collapse
Affiliation(s)
- G V R Krishna Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, 140306 Punjab, India
| | - Vinica Dhar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, 140306 Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, 140306 Punjab, India
| |
Collapse
|
44
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
45
|
Liquefaction of the Brain following Stroke Shares a Similar Molecular and Morphological Profile with Atherosclerosis and Mediates Secondary Neurodegeneration in an Osteopontin-Dependent Mechanism. eNeuro 2018; 5:eN-CFN-0076-18. [PMID: 30417081 PMCID: PMC6223114 DOI: 10.1523/eneuro.0076-18.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022] Open
Abstract
Here we used mouse models of heart and brain ischemia to compare the inflammatory response to ischemia in the heart, a protein rich organ, to the inflammatory response to ischemia in the brain, a lipid rich organ. We report that ischemia-induced inflammation resolves between one and four weeks in the heart compared to between eight and 24 weeks in the brain. Importantly, we discovered that a second burst of inflammation occurs in the brain between four and eight weeks following ischemia, which coincided with the appearance of cholesterol crystals within the infarct. This second wave shares a similar cellular and molecular profile with atherosclerosis and is characterized by high levels of osteopontin (OPN) and matrix metalloproteinases (MMPs). In order to test the role of OPN in areas of liquefactive necrosis, OPN-/- mice were subjected to brain ischemia. We found that at seven weeks following stroke, the expression of pro-inflammatory proteins and MMPs was profoundly reduced in the infarct of the OPN-/- mice, although the number of cholesterol crystals was increased. OPN-/- mice exhibited faster recovery of motor function and a higher number of neuronal nuclei (NeuN) positive cells in the peri-infarct area at seven weeks following stroke. Based on these findings we propose that the brain liquefies after stroke because phagocytic cells in the infarct are unable to efficiently clear cholesterol rich myelin debris, and that this leads to the perpetuation of an OPN-dependent inflammatory response characterized by high levels of degradative enzymes.
Collapse
|
46
|
Adamson SXF, Wang R, Wu W, Cooper B, Shannahan J. Metabolomic insights of macrophage responses to graphene nanoplatelets: Role of scavenger receptor CD36. PLoS One 2018; 13:e0207042. [PMID: 30403754 PMCID: PMC6221354 DOI: 10.1371/journal.pone.0207042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
Graphene nanoplatelets (GNPs) are novel two-dimensional engineered nanomaterials consisting of planar stacks of graphene. Although human exposures are increasing, our knowledge is lacking regarding immune-specific responses to GNPs and mechanisms of interactions. Our current study utilizes a metabolite profiling approach to evaluate macrophage responses to GNPs. Furthermore, we assessed the role of the scavenger receptor CD36 in mediating these GNP-induced responses. GNPs were purchased with dimensions of 2 μm × 2 μm × 12 nm. Macrophages were exposed to GNPs at different concentrations of 0, 25, 50, or 100 μg/ml for 1, 3, or 6 h. Following exposure, no cytotoxicity was observed, while GNPs readily associated with macrophages in a concentration-dependent manner. After the 1h-pretreatment of either a CD36 competitive ligand sulfo-N-succinimidyl oleate (SSO) or a CD36 specific antibody, the cellular association of GNPs by macrophages was significantly reduced. GNP exposure was determined to alter mitochondrial membrane potential while the pretreatment with a CD36 antibody inhibited these changes. In a separate exposure, macrophages were exposed to GNPs at concentrations of 0, 50, or 100 μg/mL for 1 or 3h or 100 μM SSO (a CD36 specific ligand) for 1h and collected for metabolite profiling. Principal component analysis of identified compounds determined differential grouping based on exposure conditions. The number of compounds changed following exposure was determined to be both concentration- and time-dependent. Identified metabolites were determined to relate to several metabolism pathways such as glutathione metabolism, Pantothenate and CoA biosynthesis, Sphingolipid metabolism, Purine metabolism, arachidonic acid metabolism and others. Lastly, a number of metabolites were found in common between cells exposed to the CD36 receptor ligand, SSO, and GNPs suggesting both CD36-dependent and independent responses to GNP exposure. Together our data demonstrates GNP-macrophage interactions, the role of CD36 in the cellular response, and metabolic pathways disrupted due to exposure.
Collapse
Affiliation(s)
| | - Ruoxing Wang
- School of Industrial Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Bruce Cooper
- Metabolite Profiling Facility in Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette, IN, United States of America
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
47
|
Zhang W, Chen R, Yang T, Xu N, Chen J, Gao Y, Stetler RA. Fatty acid transporting proteins: Roles in brain development, aging, and stroke. Prostaglandins Leukot Essent Fatty Acids 2018; 136:35-45. [PMID: 28457600 PMCID: PMC5650946 DOI: 10.1016/j.plefa.2017.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
Polyunsaturated fatty acids are required for the brain development and significantly impact aging and stroke. Due to the hydrophobicity of fatty acids, fatty acids transportation related proteins that include fatty acid binding proteins (FABPs), long chain acyl-coA synthase (ACS), fatty acid transportation proteins (FATPs), fatty acid translocase (FAT/CD36) and newly reported major facilitator superfamily domain-containing protein (Mfsd2a) play critical roles in the uptake of various fatty acids, especially polyunsaturated fatty acids. They are not only involved in neurodevelopment, but also have great impact on neurological disease, such as aging related dementia and stroke.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ruiying Chen
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Na Xu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - R Anne Stetler
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| |
Collapse
|
48
|
Feng YH, Zheng L, Wei J, Yu MM, Zhang J, Luo GH, Xu N. Increased apolipoprotein M induced by lack of scavenger receptor BI is not activated via HDL-mediated cholesterol uptake in hepatocytes. Lipids Health Dis 2018; 17:200. [PMID: 30144814 PMCID: PMC6109342 DOI: 10.1186/s12944-018-0849-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022] Open
Abstract
Background Scavenger receptor BI (SR-BI) is a classic high-density lipoprotein (HDL) receptor, which mediates selective lipid uptake from HDL cholesterol esters (HDL-C). Apolipoprotein M (ApoM), as a component of HDL particles, could influence preβ-HDL formation and cholesterol efflux. The aim of this study was to determine whether SR-BI deficiency influenced the expression of ApoM. Methods Blood samples and liver tissues were collected from SR-BI gene knockout mice, and serum lipid parameters, including total cholesterol (TC), triglyceride (TG), high and low-density lipoprotein cholesterol (HDL-C and LDL-C) and ApoM were measured. Hepatic ApoM and ApoAI mRNA levels were also determined. In addition, BLT-1, an inhibitor of SR-BI, was added to HepG2 cells cultured with cholesterol and HDL, under serum or serum-free conditions. The mRNA and protein expression levels of ApoM were detected by RT-PCR and western blot. Results We found that increased serum ApoM protein levels corresponded with high hepatic ApoM mRNA levels in both male and female SR-BI−/− mice. Besides, serum TC and HDL-C were also significantly increased. Treatment of HepG2 hepatoma cells with SR-BI specific inhibitor, BLT-1, could up-regulate ApoM expression in serum-containing medium but not in serum-free medium, even in the presence of HDL-C and cholesterol. Conclusions Results suggested that SR-BI deficiency promoted ApoM expression, but the increased ApoM might be independent from HDL-mediated cholesterol uptake in hepatocytes.
Collapse
Affiliation(s)
- Yue-Hua Feng
- Comprehensive Laboratory, the Third Affiliated Hospital, Soochow University, Changzhou, 213003, China
| | - Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital, Soochow University, Changzhou, 213003, China
| | - Jiang Wei
- Comprehensive Laboratory, the Third Affiliated Hospital, Soochow University, Changzhou, 213003, China
| | - Miao-Mei Yu
- Comprehensive Laboratory, the Third Affiliated Hospital, Soochow University, Changzhou, 213003, China
| | - Jun Zhang
- Comprehensive Laboratory, the Third Affiliated Hospital, Soochow University, Changzhou, 213003, China
| | - Guang-Hua Luo
- Comprehensive Laboratory, the Third Affiliated Hospital, Soochow University, Changzhou, 213003, China.
| | - Ning Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, S-221 85, Lund, Sweden.
| |
Collapse
|
49
|
Kahl A, Anderson CJ, Qian L, Voss H, Manfredi G, Iadecola C, Zhou P. Neuronal expression of the mitochondrial protein prohibitin confers profound neuroprotection in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 2018; 38:1010-1020. [PMID: 28714328 PMCID: PMC5999007 DOI: 10.1177/0271678x17720371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mitochondrial protein prohibitin (PHB) has emerged as an important modulator of neuronal survival in different injury modalities . We previously showed that viral gene transfer of PHB protects CA1 neurons from delayed neurodegeneration following transient forebrain ischemia through mitochondrial mechanisms. However, since PHB is present in all cell types, it is not known if its selective expression in neurons is protective, and if the protection occurs also in acute focal ischemic brain injury, the most common stroke type in humans. Therefore, we generated transgenic mice overexpressing human PHB1 specifically in neurons (PHB1 Tg). PHB1 Tg mice and littermate controls were subjected to transient middle cerebral artery occlusion (MCAo). Infarct volume and sensory-motor impairment were assessed three days later. Under the control of a neuronal promoter (CaMKIIα), PHB1 expression was increased by 50% in the forebrain and hippocampus in PHB1 Tg mice. The brain injury produced by MCAo was reduced by 63 ± 11% in PHB1 Tg mice compared to littermate controls. This reduction was associated with improved sensory-motor performance, suggesting that the salvaged brain remains functional. Approaches to enhance PHB expression may be useful to ameliorate the devastating impact of cerebral ischemia on the brain.
Collapse
Affiliation(s)
- Anja Kahl
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Corey J Anderson
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Liping Qian
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Henning Voss
- 2 Department of Radiology, Weill Cornell Medicine, NY, USA
| | - Giovanni Manfredi
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Costantino Iadecola
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Ping Zhou
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| |
Collapse
|
50
|
Kahl A, Stepanova A, Konrad C, Anderson C, Manfredi G, Zhou P, Iadecola C, Galkin A. Critical Role of Flavin and Glutathione in Complex I-Mediated Bioenergetic Failure in Brain Ischemia/Reperfusion Injury. Stroke 2018; 49:1223-1231. [PMID: 29643256 PMCID: PMC5916474 DOI: 10.1161/strokeaha.117.019687] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Background and Purpose— Ischemic brain injury is characterized by 2 temporally distinct but interrelated phases: ischemia (primary energy failure) and reperfusion (secondary energy failure). Loss of cerebral blood flow leads to decreased oxygen levels and energy crisis in the ischemic area, initiating a sequence of pathophysiological events that after reoxygenation lead to ischemia/reperfusion (I/R) brain damage. Mitochondrial impairment and oxidative stress are known to be early events in I/R injury. However, the biochemical mechanisms of mitochondria damage in I/R are not completely understood. Methods— We used a mouse model of transient focal cerebral ischemia to investigate acute I/R-induced changes of mitochondrial function, focusing on mechanisms of primary and secondary energy failure. Results— Ischemia induced a reversible loss of flavin mononucleotide from mitochondrial complex I leading to a transient decrease in its enzymatic activity, which is rapidly reversed on reoxygenation. Reestablishing blood flow led to a reversible oxidative modification of mitochondrial complex I thiol residues and inhibition of the enzyme. Administration of glutathione-ethyl ester at the onset of reperfusion prevented the decline of complex I activity and was associated with smaller infarct size and improved neurological outcome, suggesting that decreased oxidation of complex I thiols during I/R-induced oxidative stress may contribute to the neuroprotective effect of glutathione ester. Conclusions— Our results unveil a key role of mitochondrial complex I in the development of I/R brain injury and provide the mechanistic basis for the well-established mitochondrial dysfunction caused by I/R. Targeting the functional integrity of complex I in the early phase of reperfusion may provide a novel therapeutic strategy to prevent tissue injury after stroke.
Collapse
Affiliation(s)
- Anja Kahl
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Anna Stepanova
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.).,School of Biological Sciences, Queen's University Belfast, United Kingdom (A.S., A.G.)
| | - Csaba Konrad
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Corey Anderson
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Giovanni Manfredi
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Ping Zhou
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Costantino Iadecola
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Alexander Galkin
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.).,School of Biological Sciences, Queen's University Belfast, United Kingdom (A.S., A.G.)
| |
Collapse
|