1
|
Yamamoto M, Itokazu T, Uno H, Maki T, Shibuya N, Yamashita T. Anti-RGMa neutralizing antibody ameliorates vascular cognitive impairment in mice. Neurotherapeutics 2025; 22:e00500. [PMID: 39613526 DOI: 10.1016/j.neurot.2024.e00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024] Open
Abstract
Repulsive Guidance Molecule A (RGMa) is well-recognized for its role in axon guidance. Recent studies have unveiled its diverse functions under pathological conditions within the central nervous system, such as spinal cord injury, multiple sclerosis, and Parkinson's disease. In this study, we explored the involvement of RGMa and the therapeutic effects of an anti-RGMa neutralizing antibody in a mouse model of vascular dementia (VaD). The VaD mouse model was established using the bilateral common carotid artery stenosis (BCAS) method. Immunohistochemical analysis revealed that these mice exhibited increased RGMa expression in the hippocampus, which coincided with reduced neurogenesis and impaired cholinergic innervation. These alterations manifested as cognitive impairments in the BCAS mice. Significantly, treatment with anti-RGMa neutralizing antibody reversed these pathological changes and cognitive deficits. Our findings suggest that RGMa plays a pivotal role in VaD pathology within the hippocampus and propose the anti-RGMa antibody as a promising therapeutic avenue for treating VaD.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Hiroki Uno
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nao Shibuya
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan; WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
2
|
Schreier P, Huang L, Fung E, Mollon J, Sielaff B, Lake MR, Schulz M, Awwad K. Development and validation of an ultra-performance liquid chromatography with tandem mass spectrometry method for determination of soluble repulsive guidance molecule A in human serum and cerebrospinal fluid. Bioanalysis 2024; 16:1155-1166. [PMID: 39387340 PMCID: PMC11583623 DOI: 10.1080/17576180.2024.2403241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Aim: Repulsive guidance molecule A (RGMa) is upregulated in neurodegenerative diseases. To assess RGMa levels in human serum and cerebrospinal fluid (CSF), a quantification method was developed and validated according to ICH M10 guideline.Methods & results: Sample preparation consisted of immunoprecipitation (IP, only for serum), digestion and purification followed by MS.Conclusion: An UPLC-MS/MS method was established and used to assess normal range of soluble RGMa levels in serum and CSF of healthy controls, and patients with mild cognitive impairment or Alzheimer's disease. The normal range was between 13.0-44.8 ng/ml (CSF) and 9.9-20.9 ng/ml (serum) in healthy controls. In the CSF of patients with mild cognitive impairment and Alzheimer's disease, total soluble RGMa was twofold lower while unchanged in serum.
Collapse
Affiliation(s)
- Patrick Schreier
- AbbVie Deutschland GmbH & Co. KG, Knollstr., Rhineland-Palatinate, Ludwigshafen, 67061, Germany
| | - Lili Huang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Emma Fung
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Jennifer Mollon
- AbbVie Deutschland GmbH & Co. KG, Knollstr., Rhineland-Palatinate, Ludwigshafen, 67061, Germany
| | - Bernhard Sielaff
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Marc R Lake
- AbbVie Inc., 1 N Waukegan Rd, North Chicago, IL 60064, USA
| | - Michael Schulz
- AbbVie Deutschland GmbH & Co. KG, Knollstr., Rhineland-Palatinate, Ludwigshafen, 67061, Germany
| | - Khader Awwad
- AbbVie Deutschland GmbH & Co. KG, Knollstr., Rhineland-Palatinate, Ludwigshafen, 67061, Germany
| |
Collapse
|
3
|
Wang Z, Zhang S, Cheng R, Jiang A, Qin X. Knockdown of RGMA improves ischemic stroke via Reprogramming of Neuronal Metabolism. Free Radic Biol Med 2024; 218:41-56. [PMID: 38556067 DOI: 10.1016/j.freeradbiomed.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Neuronal energy metabolism dysregulation is involved in various pathologies of Ischemia-reperfusion (I/R), yet the role of RGMA in neuronal metabolic reprogramming has not been reported. In this study, we found that RGMA expression significantly increased after I/R, and compared to control mice, mice with MCAO/R showed an increase in glycolytic metabolic products and the expression of glycolytic pathway proteins. Furthermore, RGMA levels are closely related to neuronal energy metabolism. We discovered that knockdown of RGMA can shift neuronal energy metabolism towards oxidative phosphorylation and the pentose phosphate pathway, thereby protecting mice from ischemic reperfusion injury. Mechanistically, knockdown of RGMA can downregulate PGK1 expression, reducing the increase in glycolytic flux following ischemia reperfusion. Moreover, we found that knockdown of RGMA can reduce the interaction between USP10 and PGK1, thus affecting the ubiquitination degradation of PGK1. In summary, our data suggest that RGMA may regulate neuronal energy metabolism by inhibiting the USP10-mediated deubiquitination of PGK1, thus protecting it from I/R injury. This study provides new ideas for clarifying the intrinsic mechanism of neuronal damage after I/R.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shaoru Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ruiqi Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Anan Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Müller T, Riederer P. The vicious circle between homocysteine, methyl group-donating vitamins and chronic levodopa intake in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:631-638. [PMID: 37329350 DOI: 10.1007/s00702-023-02666-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
A biomarker for declined methylation capacity is elevation of homocysteine levels. They increase the risk for onset of vascular disease and contribute to progression of chronic neurodegeneration and aging. This narrative review discusses associations between homocysteine, consumption of methyl group-donating vitamins and impact on disease-generating mechanisms in levodopa-treated patients with Parkinson's disease. We conclude to recommend levodopa-treated patients to substitute themselves with methyl group-donating vitamins. This is harmless in terms of application of folic acid, methylcobalamin or hydroxocobalamin. Moreover, we suggest a crucial discussion on the value of the various popular hypotheses on Parkinson's disease-generating mechanisms. Findings from studies with acute levodopa exposure describe oxidative stress generation and impaired methylation capacity, which causes gene dysfunction. Their repeated occurrences contribute to onset of mitochondrial dysfunction, iron enrichment and pathologic protein accumulation in the long term. Current research underestimates these epigenetic, metabolic consequences of chronic levodopa application. Supplementary treatment strategies are recommended to avoid levodopa-related side effects.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstr. 1, 13088, Berlin, Germany.
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel Platz 1, 97080, Würzburg, Germany
| |
Collapse
|
5
|
Shimizu M, Shiraishi N, Tada S, Sasaki T, Beck G, Nagano S, Kinoshita M, Sumi H, Sugimoto T, Ishida Y, Koda T, Ishikura T, Sugiyama Y, Kihara K, Kanakura M, Nakajima T, Takeda S, Takahashi MP, Yamashita T, Okuno T, Mochizuki H. RGMa collapses the neuronal actin barrier against disease-implicated protein and exacerbates ALS. SCIENCE ADVANCES 2023; 9:eadg3193. [PMID: 37992159 PMCID: PMC10665002 DOI: 10.1126/sciadv.adg3193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Repulsive guidance molecule A (RGMa) was originally identified as a neuronal growth cone-collapsing factor. Previous reports have demonstrated the multifunctional roles of RGMa mediated by neogenin1. However, the pathogenic involvement of RGMa in amyotrophic lateral sclerosis (ALS) remains unclear. Here, we demonstrated that RGMa concentration was elevated in the cerebrospinal fluid of both patients with ALS and transgenic mice overexpressing the mutant human superoxide dismutase1 (mSOD1 mice). Treatment with humanized anti-RGMa monoclonal antibody ameliorated the clinical symptoms in mSOD1 mice. Histochemical analysis revealed that the anti-RGMa antibody significantly decreased mutant SOD1 protein accumulation in the motor neurons of mSOD1 mice via inhibition of actin depolymerization. In vitro analysis revealed that the anti-RGMa antibody inhibited the cellular uptake of the mutant SOD1 protein, presumably by reinforcing the neuronal actin barrier. Collectively, these data suggest that RGMa leads to the collapse of the neuronal actin barrier and promotes aberrant protein deposition, resulting in exacerbation of the ALS pathology.
Collapse
Affiliation(s)
- Mikito Shimizu
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoyuki Shiraishi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoru Tada
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Clinical Research, National Hospital Organization Osaka-Minami Medical Center, Kawachinagano, Osaka, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Goichi Beck
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiichi Nagano
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurotherapeutics, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisae Sumi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Tomoyuki Sugimoto
- Graduate School of Data Science, Shiga University, Hikone, Shiga, Japan
| | - Yoko Ishida
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toru Koda
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Teruyuki Ishikura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Yasuko Sugiyama
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keigo Kihara
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Minami Kanakura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsuneo Nakajima
- Department of Geriatric and General Medicine, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuko Takeda
- Department of Clinical Gene Therapy, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka, Japan
| | - Masanori P. Takahashi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
6
|
Smolen P, Dash PK, Redell JB. Traumatic brain injury-associated epigenetic changes and the risk for neurodegenerative diseases. Front Neurosci 2023; 17:1259405. [PMID: 37795186 PMCID: PMC10546067 DOI: 10.3389/fnins.2023.1259405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Epidemiological studies have shown that traumatic brain injury (TBI) increases the risk for developing neurodegenerative diseases (NDs). However, molecular mechanisms that underlie this risk are largely unidentified. TBI triggers widespread epigenetic modifications. Similarly, NDs such as Alzheimer's or Parkinson's are associated with numerous epigenetic changes. Although epigenetic changes can persist after TBI, it is unresolved if these modifications increase the risk of later ND development and/or dementia. We briefly review TBI-related epigenetic changes, and point out putative feedback loops that might contribute to long-term persistence of some modifications. We then focus on evidence suggesting persistent TBI-associated epigenetic changes may contribute to pathological processes (e.g., neuroinflammation) which may facilitate the development of specific NDs - Alzheimer's disease, Parkinson's disease, or chronic traumatic encephalopathy. Finally, we discuss possible directions for TBI therapies that may help prevent or delay development of NDs.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | | | | |
Collapse
|
7
|
Ashraf SS, Hosseinpour Sarmadi V, Larijani G, Naderi Garahgheshlagh S, Ramezani S, Moghadamifar S, Mohebi SL, Brouki Milan P, Haramshahi SMA, Ahmadirad N, Amini N. Regenerative medicine improve neurodegenerative diseases. Cell Tissue Bank 2023; 24:639-650. [PMID: 36527565 DOI: 10.1007/s10561-022-10062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Regenerative medicine is a subdivision of medicine that improves methods to regrow, repair or replace unhealthy cells and tissues to return to normal function. Cell therapy, gene therapy, nanomedicine as choices used to cure neurodegenerative disease. Recently, studies related to the treatment of neurodegenerative disorders have been focused on stem cell therapy and Nano-drugs beyond other than regenerative medicine. Hence, by data from experimental models and clinical trials, we review the impact of stem cell therapy, gene therapy, and nanomedicine on the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). Indeed, improved knowledge and continued research on gene therapy and nanomedicine in treating Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis lead to advancements in effective and practical treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Seyedeh Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Naderi Garahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ramezani
- Neuroscience Research Center, Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Guilan, Iran
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soraya Moghadamifar
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyedeh Lena Mohebi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Mothe AJ, Jacobson PB, Caprelli M, Ulndreaj A, Rahemipour R, Huang L, Monnier PP, Fehlings MG, Tator CH. Delayed administration of elezanumab, a human anti-RGMa neutralizing monoclonal antibody, promotes recovery following cervical spinal cord injury. Neurobiol Dis 2022; 172:105812. [PMID: 35810963 DOI: 10.1016/j.nbd.2022.105812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) elicits a cascade of degenerative events including cell death, axonal degeneration, and the upregulation of inhibitory molecules which limit repair. Repulsive guidance molecule A (RGMa) is an axon growth inhibitor which is also involved in neuronal cell death and differentiation. SCI causes upregulation of RGMa in the injured rodent, non-human primate, and human spinal cord. Recently, we showed that delayed administration of elezanumab, a high affinity human RGMa-specific monoclonal antibody, promoted neuroprotective and regenerative effects following thoracic SCI. Since most human traumatic SCI is at the cervical level, and level-dependent anatomical and molecular differences may influence pathophysiological responses to injury and treatment, we examined the efficacy of elezanumab and its therapeutic time window of administration in a clinically relevant rat model of cervical impact-compression SCI. Pharmacokinetic analysis of plasma and spinal cord tissue lysate showed comparable levels of RGMa antibodies with delayed administration following cervical SCI. At 12w after SCI, elezanumab promoted long term benefits including perilesional sparing of motoneurons and increased neuroplasticity of key descending pathways involved in locomotion and fine motor function. Elezanumab also promoted growth of corticospinal axons into spinal cord gray matter and enhanced serotonergic innervation of the ventral horn to form synaptic connections caudal to the cervical lesion. Significant recovery in grip and trunk/core strength, locomotion and gait, and spontaneous voiding ability was found in rats treated with elezanumab either immediately post-injury or at 3 h post-SCI, and improvements in specific gait parameters were found when elezanumab was delayed to 24 h post-injury. We also developed a new locomotor score, the Cervical Locomotor Score, a simple and sensitive measure of trunk/core and limb strength and stability during dynamic locomotion.
Collapse
Affiliation(s)
- Andrea J Mothe
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada.
| | - Peer B Jacobson
- Department of Translational Sciences, AbbVie Inc., North Chicago, IL 60064, USA
| | - Mitchell Caprelli
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Antigona Ulndreaj
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Radmehr Rahemipour
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Lili Huang
- AbbVie Biologics, AbbVie Bioresearch Center, Worcester, MA 01605, USA
| | - Philippe P Monnier
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, M5S 3H6, ON, Canada
| | - Michael G Fehlings
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T 2S8, ON, Canada
| | - Charles H Tator
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T 2S8, ON, Canada.
| |
Collapse
|
9
|
Yu T, Huo L, Lei J, Sun JJ, Wang H. Modulation of Microglia M2 Polarization and Alleviation of Hippocampal Neuron Injury By MiR-106b-5p/RGMa in a Mouse Model of Status Epilepticus. Inflammation 2022; 45:2223-2242. [PMID: 35789312 DOI: 10.1007/s10753-022-01686-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level. The miRNA miR-106b-5p has been linked to epilepsy, but its specific role and mechanism of action remain unclear. This was investigated in the present study using a mouse model of pilocarpine-induced status epilepticus and an in vitro system of HT22 hippocampal cells treated with Mg2+-free solution and cocultured with BV2 microglia cells. We found that inhibiting miR-106b-5p expression promoted microglia M2 polarization, reduced the inflammatory response, and alleviated neuronal injury. These effects involved modulation of the repulsive guidance molecule A (RGMa)-Rac1-c-Jun N-terminal kinase (JNK)/p38-mitogen-activated protein kinase (MAPK) signaling axis. Our results suggest that therapeutic strategies targeting miR-106b-5p or downstream factors can be effective in preventing epileptogenesis or treating epilepsy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang City, 110004, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang City, 110004, China
| | - Jie Lei
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang City, 110004, China
| | - Jing-Jing Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang City, 110004, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang City, 110004, China.
| |
Collapse
|
10
|
Müller T. Perspective: cell death mechanisms and early diagnosis as precondition for disease modification in Parkinson's disease: are we on the right track? Expert Rev Mol Diagn 2022; 22:403-409. [PMID: 35400295 DOI: 10.1080/14737159.2022.2065198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Current research paradigms on biomarkers for chronic neurodegenerative diseases, such as Parkinson's disease, focus on identification of reliable, easy-to-apply tools for diagnostic screening and progression assessment. AREAS COVERED This perspective discusses possible misconceptions of biomarker research in chronic neurodegeneration from a clinician's view based on a not systematic literature search. Multifactorial disease triggers, heterogeneity of symptom and their progression are main reasons for the still missing availability of biomarkers. EXPERT OPINION Onset of chronic neurodegenerative disease entities may probably result from a decompensated endogenous repair machinery in the central nervous system, for example the neogenin receptor associated repulsive guidance molecule pathway. Future clinical research is warranted on these repair structures and aim to identify markers for the imbalance between damage and repair, which hypothetically contributes to generation of disease. An assignment to a specific chronic neurodegenerative disease entity probably appears to be secondary. Decryption of probable molecular signals of an impaired repair potential will enable an earlier diagnosis, better monitoring of disease progress and of treatment response. This concept will hopefully provide better preconditions for prevention, cure or therapeutic beneficial disease modification. These unmet therapeutic needs may be achieved for example via antagonism of repulsive guidance molecule A.
Collapse
Affiliation(s)
- Thomas Müller
- Department of NeurologySt. Joseph Hospital Berlin-Weißensee, Gartenstr.1 Berlin, Germany
| |
Collapse
|
11
|
Tang J, Zeng X, Yang J, Zhang L, Li H, Chen R, Tang S, Luo Y, Qin X, Feng J. Expression and Clinical Correlation Analysis Between Repulsive Guidance Molecule a and Neuromyelitis Optica Spectrum Disorders. Front Immunol 2022; 13:766099. [PMID: 35185873 PMCID: PMC8850277 DOI: 10.3389/fimmu.2022.766099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives This study sought to explore the expression patterns of repulsive guidance molecules a (RGMa) in neuromyelitis optica spectrum disorders (NMOSD) and to explore the correlation between RGMa and the clinical features of NMOSD. Methods A total of 83 NMOSD patients and 22 age-matched healthy controls (HCs) were enrolled in the study from October 2017 to November 2021. Clinical parameters, including Expanded Disability Status Scale (EDSS) score, degree of MRI enhancement, and AQP4 titer were collected. The expression of serum RGMa was measured by enzyme-linked immunosorbent assay (ELISA) and compared across the four patient groups. The correlation between serum RGMa levels and different clinical parameters was also assessed. Results The average serum expression of RGMa in the NMOSD group was significantly higher than that in the HC group (p < 0.001). Among the patient groups, the acute phase group exhibited significantly higher serum RGMa levels than did the remission group (p < 0.001). A multivariate analysis revealed a significant positive correlation between RGMa expression and EDSS score at admission, degree of MRI enhancement, and segmental length of spinal cord lesions. There was a significant negative correlation between the expression of RGMa in NMOSD and the time from attack to sampling or delta EDSS. Conclusions The current study suggests that RGMa may be considered a potential biomarker predicting the severity, disability, and clinical features of NMOSD.
Collapse
Affiliation(s)
- Jinhua Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, People's Hospital of Chongqing Hechuan, Chongqing, China
| | - Xiaopeng Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shi Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yetao Luo
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Palmas MF, Ena A, Burgaletto C, Casu MA, Cantarella G, Carboni E, Etzi M, De Simone A, Fusco G, Cardia MC, Lai F, Picci L, Tweedie D, Scerba MT, Coroneo V, Bernardini R, Greig NH, Pisanu A, Carta AR. Repurposing Pomalidomide as a Neuroprotective Drug: Efficacy in an Alpha-Synuclein-Based Model of Parkinson's Disease. Neurotherapeutics 2022; 19:305-324. [PMID: 35072912 PMCID: PMC9130415 DOI: 10.1007/s13311-022-01182-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Marketed drugs for Parkinson's disease (PD) treat disease motor symptoms but are ineffective in stopping or slowing disease progression. In the quest of novel pharmacological approaches that may target disease progression, drug-repurposing provides a strategy to accelerate the preclinical and clinical testing of drugs already approved for other medical indications. Here, we targeted the inflammatory component of PD pathology, by testing for the first time the disease-modifying properties of the immunomodulatory imide drug (IMiD) pomalidomide in a translational rat model of PD neuropathology based on the intranigral bilateral infusion of toxic preformed oligomers of human α-synuclein (H-αSynOs). The neuroprotective effect of pomalidomide (20 mg/kg; i.p. three times/week 48 h apart) was tested in the first stage of disease progression by means of a chronic two-month administration, starting 1 month after H-αSynOs infusion, when an already ongoing neuroinflammation is observed. The intracerebral infusion of H-αSynOs induced an impairment in motor and coordination performance that was fully rescued by pomalidomide, as assessed via a battery of motor tests three months after infusion. Moreover, H-αSynOs-infused rats displayed a 40-45% cell loss within the bilateral substantia nigra, as measured by stereological counting of TH + and Nissl-stained neurons, that was largely abolished by pomalidomide. The inflammatory response to H-αSynOs infusion and the pomalidomide treatment was evaluated both in CNS affected areas and peripherally in the serum. A reactive microgliosis, measured as the volume occupied by the microglial marker Iba-1, was present in the substantia nigra three months after H-αSynOs infusion as well as after H-αSynOs plus pomalidomide treatment. However, microglia differed for their phenotype among experimental groups. After H-αSynOs infusion, microglia displayed a proinflammatory profile, producing a large amount of the proinflammatory cytokine TNF-α. In contrast, pomalidomide inhibited the TNF-α overproduction and elevated the anti-inflammatory cytokine IL-10. Moreover, the H-αSynOs infusion induced a systemic inflammation with overproduction of serum proinflammatory cytokines and chemokines, that was largely mitigated by pomalidomide. Results provide evidence of the disease modifying potential of pomalidomide in a neuropathological rodent model of PD and support the repurposing of this drug for clinical testing in PD patients.
Collapse
Affiliation(s)
| | - Anna Ena
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Michela Etzi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maria Cristina Cardia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luca Picci
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Valentina Coroneo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, Cagliari, Italy.
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
13
|
Aberrant promoter hypermethylation inhibits RGMA expression and contributes to tumor progression in breast cancer. Oncogene 2021; 41:361-371. [PMID: 34754080 DOI: 10.1038/s41388-021-02083-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/09/2022]
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, and the exploration of aberrantly expressed genes might clarify tumorigenesis and help uncover new therapeutic strategies for BC. Although RGMA was recently recognized as a tumor suppressor gene, its detailed biological function and regulation in BC remain unclear. Herein, we found that RGMA was downregulated in BC tissues compared with non-tumorous breast tissues, particularly in metastatic BC samples, and that patients with low RGMA expression manifested a poorer prognosis. Furthermore, DNMT1 and DNMT3A were found to be recruited to the RGMA promoter and induced aberrant hypermethylation, resulting in downregulation of RGMA expression in BC. In contrast, RGMA overexpression suppressed BC cell proliferation and colony-formation capabilities and increased BC cell apoptosis. Furthermore, RGMA knockdown accelerated BC cell proliferation and suppressed cellular apoptosis in vitro and in vivo. Reversal of RGMA promoter methylation with 5-Aza-CdR restored RGMA expression and blocked tumor growth. Overall, DNMT1- and DNMT3A-mediated RGMA promoter hypermethylation led to downregulation of RGMA expression, and low RGMA expression contributed to BC growth via activation of the FAK/Src/PI3K/AKT-signaling pathway. Our data thus suggested that RGMA might be a promising therapeutic target in BC.
Collapse
|
14
|
Hu Q, Chen Z, Yuan X, Li S, Zhang R, Qin X. Common Polymorphisms in the RGMa Promoter Are Associated With Cerebrovascular Atherosclerosis Burden in Chinese Han Patients With Acute Ischemic Cerebrovascular Accident. Front Cardiovasc Med 2021; 8:743868. [PMID: 34722675 PMCID: PMC8554026 DOI: 10.3389/fcvm.2021.743868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Repulsive guidance molecule a (RGMa) plays a vital role in the progression of numerous inflammatory diseases. However, whether it participates in atherosclerosis development is not known. Here, we explored the influence of RGMa in atherogenesis by investigating whether an association exists between functional polymorphisms in the RGMa promoter and cerebrovascular atherosclerosis burden (CAB) in Chinese Han patients diagnosed with acute ischemic cerebrovascular accident. To this end, we conducted a genetic association study on 201 patients with prior diagnoses of acute ischemic stroke or transient ischemic attack recruited from our hospital. After admission, we conducted three targeted single-nucleotide polymorphisms (SNPs) genotyping and evaluated CAB by computed tomography angiography. We used logistic regression modeling to analyze genetic associations. Functional polymorphism analysis indicated an independent association between the rs725458 T allele and increased CAB in patients with acute ischemic cerebrovascular accident [adjusted odds ratio (OR) = 1.66, 95% confidence interval (CI) = 1.01–2.74, P = 0.046]. In contrast, an association between the rs4778099 AA genotype and decreased CAB (adjusted OR = 0.10, 95% CI = 0.01–0.77, P = 0.027) was found. Our Gene Expression Omnibus analysis revealed lower RGMa levels in the atherosclerotic aortas and in the macrophages isolated from plaques than that in the normal aortas and macrophages from normal tissue, respectively. In conclusion, the relationship between RGMa and cerebrovascular atherosclerosis suggests that RGMa has a potential vasoprotective effect. The two identified functional SNPs (rs725458 and rs4778099) we identified in the RGMa promoter are associated with CAB in patients diagnosed with acute ischemic cerebrovascular accident. These findings offer a promising research direction for RGMa-related translational studies on atherosclerosis.
Collapse
Affiliation(s)
- Qingzhe Hu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhenlei Chen
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaofan Yuan
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shucheng Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Huang L, Fung E, Bose S, Popp A, Böser P, Memmott J, Kutskova YA, Miller R, Tarcsa E, Klein C, Veldman GM, Mueller BK, Cui YF. Elezanumab, a clinical stage human monoclonal antibody that selectively targets repulsive guidance molecule A to promote neuroregeneration and neuroprotection in neuronal injury and demyelination models. Neurobiol Dis 2021; 159:105492. [PMID: 34478849 DOI: 10.1016/j.nbd.2021.105492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022] Open
Abstract
Repulsive guidance molecule A (RGMa) is a potent inhibitor of axonal growth and a regulator of neuronal cell death. It is up-regulated following neuronal injury and accumulates in chronic neurodegenerative diseases. Neutralizing RGMa has the potential to promote neuroregeneration and neuroprotection. Previously we reported that a rat anti-N terminal RGMa (N-RGMa) antibody r5F9 and its humanized version h5F9 (ABT-207) promote neuroprotection and neuroregeneration in preclinical neurodegenerative disease models. However, due to its cross-reactivity to RGMc/hemojuvelin, ABT-207 causes iron accumulation in vivo, which could present a safety liability. Here we report the generation and characterization of a novel RGMa-selective anti-N-RGMa antibody elezanumab, which is currently under Phase 2 clinical evaluation in multiple disease indications. Elezanumab, a human monoclonal antibody generated by in vitro PROfusion mRNA display technology, competes with ABT-207 in binding to N-RGMa but lacks RGMc cross-reactivity with no impact on iron metabolism. It neutralizes repulsive activity of soluble RGMa in vitro and blocks membrane RGMa mediated BMP signaling. In the optic nerve crush and optic neuritis models, elezanumab promotes axonal regeneration and prevents retinal nerve fiber layer degeneration. In the spinal targeted experimental autoimmune encephalomyelitis (EAE) model, elezanumab promotes axonal regeneration and remyelination, decreases inflammatory lesion area and improves functional recovery. Finally, in the mouse cuprizone model, elezanumab reduces demyelination, which is consistent with its inhibitory effect on BMP signaling. Taken together, these preclinical data demonstrate that elezanumab has neuroregenerative and neuroprotective activities without impact on iron metabolism, thus providing a compelling rationale for its clinical development in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lili Huang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Emma Fung
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Sahana Bose
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Andreas Popp
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - Preethne Böser
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - John Memmott
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Yuliya A Kutskova
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Renee Miller
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Edit Tarcsa
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Corinna Klein
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | | | - Bernhard K Mueller
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - Yi-Fang Cui
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| |
Collapse
|
16
|
Müller T. View Point: Disease Modification and Cell Secretome Based Approaches in Parkinson's Disease: Are We on the Right Track? Biologics 2021; 15:307-316. [PMID: 34349499 PMCID: PMC8328382 DOI: 10.2147/btt.s267281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022]
Abstract
The term idiopathic Parkinson's disease describes an entity of various not well-characterized disorders resembling each other. They are characterized by chronic neuronal dying originating from various disease mechanisms. They result in the onset of motor and related non-motor features, both of which respond to administration of personalized drug combinations and surgical therapies. The unmet need is beneficial disease course modification with repair and neurogenesis. Objectives are to discuss the value of cell secretome based treatments including neuronal graft transplantation and to suggest as an alternative the stimulation of an endogenous available approach for neuronal repair. Chronic neurodegenerative processes result from different heterogeneous, but complementing metabolic, pathological cascade sequences. Accumulated evidence from experimental research suggested neuron transplantation, stem cell application and cell secretome-based therapies as a promising future treatment with cure as an ultimate goal. To date, clinical testing of disease-modifying treatments has focused on substitution or repair of the remaining dopamine synthesizing neurons following diagnosis. At diagnosis, many of the still surviving and functioning, but already affected neurons have lost most of their axons and are primed for cell death. A more promising therapeutic concept may be the stimulation of an existing, endogenous repair system in the peripheral and central nervous systems. The abundant protein repulsive guidance molecule A blocks restoration and neurogenesis, both of which are mediated via the neogenin receptor. Inhibition of the physiological effects of repulsive guidance molecule A is an endogenous available repair pathway in chronic neurodegeneration. Antagonism of this protein with antibodies or stimulation of the neogenin receptor should be considered as an initial repair step. It is an alternative to cell replacement, stem cell or associated cell secretome concepts.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, 13088, Germany
| |
Collapse
|
17
|
Repulsive Guidance Molecule-a and Central Nervous System Diseases. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5532116. [PMID: 33997000 PMCID: PMC8112912 DOI: 10.1155/2021/5532116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Repulsive guidance molecule-a (RGMa) is a member of glycosylphosphatidylinositol- (GPI-) anchored protein family, which has axon guidance function and is widely involved in the development and pathological processes of the central nervous system (CNS). On the one hand, the binding of RGMa and its receptor Neogenin can regulate axonal guidance, differentiation of neural stem cells into neurons, and the survival of these cells; on the other hand, RGMa can inhibit functional recovery of CNS by inhibiting axonal growth. A number of studies have shown that RGMa may be involved in the pathogenesis of CNS diseases, such as multiple sclerosis, neuromyelitis optica spectrum diseases, cerebral infarction, spinal cord injury, Parkinson's disease, and epilepsy. Targeting RGMa can enhance the functional recovery of CNS, so it may become a promising target for the treatment of CNS diseases. This article will comprehensively review the research progression of RGMa in various CNS diseases up to date.
Collapse
|
18
|
Perspective: Treatment for Disease Modification in Chronic Neurodegeneration. Cells 2021; 10:cells10040873. [PMID: 33921342 PMCID: PMC8069143 DOI: 10.3390/cells10040873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Symptomatic treatments are available for Parkinson's disease and Alzheimer's disease. An unmet need is cure or disease modification. This review discusses possible reasons for negative clinical study outcomes on disease modification following promising positive findings from experimental research. It scrutinizes current research paradigms for disease modification with antibodies against pathological protein enrichment, such as α-synuclein, amyloid or tau, based on post mortem findings. Instead a more uniform regenerative and reparative therapeutic approach for chronic neurodegenerative disease entities is proposed with stimulation of an endogenously existing repair system, which acts independent of specific disease mechanisms. The repulsive guidance molecule A pathway is involved in the regulation of peripheral and central neuronal restoration. Therapeutic antagonism of repulsive guidance molecule A reverses neurodegeneration according to experimental outcomes in numerous disease models in rodents and monkeys. Antibodies against repulsive guidance molecule A exist. First clinical studies in neurological conditions with an acute onset are under way. Future clinical trials with these antibodies should initially focus on well characterized uniform cohorts of patients. The efficiency of repulsive guidance molecule A antagonism and associated stimulation of neurogenesis should be demonstrated with objective assessment tools to counteract dilution of therapeutic effects by subjectivity and heterogeneity of chronic disease entities. Such a research concept will hopefully enhance clinical test strategies and improve the future therapeutic armamentarium for chronic neurodegeneration.
Collapse
|
19
|
Oda W, Fujita Y, Baba K, Mochizuki H, Niwa H, Yamashita T. Inhibition of repulsive guidance molecule-a protects dopaminergic neurons in a mouse model of Parkinson's disease. Cell Death Dis 2021; 12:181. [PMID: 33589594 PMCID: PMC7884441 DOI: 10.1038/s41419-021-03469-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/26/2022]
Abstract
Repulsive guidance molecule-a (RGMa), a glycosylphosphatidylinositol-anchored membrane protein, has diverse functions in axon guidance, cell patterning, and cell survival. Inhibition of RGMa attenuates pathological dysfunction in animal models of central nervous system (CNS) diseases including spinal cord injury, multiple sclerosis, and neuromyelitis optica. Here, we examined whether antibody-based inhibition of RGMa had therapeutic effects in a mouse model of Parkinson's disease (PD). We treated mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and found increased RGMa expression in the substantia nigra (SN). Intraventricular, as well as intravenous, administration of anti-RGMa antibodies reduced the loss of tyrosine hydroxylase (TH)-positive neurons and accumulation of Iba1-positive microglia/macrophages in the SN of MPTP-treated mice. Selective expression of RGMa in TH-positive neurons in the SN-induced neuronal loss/degeneration and inflammation, resulting in a progressive movement disorder. The pathogenic effects of RGMa overexpression were attenuated by treatment with minocycline, which inhibits microglia and macrophage activation. Increased RGMa expression upregulated pro-inflammatory cytokine expression in microglia. Our observations suggest that the upregulation of RGMa is associated with the PD pathology; furthermore, inhibitory RGMa antibodies are a potential therapeutic option.
Collapse
Affiliation(s)
- Wakana Oda
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- World Premier International, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- World Premier International, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
20
|
Goshi N, Morgan RK, Lein PJ, Seker E. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. J Neuroinflammation 2020; 17:155. [PMID: 32393376 PMCID: PMC7216677 DOI: 10.1186/s12974-020-01819-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Interactions between neurons, astrocytes, and microglia critically influence neuroinflammatory responses to insult in the central nervous system. In vitro astrocyte and microglia cultures are powerful tools to study specific molecular pathways involved in neuroinflammation; however, in order to better understand the influence of cellular crosstalk on neuroinflammation, new multicellular culture models are required. Methods Primary cortical cells taken from neonatal rats were cultured in a serum-free “tri-culture” medium formulated to support neurons, astrocytes, and microglia, or a “co-culture” medium formulated to support only neurons and astrocytes. Caspase 3/7 activity and morphological changes were used to quantify the response of the two culture types to different neuroinflammatory stimuli mimicking sterile bacterial infection (lipopolysaccharide (LPS) exposure), mechanical injury (scratch), and seizure activity (glutamate-induced excitotoxicity). The secreted cytokine profile of control and LPS-exposed co- and tri-cultures were also compared. Results The tri-culture maintained a physiologically relevant representation of neurons, astrocytes, and microglia for 14 days in vitro, while the co-cultures maintained a similar population of neurons and astrocytes, but lacked microglia. The continuous presence of microglia did not negatively impact the overall health of the neurons in the tri-culture, which showed reduced caspase 3/7 activity and similar neurite outgrowth as the co-cultures, along with an increase in the microglia-secreted neurotrophic factor IGF-1 and a significantly reduced concentration of CX3CL1 in the conditioned media. LPS-exposed tri-cultures showed significant astrocyte hypertrophy, increase in caspase 3/7 activity, and the secretion of a number of pro-inflammatory cytokines (e.g., TNF, IL-1α, IL-1β, and IL-6), none of which were observed in LPS-exposed co-cultures. Following mechanical trauma, the tri-culture showed increased caspase 3/7 activity, as compared to the co-culture, along with increased astrocyte migration towards the source of injury. Finally, the microglia in the tri-culture played a significant neuroprotective role during glutamate-induced excitotoxicity, with significantly reduced neuron loss and astrocyte hypertrophy in the tri-culture. Conclusions The tri-culture consisting of neurons, astrocytes, and microglia more faithfully mimics in vivo neuroinflammatory responses than standard mono- and co-cultures. This tri-culture can be a useful tool to study neuroinflammation in vitro with improved accuracy in predicting in vivo neuroinflammatory phenomena.
Collapse
Affiliation(s)
- Noah Goshi
- Department of Biomedical Engineering, University of California - Davis, Davis, CA, 95616, USA
| | - Rhianna K Morgan
- Department of Molecular Biosciences, University of California - Davis, Davis, CA, 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California - Davis, Davis, CA, 95616, USA
| | - Erkin Seker
- Department of Electrical and Computer Engineering, University of California - Davis, 3177 Kemper Hall, Davis, CA, 95616, USA.
| |
Collapse
|
21
|
Isaksen TJ, Fujita Y, Yamashita T. Repulsive Guidance Molecule A Suppresses Adult Neurogenesis. Stem Cell Reports 2020; 14:677-691. [PMID: 32243839 PMCID: PMC7160374 DOI: 10.1016/j.stemcr.2020.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023] Open
Abstract
Repulsive guidance molecule A (RGMa) is a glycosylphosphatidylinositol-anchored glycoprotein that exhibits repulsive neurite guidance and regulates neuronal differentiation and survival during brain development. However, the function of RGMa in the adult brain is unknown. Here, we show that RGMa is expressed in the adult hippocampus and provide evidence that RGMa signaling suppresses adult neurogenesis. Knockdown of RGMa in the dentate gyrus increased the number of surviving newborn neurons; however, these cells failed to properly migrate into the granular cell layer. In vitro, RGMa stimulation of adult neural stem cells suppressed neurite outgrowth of newborn neurons, which could be prevented by knockdown of the multifunctional receptor neogenin, as well as pharmacological inhibition of the downstream target Rho-associated protein kinase. These findings present a function for RGMa in the adult brain and add to the intricate molecular network that regulates adult brain plasticity. RGMa suppress survival and growth of newborn neurons in the adult dentate gyrus RGMa signaling depends on neogenin for the regulation of adult neurogenesis RGMa induces RhoA/ROCK activation in adult neuronal stem cells
Collapse
Affiliation(s)
- Toke Jost Isaksen
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Bioscience, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Qu Y, Liu Y, Noor AF, Tran J, Li R. Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases. Neural Regen Res 2019; 14:931-938. [PMID: 30761996 PMCID: PMC6404499 DOI: 10.4103/1673-5374.250570] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Common neurodegenerative diseases of the central nervous system are characterized by progressive damage to the function of neurons, even leading to the permanent loss of function. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to delay or possibly stop further progression of the neurodegenerative disease in affected patients. Adeno-associated virus has been the vector of choice in recent clinical trials of therapies for neurodegenerative diseases due to its safety and efficiency in mediating gene transfer to the central nervous system. This review aims to discuss and summarize the progress and clinical applications of adeno-associated virus in neurodegenerative disease in central nervous system. Results from some clinical trials and successful cases of central neurodegenerative diseases deserve further study and exploration.
Collapse
Affiliation(s)
- Yuan Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Ahmed Fayyaz Noor
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Johnathan Tran
- Department of Premedical and Health Studies, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
23
|
A Repulsive Environment Induces Neurodegeneration of Midbrain Dopaminergic Neurons. J Neurosci 2019; 38:1323-1325. [PMID: 29438033 DOI: 10.1523/jneurosci.3070-17.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022] Open
|
24
|
Reimann B, Janssen BG, Alfano R, Ghantous A, Espín-Pérez A, de Kok TM, Saenen ND, Cox B, Robinson O, Chadeau-Hyam M, Penders J, Herceg Z, Vineis P, Nawrot TS, Plusquin M. The Cord Blood Insulin and Mitochondrial DNA Content Related Methylome. Front Genet 2019; 10:325. [PMID: 31031804 PMCID: PMC6474284 DOI: 10.3389/fgene.2019.00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction seems to play a key role in the etiology of insulin resistance. At birth, a link has already been established between mitochondrial DNA (mtDNA) content and insulin levels in cord blood. In this study, we explore shared epigenetic mechanisms of the association between mtDNA content and insulin levels, supporting the developmental origins of this link. First, the association between cord blood insulin and mtDNA content in 882 newborns of the ENVIRONAGE birth cohort was assessed. Cord blood mtDNA content was established via qPCR, while cord blood levels of insulin were determined using electrochemiluminescence immunoassays. Then the cord blood DNA methylome and transcriptome were determined in 179 newborns, using the human 450K methylation Illumina and Agilent Whole Human Genome 8 × 60 K microarrays, respectively. Subsequently, we performed an epigenome-wide association study (EWAS) adjusted for different maternal and neonatal variables. Afterward, we focused on the 20 strongest associations based on p-values to assign transcriptomic correlates and allocate corresponding pathways employing the R packages ReactomePA and RDAVIDWebService. On the regional level, we examined differential methylation using the DMRcate and Bumphunter packages in R. Cord blood mtDNA content and insulin were significantly correlated (r = 0.074, p = 0.028), still showing a trend after additional adjustment for maternal and neonatal variables (p = 0.062). We found an overlap of 33 pathways which were in common between the association with cord blood mtDNA content and insulin levels, including pathways of neurodevelopment, histone modification, cytochromes P450 (CYP)-metabolism, and biological aging. We further identified a DMR annotated to Repulsive Guidance Molecule BMP Co-Receptor A (RGMA) linked to cord blood insulin as well as mtDNA content. Metabolic variation in early life represented by neonatal insulin levels and mtDNA content might reflect or accommodate alterations in neurodevelopment, histone modification, CYP-metabolism, and aging, indicating etiological origins in epigenetic programming. Variation in metabolic hormones at birth, reflected by molecular changes, might via these alterations predispose children to metabolic diseases later in life. The results of this study may provide important markers for following targeted studies.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | - Bram G. Janssen
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Almudena Espín-Pérez
- Department of Biomedical Informatics Research, Stanford University, California, CA, United States
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Nelly D. Saenen
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | - Bianca Cox
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | - Oliver Robinson
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, United Kingdom
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Joris Penders
- Laboratory of Clinical Biology, East-Limburg Hospital, Genk, Belgium
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, United Kingdom
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Tim S. Nawrot
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
- School of Public Health, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, United Kingdom
| |
Collapse
|