1
|
Fujimoto A, Elorette C, Fujimoto SH, Fleysher L, Rudebeck PH, Russ BE. Pharmacological Modulation of Dopamine Receptors Reveals Distinct Brain-Wide Networks Associated with Learning and Motivation in Nonhuman Primates. J Neurosci 2025; 45:e1301242024. [PMID: 39730205 PMCID: PMC11800751 DOI: 10.1523/jneurosci.1301-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
The neurotransmitter dopamine (DA) has a multifaceted role in healthy and disordered brains through its action on multiple subtypes of dopaminergic receptors. How the modulation of these receptors influences learning and motivation by altering intrinsic brain-wide networks remains unclear. Here, we performed parallel behavioral and resting-state functional MRI experiments after administration of two different DA receptor antagonists in male and female macaque monkeys. Systemic administration of SCH-23390 (D1 antagonist) slowed probabilistic learning when subjects had to learn new stimulus-reward associations and diminished functional connectivity (FC) in corticocortical and frontostriatal connections. In contrast, haloperidol (D2 antagonist) improved learning and broadly enhanced FC in cortical connections. Further comparisons between the effect of SCH-23390/haloperidol on behavioral and resting-state FC revealed specific cortical and subcortical networks associated with the cognitive and motivational effects of DA manipulation, respectively. Thus, we reveal distinct brain-wide networks that are associated with the dopaminergic control of learning and motivation via DA receptors.
Collapse
Affiliation(s)
- Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Satoka H Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Brian E Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, New York 10962
- Department of Psychiatry, New York University at Langone, New York, New York 10016
| |
Collapse
|
2
|
Kim JH, Kim HK, Son YD, Kim JH. The Relationship Between Impulsivity Traits and In Vivo Cerebral Serotonin Transporter and Serotonin 2A Receptor Binding in Healthy Individuals: A Double-Tracer PET Study with C-11 DASB and C-11 MDL100907. Int J Mol Sci 2024; 26:252. [PMID: 39796107 PMCID: PMC11720673 DOI: 10.3390/ijms26010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [11C]DASB and [11C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BPND) of [11C]DASB and [11C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region. The participants' impulsivity levels were assessed using the Barratt Impulsiveness Scale-11 (BIS-11). The region of interest (ROI)-based partial correlation analysis with age, sex, and temperament traits as covariates revealed a significant positive correlation between non-planning impulsiveness and [11C]MDL100907 BPND in the caudate (CAU) at Bonferroni-corrected p < 0.0045. Non-planning impulsiveness was also positively correlated with [11C]MDL100907 BPND in the prefrontal cortex (PFC), ventromedial PFC, orbitofrontal cortex (OFC), insula (INS), amygdala (AMYG), putamen, ventral striatum, and thalamus, and the total score of BIS-11 was positively correlated with [11C]MDL100907 BPND in the OFC, INS, AMYG, and CAU at uncorrected p < 0.05. Motor impulsiveness had a positive correlation with [11C]DASB BPND in the CAU at uncorrected p < 0.05. Our results suggest that impulsivity traits, characterized by focusing on the present moment without considering future consequences, may be involved in serotonergic neurotransmission, particularly 5-HT2A receptor-mediated postsynaptic signaling in the CAU, which plays an important role in cognitive processes related to executive function, judgment of alternative outcomes, and inhibitory control.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Hang-Keun Kim
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Young-Don Son
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
3
|
Fujimoto A, Elorette C, Fujimoto SH, Fleysher L, Rudebeck PH, Russ BE. Pharmacological modulation of dopamine receptors reveals distinct brain-wide networks associated with learning and motivation in non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573487. [PMID: 38234858 PMCID: PMC10793459 DOI: 10.1101/2023.12.27.573487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The neurotransmitter dopamine (DA) has a multifaceted role in healthy and disordered brains through its action on multiple subtypes of dopaminergic receptors. How modulation of these receptors influences learning and motivation by altering intrinsic brain-wide networks remains unclear. Here we performed parallel behavioral and resting-state functional MRI experiments after administration of two different DA receptor antagonists in macaque monkeys. Systemic administration of SCH-23390 (D1 antagonist) slowed probabilistic learning when subjects had to learn new stimulus-reward associations and diminished functional connectivity (FC) in cortico-cortical and fronto-striatal connections. By contrast, haloperidol (D2 antagonist) improved learning and broadly enhanced FC in cortical connections. Further comparisons between the effect of SCH-23390/haloperidol on behavioral and resting-state FC revealed specific cortical and subcortical networks associated with the cognitive and motivational effects of DA manipulation, respectively. Thus, we reveal distinct brain-wide networks that are associated with the dopaminergic control of learning and motivation via DA receptors.
Collapse
Affiliation(s)
- Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962
- Department of Psychiatry, New York University at Langone, One, 8, Park Ave, New York, NY 10016
| |
Collapse
|
4
|
Fujimoto S, Fujimoto A, Elorette C, Choi KS, Mayberg H, Russ B, Rudebeck P. What can neuroimaging of neuromodulation reveal about the basis of circuit therapies for psychiatry? Neuropsychopharmacology 2024; 50:184-195. [PMID: 39198580 PMCID: PMC11526173 DOI: 10.1038/s41386-024-01976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Neuromodulation is increasingly becoming a therapeutic option for treatment resistant psychiatric disorders. These non-invasive and invasive therapies are still being refined but are clinically effective and, in some cases, provide sustained symptom reduction. Neuromodulation relies on changing activity within a specific brain region or circuit, but the precise mechanisms of action of these therapies, is unclear. Here we review work in both humans and animals that has provided insight into how therapies such as deep brain and transcranial magnetic stimulation alter neural activity across the brain. We focus on studies that have combined neuromodulation with neuroimaging such as PET and MRI as these measures provide detailed information about the distributed networks that are modulated and thus insight into both the mechanisms of action of neuromodulation but also potentially the basis of psychiatric disorders. Further we highlight work in nonhuman primates that has revealed how neuromodulation changes neural activity at different scales from single neuron activity to functional connectivity, providing key insight into how neuromodulation influences the brain. Ultimately, these studies highlight the value of combining neuromodulation with neuroimaging to reveal the mechanisms through which these treatments influence the brain, knowledge vital for refining targeted neuromodulation therapies for psychiatric disorders.
Collapse
Affiliation(s)
- Satoka Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Radiology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Radiology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
- Department of Psychiatry, New York University at Langone, New York, NY, USA.
| | - Peter Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Fujimoto A, Elorette C, Fujimoto SH, Fleysher L, Russ BE, Rudebeck PH. Ventrolateral prefrontal cortex in macaques guides decisions in different learning contexts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613767. [PMID: 39345480 PMCID: PMC11429923 DOI: 10.1101/2024.09.18.613767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Flexibly adjusting our behavioral strategies based on the environmental context is critical to maximize rewards. Ventrolateral prefrontal cortex (vlPFC) has been implicated in both learning and decision-making for probabilistic rewards, although how context influences these processes remains unclear. We collected functional neuroimaging data while rhesus macaques performed a probabilistic learning task in two contexts: one with novel and another with familiar visual stimuli. We found that activity in vlPFC encoded rewards irrespective of the context but encoded behavioral strategies that depend on reward outcome (win-stay/lose-shift) preferentially in novel contexts. Functional connectivity between vlPFC and anterior cingulate cortex varied with behavioral strategy in novel learning blocks. By contrast, connectivity between vlPFC and mediodorsal thalamus was highest when subjects repeated a prior choice. Furthermore, pharmacological D2-receptor blockade altered behavioral strategies during learning and resting-state vlPFC activity. Taken together, our results suggest that multiple vlPFC-linked circuits contribute to adaptive decision-making in different contexts.
Collapse
Affiliation(s)
- Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| | - Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962
- Department of Psychiatry, New York University at Langone, One, 8, Park Ave, New York, NY 10016
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| |
Collapse
|
6
|
Hirabayashi T, Nagai Y, Hori Y, Hori Y, Oyama K, Mimura K, Miyakawa N, Iwaoki H, Inoue KI, Suhara T, Takada M, Higuchi M, Minamimoto T. Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates. Nat Commun 2024; 15:5369. [PMID: 38987235 PMCID: PMC11237144 DOI: 10.1038/s41467-024-49570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.
Collapse
Affiliation(s)
- Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuki Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Kei Oyama
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Naohisa Miyakawa
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Haruhiko Iwaoki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Tetsuya Suhara
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
7
|
Ha LJ, Yeo HG, Kim YG, Baek I, Baeg E, Lee YH, Won J, Jung Y, Park J, Jeon CY, Kim K, Min J, Song Y, Park JH, Nam KR, Son S, Yoo SBM, Park SH, Choi WS, Lim KS, Choi JY, Cho JH, Lee Y, Choi HJ. Hypothalamic neuronal activation in non-human primates drives naturalistic goal-directed eating behavior. Neuron 2024; 112:2218-2230.e6. [PMID: 38663401 DOI: 10.1016/j.neuron.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/16/2024] [Accepted: 03/28/2024] [Indexed: 06/03/2024]
Abstract
Maladaptive feeding behavior is the primary cause of modern obesity. While the causal influence of the lateral hypothalamic area (LHA) on eating behavior has been established in rodents, there is currently no primate-based evidence available on naturalistic eating behaviors. We investigated the role of LHA GABAergic (LHAGABA) neurons in eating using chemogenetics in three macaques. LHAGABA neuron activation significantly increased naturalistic goal-directed behaviors and food motivation, predominantly for palatable food. Positron emission tomography and magnetic resonance spectroscopy validated chemogenetic activation. Resting-state functional magnetic resonance imaging revealed that the functional connectivity (FC) between the LHA and frontal areas was increased, while the FC between the frontal cortices was decreased after LHAGABA neuron activation. Thus, our study elucidates the role of LHAGABA neurons in eating and obesity therapeutics for primates and humans.
Collapse
Affiliation(s)
- Leslie Jaesun Ha
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea
| | - Inhyeok Baek
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunha Baeg
- Department of Nano-bioengineering, Incheon National University, Incheon, Republic of Korea; Center for Brain-Machine Interface, Incheon National University, Incheon, Republic of Korea
| | - Young Hee Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Yunkyo Jung
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Jisun Min
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Youngkyu Song
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jeong-Heon Park
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sangkyu Son
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seng Bum Michael Yoo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung-Hyun Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Won Seok Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Radiological and Medico-Oncological Sciences, Korea National University of Science and, Technology, Seoul, Republic of Korea.
| | - Jee-Hyun Cho
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea.
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea.
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
8
|
Fujimoto SH, Fujimoto A, Elorette C, Seltzer A, Andraka E, Verma G, Janssen WGM, Fleysher L, Folloni D, Choi KS, Russ BE, Mayberg HS, Rudebeck PH. Deep brain stimulation induces white matter remodeling and functional changes to brain-wide networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598710. [PMID: 38915600 PMCID: PMC11195276 DOI: 10.1101/2024.06.13.598710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Deep brain stimulation (DBS) is an emerging therapeutic option for treatment resistant neurological and psychiatric disorders, most notably depression. Despite this, little is known about the anatomical and functional mechanisms that underlie this therapy. Here we targeted stimulation to the white matter adjacent to the subcallosal anterior cingulate cortex (SCC-DBS) in macaques, modeling the location in the brain proven effective for depression. We demonstrate that SCC-DBS has a selective effect on white matter macro- and micro-structure in the cingulum bundle distant to where stimulation was delivered. SCC-DBS also decreased functional connectivity between subcallosal and posterior cingulate cortex, two areas linked by the cingulum bundle and implicated in depression. Our data reveal that white matter remodeling as well as functional effects contribute to DBS's therapeutic efficacy.
Collapse
Affiliation(s)
- Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Adela Seltzer
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Emma Andraka
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Gaurav Verma
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West Hospital; New York, NY 10019, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - William GM Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Davide Folloni
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West Hospital; New York, NY 10019, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute; Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University at Langone; New York, NY 10016, USA
| | - Helen S. Mayberg
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West Hospital; New York, NY 10019, USA
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
9
|
Elorette C, Fujimoto A, Stoll FM, Fujimoto SH, Bienkowska N, London L, Fleysher L, Russ BE, Rudebeck PH. The neural basis of resting-state fMRI functional connectivity in fronto-limbic circuits revealed by chemogenetic manipulation. Nat Commun 2024; 15:4669. [PMID: 38821963 PMCID: PMC11143237 DOI: 10.1038/s41467-024-49140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Measures of fMRI resting-state functional connectivity (rs-FC) are an essential tool for basic and clinical investigations of fronto-limbic circuits. Understanding the relationship between rs-FC and the underlying patterns of neural activity in these circuits is therefore vital. Here we introduced inhibitory designer receptors exclusively activated by designer drugs (DREADDs) into the amygdala of two male macaques. We evaluated the causal effect of activating the DREADD receptors on rs-FC and neural activity within circuits connecting amygdala and frontal cortex. Activating the inhibitory DREADD increased rs-FC between amygdala and ventrolateral prefrontal cortex. Neurophysiological recordings revealed that the DREADD-induced increase in fMRI rs-FC was associated with increased local field potential coherency in the alpha band (6.5-14.5 Hz) between amygdala and ventrolateral prefrontal cortex. Thus, our multi-modal approach reveals the specific signature of neuronal activity that underlies rs-FC in fronto-limbic circuits.
Collapse
Affiliation(s)
- Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Satoka H Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Niranjana Bienkowska
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Liza London
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Brian E Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University at Langone, 550 1st Avenue, New York, NY, 10016, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Charbonneau JA, Santistevan AC, Raven EP, Bennett JL, Russ BE, Bliss-Moreau E. Evolutionarily conserved neural responses to affective touch in monkeys transcend consciousness and change with age. Proc Natl Acad Sci U S A 2024; 121:e2322157121. [PMID: 38648473 PMCID: PMC11067024 DOI: 10.1073/pnas.2322157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Affective touch-a slow, gentle, and pleasant form of touch-activates a different neural network than which is activated during discriminative touch in humans. Affective touch perception is enabled by specialized low-threshold mechanoreceptors in the skin with unmyelinated fibers called C tactile (CT) afferents. These CT afferents are conserved across mammalian species, including macaque monkeys. However, it is unknown whether the neural representation of affective touch is the same across species and whether affective touch's capacity to activate the hubs of the brain that compute socioaffective information requires conscious perception. Here, we used functional MRI to assess the preferential activation of neural hubs by slow (affective) vs. fast (discriminative) touch in anesthetized rhesus monkeys (Macaca mulatta). The insula, anterior cingulate cortex (ACC), amygdala, and secondary somatosensory cortex were all significantly more active during slow touch relative to fast touch, suggesting homologous activation of the interoceptive-allostatic network across primate species during affective touch. Further, we found that neural responses to affective vs. discriminative touch in the insula and ACC (the primary cortical hubs for interoceptive processing) changed significantly with age. Insula and ACC in younger animals differentiated between slow and fast touch, while activity was comparable between conditions for aged monkeys (equivalent to >70 y in humans). These results, together with prior studies establishing conserved peripheral nervous system mechanisms of affective touch transduction, suggest that neural responses to affective touch are evolutionarily conserved in monkeys, significantly impacted in old age, and do not necessitate conscious experience of touch.
Collapse
Affiliation(s)
- Joey A. Charbonneau
- Neuroscience Graduate Program, University of California, Davis, CA95616
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
| | - Anthony C. Santistevan
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
| | - Erika P. Raven
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY10016
| | - Jeffrey L. Bennett
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA95817
- The Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Sacramento, CA95817
| | - Brian E. Russ
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY10962
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry, New York University Langone, New York, NY10016
| | - Eliza Bliss-Moreau
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
| |
Collapse
|
11
|
MINAMIMOTO T, NAGAI Y, OYAMA K. Imaging-based chemogenetics for dissecting neural circuits in nonhuman primates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:476-489. [PMID: 39401901 PMCID: PMC11535006 DOI: 10.2183/pjab.100.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/19/2024] [Indexed: 11/08/2024]
Abstract
Nonhuman primates, particularly macaque and marmoset monkeys, serve as invaluable models for studying complex brain functions and behavior. However, the lack of suitable genetic neuromodulation tools has constrained research at the network level. This review examines the application of a chemogenetic technology, specifically, designer receptors exclusively activated by designer drugs (DREADDs), to nonhuman primates. DREADDs offer a means of reversibly controlling neuronal activity within a specific cell type or neural pathway, effectively targeting multiple brain regions simultaneously. The combination of DREADDs with imaging techniques, such as positron emission tomography and magnetic resonance imaging, has significantly enhanced nonhuman primate research, facilitating the precise visualization and manipulation of specific brain circuits and enabling the detailed monitoring of changes in network activity, which can then be correlated with altered behavior. This review outlines these technological advances and considers their potential for enhancing our understanding of primate brain circuit function and developing novel therapeutic approaches for treating brain diseases.
Collapse
Affiliation(s)
- Takafumi MINAMIMOTO
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuji NAGAI
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kei OYAMA
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
12
|
Hori Y, Nagai Y, Hori Y, Oyama K, Mimura K, Hirabayashi T, Inoue KI, Fujinaga M, Zhang MR, Takada M, Higuchi M, Minamimoto T. Multimodal Imaging for Validation and Optimization of Ion Channel-Based Chemogenetics in Nonhuman Primates. J Neurosci 2023; 43:6619-6627. [PMID: 37620158 PMCID: PMC10538582 DOI: 10.1523/jneurosci.0625-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system available for neuronal modulation in NHPs uses pharmacologically selective actuator modules (PSAMs), which are selectively activated by pharmacologically selective effector molecules (PSEMs). To facilitate the use of the PSAM/PSEM system, the selection and dosage of PSEMs should be validated and optimized for NHPs. To this end, we used a multimodal imaging approach. We virally expressed excitatory PSAM (PSAM4-5HT3) in the striatum and the primary motor cortex (M1) of two male macaque monkeys, and visualized its location through positron emission tomography (PET) with the reporter ligand [18F]ASEM. Chemogenetic excitability of neurons triggered by two PSEMs (uPSEM817 and uPSEM792) was evaluated using [18F]fluorodeoxyglucose-PET imaging, with uPSEM817 being more efficient than uPSEM792. Pharmacological magnetic resonance imaging (phMRI) showed that increased brain activity in the PSAM4-expressing region began ∼13 min after uPSEM817 administration and continued for at least 60 min. Our multimodal imaging data provide valuable information regarding the manipulation of neuronal activity using the PSAM/PSEM system in NHPs, facilitating future applications.SIGNIFICANCE STATEMENT Like other chemogenetic tools, the ion channel-based system called pharmacologically selective actuator module/pharmacologically selective effector molecule (PSAM/PSEM) allows remote manipulation of neuronal activity and behavior in living animals. Nevertheless, its application in nonhuman primates (NHPs) is still limited. Here, we used multitracer positron emission tomography (PET) imaging and pharmacological magnetic resonance imaging (phMRI) to visualize an excitatory chemogenetic ion channel (PSAM4-5HT3) and validate its chemometric function in macaque monkeys. Our results provide the optimal agonist, dose, and timing for chemogenetic neuronal manipulation, facilitating the use of the PSAM/PSEM system and expanding the flexibility and reliability of circuit manipulation in NHPs in a variety of situations.
Collapse
Affiliation(s)
- Yuki Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kei Oyama
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Koki Mimura
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
13
|
Elorette C, Fujimoto A, Stoll FM, Fujimoto SH, Fleysher L, Bienkowska N, Russ BE, Rudebeck PH. The neural basis of resting-state fMRI functional connectivity in fronto-limbic circuits revealed by chemogenetic manipulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545778. [PMID: 37745436 PMCID: PMC10515745 DOI: 10.1101/2023.06.21.545778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Measures of fMRI resting-state functional connectivity (rs-FC) are an essential tool for basic and clinical investigations of fronto-limbic circuits. Understanding the relationship between rs-FC and neural activity in these circuits is therefore vital. Here we introduced inhibitory designer receptors exclusively activated by designer drugs (DREADDs) into the macaque amygdala and activated them with a highly selective and potent DREADD agonist, deschloroclozapine. We evaluated the causal effect of activating the DREADD receptors on rs-FC and neural activity within circuits connecting amygdala and frontal cortex. Interestingly, activating the inhibitory DREADD increased rs-FC between amygdala and ventrolateral prefrontal cortex. Neurophysiological recordings revealed that the DREADD-induced increase in fMRI rs-FC was associated with increased local field potential coherency in the alpha band (6.5-14.5Hz) between amygdala and ventrolateral prefrontal cortex. Thus, our multi-disciplinary approach reveals the specific signature of neuronal activity that underlies rs-FC in fronto-limbic circuits.
Collapse
Affiliation(s)
- Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Frederic M. Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Niranjana Bienkowska
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962
- Department of Psychiatry, New York University at Langone, One, 8, Park Ave, New York, NY 10016
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
14
|
Zeisler ZR, London L, Janssen WG, Fredericks JM, Elorette C, Fujimoto A, Zhan H, Russ BE, Clem RL, Hof PR, Stoll FM, Rudebeck PH. High-throughput sequencing of macaque basolateral amygdala projections reveals dissociable connectional motifs with frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524407. [PMID: 36711708 PMCID: PMC9882200 DOI: 10.1101/2023.01.18.524407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The basolateral amygdala (BLA) projects widely across the macaque frontal cortex1-4, and amygdalo-frontal projections are critical for optimal emotional responding5 and decision-making6. Yet, little is known about the single-neuron architecture of these projections: namely, whether single BLA neurons project to multiple parts of the frontal cortex. Here, we use MAPseq7 to determine the projection patterns of over 3000 macaque BLA neurons. We found that one-third of BLA neurons have two or more distinct targets in parts of frontal cortex and of subcortical structures. Further, we reveal non-random structure within these branching patterns such that neurons with four targets are more frequently observed than those with two or three, indicative of widespread networks. Consequently, these multi-target single neurons form distinct networks within medial and ventral frontal cortex consistent with their known functions in regulating mood and decision-making. Additionally, we show that branching patterns of single neurons shape functional networks in the brain as assessed by fMRI-based functional connectivity. These results provide a neuroanatomical basis for the role of the BLA in coordinating brain-wide responses to valent stimuli8 and highlight the importance of high-resolution neuroanatomical data for understanding functional networks in the brain.
Collapse
Affiliation(s)
- Zachary R Zeisler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Liza London
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - William G Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Microscopy and Advanced Bioimaging CoRE, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - J Megan Fredericks
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Huiqing Zhan
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Syosset, NY 11791
| | - Brian E Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, 10 Orangeburg, NY 10962
- Department of Psychiatry, New York University at Langone, One, 8 Park Ave, New York, NY 10016
| | - Roger L Clem
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
15
|
Cushnie AK, Bullock DN, Manea AM, Tang W, Zimmermann J, Heilbronner SR. The use of chemogenetic actuator ligands in nonhuman primate DREADDs-fMRI. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100072. [PMID: 36691404 PMCID: PMC9860110 DOI: 10.1016/j.crneur.2022.100072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are engineered receptors that allow for genetically targeted, reversible manipulation of cellular activity via systemic drug administration. DREADD induced manipulations are initiated via the binding of an actuator ligand. Therefore, the use of DREADDs is contingent on the availability of actuator ligands. Actuator ligands low-dose clozapine (CLZ) and deschloroclozapine (DCZ) are highly selective for DREADDs, and, upon binding, induce physiological and behavioral changes in rodents and nonhuman primates (NHPs). Despite this reported specificity, both CLZ and DCZ have partial affinity for a variety of endogenous receptors and can induce dose-specific changes even in naïve animals. As such, this study aimed to examine the effects of CLZ and DCZ on resting-state functional connectivity (rs-FC) and intrinsic neural timescales (INTs) in naïve NHPs. In doing so, we evaluated whether CLZ and DCZ - in the absence of DREADDs - are inert by examining these ligands' effects on the intrinsic functional properties of the brain. Low-dose DCZ did not induce consistent changes in rs-FC or INTs prior to the expression of DREADDs; however, a high dose resulted in subject-specific changes in rs-FC and INTs. In contrast, CLZ administration induced consistent changes in rs-FC and INTs prior to DREADD expression in our subjects. Our results caution against the use of CLZ by explicitly demonstrating the impact of off-target effects that can confound experimental results. Altogether, these data endorse the use of low dose DCZ for future DREADD-based experiments.
Collapse
Affiliation(s)
- Adriana K. Cushnie
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel N. Bullock
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ana M.G. Manea
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Tang
- Department of Computer Science, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, 47408, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
16
|
Ferrari LL, Ogbeide-Latario OE, Gompf HS, Anaclet C. Validation of DREADD agonists and administration route in a murine model of sleep enhancement. J Neurosci Methods 2022; 380:109679. [PMID: 35914577 DOI: 10.1016/j.jneumeth.2022.109679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Chemogenetics is a powerful tool to study the role of specific neuronal populations in physiology and diseases. Of particular interest, in mice, acute and specific activation of parafacial zone (PZ) GABAergic neurons expressing the Designer Receptors Activated by Designer Drugs (DREADD) hM3Dq (PZGABA-hM3Dq) enhances slow-wave-sleep (SWS), and this effect lasts for up to 6 h, allowing prolonged and detailed study of SWS. However, the most widely used DREADDs ligand, clozapine N-oxide (CNO), is metabolized into clozapine which has the potential of inducing non-specific effects. In addition, CNO is usually injected intraperitoneally (IP) in mice, limiting the number and frequency of repeated administration. NEW METHODS The present study is designed to validate the use of alternative DREADDs ligands-deschloroclozapine (DCZ) and compound 21 (C21)-and a new administration route, the voluntary oral administration. RESULTS We show that IP injections of DCZ and C21 dose-dependently enhance SWS in PZGABA-hM3Dq mice, similar to CNO. We also show that oral administration of CNO, DCZ and C21 induces the same sleep phenotype as compared with IP injection. COMPARISON WITH EXISTING METHODS AND CONCLUSION Therefore, DCZ and C21 are powerful alternatives to the use of CNO. Moreover, the voluntary oral administration is suitable for repeated dosing of DREADDs ligands.
Collapse
Affiliation(s)
- Loris L Ferrari
- Department of Neurobiology, University of Massachusetts Chan Medical School, USA
| | - Oghomwen E Ogbeide-Latario
- Department of Neurobiology, University of Massachusetts Chan Medical School, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, USA
| | - Heinrich S Gompf
- Department of Neurobiology, University of Massachusetts Chan Medical School, USA; Department of Neurological Surgery, University of California Davis School of Medicine, USA
| | - Christelle Anaclet
- Department of Neurobiology, University of Massachusetts Chan Medical School, USA; Department of Neurological Surgery, University of California Davis School of Medicine, USA.
| |
Collapse
|