1
|
Hamanaka G, Arai K. Exploring the novel role of oligodendrocyte precursor cells in phagocytosis: beyond myelinogenesis. Neural Regen Res 2025; 20:473-474. [PMID: 38819053 PMCID: PMC11317931 DOI: 10.4103/nrr.nrr-d-24-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/23/2024] [Indexed: 06/01/2024] Open
Affiliation(s)
- Gen Hamanaka
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
2
|
Raffaele S, Clausen BH, Mannella FC, Wirenfeldt M, Marangon D, Tidgen SB, Corradini S, Madsen K, Lecca D, Abbracchio MP, Lambertsen KL, Fumagalli M. Characterisation of GPR17-expressing oligodendrocyte precursors in human ischaemic lesions and correlation with reactive glial responses. J Pathol 2024. [PMID: 39703181 DOI: 10.1002/path.6381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
White matter damage and subsequent demyelination significantly contribute to long-term functional impairment after ischaemic stroke. Identifying novel pharmacological targets to restore myelin integrity by promoting the maturation of oligodendrocyte precursor cells (OPCs) into new myelinating oligodendrocytes may open new perspectives for ischaemic stroke treatment. In this respect, previous studies highlighted the role of the G protein-coupled membrane receptor 17 (GPR17) as a key regulator of OPC differentiation in experimental models of brain injury, including ischaemic stroke. To determine the translational value of GPR17 as a possible target in the context of human disease, we exploited immunohistochemistry to characterise the distribution of GPR17-expressing cells in brain tissue samples from ischaemic stroke cases and correlated it with the reactive state of neighbouring glial cells. The results showed that GPR17 specifically decorates a subpopulation of differentiation-committed OPCs, labelled by the peculiar marker breast carcinoma-amplified sequence 1 (BCAS1), that accumulates in the peri-infarct region in the later stages after the ischaemic event. Interestingly, the response of GPR17-expressing cells appears to be paralleled by the switch of reactive microglia/macrophages from a phagocytic to a dystrophic phenotype and by astrocytic scar formation. A negative correlation was found between GPR17-expressing OPCs and reactive microglia/macrophages and astrocytes surrounding chronic ischaemic lesions in female subjects, while the same relationship was less pronounced in males. These results were reinforced by bioinformatic analysis of a publicly available transcriptomic dataset, which implicated a possible role of inflammation and defective neuron-to-OPC communication in remyelination failure after ischaemic damage. Hence, these data strengthen the relevance of GPR17-based remyelinating therapies for the treatment of ischaemic stroke. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Francesca Carolina Mannella
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Martin Wirenfeldt
- Department of Clinical Research, Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Department of Pathology, South Denmark University Hospital, Odense, Denmark
| | - Davide Marangon
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sarah Boe Tidgen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Silvia Corradini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kirsten Madsen
- Department of Pathology, South Denmark University Hospital, Odense, Denmark
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Davide Lecca
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Pia Abbracchio
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Edwards NC, Lao PJ, Alshikho MJ, Ericsson OM, Rizvi B, Petersen ME, O’Bryant S, Aguilar LF, Simoes S, Mapstone M, Tudorascu DL, Janelidze S, Hansson O, Handen BL, Christian BT, Lee JH, Lai F, Rosas HD, Zaman S, Lott IT, Yassa MA, Gutierrez J, Wilcock DM, Head E, Brickman AM. Cerebrovascular disease is associated with Alzheimer's plasma biomarker concentrations in adults with Down syndrome. Brain Commun 2024; 6:fcae331. [PMID: 39403075 PMCID: PMC11472828 DOI: 10.1093/braincomms/fcae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
By age 40 years, over 90% of adults with Down syndrome have Alzheimer's disease pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with Down syndrome have elevated cerebrovascular disease markers that track with the clinical progression of Alzheimer's disease, suggesting a role of cerebrovascular disease that is hypothesized to be mediated by inflammatory factors. This study examined the pathways through which small vessel cerebrovascular disease contributes to Alzheimer's disease-related pathophysiology and neurodegeneration in adults with Down syndrome. One hundred eighty-five participants from the Alzheimer's Biomarkers Consortium-Down Syndrome [mean (SD) age = 45.2 (9.3) years] with available MRI and plasma biomarker data were included in this study. White matter hyperintensity (WMH) volumes were derived from T2-weighted fluid-attenuated inversion recovery MRI scans, and plasma biomarker concentrations of amyloid beta 42/40, phosphorylated tau 217, astrocytosis (glial fibrillary acidic protein) and neurodegeneration (neurofilament light chain) were measured with ultrasensitive immunoassays. We examined the bivariate relationships of WMH, amyloid beta 42/40, phosphorylated tau 217 and glial fibrillary acidic protein with age-residualized neurofilament light chain across Alzheimer's disease diagnostic groups. A series of mediation and path analyses examined statistical pathways linking WMH and Alzheimer's disease pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. There was a direct and indirect bidirectional effect through the glial fibrillary acidic protein of WMH on phosphorylated tau 217 concentration, which was associated with neurofilament light chain concentration in the entire sample. Amongst cognitively stable participants, WMH was directly and indirectly, through glial fibrillary acidic protein, associated with phosphorylated tau 217 concentration, and in those with mild cognitive impairment, there was a direct effect of WMH on phosphorylated tau 217 and neurofilament light chain concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. The findings from this cross-sectional study suggest that among individuals with Down syndrome, cerebrovascular disease promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of Alzheimer's disease, but future studies will need to confirm these associations with longitudinal data. This work joins an emerging literature that implicates cerebrovascular disease and its interface with neuroinflammation as a core pathological feature of Alzheimer's disease in adults with Down syndrome.
Collapse
Affiliation(s)
- Natalie C Edwards
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
- Department of Neuroscience, Columbia University, New York City, NY 10032, USA
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Mohamad J Alshikho
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Olivia M Ericsson
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Batool Rizvi
- Department of Neurobiology & Behavior, University of California, Irvine, CA 92697, USA
| | - Melissa E Petersen
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX 76107, USA
| | - Sid O’Bryant
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX 76107, USA
| | - Lisi Flores Aguilar
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA 92617, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund 221 00, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund 221 00, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 214 28, Sweden
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Joseph H Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - H Diana Rosas
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Center for Neuroimaging of Aging and Neurodegenerative Diseases, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Shahid Zaman
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ira T Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California, Irvine, CA 92868, USA
| | - Michael A Yassa
- Department of Neurobiology & Behavior, University of California, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
| | - José Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Donna M Wilcock
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA 92617, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| |
Collapse
|
4
|
Liddelow SA, Olsen ML, Sofroniew MV. Reactive Astrocytes and Emerging Roles in Central Nervous System (CNS) Disorders. Cold Spring Harb Perspect Biol 2024; 16:a041356. [PMID: 38316554 PMCID: PMC11216178 DOI: 10.1101/cshperspect.a041356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In addition to their many functions in the healthy central nervous system (CNS), astrocytes respond to CNS damage and disease through a process called "reactivity." Recent evidence reveals that astrocyte reactivity is a heterogeneous spectrum of potential changes that occur in a context-specific manner. These changes are determined by diverse signaling events and vary not only with the nature and severity of different CNS insults but also with location in the CNS, genetic predispositions, age, and potentially also with "molecular memory" of previous reactivity events. Astrocyte reactivity can be associated with both essential beneficial functions as well as with harmful effects. The available information is rapidly expanding and much has been learned about molecular diversity of astrocyte reactivity. Emerging functional associations point toward central roles for astrocyte reactivity in determining the outcome in CNS disorders.
Collapse
Affiliation(s)
- Shane A Liddelow
- Neuroscience Institute, NYU School of Medicine, New York, New York 10016, USA
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, New York 10016, USA
- Department of Ophthalmology, NYU School of Medicine, New York, New York 10016, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Elitt CM, Ross MM, Wang J, Fahrni CJ, Rosenberg PA. Developmental regulation of zinc homeostasis in differentiating oligodendrocytes. Neurosci Lett 2024; 831:137727. [PMID: 38467270 DOI: 10.1016/j.neulet.2024.137727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Oligodendrocytes develop through sequential stages and understanding pathways regulating their differentiation remains an important area of investigation. Zinc is required for the function of enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature MBP+ oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after O4+,O1- pre-oligodendrocytes were switched from proliferation medium into terminal differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of major zinc storage proteins metallothioneins (MTs) and metal regulatory transcription factor 1 (MTF1), which controls expression of MTs. MT1, MT2 and MTF1 mRNAs were increased several fold in mature oligodendrocytes compared to oligodendrocytes in proliferation medium. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in ∼ 100% increase in free zinc in pre-oligodendrocytes but, paradoxically more modest ∼ 60% increase in mature oligodendrocytes despite increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Christopher M Elitt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States.
| | - Madeline M Ross
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| | - Jianlin Wang
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| | - Christoph J Fahrni
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Paul A Rosenberg
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| |
Collapse
|
6
|
Tian M, Kawaguchi R, Shen Y, Machnicki M, Villegas NG, Cooper DR, Montgomery N, Haring J, Lan R, Yuan AH, Williams CK, Magaki S, Vinters HV, Zhang Y, De Biase LM, Silva AJ, Carmichael ST. Intercellular Signaling Pathways as Therapeutic Targets for Vascular Dementia Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.585301. [PMID: 38585718 PMCID: PMC10996514 DOI: 10.1101/2024.03.24.585301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Vascular dementia (VaD) is a white matter ischemic disease and the second-leading cause of dementia, with no direct therapy. Within the lesion site, cell-cell interactions dictate the trajectory towards disease progression or repair. To elucidate the underlying intercellular signaling pathways, a VaD mouse model was developed for transcriptomic and functional studies. The mouse VaD transcriptome was integrated with a human VaD snRNA-Seq dataset. A custom-made database encompassing 4053 human and 2032 mouse ligand-receptor (L-R) interactions identified significantly altered pathways shared between human and mouse VaD. Two intercellular L-R systems, Serpine2-Lrp1 and CD39-A3AR, were selected for mechanistic study as both the ligand and receptor were dysregulated in VaD. Decreased Seprine2 expression enhances OPC differentiation in VaD repair. A clinically relevant drug that reverses the loss of CD39-A3AR function promotes tissue and behavioral recovery in the VaD model. This study presents novel intercellular signaling targets and may open new avenues for VaD therapies.
Collapse
|
7
|
Liu R, Berry R, Wang L, Chaudhari K, Winters A, Sun Y, Caballero C, Ampofo H, Shi Y, Thata B, Colon-Perez L, Sumien N, Yang SH. Experimental Ischemic Stroke Induces Secondary Bihemispheric White Matter Degeneration and Long-Term Cognitive Impairment. Transl Stroke Res 2024:10.1007/s12975-024-01241-0. [PMID: 38488999 DOI: 10.1007/s12975-024-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Clinical studies have identified widespread white matter degeneration in ischemic stroke patients. However, contemporary research in stroke has predominately focused on the infarct and periinfarct penumbra regions. The involvement of white matter degeneration after ischemic stroke and its contribution to post-stroke cognitive impairment and dementia (PSCID) has remained less explored in experimental models. In this study, we examined the progression of locomotor and cognitive function up to 4 months after inducing ischemic stroke by middle cerebral artery occlusion in young adult rats. Despite evident ongoing locomotor recovery, long-term cognitive and affective impairments persisted after ischemic stroke, as indicated by Morris water maze, elevated plus maze, and open field performance. At 4 months after stroke, multimodal MRI was conducted to assess white matter degeneration. T2-weighted MRI (T2WI) unveiled bilateral cerebroventricular enlargement after ischemic stroke. Fluid Attenuated Inversion Recovery MRI (FLAIR) revealed white matter hyperintensities in the corpus callosum and fornix across bilateral hemispheres. A positive association between the volume of white matter hyperintensities and total cerebroventricular volume was noted in stroke rats. Further evidence of bilateral white matter degeneration was indicated by the reduction of fractional anisotropy and quantitative anisotropy at bilateral corpus callosum in diffusion-weighted MRI (DWI) analysis. Additionally, microglia and astrocyte activation were identified in the bilateral corpus callosum after stroke. Our study suggests that experimental ischemic stroke induced by MCAO in young rat replicate long-term cognitive impairment and bihemispheric white matter degeneration observed in ischemic stroke patients. This model provides an invaluable tool for unraveling the mechanisms underlying post-stroke secondary white matter degeneration and its contribution to PSCID.
Collapse
Affiliation(s)
- Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Raymond Berry
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Linshu Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Kiran Chaudhari
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Ali Winters
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Claire Caballero
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Hannah Ampofo
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Yiwei Shi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Bibek Thata
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Luis Colon-Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
8
|
Chen H, Guo S, Li R, Yang L, Wang R, Jiang Y, Hao Y. YTHDF2-regulated matrilin-3 mitigates post-reperfusion hemorrhagic transformation in ischemic stroke via the PI3K/AKT pathway. J Neuropathol Exp Neurol 2024; 83:194-204. [PMID: 38230623 PMCID: PMC10880072 DOI: 10.1093/jnen/nlad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Hemorrhagic transformation can complicate ischemic strokes after recanalization treatment within a time window that requires early intervention. To determine potential therapeutic effects of matrilin-3, rat cerebral ischemia-reperfusion was produced using transient middle cerebral artery occlusion (tMCAO); intracranial hemorrhage and infarct volumes were assayed through hemoglobin determination and 2,3,5-triphenyltetrazoliumchloride (TTC) staining, respectively. Oxygen-glucose deprivation (OGD) modeling of ischemia was performed on C8-D1A cells. Interactions between matrilin-3 and YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) were determined using RNA immunoprecipitation assay and actinomycin D treatment. Reperfusion after tMCAO modeling increased hemorrhage, hemoglobin content, and infarct volumes; these were alleviated by matrilin treatment. Matrilin-3 was expressed at low levels and YTHDF2 was expressed at high levels in ischemic brains. In OGD-induced cells, matrilin-3 was negatively regulated by YTHDF2. Matrilin-3 overexpression downregulated p-PI3K/PI3K, p-AKT/AKT, ZO-1, VE-cadherin and occludin, and upregulated p-JNK/JNK in ischemic rat brains; these effects were reversed by LY294002 (a PI3K inhibitor). YTHDF2 knockdown inactivated the PI3K/AKT pathway, inhibited inflammation and decreased blood-brain barrier-related protein levels in cells; these effects were reversed by matrilin-3 deficiency. These results indicate that YTHDF2-regulated matrilin-3 protected ischemic rats against post-reperfusion hemorrhagic transformation via the PI3K/AKT pathway and that matrilin may have therapeutic potential in ischemic stroke.
Collapse
Affiliation(s)
- Hanze Chen
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Siping Guo
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province, China
| | - Runnan Li
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province, China
| | - Lihui Yang
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province, China
| | - Rui Wang
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province, China
| | - Yasi Jiang
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province, China
| | - Yonggang Hao
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province, China
| |
Collapse
|
9
|
Han B, Zhou S, Zhang Y, Chen S, Xi W, Liu C, Zhou X, Yuan M, Yu X, Li L, Wang Y, Ren H, Xie J, Li B, Ju M, Zhou Y, Liu Z, Xiong Z, Shen L, Zhang Y, Bai Y, Chen J, Jiang W, Yao H. Integrating spatial and single-cell transcriptomics to characterize the molecular and cellular architecture of the ischemic mouse brain. Sci Transl Med 2024; 16:eadg1323. [PMID: 38324639 DOI: 10.1126/scitranslmed.adg1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Neuroinflammation is acknowledged as a pivotal pathological event after cerebral ischemia. However, there is limited knowledge of the molecular and spatial characteristics of nonneuronal cells, as well as of the interactions between cell types in the ischemic brain. Here, we used spatial transcriptomics to study the ischemic hemisphere in mice after stroke and sequenced the transcriptomes of 19,777 spots, allowing us to both visualize the transcriptional landscape within the tissue and identify gene expression profiles linked to specific histologic entities. Cell types identified by single-cell RNA sequencing confirmed and enriched the spatial annotation of ischemia-associated gene expression in the peri-infarct area of the ischemic hemisphere. Analysis of ligand-receptor interactions in cell communication revealed galectin-9 to cell-surface glycoprotein CD44 (LGALS9-CD44) as a critical signaling pathway after ischemic injury and identified microglia and macrophages as the main source of galectins after stroke. Extracellular vesicle-mediated Lgals9 delivery improved the long-term functional recovery in photothrombotic stroke mice. Knockdown of Cd44 partially reversed these therapeutic effects, inhibiting oligodendrocyte differentiation and remyelination. In summary, our study provides a detailed molecular and cellular characterization of the peri-infact area in a murine stroke model and revealed Lgals9 as potential treatment target that warrants further investigation.
Collapse
Affiliation(s)
- Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shunheng Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yuan Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Sina Chen
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wen Xi
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Chenchen Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xu Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xiaoyu Yu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lu Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jian Xie
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bin Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minzi Ju
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - You Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ziqi Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhongli Xiong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuan Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210009, China
| |
Collapse
|
10
|
Brown EJ, Balaguer-Lluna L, Cribbs AP, Philpott M, Campo L, Browne M, Wong JF, Oppermann U, Carcaboso ÁM, Bullock AN, Farnie G. PRMT5 inhibition shows in vitro efficacy against H3K27M-altered diffuse midline glioma, but does not extend survival in vivo. Sci Rep 2024; 14:328. [PMID: 38172189 PMCID: PMC10764357 DOI: 10.1038/s41598-023-48652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
H3K27-altered Diffuse Midline Glioma (DMG) is a universally fatal paediatric brainstem tumour. The prevalent driver mutation H3K27M creates a unique epigenetic landscape that may also establish therapeutic vulnerabilities to epigenetic inhibitors. However, while HDAC, EZH2 and BET inhibitors have proven somewhat effective in pre-clinical models, none have translated into clinical benefit due to either poor blood-brain barrier penetration, lack of efficacy or toxicity. Thus, there remains an urgent need for new DMG treatments. Here, we performed wider screening of an epigenetic inhibitor library and identified inhibitors of protein arginine methyltransferases (PRMTs) among the top hits reducing DMG cell viability. Two of the most effective inhibitors, LLY-283 and GSK591, were targeted against PRMT5 using distinct binding mechanisms and reduced the viability of a subset of DMG cells expressing wild-type TP53 and mutant ACVR1. RNA-sequencing and phenotypic analyses revealed that LLY-283 could reduce the viability, clonogenicity and invasion of DMG cells in vitro, representing three clinically important phenotypes, but failed to prolong survival in an orthotopic xenograft model. Together, these data show the challenges of DMG treatment and highlight PRMT5 inhibitors for consideration in future studies of combination treatments.
Collapse
Affiliation(s)
- Elizabeth J Brown
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Leire Balaguer-Lluna
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Adam P Cribbs
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Martin Philpott
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Leticia Campo
- Department of Oncology, Experimental Cancer Medicine Centre, University of Oxford, Oxford, UK
| | - Molly Browne
- Department of Oncology, Experimental Cancer Medicine Centre, University of Oxford, Oxford, UK
| | - Jong Fu Wong
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Udo Oppermann
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Ángel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Alex N Bullock
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Gillian Farnie
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK.
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK.
- Cancer Research Horizons, The Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Marin MA, Gleichman AJ, Wei X, Whittaker DS, Mody I, Colwell CS, Carmichael ST. Motor Activity-Induced White Matter Repair in White Matter Stroke. J Neurosci 2023; 43:8126-8139. [PMID: 37821228 PMCID: PMC10697402 DOI: 10.1523/jneurosci.0631-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Subcortical white matter stroke (WMS) is a progressive disorder which is demarcated by the formation of small ischemic lesions along white matter tracts in the CNS. As lesions accumulate, patients begin to experience severe motor and cognitive decline. Despite its high rate of incidence in the human population, our understanding of the cause and outcome of WMS is extremely limited. As such, viable therapies for WMS remain to be seen. This study characterizes myelin recovery following stroke and motor learning-based rehabilitation in a mouse model of subcortical WMS. Following WMS, a transient increase in differentiating oligodendrocytes occurs within the peri-infarct in young male adult mice, which is completely abolished in male aged mice. Compound action potential recording demonstrates a decrease in conduction velocity of myelinated axons at the peri-infarct. Animals were then tested on one of three distinct motor learning-based rehabilitation strategies (skilled reach, restricted access to a complex running wheel, and unrestricted access to a complex running wheel) for their capacity to induce repair. These studies determined that unrestricted access to a complex running wheel alone increases the density of differentiating oligodendrocytes in infarcted white matter in young adult male mice, which is abolished in aged male mice. Unrestricted access to a complex running wheel was also able to enhance conduction velocity of myelinated axons at the peri-infarct to a speed comparable to naive controls suggesting functional recovery. However, there was no evidence of motor rehabilitation-induced remyelination or myelin protection.SIGNIFICANCE STATEMENT White matter stroke is a common disease with no medical therapy. A form of motor rehabilitation improves some aspects of white matter repair and recovery.
Collapse
Affiliation(s)
- Miguel A Marin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Amy J Gleichman
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Xiaofei Wei
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Daniel S Whittaker
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Istvan Mody
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| |
Collapse
|
12
|
Zou P, Wu C, Liu TCY, Duan R, Yang L. Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2023; 12:52. [PMID: 37964328 PMCID: PMC10644503 DOI: 10.1186/s40035-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) play pivotal roles in myelin formation and phagocytosis, communicating with neighboring cells and contributing to the integrity of the blood-brain barrier (BBB). However, under the pathological circumstances of Alzheimer's disease (AD), the brain's microenvironment undergoes detrimental changes that significantly impact OPCs and their functions. Starting with OPC functions, we delve into the transformation of OPCs to myelin-producing oligodendrocytes, the intricate signaling interactions with other cells in the central nervous system (CNS), and the fascinating process of phagocytosis, which influences the function of OPCs and affects CNS homeostasis. Moreover, we discuss the essential role of OPCs in BBB formation and highlight the critical contribution of OPCs in forming CNS-protective barriers. In the context of AD, the deterioration of the local microenvironment in the brain is discussed, mainly focusing on neuroinflammation, oxidative stress, and the accumulation of toxic proteins. The detrimental changes disturb the delicate balance in the brain, impacting the regenerative capacity of OPCs and compromising myelin integrity. Under pathological conditions, OPCs experience significant alterations in migration and proliferation, leading to impaired differentiation and a reduced ability to produce mature oligodendrocytes. Moreover, myelin degeneration and formation become increasingly active in AD, contributing to progressive neurodegeneration. Finally, we summarize the current therapeutic approaches targeting OPCs in AD. Strategies to revitalize OPC senescence, modulate signaling pathways to enhance OPC differentiation, and explore other potential therapeutic avenues are promising in alleviating the impact of AD on OPCs and CNS function. In conclusion, this review highlights the indispensable role of OPCs in CNS function and their involvement in the pathogenesis of AD. The intricate interplay between OPCs and the AD brain microenvironment underscores the complexity of neurodegenerative diseases. Insights from studying OPCs under pathological conditions provide a foundation for innovative therapeutic strategies targeting OPCs and fostering neurodegeneration. Future research will advance our understanding and management of neurodegenerative diseases, ultimately offering hope for effective treatments and improved quality of life for those affected by AD and related disorders.
Collapse
Affiliation(s)
- Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Miguel-Hidalgo JJ. Neuroprotective astroglial response to neural damage and its relevance to affective disorders. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:328-345. [PMID: 37920189 PMCID: PMC10622120 DOI: 10.37349/ent.2023.00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
Astrocytes not only support neuronal function with essential roles in synaptic neurotransmission, action potential propagation, metabolic support, or neuroplastic and developmental adaptations. They also respond to damage or dysfunction in surrounding neurons and oligodendrocytes by releasing neurotrophic factors and other molecules that increase the survival of the supported cells or contribute to mechanisms of structural and molecular restoration. The neuroprotective responsiveness of astrocytes is based on their ability to sense signals of degeneration, metabolic jeopardy and structural damage, and on their aptitude to locally deliver specific molecules to remedy threats to the molecular and structural features of their cellular partners. To the extent that neuronal and other glial cell disturbances are known to occur in affective disorders, astrocyte responsiveness to those disturbances may help to better understand the roles astrocytes play in affective disorders. The astrocytic sensing apparatus supporting those responses involves receptors for neurotransmitters, purines, cell adhesion molecules and growth factors. Astrocytes also share with the immune system the capacity of responding to cytokines released upon neuronal damage. In addition, in responses to specific signals astrocytes release unique factors such as clusterin or humanin that have been shown to exert potent neuroprotective effects. Astrocytes integrate the signals above to further deliver structural lipids, removing toxic metabolites, stabilizing the osmotic environment, normalizing neurotransmitters, providing anti-oxidant protection, facilitating synaptogenesis and acting as barriers to contain varied deleterious signals, some of which have been described in brain regions relevant to affective disorders and related animal models. Since various of the injurious signals that activate astrocytes have been implicated in different aspects of the etiopathology of affective disorders, particularly in relation to the diagnosis of depression, potentiating the corresponding astrocyte neuroprotective responses may provide additional opportunities to improve or complement available pharmacological and behavioral therapies for affective disorders.
Collapse
|
14
|
Wang Y, Liu W, Geng P, Du W, Guo C, Wang Q, Zheng GQ, Jin X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis 2023; 15:2507-2525. [PMID: 37962453 PMCID: PMC11567273 DOI: 10.14336/ad.2023.1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.
Collapse
Affiliation(s)
- Yihui Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Wencao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Guo-qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
15
|
Elitt CM, Ross MM, Wang J, Fahrni CJ, Rosenberg PA. Developmental regulation of zinc homeostasis in differentiating oligodendrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550230. [PMID: 37546881 PMCID: PMC10402100 DOI: 10.1101/2023.07.26.550230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Oligodendrocytes develop through well characterized stages and understanding pathways regulating their differentiation remains an active area of investigation. Zinc is required for the function of many enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after developing oligodendrocytes were switched into differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of the major zinc storage proteins metallothioneins (MTs), and metal regulatory transcription factor 1 (MTF-1) which controls expression of MTs. MT-1, MT-2 and MTF1 mRNAs were all increased several fold in mature oligodendrocytes compared to developing oligodendrocytes. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in a ∼100% increase in free zinc in developing oligodendrocytes but, paradoxically more modest ∼60% increase in mature oligodendrocytes despite the increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.
Collapse
|
16
|
Novorolsky RJ, Kasheke GDS, Hakim A, Foldvari M, Dorighello GG, Sekler I, Vuligonda V, Sanders ME, Renden RB, Wilson JJ, Robertson GS. Preserving and enhancing mitochondrial function after stroke to protect and repair the neurovascular unit: novel opportunities for nanoparticle-based drug delivery. Front Cell Neurosci 2023; 17:1226630. [PMID: 37484823 PMCID: PMC10360135 DOI: 10.3389/fncel.2023.1226630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons that form the basic component of the blood brain barrier. This intricate structure rapidly adjusts cerebral blood flow to match the metabolic needs of brain activity. However, the NVU is exquisitely sensitive to damage and displays limited repair after a stroke. To effectively treat stroke, it is therefore considered crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake supports NVU function by buffering Ca2+ and stimulating energy production. However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial Ca2+ overloading that triggers numerous cell death pathways which destroy the NVU. Mitochondrial damage is one of the earliest pathological events in stroke. Drugs that preserve mitochondrial integrity and function should therefore confer profound NVU protection by blocking the initiation of numerous injury events. We have shown that mitochondrial Ca2+ uptake and efflux in the brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent pharmacological studies have demonstrated that MCUcx inhibition and NCLX activation suppress ischemic and excitotoxic neuronal cell death by blocking mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx inhibition with NCLX activation should markedly protect the NVU. In terms of promoting NVU repair, nuclear hormone receptor activation is a promising approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists activate complementary transcriptional programs that stimulate mitochondrial biogenesis, suppress inflammation, and enhance the production of new vascular cells, glia, and neurons. RXR and TR agonism should thus further improve the clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or activate the RXR or TR, suffer from adverse effects caused by undesired actions on healthy tissues. To overcome this problem, we describe the use of nanoparticle drug formulations that preferentially target metabolically compromised and damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-based approaches have the potential to improve clinical safety and efficacy by maximizing drug delivery to diseased NVUs and minimizing drug exposure in healthy brain and peripheral tissues.
Collapse
Affiliation(s)
- Robyn J. Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gracious D. S. Kasheke
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Antoine Hakim
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Marianna Foldvari
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel G. Dorighello
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben Gurion University, Beersheva, Israel
| | | | | | - Robert B. Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
17
|
Azevedo-Pereira RL, Manley NC, Dong C, Zhang Y, Lee AG, Zatulovskaia Y, Gupta V, Vu J, Han S, Berry JE, Bliss TM, Steinberg GK. Decoding the molecular crosstalk between grafted stem cells and the stroke-injured brain. Cell Rep 2023; 42:112353. [PMID: 37043353 PMCID: PMC10562513 DOI: 10.1016/j.celrep.2023.112353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Stem cell therapy shows promise for multiple disorders; however, the molecular crosstalk between grafted cells and host tissue is largely unknown. Here, we take a step toward addressing this question. Using translating ribosome affinity purification (TRAP) with sequencing tools, we simultaneously decode the transcriptomes of graft and host for human neural stem cells (hNSCs) transplanted into the stroke-injured rat brain. Employing pathway analysis tools, we investigate the interactions between the two transcriptomes to predict molecular pathways linking host and graft genes; as proof of concept, we predict host-secreted factors that signal to the graft and the downstream molecular cascades they trigger in the graft. We identify a potential host-graft crosstalk pathway where BMP6 from the stroke-injured brain induces graft secretion of noggin, a known brain repair factor. Decoding the molecular interplay between graft and host is a critical step toward deciphering the molecular mechanisms of stem cell action.
Collapse
Affiliation(s)
| | - Nathan C Manley
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Chen Dong
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Yue Zhang
- Stanford Genetics Bioinformatics Service Center, Stanford University, Stanford, CA 94305, USA
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Yulia Zatulovskaia
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Varun Gupta
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jennifer Vu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Summer Han
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jack E Berry
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Tonya M Bliss
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Hu X, Geng P, Zhao X, Wang Q, Liu C, Guo C, Dong W, Jin X. The NG2-glia is a potential target to maintain the integrity of neurovascular unit after acute ischemic stroke. Neurobiol Dis 2023; 180:106076. [PMID: 36921779 DOI: 10.1016/j.nbd.2023.106076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The neurovascular unit (NVU) plays a critical role in health and disease. In the current review, we discuss the critical role of a class of neural/glial antigen 2 (NG2)-expressing glial cells (NG2-glia) in regulating NVU after acute ischemic stroke (AIS). We first introduce the role of NG2-glia in the formation of NVU during development as well as aging-induced damage to NVU and accompanying NG2-glia change. We then discuss the reciprocal interactions between NG2-glia and the other component cells of NVU, emphasizing the factors that could influence NG2-glia. Damage to the NVU integrity is the pathological basis of edema and hemorrhagic transformation, the most dreaded complication after AIS. The role of NG2-glia in AIS-induced NVU damage and the effect of NG2-glia transplantation on AIS-induced NVU damage are summarized. We next discuss the role of NG2-glia and the effect of NG2-glia transplantation in oligodendrogenesis and white matter repair as well as angiogenesis which is associated with the outcome of the patients after AIS. Finally, we review the current strategies to promote NG2-glia proliferation and differentiation and propose to use the dental pulp stem cells (DPSC)-derived exosome as a promising strategy to reduce AIS-induced injury and promote repair through maintaining the integrity of NVU by regulating endogenous NG2-glia proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiaoyun Zhao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Changqing Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Wen Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|
19
|
He Y, Li Z, Shi X, Ding J, Wang X. Roles of NG2 Glia in Cerebral Small Vessel Disease. Neurosci Bull 2023; 39:519-530. [PMID: 36401147 PMCID: PMC10043141 DOI: 10.1007/s12264-022-00976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is one of the most prevalent pathologic processes affecting 5% of people over 50 years of age and contributing to 45% of dementia cases. Increasing evidence has demonstrated the pathological roles of chronic hypoperfusion, impaired cerebral vascular reactivity, and leakage of the blood-brain barrier in CSVD. However, the pathogenesis of CSVD remains elusive thus far, and no radical treatment has been developed. NG2 glia, also known as oligodendrocyte precursor cells, are the fourth type of glial cell in addition to astrocytes, microglia, and oligodendrocytes in the mammalian central nervous system. Many novel functions for NG2 glia in physiological and pathological states have recently been revealed. In this review, we discuss the role of NG2 glia in CSVD and the underlying mechanisms.
Collapse
Affiliation(s)
- Yixi He
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenghao Li
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, NMU, Shanghai, 200433, China
| | - Xiaoyu Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Carmichael ST, Llorente IL. The Ties That Bind: Glial Transplantation in White Matter Ischemia and Vascular Dementia. Neurotherapeutics 2023; 20:39-47. [PMID: 36357662 PMCID: PMC10119342 DOI: 10.1007/s13311-022-01322-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
White matter injury is a progressive vascular disease that leads to neurological deficits and vascular dementia. It comprises up to 30% of all diagnosed strokes, though up to ten times as many events go undiagnosed in early stages. There are several pathologies that can lead to white matter injury. While some studies suggest that white matter injury starts as small infarcts in deep penetrating blood vessels in the brain, others point to the breakdown of endothelial function or the blood-brain barrier as the primary cause of the disease. Whether due to local endothelial or BBB dysfunction, or to local small infarcts (or a combination), white matter injury progresses, accumulates, and expands from preexisting lesions into adjacent white matter to produce motor and cognitive deficits that present as vascular dementia in the elderly. Vascular dementia is the second leading cause of dementia, and white matter injury-attributed vascular dementia represents 40% of all diagnosed dementias and aggravates Alzheimer's pathology. Despite the advances in the last 15 years, there are few animal models of progressive subcortical white matter injury or vascular dementia. This review will discuss recent progress in animal modeling of white matter injury and the emerging principles to enhance glial function as a means of promoting repair and recovery.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E Young Drive South, NRB 407, Los Angeles, CA, 90095, USA
| | - Irene L Llorente
- Department of Neurosurgery, Stanford University, 3801 Miranda Ave, 94304, Palo alto, USA.
| |
Collapse
|
21
|
Xiao G, Kumar R, Komuro Y, Burguet J, Kakarla V, Azizkhanian I, Sheth SA, Williams CK, Zhang XR, Macknicki M, Brumm A, Kawaguchi R, Mai P, Kaneko N, Vinters HV, Carmichael ST, Havton LA, DeCarli C, Hinman JD. IL-17/CXCL5 signaling within the oligovascular niche mediates human and mouse white matter injury. Cell Rep 2022; 41:111848. [PMID: 36543124 PMCID: PMC10026849 DOI: 10.1016/j.celrep.2022.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cerebral small vessel disease and brain white matter injury are worsened by cardiovascular risk factors including obesity. Molecular pathways in cerebral endothelial cells activated by chronic cerebrovascular risk factors alter cell-cell signaling, blocking endogenous and post-ischemic white matter repair. Using cell-specific translating ribosome affinity purification (RiboTag) in white matter endothelia and oligodendrocyte progenitor cells (OPCs), we identify a coordinated interleukin-chemokine signaling cascade within the oligovascular niche of subcortical white matter that is triggered by diet-induced obesity (DIO). DIO induces interleukin-17B (IL-17B) signaling that acts on the cerebral endothelia through IL-17Rb to increase both circulating and local endothelial expression of CXCL5. In white matter endothelia, CXCL5 promotes the association of OPCs with the vasculature and triggers OPC gene expression programs regulating cell migration through chemokine signaling. Targeted blockade of IL-17B reduced vessel-associated OPCs by reducing endothelial CXCL5 expression. In multiple human cohorts, blood levels of CXCL5 function as a diagnostic and prognostic biomarker of vascular cognitive impairment.
Collapse
Affiliation(s)
- Guanxi Xiao
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rosie Kumar
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yutaro Komuro
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jasmine Burguet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Visesha Kakarla
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ida Azizkhanian
- New York Medical College, School of Medicine, Valhalla, NY, USA
| | - Sunil A Sheth
- Department of Neurology, UT Health McGovern School of Medicine, Houston, TX, USA
| | - Christopher K Williams
- Department of Neuropathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinhai R Zhang
- Department of Neuropathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michal Macknicki
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew Brumm
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Phu Mai
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Naoki Kaneko
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harry V Vinters
- Department of Neuropathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Gorter RP, Baron W. Recent insights into astrocytes as therapeutic targets for demyelinating diseases. Curr Opin Pharmacol 2022; 65:102261. [PMID: 35809402 DOI: 10.1016/j.coph.2022.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes are a group of glial cells that exhibit great morphological, transcriptional and functional diversity both in the resting brain and in response to injury. In recent years, astrocytes have attracted increasing interest as therapeutic targets for demyelinating diseases. Following a demyelinating insult, astrocytes can adopt a wide spectrum of reactive states, which can exacerbate damage, but may also facilitate oligodendrocyte progenitor cell differentiation and myelin regeneration. In this review, we provide an overview of recent literature on astrocyte-oligodendrocyte interactions in the context of demyelinating diseases. We highlight novel key roles for astrocytes both during demyelination and remyelination with a focus on potential therapeutic strategies to favor a pro-regenerative astrocyte response in (progressive) multiple sclerosis.
Collapse
Affiliation(s)
- Rianne Petra Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
23
|
Mitroi DN, Tian M, Kawaguchi R, Lowry WE, Carmichael ST. Single-nucleus transcriptome analysis reveals disease- and regeneration-associated endothelial cells in white matter vascular dementia. J Cell Mol Med 2022; 26:3183-3195. [PMID: 35543222 PMCID: PMC9170821 DOI: 10.1111/jcmm.17315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/01/2022] [Accepted: 03/12/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Vascular dementia (VaD) is the accumulation of vascular lesions in the subcortical white matter of the brain. These lesions progress and there is no direct medical therapy. AIMS To determine the specific cellular responses in VaD so as to provide molecular targets for therapeutic development. MATERIALS AND METHODS Single-nucleus transcriptome analysis was performed in human periventricular white matter (PVWM) samples of VaD and normal control (NC) subjects. RESULTS Differential analysis shows that cell type-specific transcriptomic changes in VaD are associated with the disruption of specific biological processes, including angiogenesis, immune activation, axonal injury and myelination. Each cell type in the neurovascular unit within white matter has a specific alteration in gene expression in VaD. In a central cell type for this disease, subcluster analysis of endothelial cells (EC) indicates that VaD contains a disease-associated EC subcluster that expresses genes associated with programmed cell death and a response to protein folding. Two other subpopulations of EC in VaD express molecular systems associated with regenerative processes in angiogenesis, and in axonal sprouting and oligodendrocyte progenitor cell maturation. CONCLUSION This comprehensive molecular profiling of brain samples from patients with VaD reveals previously unknown molecular changes in cells of the neurovascular niche, and an attempt at regeneration in injured white matter.
Collapse
Affiliation(s)
- Daniel N. Mitroi
- Department of Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Min Tian
- Department of Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - William E. Lowry
- Department of Molecular, Cell and Developmental BiologyUCLALos AngelesCaliforniaUSA
| | - S. Thomas Carmichael
- Department of Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
24
|
Whitehead SN, Bruno A, Burns JM, Carmichael ST, Csiszar A, Edwards JD, Elahi FM, Faraco G, Gould DB, Gustafson DR, Hachinski V, Rosenberg G, Sorond FA, Shih AY, Tse KH, Ungvari Z, Wilcock DM, Zuloaga KL, Barone FC. Expanding the horizon of research into the pathogenesis of the white matter diseases: Proceedings of the 2021 Annual Workshop of the Albert Research Institute for White Matter and Cognition. GeroScience 2022; 44:25-37. [PMID: 34606040 PMCID: PMC8488071 DOI: 10.1007/s11357-021-00461-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
White matter pathologies are critically involved in the etiology of vascular cognitive impairment-dementia (VCID), Alzheimer's disease (AD), and Alzheimer's disease and related diseases (ADRD), and therefore need to be considered a treatable target ( Roseborough A, Hachinski V, Whitehead S. White matter degeneration - a treatable target? Roseborough et al. JAMA Neurol [Internet]. 2020 Apr 27;77(7):793-4, [1] . To help address this often-missed area of research, several workshops have been sponsored by the Leo and Anne Albert Charitable Trust since 2015, resulting in the incorporation of "The Albert Research Institute for White Matter and Cognition" in 2020. The first annual "Institute" meeting was held virtually on March 3-4, 2021. The Institute provides a forum and workspace for communication and support of the advancement of white matter science and research to better understand the evolution and prevention of dementia. It serves as a platform for young investigator development, to introduce new data and debate biology mechanisms and new ideas, and to encourage and support new research collaborations and directions to clarify how white matter changes, with other genetic and health risk factors, contribute to cognitive impairment. Similar to previous Albert Trust-sponsored workshops (Barone et al. in J Transl Med 14:1-14, [2]; Sorond et al. in GeroScience 42:81-96, [3]), established expert investigators were identified and invited to present. Opportunities to attend and present were also extended by invitation to talented research fellows and younger scientists. Also, updates on institute-funded research collaborations were provided and discussed. The summary that follows is a synopsis of topics and discussion covered in the workshop.
Collapse
Affiliation(s)
- Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada.
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Jeffrey M Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Jodi D Edwards
- University of Ottawa Heart Institute, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, K1G 5Z3, Canada
| | - Fanny M Elahi
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Douglas B Gould
- Departments of Ophthalmology and Anatomy, and Institute for Human Genetics, School of Medicine, University of California, San Francisco, 94143, USA
| | - Deborah R Gustafson
- Department of Neurology, Section for NeuroEpidemiology, State University of New York Downstate Health Sciences University, New York, Brooklyn, 11203, USA
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, London, ON, N6A 5C1, Canada
| | - Gary Rosenberg
- UNM Health Sciences Center, University of New Mexico, Albuquerque, NM, 87106, USA
| | | | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Pediatrics; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kai Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Donna M Wilcock
- Sanders-Brown Center on Aging; Department of Neurology, Department of Behavioral Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Frank C Barone
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| |
Collapse
|
25
|
Huuskonen MT, Wang Y, Nikolakopoulou AM, Montagne A, Dai Z, Lazic D, Sagare AP, Zhao Z, Fernandez JA, Griffin JH, Zlokovic BV. Protection of ischemic white matter and oligodendrocytes in mice by 3K3A-activated protein C. J Exp Med 2022; 219:e20211372. [PMID: 34846535 PMCID: PMC8635278 DOI: 10.1084/jem.20211372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/19/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Subcortical white matter (WM) stroke accounts for 25% of all strokes and is the second leading cause of dementia. Despite such clinical importance, we still do not have an effective treatment for ischemic WM stroke, and the mechanisms of WM postischemic neuroprotection remain elusive. 3K3A-activated protein C (APC) is a signaling-selective analogue of endogenous blood protease APC that is currently in development as a neuroprotectant for ischemic stroke patients. Here, we show that 3K3A-APC protects WM tracts and oligodendrocytes from ischemic injury in the corpus callosum in middle-aged mice by activating protease-activated receptor 1 (PAR1) and PAR3. We show that PAR1 and PAR3 were also required for 3K3A-APC's suppression of post-WM stroke microglia and astrocyte responses and overall improvement in neuropathologic and functional outcomes. Our data provide new insights into the neuroprotective APC pathway in the WM and illustrate 3K3A-APC's potential for treating WM stroke in humans, possibly including multiple WM strokes that result in vascular dementia.
Collapse
Affiliation(s)
- Mikko T. Huuskonen
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Yaoming Wang
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Angeliki Maria Nikolakopoulou
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Axel Montagne
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Zhonghua Dai
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Divna Lazic
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Abhay P. Sagare
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Jose A. Fernandez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, San Diego, CA
| | - Berislav V. Zlokovic
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| |
Collapse
|
26
|
Differential Role of p53 in Oligodendrocyte Survival in Response to Various Stresses: Experimental Autoimmune Encephalomyelitis, Cuprizone Intoxication or White Matter Stroke. Int J Mol Sci 2021; 22:ijms222312811. [PMID: 34884611 PMCID: PMC8658009 DOI: 10.3390/ijms222312811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Promoting oligodendrocyte viability has been proposed as a therapeutic strategy for alleviating many neuronal diseases, such as multiple sclerosis and stroke. However, molecular pathways critical for oligodendrocyte survival under various stresses are still not well known. p53 is a strong tumor suppressor and regulates cell cycle, DNA repair and cell death. Our previous studies have shown that p53 plays an important role in promoting neuronal survival after insults, but its specific role in oligodendrocyte survival is not known. Here, we constructed the mice with oligodendrocyte-specific p53 loss by crossing TRP53flox/flox mice and CNP-cre mice, and found that p53 was dispensable for oligodendrocyte differentiation and myelin formation under physiological condition. In the experimental autoimmune encephalomyelitis (EAE) model, p53 loss of function, specifically in oligodendrocytes, did not affect the EAE disease severity and had no effect on demyelination in the spinal cord of the mice. Interestingly, p53 deficiency in oligodendrocytes significantly attenuated the demyelination of corpus callosum and alleviated the functional impairment of motor coordination and spatial memory in the cuprizone demyelination model. Moreover, the oligodendrocyte-specific loss of p53 provided protection against subcortical white matter damage and mitigated recognition memory impairment in mice in the white matter stroke model. These results suggest that p53 plays different roles in the brain and spinal cord or in response to various stresses. Thus, p53 may be a therapeutic target for oligodendrocyte prevention in specific brain injuries, such as white matter stroke and multiple sclerosis.
Collapse
|
27
|
Peterson SL, Li Y, Sun CJ, Wong KA, Leung KS, de Lima S, Hanovice NJ, Yuki K, Stevens B, Benowitz LI. Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. J Neurosci 2021; 41:8508-8531. [PMID: 34417332 PMCID: PMC8513703 DOI: 10.1523/jneurosci.0555-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Axon regenerative failure in the mature CNS contributes to functional deficits following many traumatic injuries, ischemic injuries, and neurodegenerative diseases. The complement cascade of the innate immune system responds to pathogen threat through inflammatory cell activation, pathogen opsonization, and pathogen lysis, and complement is also involved in CNS development, neuroplasticity, injury, and disease. Here, we investigated the involvement of the classical complement cascade and microglia/monocytes in CNS repair using the mouse optic nerve injury (ONI) model, in which axons arising from retinal ganglion cells (RGCs) are disrupted. We report that central complement C3 protein and mRNA, classical complement C1q protein and mRNA, and microglia/monocyte phagocytic complement receptor CR3 all increase in response to ONI, especially within the optic nerve itself. Importantly, genetic deletion of C1q, C3, or CR3 attenuates RGC axon regeneration induced by several distinct methods, with minimal effects on RGC survival. Local injections of C1q function-blocking antibody revealed that complement acts primarily within the optic nerve, not retina, to support regeneration. Moreover, C1q opsonizes and CR3+ microglia/monocytes phagocytose growth-inhibitory myelin debris after ONI, a likely mechanism through which complement and myeloid cells support axon regeneration. Collectively, these results indicate that local optic nerve complement-myeloid phagocytic signaling is required for CNS axon regrowth, emphasizing the axonal compartment and highlighting a beneficial neuroimmune role for complement and microglia/monocytes in CNS repair.SIGNIFICANCE STATEMENT Despite the importance of achieving axon regeneration after CNS injury and the inevitability of inflammation after such injury, the contributions of complement and microglia to CNS axon regeneration are largely unknown. Whereas inflammation is commonly thought to exacerbate the effects of CNS injury, we find that complement proteins C1q and C3 and microglia/monocyte phagocytic complement receptor CR3 are each required for retinal ganglion cell axon regeneration through the injured mouse optic nerve. Also, whereas studies of optic nerve regeneration generally focus on the retina, we show that the regeneration-relevant role of complement and microglia/monocytes likely involves myelin phagocytosis within the optic nerve. Thus, our results point to the importance of the innate immune response for CNS repair.
Collapse
Affiliation(s)
- Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Yiqing Li
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong China, 510060
| | - Christina J Sun
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kylie S Leung
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Silmara de Lima
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kenya Yuki
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, and
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
28
|
Llorente IL, Hatanaka EA, Meadow ME, Xie Y, Lowry WE, Carmichael ST. Reliable generation of glial enriched progenitors from human fibroblast-derived iPSCs. Stem Cell Res 2021; 55:102458. [PMID: 34274773 PMCID: PMC8444576 DOI: 10.1016/j.scr.2021.102458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
White matter stroke (WMS) occurs as small infarcts in deep penetrating blood vessels in the brain and affects the regions of the brain that carry connections, termed the subcortical white matter. WMS progresses over years and has devastating clinical consequences. Unlike large grey matter strokes, WMS disrupts the axonal architecture of the brain and depletes astrocytes, oligodendrocyte lineage cells, axons and myelinating cells, resulting in abnormalities of gait and executive function. An astrocytic cell-based therapy is positioned as a strong therapeutic candidate after WMS. In this study we report, the reliable generation of a novel stem cell-based therapeutic product, glial enriched progenitors (GEPs) derived from human induced pluripotent stem cells (hiPSCs). By transient treatment of hiPSC derived neural progenitors (hiPSC-NPCs) with the small molecule deferoxamine, a prolyl hydroxylase inhibitor, for three days hiPSC-NPCs become permanently biased towards an astrocytic fate, producing hiPSC-GEPs. In preparation for clinical application, we have developed qualification assays to ensure identity, safety, purity, and viability of the cells prior to manufacture. Using tailored q-RT-PCR-based assays, we have demonstrated the lack of pluripotency in our final therapeutic candidate cells (hiPSC-GEPs) and we have identified the unique genetic profile of hiPSC-GEPs that is clearly distinct from the parent lines, hiPSCs and iPSC-NPCs. After completion of the viability assay, we have stablished the therapeutic window of use for hiPSC-GEPs in future clinical applications (7 h). Lastly, we were able to reliably and consistently produce a safe therapeutic final product negative for contamination by any human or murine viral pathogens, selected bacteria, common laboratory mycoplasmas, growth of any aerobes, anaerobes, yeast, or fungi and 100 times less endotoxin levels than the maximum acceptable value. This study demonstrates the reliable and safe generation of patient derived hiPSC-GEPs that are clinically ready as a cell-based therapeutic approach for WMS.
Collapse
Affiliation(s)
- Irene L Llorente
- Department of Neurology, David Geffen School of Medicine at UCLA, USA
| | - Emily A Hatanaka
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | - Michael E Meadow
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, University of Chicago, USA
| | - William E Lowry
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | | |
Collapse
|
29
|
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial Cells as Therapeutic Approaches in Brain Ischemia-Reperfusion Injury. Cells 2021; 10:1639. [PMID: 34208834 PMCID: PMC8305833 DOI: 10.3390/cells10071639] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is the second cause of mortality and the first cause of long-term disability constituting a serious socioeconomic burden worldwide. Approved treatments include thrombectomy and rtPA intravenous administration, which, despite their efficacy in some cases, are not suitable for a great proportion of patients. Glial cell-related therapies are progressively overcoming inefficient neuron-centered approaches in the preclinical phase. Exploiting the ability of microglia to naturally switch between detrimental and protective phenotypes represents a promising therapeutic treatment, in a similar way to what happens with astrocytes. However, the duality present in many of the roles of these cells upon ischemia poses a notorious difficulty in disentangling the precise pathways to target. Still, promoting M2/A2 microglia/astrocyte protective phenotypes and inhibiting M1/A1 neurotoxic profiles is globally rendering promising results in different in vivo models of stroke. On the other hand, described oligodendrogenesis after brain ischemia seems to be strictly beneficial, although these cells are the less studied players in the stroke paradigm and negative effects could be described for oligodendrocytes in the next years. Here, we review recent advances in understanding the precise role of mentioned glial cell types in the main pathological events of ischemic stroke, including inflammation, blood brain barrier integrity, excitotoxicity, reactive oxygen species management, metabolic support, and neurogenesis, among others, with a special attention to tested therapeutic approaches.
Collapse
Affiliation(s)
- Ivó H Hernández
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Mario Villa-González
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gerardo Martín
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Soto
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María José Pérez-Álvarez
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
30
|
Llorente IL, Xie Y, Mazzitelli JA, Hatanaka EA, Cinkornpumin J, Miller DR, Lin Y, Lowry WE, Carmichael ST. Patient-derived glial enriched progenitors repair functional deficits due to white matter stroke and vascular dementia in rodents. Sci Transl Med 2021; 13:13/590/eaaz6747. [PMID: 33883275 DOI: 10.1126/scitranslmed.aaz6747] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/05/2020] [Accepted: 01/16/2021] [Indexed: 01/24/2023]
Abstract
Subcortical white matter stroke (WMS) accounts for up to 30% of all stroke events. WMS damages primarily astrocytes, axons, oligodendrocytes, and myelin. We hypothesized that a therapeutic intervention targeting astrocytes would be ideally suited for brain repair after WMS. We characterize the cellular properties and in vivo tissue repair activity of glial enriched progenitor (GEP) cells differentiated from human-induced pluripotent stem cells, termed hiPSC-derived GEPs (hiPSC-GEPs). hiPSC-GEPs are derived from hiPSC-neural progenitor cells via an experimental manipulation of hypoxia inducible factor activity by brief treatment with a prolyl hydroxylase inhibitor, deferoxamine. This treatment permanently biases these cells to further differentiate toward an astrocyte fate. hiPSC-GEPs transplanted into the brain in the subacute period after WMS in mice migrated widely, matured into astrocytes with a prorepair phenotype, induced endogenous oligodendrocyte precursor proliferation and remyelination, and promoted axonal sprouting. hiPSC-GEPs enhanced motor and cognitive recovery compared to other hiPSC-differentiated cell types. This approach establishes an hiPSC-derived product with easy scale-up capabilities that might be effective for treating WMS.
Collapse
Affiliation(s)
- Irene L Llorente
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jose A Mazzitelli
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Emily A Hatanaka
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.,Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Jessica Cinkornpumin
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - David R Miller
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ying Lin
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - William E Lowry
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Chen D, Huang Y, Shi Z, Li J, Zhang Y, Wang K, Smith AD, Gong Y, Gao Y. Demyelinating processes in aging and stroke in the central nervous system and the prospect of treatment strategy. CNS Neurosci Ther 2020; 26:1219-1229. [PMID: 33210839 PMCID: PMC7702227 DOI: 10.1111/cns.13497] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Demyelination occurs in response to brain injury and is observed in many neurodegenerative diseases. Myelin is synthesized from oligodendrocytes in the central nervous system, and oligodendrocyte death‐induced demyelination is one of the mechanisms involved in white matter damage after stroke and neurodegeneration. Oligodendrocyte precursor cells (OPCs) exist in the brain of normal adults, and their differentiation into mature oligodendrocytes play a central role in remyelination. Although the differentiation and maturity of OPCs drive endogenous efforts for remyelination, the failure of axons to remyelinate is still the biggest obstacle to brain repair after injury or diseases. In recent years, studies have made attempts to promote remyelination after brain injury and disease, but its cellular or molecular mechanism is not yet fully understood. In this review, we discuss recent studies examining the demyelination process and potential therapeutic strategies for remyelination in aging and stroke. Based on our current understanding of the cellular and molecular mechanisms underlying remyelination, we hypothesize that myelin and oligodendrocytes are viable therapeutic targets to mitigate brain injury and to treat demyelinating‐related neurodegeneration diseases.
Collapse
Affiliation(s)
- Di Chen
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziyu Shi
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Zhang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ke Wang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Amanda D Smith
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Dong F, Liu D, Jiang F, Liu Y, Wu X, Qu X, Liu J, Chen Y, Fan H, Yao R. Conditional Deletion of Foxg1 Alleviates Demyelination and Facilitates Remyelination via the Wnt Signaling Pathway in Cuprizone-Induced Demyelinated Mice. Neurosci Bull 2020; 37:15-30. [PMID: 33015737 PMCID: PMC7811968 DOI: 10.1007/s12264-020-00583-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022] Open
Abstract
The massive loss of oligodendrocytes caused by various pathological factors is a basic feature of many demyelinating diseases of the central nervous system (CNS). Based on a variety of studies, it is now well established that impairment of oligodendrocyte precursor cells (OPCs) to differentiate and remyelinate axons is a vital event in the failed treatment of demyelinating diseases. Recent evidence suggests that Foxg1 is essential for the proliferation of certain precursors and inhibits premature neurogenesis during brain development. To date, very little attention has been paid to the role of Foxg1 in the proliferation and differentiation of OPCs in demyelinating diseases of the CNS. Here, for the first time, we examined the effects of Foxg1 on demyelination and remyelination in the brain using a cuprizone (CPZ)-induced mouse model. In this work, 7-week-old Foxg1 conditional knockout and wild-type (WT) mice were fed a diet containing 0.2% CPZ w/w for 5 weeks, after which CPZ was withdrawn to enable remyelination. Our results demonstrated that, compared with WT mice, Foxg1-knockout mice exhibited not only alleviated demyelination but also accelerated remyelination of the demyelinated corpus callosum. Furthermore, we found that Foxg1 knockout decreased the proliferation of OPCs and accelerated their differentiation into mature oligodendrocytes both in vivo and in vitro. Wnt signaling plays a critical role in development and in a variety of diseases. GSK-3β, a key regulatory kinase in the Wnt pathway, regulates the ability of β-catenin to enter nuclei, where it activates the expression of Wnt target genes. We then used SB216763, a selective inhibitor of GSK-3β activity, to further demonstrate the regulatory mechanism by which Foxg1 affects OPCs in vitro. The results showed that SB216763 clearly inhibited the expression of GSK-3β, which abolished the effect of the proliferation and differentiation of OPCs caused by the knockdown of Foxg1. These results suggest that Foxg1 is involved in the proliferation and differentiation of OPCs through the Wnt signaling pathway. The present experimental results are some of the first to suggest that Foxg1 is a new therapeutic target for the treatment of demyelinating diseases of the CNS.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dajin Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Feiyu Jiang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaping Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiuxiang Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
33
|
Gleichman AJ, Carmichael ST. Glia in neurodegeneration: Drivers of disease or along for the ride? Neurobiol Dis 2020; 142:104957. [PMID: 32512150 DOI: 10.1016/j.nbd.2020.104957] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023] Open
Abstract
While much of the research on neurodegenerative diseases has focused on neurons, non-neuronal cells are also affected. The extent to which glia and other non-neuronal cells are causally involved in disease pathogenesis versus more passively responding to disease is an area of active research. This is complicated by the fact that there is rarely one known cause of neurodegenerative diseases; rather, these disorders likely involve feedback loops that perpetuate dysfunction. Here, we will review genetic as well as experimental evidence that suggest that non-neuronal cells are at least partially driving disease pathogenesis in numerous neurodegenerative disorders, including Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Amy J Gleichman
- Department of Neurology, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, United States.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
34
|
Ohtomo R, Arai K. Recent updates on mechanisms of cell-cell interaction in oligodendrocyte regeneration after white matter injury. Neurosci Lett 2019; 715:134650. [PMID: 31770564 DOI: 10.1016/j.neulet.2019.134650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/09/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023]
Abstract
In most cases, neurological disorders that involve injuries of the cerebral white matter are accompanied by demyelination and oligodendrocyte damage. Promotion of remyelination process through the maturation of oligodendrocyte precursor cells (OPCs) is therefore proposed to contribute to the development of novel therapeutic approaches that could protect and restore the white matter from central nervous system diseases. However, efficient remyelination in the white matter could not be accomplished if various neighboring cell types are not involved to react with oligodendrocyte lineage cells in this process. Hence, profound understanding of cell-cell interaction between oligodendrocyte lineage cells and other cellular components is an essential step to achieve a breakthrough for the cure of white matter injury. In this mini-review, we provide recent updates on non-cell autonomous mechanisms of oligodendrocyte regeneration by introducing recent studies (e.g. published either in 2018 or 2019) that focus on crosstalk between oligodendrocyte lineage cells and the other constituents of the white matter.
Collapse
Affiliation(s)
- Ryo Ohtomo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA; Department of Neurology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|