1
|
de Vignemont F, Farnè A. Peripersonal space: why so last-second? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230159. [PMID: 39155714 PMCID: PMC11529623 DOI: 10.1098/rstb.2023.0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 08/20/2024] Open
Abstract
A vast range of neurophysiological, neuropsychological and behavioural results in monkeys and humans have shown that the immediate surroundings of the body, also known as peripersonal space (PPS), are processed in a unique way. Three roles have been ascribed to PPS mechanisms: to react to threats, to avoid obstacles and to act on objects. However, in many circumstances, one does not wait for objects or agents to enter PPS to plan these behaviours. Typically, one has more chances to survive if one starts running away from the lion when one sees it in the distance than if it is a few steps away. PPS makes sense in shortsighted creatures but we are not such creatures. The crucial question is thus twofold: (i) why are these adaptive processes triggered only at the last second or even milliseconds? And (ii) what is their exact contribution, especially for defensive and navigational behaviours? Here, we propose that PPS mechanisms correspond to a plan B, useful in unpredictable situations or when other anticipatory mechanisms have failed. Furthermore, we argue that there are energetic, cognitive and behavioural costs to PPS mechanisms, which explain why this plan B is triggered only at the last second. This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
| | - Alessandro Farnè
- Impact Team of the Lyon Neuroscience Research Centre INSERM U1028 CNRS UMR5292 University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
2
|
Basile GA, Tatti E, Bertino S, Milardi D, Genovese G, Bruno A, Muscatello MRA, Ciurleo R, Cerasa A, Quartarone A, Cacciola A. Neuroanatomical correlates of peripersonal space: bridging the gap between perception, action, emotion and social cognition. Brain Struct Funct 2024; 229:1047-1072. [PMID: 38683211 PMCID: PMC11147881 DOI: 10.1007/s00429-024-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Peripersonal space (PPS) is a construct referring to the portion of space immediately surrounding our bodies, where most of the interactions between the subject and the environment, including other individuals, take place. Decades of animal and human neuroscience research have revealed that the brain holds a separate representation of this region of space: this distinct spatial representation has evolved to ensure proper relevance to stimuli that are close to the body and prompt an appropriate behavioral response. The neural underpinnings of such construct have been thoroughly investigated by different generations of studies involving anatomical and electrophysiological investigations in animal models, and, recently, neuroimaging experiments in human subjects. Here, we provide a comprehensive anatomical overview of the anatomical circuitry underlying PPS representation in the human brain. Gathering evidence from multiple areas of research, we identified cortical and subcortical regions that are involved in specific aspects of PPS encoding.We show how these regions are part of segregated, yet integrated functional networks within the brain, which are in turn involved in higher-order integration of information. This wide-scale circuitry accounts for the relevance of PPS encoding in multiple brain functions, including not only motor planning and visuospatial attention but also emotional and social cognitive aspects. A complete characterization of these circuits may clarify the derangements of PPS representation observed in different neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| | - Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, 10031, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Bruno
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Maria Rosaria Anna Muscatello
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Cerasa
- S. Anna Institute, Crotone, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
3
|
Froesel M, Gacoin M, Clavagnier S, Hauser M, Goudard Q, Ben Hamed S. Macaque claustrum, pulvinar and putative dorsolateral amygdala support the cross-modal association of social audio-visual stimuli based on meaning. Eur J Neurosci 2024; 59:3203-3223. [PMID: 38637993 DOI: 10.1111/ejn.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024]
Abstract
Social communication draws on several cognitive functions such as perception, emotion recognition and attention. The association of audio-visual information is essential to the processing of species-specific communication signals. In this study, we use functional magnetic resonance imaging in order to identify the subcortical areas involved in the cross-modal association of visual and auditory information based on their common social meaning. We identified three subcortical regions involved in audio-visual processing of species-specific communicative signals: the dorsolateral amygdala, the claustrum and the pulvinar. These regions responded to visual, auditory congruent and audio-visual stimulations. However, none of them was significantly activated when the auditory stimuli were semantically incongruent with the visual context, thus showing an influence of visual context on auditory processing. For example, positive vocalization (coos) activated the three subcortical regions when presented in the context of positive facial expression (lipsmacks) but not when presented in the context of negative facial expression (aggressive faces). In addition, the medial pulvinar and the amygdala presented multisensory integration such that audiovisual stimuli resulted in activations that were significantly higher than those observed for the highest unimodal response. Last, the pulvinar responded in a task-dependent manner, along a specific spatial sensory gradient. We propose that the dorsolateral amygdala, the claustrum and the pulvinar belong to a multisensory network that modulates the perception of visual socioemotional information and vocalizations as a function of the relevance of the stimuli in the social context. SIGNIFICANCE STATEMENT: Understanding and correctly associating socioemotional information across sensory modalities, such that happy faces predict laughter and escape scenes predict screams, is essential when living in complex social groups. With the use of functional magnetic imaging in the awake macaque, we identify three subcortical structures-dorsolateral amygdala, claustrum and pulvinar-that only respond to auditory information that matches the ongoing visual socioemotional context, such as hearing positively valenced coo calls and seeing positively valenced mutual grooming monkeys. We additionally describe task-dependent activations in the pulvinar, organizing along a specific spatial sensory gradient, supporting its role as a network regulator.
Collapse
Affiliation(s)
- Mathilda Froesel
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Maëva Gacoin
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Simon Clavagnier
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Marc Hauser
- Risk-Eraser, West Falmouth, Massachusetts, USA
| | - Quentin Goudard
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| |
Collapse
|
4
|
Geers L, Kozieja P, Coello Y. Multisensory peripersonal space: Visual looming stimuli induce stronger response facilitation to tactile than auditory and visual stimulations. Cortex 2024; 173:222-233. [PMID: 38430652 DOI: 10.1016/j.cortex.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/20/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
Anticipating physical contact with objects in the environment is a key component of efficient motor performance. Peripersonal neurons are thought to play a determinant role in these predictions by enhancing responses to touch when combined with visual stimuli in peripersonal space (PPS). However, recent research challenges the idea that this visuo-tactile integration contributing to the prediction of tactile events occurs strictly in PPS. We hypothesised that enhanced sensory sensitivity in a multisensory context involves not only contact anticipation but also heightened attention towards near-body visual stimuli. To test this hypothesis, Experiment 1 required participants to respond promptly to tactile (probing contact anticipation) and auditory (probing enhanced attention) stimulations presented at different moments of the trajectory of a (social and non-social) looming visual stimulus. Reduction in reaction time as compared to a unisensory baseline was observed from an egocentric distance of around 2 m (inside and outside PPS) for all multisensory conditions and types of visual stimuli. Experiment 2 tested whether these facilitation effects still occur in the absence of a multisensory context, i.e., in a visuo-visual condition. Overall, facilitation effects induced by the looming visual stimulus were comparable in the three sensory modalities outside PPS but were more pronounced for the tactile modality inside PPS (84 cm from the body as estimated by a reachability judgement task). Considered together, the results suggest that facilitation effects induced by visual looming stimuli in multimodal sensory processing rely on the combination of attentional factors and contact anticipation depending on their distance from the body.
Collapse
Affiliation(s)
- Laurie Geers
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Lille, France
| | - Paul Kozieja
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Lille, France
| | - Yann Coello
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Lille, France.
| |
Collapse
|
5
|
Yuan M, Jin S, Tan G, Song S, Liu Y, Wang H, Shen Y. A Non-canonical Excitatory PV RGC-PV SC Visual Pathway for Mediating the Looming-evoked Innate Defensive Response. Neurosci Bull 2024; 40:310-324. [PMID: 37302108 PMCID: PMC10912393 DOI: 10.1007/s12264-023-01076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Parvalbumin-positive retinal ganglion cells (PV+ RGCs) are an essential subset of RGCs found in various species. However, their role in transmitting visual information remains unclear. Here, we characterized PV+ RGCs in the retina and explored the functions of the PV+ RGC-mediated visual pathway. By applying multiple viral tracing strategies, we investigated the downstream of PV+ RGCs across the whole brain. Interestingly, we found that the PV+ RGCs provided direct monosynaptic input to PV+ excitatory neurons in the superficial layers of the superior colliculus (SC). Ablation or suppression of SC-projecting PV+ RGCs abolished or severely impaired the flight response to looming visual stimuli in mice without affecting visual acuity. Furthermore, using transcriptome expression profiling of individual cells and immunofluorescence colocalization for RGCs, we found that PV+ RGCs are predominant glutamatergic neurons. Thus, our findings indicate the critical role of PV+ RGCs in an innate defensive response and suggest a non-canonical subcortical visual pathway from excitatory PV+ RGCs to PV+ SC neurons that regulates looming visual stimuli. These results provide a potential target for intervening and treating diseases related to this circuit, such as schizophrenia and autism.
Collapse
Affiliation(s)
- Man Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Sen Jin
- The Brain Cognition and Brain Disease Institute, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, National Medical Products Administration Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen, 518055, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, 430071, China
| | - Gao Tan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Siyuan Song
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, 77030, USA
| | - Yizong Liu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Huadong Wang
- The Brain Cognition and Brain Disease Institute, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, National Medical Products Administration Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen, 518055, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan, 430071, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
- Frontier Science Center of Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Guo F, Zou J, Wang Y, Fang B, Zhou H, Wang D, He S, Zhang P. Human subcortical pathways automatically detect collision trajectory without attention and awareness. PLoS Biol 2024; 22:e3002375. [PMID: 38236815 PMCID: PMC10795999 DOI: 10.1371/journal.pbio.3002375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Detecting imminent collisions is essential for survival. Here, we used high-resolution fMRI at 7 Tesla to investigate the role of attention and consciousness for detecting collision trajectory in human subcortical pathways. Healthy participants can precisely discriminate collision from near-miss trajectory of an approaching object, with pupil size change reflecting collision sensitivity. Subcortical pathways from the superior colliculus (SC) to the ventromedial pulvinar (vmPul) and ventral tegmental area (VTA) exhibited collision-sensitive responses even when participants were not paying attention to the looming stimuli. For hemianopic patients with unilateral lesions of the geniculostriate pathway, the ipsilesional SC and VTA showed significant activation to collision stimuli in their scotoma. Furthermore, stronger SC responses predicted better behavioral performance in collision detection even in the absence of awareness. Therefore, human tectofugal pathways could automatically detect collision trajectories without the observers' attention to and awareness of looming stimuli, supporting "blindsight" detection of impending visual threats.
Collapse
Affiliation(s)
- Fanhua Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyou Zou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| | - Ye Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boyan Fang
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Huanfen Zhou
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Dajiang Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
7
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
8
|
Marciniak Dg Agra K, Dg Agra P. F = ma. Is the macaque brain Newtonian? Cogn Neuropsychol 2023; 39:376-408. [PMID: 37045793 DOI: 10.1080/02643294.2023.2191843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intuitive Physics, the ability to anticipate how the physical events involving mass objects unfold in time and space, is a central component of intelligent systems. Intuitive physics is a promising tool for gaining insight into mechanisms that generalize across species because both humans and non-human primates are subject to the same physical constraints when engaging with the environment. Physical reasoning abilities are widely present within the animal kingdom, but monkeys, with acute 3D vision and a high level of dexterity, appreciate and manipulate the physical world in much the same way humans do.
Collapse
Affiliation(s)
- Karolina Marciniak Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| | - Pedro Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| |
Collapse
|
9
|
The relationship between action, social and multisensory spaces. Sci Rep 2023; 13:202. [PMID: 36604525 PMCID: PMC9814785 DOI: 10.1038/s41598-023-27514-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Several spaces around the body have been described, contributing to interactions with objects (peripersonal) or people (interpersonal and personal). The sensorimotor and multisensory properties of action peripersonal space are assumed to be involved in the regulation of social personal and interpersonal spaces, but experimental evidence is tenuous. Hence, the present study investigated the relationship between multisensory integration and action and social spaces. Participants indicated when an approaching social or non-social stimulus was reachable by hand (reachable space), at a comfortable distance to interact with (interpersonal space), or at a distance beginning to cause discomfort (personal space). They also responded to a tactile stimulation delivered on the trunk during the approach of the visual stimulus (multisensory integration space). Results showed that participants were most comfortable with stimuli outside reachable space, and felt uncomfortable with stimuli well inside it. Furthermore, reachable, personal and interpersonal spaces were all positively correlated. Multisensory integration space extended beyond all other spaces and correlated only with personal space when facing a social stimulus. Considered together, these data confirm that action peripersonal space contributes to the regulation of social spaces and that multisensory integration is not specifically constrained by the spaces underlying motor action and social interactions.
Collapse
|
10
|
Tootell RBH, Nasiriavanaki Z, Babadi B, Greve DN, Nasr S, Holt DJ. Interdigitated Columnar Representation of Personal Space and Visual Space in Human Parietal Cortex. J Neurosci 2022; 42:9011-9029. [PMID: 36198501 PMCID: PMC9732835 DOI: 10.1523/jneurosci.0516-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 01/05/2023] Open
Abstract
Personal space (PS) is the space around the body that people prefer to maintain between themselves and unfamiliar others. Intrusion into personal space evokes discomfort and an urge to move away. Physiologic studies in nonhuman primates suggest that defensive responses to intruding stimuli involve the parietal cortex. We hypothesized that the spatial encoding of interpersonal distance is initially transformed from purely sensory to more egocentric mapping within human parietal cortex. This hypothesis was tested using 7 Tesla (7T) fMRI at high spatial resolution (1.1 mm isotropic), in seven subjects (four females, three males). In response to visual stimuli presented at a range of virtual distances, we found two categories of distance encoding in two corresponding radially-extending columns of activity within parietal cortex. One set of columns (P columns) responded selectively to moving and stationary face images presented at virtual distances that were nearer (but not farther) than each subject's behaviorally-defined personal space boundary. In most P columns, BOLD response amplitudes increased monotonically and nonlinearly with increasing virtual face proximity. In the remaining P columns, BOLD responses decreased with increasing proximity. A second set of parietal columns (D columns) responded selectively to disparity-based distance cues (near or far) in random dot stimuli, similar to disparity-selective columns described previously in occipital cortex. Critically, in parietal cortex, P columns were topographically interdigitated (nonoverlapping) with D columns. These results suggest that visual spatial information is transformed from visual to body-centered (or person-centered) dimensions in multiple local sites within human parietal cortex.SIGNIFICANCE STATEMENT Recent COVID-related social distancing practices highlight the need to better understand brain mechanisms which regulate "personal space" (PS), which is defined by the closest interpersonal distance that is comfortable for an individual. Using high spatial resolution brain imaging, we tested whether a map of external space is transformed from purely visual (3D-based) information to a more egocentric map (related to personal space) in human parietal cortex. We confirmed this transformation and further showed that it was mediated by two mutually segregated sets of columns: one which encoded interpersonal distance and another that encoded visual distance. These results suggest that the cortical transformation of sensory-centered to person-centered encoding of space near the body involves short-range communication across interdigitated columns within parietal cortex.
Collapse
Affiliation(s)
- Roger B H Tootell
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Brigham Hospital, Boston, Massachusetts 02129
- Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Zahra Nasiriavanaki
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Harvard Medical School, Boston, Massachusetts 02115
| | - Baktash Babadi
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Harvard Medical School, Boston, Massachusetts 02115
| | - Douglas N Greve
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Brigham Hospital, Boston, Massachusetts 02129
- Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Shahin Nasr
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Brigham Hospital, Boston, Massachusetts 02129
- Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Brigham Hospital, Boston, Massachusetts 02129
| |
Collapse
|
11
|
Huang J, Zhang Y, Zhang Q, Wei L, Zhang X, Jin C, Yang J, Li Z, Liang S. The current status and trend of the functional magnetic resonance combined with stimulation in animals. Front Neurosci 2022; 16:963175. [PMID: 36213733 PMCID: PMC9540855 DOI: 10.3389/fnins.2022.963175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
As a non-radiative, non-invasive imaging technique, functional magnetic resonance imaging (fMRI) has excellent effects on studying the activation of blood oxygen levels and functional connectivity of the brain in human and animal models. Compared with resting-state fMRI, fMRI combined with stimulation could be used to assess the activation of specific brain regions and the connectivity of specific pathways and achieve better signal capture with a clear purpose and more significant results. Various fMRI methods and specific stimulation paradigms have been proposed to investigate brain activation in a specific state, such as electrical, mechanical, visual, olfactory, and direct brain stimulation. In this review, the studies on animal brain activation using fMRI combined with different stimulation methods were retrieved. The instruments, experimental parameters, anesthesia, and animal models in different stimulation conditions were summarized. The findings would provide a reference for studies on estimating specific brain activation using fMRI combined with stimulation.
Collapse
|
12
|
A normative model of peripersonal space encoding as performing impact prediction. PLoS Comput Biol 2022; 18:e1010464. [PMID: 36103520 PMCID: PMC9512250 DOI: 10.1371/journal.pcbi.1010464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/26/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them—thus delineating our peripersonal space (PPS)—may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli—but critically is still present for receding stimuli when observation uncertainty is non-zero—, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies. The brain has neurons that respond to touch on the body, as well as to auditory or visual stimuli occurring near the body. These neurons delineate a graded boundary between the near and far space. Here, we aim at understanding whether the function of these neurons is to predict future impact between the environment and body. To do so, we build a mathematical model that is statistically optimal at predicting future impact, taking into account the costs incurred by an impending collision. Then we examine if its properties are similar to those of the above-mentioned neurons. We find that the model (i) differentiates between the near and far space in a graded fashion, predicts different near/far boundary depths for different (ii) body parts, (iii) object speeds and (iv) directions, and (v) that this boundary scales with the value we attribute to environmental objects. These properties have all been described in behavioral studies and ascribed to neurons responding to objects near the body. Together, these findings suggest why the brain has neurons that respond only to objects near the body: to compute predictions of impact.
Collapse
|
13
|
Socially meaningful visual context either enhances or inhibits vocalisation processing in the macaque brain. Nat Commun 2022; 13:4886. [PMID: 35985995 PMCID: PMC9391382 DOI: 10.1038/s41467-022-32512-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Social interactions rely on the interpretation of semantic and emotional information, often from multiple sensory modalities. Nonhuman primates send and receive auditory and visual communicative signals. However, the neural mechanisms underlying the association of visual and auditory information based on their common social meaning are unknown. Using heart rate estimates and functional neuroimaging, we show that in the lateral and superior temporal sulcus of the macaque monkey, neural responses are enhanced in response to species-specific vocalisations paired with a matching visual context, or when vocalisations follow, in time, visual information, but inhibited when vocalisation are incongruent with the visual context. For example, responses to affiliative vocalisations are enhanced when paired with affiliative contexts but inhibited when paired with aggressive or escape contexts. Overall, we propose that the identified neural network represents social meaning irrespective of sensory modality. Social interaction involves processing semantic and emotional information. Here the authors show that in the macaque monkey lateral and superior temporal sulcus, cortical activity is enhanced in response to species-specific vocalisations predicted by matching face or social visual stimuli but inhibited when vocalisations are incongruent with the predictive visual context.
Collapse
|
14
|
Pesnot Lerousseau J, Parise CV, Ernst MO, van Wassenhove V. Multisensory correlation computations in the human brain identified by a time-resolved encoding model. Nat Commun 2022; 13:2489. [PMID: 35513362 PMCID: PMC9072402 DOI: 10.1038/s41467-022-29687-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Neural mechanisms that arbitrate between integrating and segregating multisensory information are essential for complex scene analysis and for the resolution of the multisensory correspondence problem. However, these mechanisms and their dynamics remain largely unknown, partly because classical models of multisensory integration are static. Here, we used the Multisensory Correlation Detector, a model that provides a good explanatory power for human behavior while incorporating dynamic computations. Participants judged whether sequences of auditory and visual signals originated from the same source (causal inference) or whether one modality was leading the other (temporal order), while being recorded with magnetoencephalography. First, we confirm that the Multisensory Correlation Detector explains causal inference and temporal order behavioral judgments well. Second, we found strong fits of brain activity to the two outputs of the Multisensory Correlation Detector in temporo-parietal cortices. Finally, we report an asymmetry in the goodness of the fits, which were more reliable during the causal inference task than during the temporal order judgment task. Overall, our results suggest the existence of multisensory correlation detectors in the human brain, which explain why and how causal inference is strongly driven by the temporal correlation of multisensory signals.
Collapse
Affiliation(s)
- Jacques Pesnot Lerousseau
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France.
- Applied Cognitive Psychology, Ulm University, Ulm, Germany.
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, CNRS, Université Paris-Saclay, NeuroSpin, 91191, Gif/Yvette, France.
| | | | - Marc O Ernst
- Applied Cognitive Psychology, Ulm University, Ulm, Germany
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, CNRS, Université Paris-Saclay, NeuroSpin, 91191, Gif/Yvette, France
| |
Collapse
|
15
|
Kuraoka K, Nakamura K. Facial temperature and pupil size as indicators of internal state in primates. Neurosci Res 2022; 175:25-37. [PMID: 35026345 DOI: 10.1016/j.neures.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
Abstract
Studies in human subjects have revealed that autonomic responses provide objective and biologically relevant information about cognitive and affective states. Measures of autonomic responses can also be applied to studies of non-human primates, which are neuro-anatomically and physically similar to humans. Facial temperature and pupil size are measured remotely and can be applied to physiological experiments in primates, preferably in a head-fixed condition. However, detailed guidelines for the use of these measures in non-human primates is lacking. Here, we review the neuronal circuits and methodological considerations necessary for measuring and analyzing facial temperature and pupil size in non-human primates. Previous studies have shown that the modulation of these measures primarily reflects sympathetic reactions to cognitive and emotional processes, including alertness, attention, and mental effort, over different time scales. Integrated analyses of autonomic, behavioral, and neurophysiological data in primates are promising methods that reflect multiple dimensions of emotion and could potentially provide tools for understanding the mechanisms underlying neuropsychiatric disorders and vulnerabilities characterized by cognitive and affective disturbances.
Collapse
Affiliation(s)
- Koji Kuraoka
- Department of Physiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
16
|
Foster C, Sheng WA, Heed T, Ben Hamed S. The macaque ventral intraparietal area has expanded into three homologue human parietal areas. Prog Neurobiol 2021; 209:102185. [PMID: 34775040 DOI: 10.1016/j.pneurobio.2021.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
The macaque ventral intraparietal area (VIP) in the fundus of the intraparietal sulcus has been implicated in a diverse range of sensorimotor and cognitive functions such as motion processing, multisensory integration, processing of head peripersonal space, defensive behavior, and numerosity coding. Here, we exhaustively review macaque VIP function, cytoarchitectonics, and anatomical connectivity and integrate it with human studies that have attempted to identify a potential human VIP homologue. We show that human VIP research has consistently identified three, rather than one, bilateral parietal areas that each appear to subsume some, but not all, of the macaque area's functionality. Available evidence suggests that this human "VIP complex" has evolved as an expansion of the macaque area, but that some precursory specialization within macaque VIP has been previously overlooked. The three human areas are dominated, roughly, by coding the head or self in the environment, visual heading direction, and the peripersonal environment around the head, respectively. A unifying functional principle may be best described as prediction in space and time, linking VIP to state estimation as a key parietal sensorimotor function. VIP's expansive differentiation of head and self-related processing may have been key in the emergence of human bodily self-consciousness.
Collapse
Affiliation(s)
- Celia Foster
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Wei-An Sheng
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany; Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France.
| |
Collapse
|
17
|
Orban GA, Sepe A, Bonini L. Parietal maps of visual signals for bodily action planning. Brain Struct Funct 2021; 226:2967-2988. [PMID: 34508272 PMCID: PMC8541987 DOI: 10.1007/s00429-021-02378-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| | - Alessia Sepe
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
18
|
Russ BE, Petkov CI, Kwok SC, Zhu Q, Belin P, Vanduffel W, Hamed SB. Common functional localizers to enhance NHP & cross-species neuroscience imaging research. Neuroimage 2021; 237:118203. [PMID: 34048898 PMCID: PMC8529529 DOI: 10.1016/j.neuroimage.2021.118203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Functional localizers are invaluable as they can help define regions of interest, provide cross-study comparisons, and most importantly, allow for the aggregation and meta-analyses of data across studies and laboratories. To achieve these goals within the non-human primate (NHP) imaging community, there is a pressing need for the use of standardized and validated localizers that can be readily implemented across different groups. The goal of this paper is to provide an overview of the value of localizer protocols to imaging research and we describe a number of commonly used or novel localizers within NHPs, and keys to implement them across studies. As has been shown with the aggregation of resting-state imaging data in the original PRIME-DE submissions, we believe that the field is ready to apply the same initiative for task-based functional localizers in NHP imaging. By coming together to collect large datasets across research group, implementing the same functional localizers, and sharing the localizers and data via PRIME-DE, it is now possible to fully test their robustness, selectivity and specificity. To do this, we reviewed a number of common localizers and we created a repository of well-established localizer that are easily accessible and implemented through the PRIME-RE platform.
Collapse
Affiliation(s)
- Brian E Russ
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Department of Psychiatry, New York University at Langone, New York City, NY, United States.
| | - Christopher I Petkov
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Qi Zhu
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Laboratory for Neuro-and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, 3000, Belgium
| | - Pascal Belin
- Institut de Neurosciences de La Timone, Aix-Marseille Université et CNRS, Marseille, 13005, France
| | - Wim Vanduffel
- Laboratory for Neuro-and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States; Department of Radiology, Harvard Medical School, Boston, MA 02144, United States.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France.
| |
Collapse
|
19
|
Lee HS, Hong SJJ, Baxter T, Scott J, Shenoy S, Buck L, Bodenheimer B, Park S. Altered Peripersonal Space and the Bodily Self in Schizophrenia: A Virtual Reality Study. Schizophr Bull 2021; 47:927-937. [PMID: 33844019 PMCID: PMC8266616 DOI: 10.1093/schbul/sbab024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Self-disturbances such as an anomalous perception of one's own body boundary are central to the phenomenology of schizophrenia (SZ), but measuring the spatial parameters of the hypothesized self-other boundary has proved to be challenging. Peripersonal space (PPS) refers to the immediate zone surrounding the body where the self interacts physically with the environment; the space that corresponds to hypothesized self-other boundary. PPS is represented by enhanced multisensory integration and faster reaction time (RT) for objects near the body. Thus, multisensory RT tasks can be used to estimate self-other boundary. We aimed to quantify PPS in SZ using an immersive virtual reality visuotactile RT paradigm. Twenty-four participants with SZ and 24 demographically matched controls (CO) were asked to detect tactile vibration while watching a ball approaching them, thrown by either a machine (nonsocial condition) or an avatar (social condition). Parameters of PPS were estimated from the midpoint of the spatial range where the tactile RT decreased most rapidly (size) and the gradient of the RT change at this midpoint (slope). Overall, PPS was smaller in participants with SZ compared with CO. PPS slope for participants with SZ was shallower than CO in the social but not in nonsocial condition, indicating an increased uncertainty of self-other boundary across an extended zone in SZ. Social condition also increased false alarms for tactile detection in SZ. Clinical symptoms were not clearly associated with PPS parameters. These findings suggest the context-dependent nature of weakened body boundary in SZ and underscore the importance of reconciliating objective and subjective aspects of self-disturbances.
Collapse
Affiliation(s)
- Hyeon-Seung Lee
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Seok-Jin J Hong
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Tatiana Baxter
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jason Scott
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Sunil Shenoy
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Lauren Buck
- School of Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Sohee Park
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
20
|
Peripersonal space in the front, rear, left and right directions for audio-tactile multisensory integration. Sci Rep 2021; 11:11303. [PMID: 34050213 PMCID: PMC8163804 DOI: 10.1038/s41598-021-90784-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Peripersonal space (PPS) is important for humans to perform body–environment interactions. However, many previous studies only focused on the specific direction of the PPS, such as the front space, despite suggesting that there were PPSs in all directions. We aimed to measure and compare the peri-trunk PPS in four directions (front, rear, left, and right). To measure the PPS, we used a tactile and an audio stimulus because auditory information is available at any time in all directions. We used the approaching and receding task-irrelevant sounds in the experiment. Observers were asked to respond as quickly as possible when a tactile stimulus was applied to a vibrator on their chest. We found that peri-trunk PPS representations exist with an approaching sound, irrespective of the direction.
Collapse
|
21
|
Baumgarten TJ, Maniscalco B, Lee JL, Flounders MW, Abry P, He BJ. Neural integration underlying naturalistic prediction flexibly adapts to varying sensory input rate. Nat Commun 2021; 12:2643. [PMID: 33976118 PMCID: PMC8113607 DOI: 10.1038/s41467-021-22632-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/16/2021] [Indexed: 02/03/2023] Open
Abstract
Prediction of future sensory input based on past sensory information is essential for organisms to effectively adapt their behavior in dynamic environments. Humans successfully predict future stimuli in various natural settings. Yet, it remains elusive how the brain achieves effective prediction despite enormous variations in sensory input rate, which directly affect how fast sensory information can accumulate. We presented participants with acoustic sequences capturing temporal statistical regularities prevalent in nature and investigated neural mechanisms underlying predictive computation using MEG. By parametrically manipulating sequence presentation speed, we tested two hypotheses: neural prediction relies on integrating past sensory information over fixed time periods or fixed amounts of information. We demonstrate that across halved and doubled presentation speeds, predictive information in neural activity stems from integration over fixed amounts of information. Our findings reveal the neural mechanisms enabling humans to robustly predict dynamic stimuli in natural environments despite large sensory input rate variations.
Collapse
Affiliation(s)
- Thomas J Baumgarten
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Brian Maniscalco
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Jennifer L Lee
- Neuroscience Graduate Program, New York University, New York, NY, USA
| | - Matthew W Flounders
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Patrice Abry
- CNRS, Laboratoire de Physique, Université de Lyon, ENS Lyon, Lyon, France
| | - Biyu J He
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Departments of Neurology, Neuroscience and Physiology, and Radiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Kimura T. Approach of visual stimuli facilitates the prediction of tactile events and suppresses beta band oscillations around the primary somatosensory area. Neuroreport 2021; 32:631-635. [PMID: 33843822 PMCID: PMC8048733 DOI: 10.1097/wnr.0000000000001643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
The purpose of the present study was to investigate whether the approach of visual stimuli influences prediction of subsequent tactile events. For this purpose, we examined electroencephalograms (EEGs) during the prediction of tactile events when visual stimuli did or did not approach. Tactile stimuli were presented with a high probability (80%) of being applied to the left (or right) index finger and a low probability (20%) of being applied to the opposite index finger. In the approach condition, visual stimuli were presented towards the hand to which the high-probability tactile stimuli were presented; in the neutral condition, visual stimuli did not approach. The result of time-frequency analysis for the EEGs showed that beta band event-related spectral perturbation at the electrodes around the primary somatosensory area (C3 and C4) was suppressed about 300 ms before the presentation of a tactile stimulus and that event-related desynchronization (ERD) occurred in all conditions. Moreover, the beta band ERD of the approach condition was larger than that of the neutral condition. These results provide evidence that the approach of visual stimuli facilitates prediction itself for subsequent tactile events.
Collapse
Affiliation(s)
- Tsukasa Kimura
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki, Japan
| |
Collapse
|
23
|
Motyka P, Akbal M, Litwin P. Forward optic flow is prioritised in visual awareness independently of walking direction. PLoS One 2021; 16:e0250905. [PMID: 33945563 PMCID: PMC8096117 DOI: 10.1371/journal.pone.0250905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
When two different images are presented separately to each eye, one experiences smooth transitions between them-a phenomenon called binocular rivalry. Previous studies have shown that exposure to signals from other senses can enhance the access of stimulation-congruent images to conscious perception. However, despite our ability to infer perceptual consequences from bodily movements, evidence that action can have an analogous influence on visual awareness is scarce and mainly limited to hand movements. Here, we investigated whether one's direction of locomotion affects perceptual access to optic flow patterns during binocular rivalry. Participants walked forwards and backwards on a treadmill while viewing highly-realistic visualisations of self-motion in a virtual environment. We hypothesised that visualisations congruent with walking direction would predominate in visual awareness over incongruent ones, and that this effect would increase with the precision of one's active proprioception. These predictions were not confirmed: optic flow consistent with forward locomotion was prioritised in visual awareness independently of walking direction and proprioceptive abilities. Our findings suggest the limited role of kinaesthetic-proprioceptive information in disambiguating visually perceived direction of self-motion and indicate that vision might be tuned to the (expanding) optic flow patterns prevalent in everyday life.
Collapse
Affiliation(s)
- Paweł Motyka
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Mert Akbal
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Academy of Fine Arts Saar, Saarbrücken, Germany
| | - Piotr Litwin
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Cléry JC, Hori Y, Schaeffer DJ, Menon RS, Everling S. Neural network of social interaction observation in marmosets. eLife 2021; 10:e65012. [PMID: 33787492 PMCID: PMC8024015 DOI: 10.7554/elife.65012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
A crucial component of social cognition is to observe and understand the social interactions of other individuals. A promising nonhuman primate model for investigating the neural basis of social interaction observation is the common marmoset (Callithrix jacchus), a small New World primate that shares a rich social repertoire with humans. Here, we used functional magnetic resonance imaging acquired at 9.4 T to map the brain areas activated by social interaction observation in awake marmosets. We discovered a network of subcortical and cortical areas, predominately in the anterior lateral frontal and medial frontal cortex, that was specifically activated by social interaction observation. This network resembled that recently identified in Old World macaque monkeys. Our findings suggest that this network is largely conserved between New and Old World primates and support the use of marmosets for studying the neural basis of social cognition.
Collapse
Affiliation(s)
- Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- University of Pittsburgh, Department of NeurobiologyPittsburghUnited States
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- Department of Physiology and Pharmacology, The University of Western OntarioLondonCanada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- Department of Physiology and Pharmacology, The University of Western OntarioLondonCanada
| |
Collapse
|
25
|
When two worlds collide: the influence of an obstacle in peripersonal space on multisensory encoding. Exp Brain Res 2021; 239:1715-1726. [PMID: 33779791 PMCID: PMC8277606 DOI: 10.1007/s00221-021-06072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/02/2021] [Indexed: 11/06/2022]
Abstract
Multisensory coding of the space surrounding our body, the peripersonal space, is crucial for motor control. Recently, it has been proposed that an important function of multisensory coding is that it allows anticipation of the tactile consequences of contact with a nearby object. Indeed, performing goal-directed actions (i.e. pointing and grasping) induces a continuous visuotactile remapping as a function of on-line sensorimotor requirements. Here, we investigated whether visuotactile remapping can be induced by obstacles, e.g. objects that are not the target of the grasping movement. In the current experiment, we used a cross-modal obstacle avoidance paradigm, in which participants reached past an obstacle to grasp a second object. Participants indicated the location of tactile targets delivered to the hand during the grasping movement, while a visual cue was sometimes presented simultaneously on the to-be-avoided object. The tactile and visual stimulation was triggered when the reaching hand passed a position that was drawn randomly from a continuous set of predetermined locations (between 0 and 200 mm depth at 5 mm intervals). We observed differences in visuotactile interaction during obstacle avoidance dependent on the location of the stimulation trigger: visual interference was enhanced for tactile stimulation that occurred when the hand was near the to-be-avoided object. We show that to-be-avoided obstacles, which are relevant for action but are not to-be-interacted with (as the terminus of an action), automatically evoke the tactile consequences of interaction. This shows that visuotactile remapping extends to obstacle avoidance and that this process is flexible.
Collapse
|
26
|
Ellena G, Starita F, Haggard P, Romei V, Làdavas E. Fearful faces modulate spatial processing in peripersonal space: An ERP study. Neuropsychologia 2021; 156:107827. [PMID: 33722572 DOI: 10.1016/j.neuropsychologia.2021.107827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/09/2023]
Abstract
Peripersonal space (PPS) represents the region of space surrounding the body. A pivotal function of PPS is to coordinate defensive responses to threat. We have previously shown that a centrally-presented, looming fearful face, signalling a potential threat in one's surroundings, modulates spatial processing by promoting a redirection of sensory resources away from the face towards the periphery, where the threat may be expected - but only when the face is presented in near, rather than far space. Here, we use electrophysiological measures to investigate the neural mechanism underlying this effect. Participants made simple responses to tactile stimuli delivered on the cheeks, while watching task-irrelevant neutral or fearful avatar faces, looming towards them either in near or far space. Simultaneously with the tactile stimulation, a ball with a checkerboard pattern (probe) appeared to the left or right of the avatar face. Crucially, this probe could either be close to the avatar face, and thus more central in the participant's vision, or further away from the avatar face, and thus more peripheral in the participant's vision. Electroencephalography was continuously recorded. Behavioural results confirmed that in near space only, and for fearful relative to neutral faces, tactile processing was facilitated by the peripheral compared to the central probe. This behavioural effect was accompanied by a reduction of the N1 mean amplitude elicited by the peripheral probe for fearful relative to neutral faces. Moreover, the faster the participants responded to tactile stimuli with the peripheral probe, relative to the central, the smaller was their N1. Together these results, suggest that fearful faces intruding into PPS may increase expectation of a visual event occurring in the periphery. This fear-induced effect would enhance the defensive function of PPS when it is most needed, i.e., when the source of threat is nearby, but its location remains unknown.
Collapse
Affiliation(s)
- Giulia Ellena
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521, Cesena, Italy.
| | - Francesca Starita
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521, Cesena, Italy
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, UK
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521, Cesena, Italy; IRCCS Fondazione Santa Lucia, 00179, Roma, Italy
| | - Elisabetta Làdavas
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521, Cesena, Italy
| |
Collapse
|
27
|
Phase-coupling of neural oscillations contributes to individual differences in peripersonal space. Neuropsychologia 2021; 156:107823. [PMID: 33705822 DOI: 10.1016/j.neuropsychologia.2021.107823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022]
Abstract
The peripersonal space (PPS) is a multisensory and sensorimotor interface between our body and the environment. The location of PPS boundary is not fixed. Rather, it adapts to the environmental context and differs greatly across individuals. Recent studies have started to unveil the neural correlates of individual differences in PPS extension; however, this picture is not clear yet. Here, we used approaching auditory stimuli and magnetoencephalography to capture the individual boundary of PPS and examine its neural underpinnings. In particular, building upon previous studies from our own group, we investigated the possible contribution of an intrinsic feature of the brain, that is the "resting state" functional connectivity, to the individual differences in PPS extension and the frequency specificity of this contribution. Specifically, we focused on the activity synchronized to the premotor cortex, where multisensory neurons encoding PPS have been described. Results showed that the stronger the connectivity between left premotor cortex (lPM) and a set of fronto-parietal, sensorimotor regions in the right and left hemisphere, the wider the extension of the PPS. Strikingly, such a correlation was observed only in the beta-frequency band. Overall, our results suggest that the individual extension of the PPS is coded in spatially- and spectrally-specific resting state functional links.
Collapse
|
28
|
A multisensory perspective onto primate pulvinar functions. Neurosci Biobehav Rev 2021; 125:231-243. [PMID: 33662442 DOI: 10.1016/j.neubiorev.2021.02.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Perception in ambiguous environments relies on the combination of sensory information from various sources. Most associative and primary sensory cortical areas are involved in this multisensory active integration process. As a result, the entire cortex appears as heavily multisensory. In this review, we focus on the contribution of the pulvinar to multisensory integration. This subcortical thalamic nucleus plays a central role in visual detection and selection at a fast time scale, as well as in the regulation of visual processes, at a much slower time scale. However, the pulvinar is also densely connected to cortical areas involved in multisensory integration. In spite of this, little is known about its multisensory properties and its contribution to multisensory perception. Here, we review the anatomical and functional organization of multisensory input to the pulvinar. We describe how visual, auditory, somatosensory, pain, proprioceptive and olfactory projections are differentially organized across the main subdivisions of the pulvinar and we show that topography is central to the organization of this complex nucleus. We propose that the pulvinar combines multiple sources of sensory information to enhance fast responses to the environment, while also playing the role of a general regulation hub for adaptive and flexible cognition.
Collapse
|
29
|
Predicting Upcoming Events Occurring in the Space Surrounding the Hand. Neural Plast 2021; 2021:6649135. [PMID: 33688339 PMCID: PMC7914383 DOI: 10.1155/2021/6649135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 11/17/2022] Open
Abstract
Predicting upcoming sensorimotor events means creating forward estimates of the body and the surrounding world. This ability is a fundamental aspect of skilled motor behavior and requires an accurate and constantly updated representation of the body and the environment. To test whether these prediction mechanisms could be affected by a peripheral injury, we employed an action observation and electroencephalogram (EEG) paradigm to assess the occurrence of prediction markers in anticipation of observed sensorimotor events in healthy and brachial plexus injury (BPI) participants. Nine healthy subjects and six BPI patients watched a series of video clips showing an actor's hand and a colored ball in an egocentric perspective. The color of the ball indicated whether the hand would grasp it (hand movement), or the ball would roll toward the hand and touch it (ball movement), or no event would occur (no movement). In healthy participants, we expected to find distinct electroencephalographic activation patterns (EEG signatures) specific to the prediction of the occurrence of each of these situations. Cluster analysis from EEG signals recorded from electrodes placed over the sensorimotor cortex of control participants showed that predicting either an upcoming hand movement or the occurrence of a tactile event yielded specific neural signatures. In BPI participants, the EEG signals from the sensorimotor cortex contralateral to the dominant hand in the hand movement condition were different compared to the other conditions. Furthermore, there were no differences between ball movement and no movement conditions in the sensorimotor cortex contralateral to the dominant hand, suggesting that BPI blurred specifically the ability to predict upcoming tactile events for the dominant hand. These results highlight the role of the sensorimotor cortex in creating estimates of both actions and tactile interactions in the space around the body and suggest plastic effects on prediction coding following peripheral sensorimotor loss.
Collapse
|
30
|
Fanghella M, Era V, Candidi M. Interpersonal Motor Interactions Shape Multisensory Representations of the Peripersonal Space. Brain Sci 2021; 11:255. [PMID: 33669561 PMCID: PMC7922994 DOI: 10.3390/brainsci11020255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
This perspective review focuses on the proposal that predictive multisensory integration occurring in one's peripersonal space (PPS) supports individuals' ability to efficiently interact with others, and that integrating sensorimotor signals from the interacting partners leads to the emergence of a shared representation of the PPS. To support this proposal, we first introduce the features of body and PPS representations that are relevant for interpersonal motor interactions. Then, we highlight the role of action planning and execution on the dynamic expansion of the PPS. We continue by presenting evidence of PPS modulations after tool use and review studies suggesting that PPS expansions may be accounted for by Bayesian sensory filtering through predictive coding. In the central section, we describe how this conceptual framework can be used to explain the mechanisms through which the PPS may be modulated by the actions of our interaction partner, in order to facilitate interpersonal coordination. Last, we discuss how this proposal may support recent evidence concerning PPS rigidity in Autism Spectrum Disorder (ASD) and its possible relationship with ASD individuals' difficulties during interpersonal coordination. Future studies will need to clarify the mechanisms and neural underpinning of these dynamic, interpersonal modulations of the PPS.
Collapse
Affiliation(s)
- Martina Fanghella
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, University of London, London EC1V 0HB, UK
| | - Vanessa Era
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Matteo Candidi
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
31
|
Cléry JC, Hori Y, Schaeffer DJ, Gati JS, Pruszynski JA, Everling S. Whole brain mapping of somatosensory responses in awake marmosets investigated with ultra-high-field fMRI. J Neurophysiol 2020; 124:1900-1913. [PMID: 33112698 DOI: 10.1152/jn.00480.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied New World primate that is becoming an important model to study brain functions. Despite several studies exploring the somatosensory system of marmosets, all results have come from anesthetized animals using invasive techniques and postmortem analyses. Here, we demonstrate the feasibility for getting high-quality and reproducible somatosensory mapping in awake marmosets with functional magnetic resonance imaging (fMRI). We acquired fMRI sequences in four animals, while they received tactile stimulation (via air-puffs), delivered to the face, arm, or leg. We found a topographic body representation with the leg representation in the most medial part, the face representation in the most lateral part, and the arm representation between leg and face representation within areas 3a, 3b, and 1/2. A similar sequence from leg to face from caudal to rostral sites was identified in areas S2 and PV. By generating functional connectivity maps of seeds defined in the primary and second somatosensory regions, we identified two clusters of tactile representation within the posterior and midcingulate cortex. However, unlike humans and macaques, no clear somatotopic maps were observed. At the subcortical level, we found a somatotopic body representation in the thalamus and, for the first time in marmosets, in the putamen. These maps have similar organizations, as those previously found in Old World macaque monkeys and humans, suggesting that these subcortical somatotopic organizations were already established before Old and New World primates diverged. Our results show the first whole brain mapping of somatosensory responses acquired in a noninvasive way in awake marmosets.NEW & NOTEWORTHY We used somatosensory stimulation combined with functional MRI (fMRI) in awake marmosets to reveal the topographic body representation in areas S1, S2, thalamus, and putamen. We showed the existence of a body representation organization within the thalamus and the cingulate cortex by computing functional connectivity maps from seeds defined in S1/S2, using resting-state fMRI data. This noninvasive approach will be essential for chronic studies by guiding invasive recording and manipulation techniques.
Collapse
Affiliation(s)
- Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - J Andrew Pruszynski
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
32
|
Froesel M, Goudard Q, Hauser M, Gacoin M, Ben Hamed S. Automated video-based heart rate tracking for the anesthetized and behaving monkey. Sci Rep 2020; 10:17940. [PMID: 33087832 PMCID: PMC7578008 DOI: 10.1038/s41598-020-74954-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Heart rate (HR) is extremely valuable in the study of complex behaviours and their physiological correlates in non-human primates. However, collecting this information is often challenging, involving either invasive implants or tedious behavioural training. In the present study, we implement a Eulerian video magnification (EVM) heart tracking method in the macaque monkey combined with wavelet transform. This is based on a measure of image to image fluctuations in skin reflectance due to changes in blood influx. We show a strong temporal coherence and amplitude match between EVM-based heart tracking and ground truth ECG, from both color (RGB) and infrared (IR) videos, in anesthetized macaques, to a level comparable to what can be achieved in humans. We further show that this method allows to identify consistent HR changes following the presentation of conspecific emotional voices or faces. EVM is used to extract HR in humans but has never been applied to non-human primates. Video photoplethysmography allows to extract awake macaques HR from RGB videos. In contrast, our method allows to extract awake macaques HR from both RGB and IR videos and is particularly resilient to the head motion that can be observed in awake behaving monkeys. Overall, we believe that this method can be generalized as a tool to track HR of the awake behaving monkey, for ethological, behavioural, neuroscience or welfare purposes.
Collapse
Affiliation(s)
- Mathilda Froesel
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS, Université de Lyon, 67 Boulevard Pinel, 69675, Bron Cedex, France.
| | - Quentin Goudard
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS, Université de Lyon, 67 Boulevard Pinel, 69675, Bron Cedex, France.
| | - Marc Hauser
- Risk-Eraser, LLC, PO Box 376, West Falmouth, MA, 02574, USA
| | - Maëva Gacoin
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS, Université de Lyon, 67 Boulevard Pinel, 69675, Bron Cedex, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS, Université de Lyon, 67 Boulevard Pinel, 69675, Bron Cedex, France.
| |
Collapse
|
33
|
McKee A, McHenry MJ. The Strategy of Predator Evasion in Response to a Visual Looming Stimulus in Zebrafish ( Danio rerio). Integr Org Biol 2020; 2:obaa023. [PMID: 33791564 PMCID: PMC7750966 DOI: 10.1093/iob/obaa023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A diversity of animals survive encounters with predators by escaping from a looming visual stimulus. Despite the importance of this behavior, it is generally unclear how visual cues facilitate a prey’s survival from predation. Therefore, the aim of this study was to understand how the visual angle subtended on the eye of the prey by the predator affects the distance of adult zebrafish (Danio rerio) from predators. We performed experiments to measure the threshold visual angle and mathematically modeled the kinematics of predator and prey. We analyzed the responses to the artificial stimulus with a novel approach that calculated relationships between hypothetical values for a threshold-stimulus angle and the latency between stimulus and response. These relationships were verified against the kinematic responses of zebrafish to a live fish predator (Herichthys cyanoguttatus). The predictions of our model suggest that the measured threshold visual angle facilitates escape when the predator’s approach is slower than approximately twice the prey’s escape speed. These results demonstrate the capacity and limits to how the visual angle provides a prey with the means to escape a predator.
Collapse
Affiliation(s)
- A McKee
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, Irvine
| | - M J McHenry
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, Irvine
| |
Collapse
|
34
|
Noel JP, Bertoni T, Terrebonne E, Pellencin E, Herbelin B, Cascio C, Blanke O, Magosso E, Wallace MT, Serino A. Rapid Recalibration of Peri-Personal Space: Psychophysical, Electrophysiological, and Neural Network Modeling Evidence. Cereb Cortex 2020; 30:5088-5106. [PMID: 32377673 PMCID: PMC7391419 DOI: 10.1093/cercor/bhaa103] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Interactions between individuals and the environment occur within the peri-personal space (PPS). The encoding of this space plastically adapts to bodily constraints and stimuli features. However, these remapping effects have not been demonstrated on an adaptive time-scale, trial-to-trial. Here, we test this idea first via a visuo-tactile reaction time (RT) paradigm in augmented reality where participants are asked to respond as fast as possible to touch, as visual objects approach them. Results demonstrate that RTs to touch are facilitated as a function of visual proximity, and the sigmoidal function describing this facilitation shifts closer to the body if the immediately precedent trial had indexed a smaller visuo-tactile disparity. Next, we derive the electroencephalographic correlates of PPS and demonstrate that this multisensory measure is equally shaped by recent sensory history. Finally, we demonstrate that a validated neural network model of PPS is able to account for the present results via a simple Hebbian plasticity rule. The present findings suggest that PPS encoding remaps on a very rapid time-scale and, more generally, that it is sensitive to sensory history, a key feature for any process contextualizing subsequent incoming sensory information (e.g., a Bayesian prior).
Collapse
Affiliation(s)
- Jean-Paul Noel
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Center for Neural Science, New York University, New York City, NY 10003, USA
| | - Tommaso Bertoni
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne CH-1011, Switzerland
| | - Emily Terrebonne
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
| | - Elisa Pellencin
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Trento 38068, Italy
| | - Bruno Herbelin
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
- Center for Neuroprosthetics, Campus BioTech, Geneva CH-1202, Switzerland
| | - Carissa Cascio
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medial Center, Nashville, TN 37235, USA
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
- Center for Neuroprosthetics, Campus BioTech, Geneva CH-1202, Switzerland
| | - Elisa Magosso
- Department of Electrical, Electronic, and Information Engineering ``Guglielmo Marconi'', University of Bologna, Cesena 40126, Italy
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medial Center, Nashville, TN 37235, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne CH-1011, Switzerland
| |
Collapse
|
35
|
Looming and receding visual networks in awake marmosets investigated with fMRI. Neuroimage 2020; 215:116815. [DOI: 10.1016/j.neuroimage.2020.116815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/29/2020] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
|
36
|
Field DT, Biagi N, Inman LA. The role of the ventral intraparietal area (VIP/pVIP) in the perception of object-motion and self-motion. Neuroimage 2020; 213:116679. [DOI: 10.1016/j.neuroimage.2020.116679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/15/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022] Open
|
37
|
Fossataro C, Bruno V, Bosso E, Chiotti V, Gindri P, Farnè A, Garbarini F. The sense of body-ownership gates cross-modal improvement of tactile extinction in brain-damaged patients. Cortex 2020; 127:94-107. [DOI: 10.1016/j.cortex.2020.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
|
38
|
Medendorp WP, Heed T. State estimation in posterior parietal cortex: Distinct poles of environmental and bodily states. Prog Neurobiol 2019; 183:101691. [DOI: 10.1016/j.pneurobio.2019.101691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023]
|
39
|
Fossataro C, Tieri G, Grollero D, Bruno V, Garbarini F. Hand blink reflex in virtual reality: The role of vision and proprioception in modulating defensive responses. Eur J Neurosci 2019; 51:937-951. [PMID: 31630450 DOI: 10.1111/ejn.14601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 10/09/2019] [Indexed: 01/19/2023]
Abstract
Our research focused on the role of vision and proprioception in modulating a defensive reflex (hand blink reflex, HBR) whose magnitude is enhanced when the threatened hand is inside the peripersonal space of the face. We capitalized on virtual reality, which allows dissociating vision and proprioception by presenting a virtual limb in congruent/incongruent positions with respect to the participants' limb. In experiment 1, participants placed their own stimulated hand in far/near positions with respect to their face (postural manipulation task), while observing a virtual empty scenario. Vision was not informative, but the HBR was significantly enhanced in near compared with far position, suggesting that proprioception is sufficient for the HBR modulation to occur. In experiment 2, participants did not perform the postural manipulation but they (passively) observed the avatar's virtual limb performing it. Proprioceptive signals were not informative, but the HBR was significantly enhanced when the observed virtual limb was near to the face, suggesting that visual information plays a role in modulating the HBR. In experiment 3, both participants and avatar performed the postural manipulation, either congruently (both of them far/near) or incongruently (one of them far, the other near). The HBR modulation was present only in congruent conditions. In incongruent conditions, the conflict between vision and proprioception confounded the system, abolishing the difference between far and near positions. Taken together, these findings promote the view that observing a virtual limb modulates the HBR, providing also new evidence on the role of vision and proprioception in modulating this subcortical reflex.
Collapse
Affiliation(s)
| | - Gaetano Tieri
- IRCCS, Fondazione Santa Lucia, Rome, Italy.,Virtual Reality Lab, University of Rome Unitelma Sapienza, Rome, Italy
| | - Demetrio Grollero
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy.,MoMi Lab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Valentina Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy.,Neuroscience Institute of Turin, University of Turin, Turin, Italy
| |
Collapse
|
40
|
Serino A. Peripersonal space (PPS) as a multisensory interface between the individual and the environment, defining the space of the self. Neurosci Biobehav Rev 2019; 99:138-159. [DOI: 10.1016/j.neubiorev.2019.01.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022]
|
41
|
Stott TP, Olson EGN, Parkinson RH, Gray JR. Three-dimensional shape and velocity changes affect responses of a locust visual interneuron to approaching objects. ACTA ACUST UNITED AC 2018; 221:jeb.191320. [PMID: 30341087 DOI: 10.1242/jeb.191320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022]
Abstract
Adaptive collision avoidance behaviours require accurate detection of complex spatiotemporal properties of an object approaching in an animal's natural, three-dimensional environment. Within the locust, the lobula giant movement detector and its postsynaptic partner, the descending contralateral movement detector (DCMD), respond robustly to images that emulate an approaching two-dimensional object and exhibit firing rate modulation correlated with changes in object trajectory. It is not known how this pathway responds to visual expansion of a three-dimensional object or an approaching object that changes velocity, both of which represent natural stimuli. We compared DCMD responses with images that emulate the approach of a sphere with those elicited by a two-dimensional disc. A sphere evoked later peak firing and decreased sensitivity to the ratio of the half size of the object to the approach velocity, resulting in an increased threshold subtense angle required to generate peak firing. We also presented locusts with an approaching sphere that decreased or increased in velocity. A velocity decrease resulted in transition-associated peak firing followed by a firing rate increase that resembled the response to a constant, slower velocity. A velocity increase resulted in an earlier increase in the firing rate that was more pronounced with an earlier transition. These results further demonstrate that this pathway can provide motor circuits for behaviour with salient information about complex stimulus dynamics.
Collapse
Affiliation(s)
- Tarquin P Stott
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Erik G N Olson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Rachel H Parkinson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - John R Gray
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| |
Collapse
|
42
|
Bufacchi RJ, Iannetti GD. An Action Field Theory of Peripersonal Space. Trends Cogn Sci 2018; 22:1076-1090. [PMID: 30337061 PMCID: PMC6237614 DOI: 10.1016/j.tics.2018.09.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022]
Abstract
Predominant conceptual frameworks often describe peripersonal space (PPS) as a single, distance-based, in-or-out zone within which stimuli elicit enhanced neural and behavioural responses. Here we argue that this intuitive framework is contradicted by neurophysiological and behavioural data. First, PPS-related measures are not binary, but graded with proximity. Second, they are strongly influenced by factors other than proximity, such as walking, tool use, stimulus valence, and social cues. Third, many different PPS-related responses exist, and each can be used to describe a different space. Here, we reconceptualise PPS as a set of graded fields describing behavioural relevance of actions aiming to create or avoid contact between objects and the body. This reconceptualisation incorporates PPS into mainstream theories of action selection and behaviour.
Collapse
Affiliation(s)
- Rory J Bufacchi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK
| | - Gian Domenico Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK; Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
43
|
Noel JP, Samad M, Doxon A, Clark J, Keller S, Di Luca M. Peri-personal space as a prior in coupling visual and proprioceptive signals. Sci Rep 2018; 8:15819. [PMID: 30361477 PMCID: PMC6202371 DOI: 10.1038/s41598-018-33961-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that the integration of multiple body-related sources of information within the peri-personal space (PPS) scaffolds body ownership. However, a normative computational framework detailing the functional role of PPS is still missing. Here we cast PPS as a visuo-proprioceptive Bayesian inference problem whereby objects we see in our environment are more likely to engender sensations as they come near to the body. We propose that PPS is the reflection of such an increased a priori probability of visuo-proprioceptive coupling that surrounds the body. To test this prediction, we immersed participants in a highly realistic virtual reality (VR) simulation of their right arm and surrounding environment. We asked participants to perform target-directed reaches toward visual, proprioceptive, and visuo-proprioceptive targets while visually displaying their reaching arm (body visible condition) or not (body invisible condition). Reach end-points are analyzed in light of the coupling prior framework, where the extension of PPS is taken to be represented by the spatial dispersion of the coupling prior between visual and proprioceptive estimates of arm location. Results demonstrate that if the body is not visible, the spatial dispersion of the visuo-proprioceptive coupling relaxes, whereas the strength of coupling remains stable. By demonstrating a distance-dependent alteration in visual and proprioceptive localization attractive pull toward one another (stronger pull at small spatial discrepancies) when the body is rendered invisible - an effect that is well accounted for by the visuo-proprioceptive coupling prior - the results suggest that the visible body grounds visuo-proprioceptive coupling preferentially in the near vs. far space.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Oculus Research, Facebook Inc., Redmond, WA, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Majed Samad
- Oculus Research, Facebook Inc., Redmond, WA, USA.,Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrew Doxon
- Oculus Research, Facebook Inc., Redmond, WA, USA
| | - Justin Clark
- Oculus Research, Facebook Inc., Redmond, WA, USA
| | - Sean Keller
- Oculus Research, Facebook Inc., Redmond, WA, USA
| | - Massimiliano Di Luca
- Oculus Research, Facebook Inc., Redmond, WA, USA. .,Centre for Computational Neuroscience and Cognitive Robotics, University of Birmingham, Birmingham, UK.
| |
Collapse
|
44
|
Body ownership and the absence of touch: approaching the rubber hand inside and outside peri-hand space. Exp Brain Res 2018; 236:3251-3265. [PMID: 30220004 PMCID: PMC6267689 DOI: 10.1007/s00221-018-5361-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/11/2018] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the integration of visual and tactile information is a necessity to induce ownership over a rubber hand. This idea has recently been challenged by Ferri et al. (Proc R Soc B 280:1–7, 2013), as they found that sense of ownership was evident by mere expectation of touch. In our study, we aimed to further investigate this finding, by studying whether the mere potential for touch yields a sense of ownership similar in magnitude to that resulting from actually being touched. We conducted two experiments. In the first experiment, our set-up was the classical horizontal set-up (similar to Botvinick and Cohen, Nature 391:756, 1998). Sixty-three individuals were included and performed the classical conditions (synchronous, asynchronous), an approached but not touched (potential for touch), and a ‘visual only’ condition. In the second experiment, we controlled for differences between the current set-up and the vertical set-up used by Ferri et al. (Proc R Soc B 280:1–7, 2013). Fifteen individuals were included and performed a synchronous and various approaching conditions [i.e., vertical approach, horizontal approach, and a control approach (no hands)]. In our first experiment, we found that approaching the rubber hand neither induced a larger proprioceptive drift nor a stronger subjective sense of ownership than asynchronous stimulation did. Generally, our participants gained most sense of ownership in the synchronous condition, followed by the visual only condition. When using a vertical set-up (second experiment), we confirmed previous suggestions that tactile expectation was able to induce embodiment over a foreign hand, similar in magnitude to actual touch, but only when the real and rubber hand were aligned on the vertical axis, thus along the trajectory of the approaching stimulus. These results indicate that our brain uses bottom-up sensory information, as well as top-down predictions for building a representation of our body.
Collapse
|
45
|
Cléry J, Guipponi O, Odouard S, Wardak C, Ben Hamed S. Cortical networks for encoding near and far space in the non-human primate. Neuroimage 2018; 176:164-178. [DOI: 10.1016/j.neuroimage.2018.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022] Open
|
46
|
Abstract
The construction of a coherent representation of our body and the mapping of the space immediately surrounding it are of the highest ecological importance. This space has at least three specificities: it is a space where actions are planned in order to interact with our environment; it is a space that contributes to the experience of self and self-boundaries, through tactile processing and multisensory interactions; last, it is a space that contributes to the experience of body integrity against external events. In the last decades, numerous studies have been interested in peripersonal space (PPS), defined as the space directly surrounding us and which we can interact with (for reviews, see Cléry et al., 2015b; de Vignemont and Iannetti, 2015; di Pellegrino and Làdavas, 2015). These studies have contributed to the understanding of how this space is constructed, encoded and modulated. The majority of these studies focused on subparts of PPS (the hand, the face or the trunk) and very few of them investigated the interaction between PPS subparts. In the present review, we summarize the latest advances in this research and we discuss the new perspectives that are set forth for futures investigations on this topic. We describe the most recent methods used to estimate PPS boundaries by the means of dynamic stimuli. We then highlight how impact prediction and approaching stimuli modulate this space by social, emotional and action-related components involving principally a parieto-frontal network. In a next step, we review evidence that there is not a unique representation of PPS but at least three sub-sections (hand, face and trunk PPS). Last, we discuss how these subspaces interact, and we question whether and how bodily self-consciousness (BSC) is functionally and behaviorally linked to PPS.
Collapse
Affiliation(s)
- Justine Cléry
- UMR5229, Institut des Sciences Cognitives Marc Jeannerod, CNRS-Université Claude Bernard Lyon I, Bron, France
| | - Suliann Ben Hamed
- UMR5229, Institut des Sciences Cognitives Marc Jeannerod, CNRS-Université Claude Bernard Lyon I, Bron, France
| |
Collapse
|
47
|
Noel JP, Blanke O, Serino A. From multisensory integration in peripersonal space to bodily self-consciousness: from statistical regularities to statistical inference. Ann N Y Acad Sci 2018; 1426:146-165. [PMID: 29876922 DOI: 10.1111/nyas.13867] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023]
Abstract
Integrating information across sensory systems is a critical step toward building a cohesive representation of the environment and one's body, and as illustrated by numerous illusions, scaffolds subjective experience of the world and self. In the last years, classic principles of multisensory integration elucidated in the subcortex have been translated into the language of statistical inference understood by the neocortical mantle. Most importantly, a mechanistic systems-level description of multisensory computations via probabilistic population coding and divisive normalization is actively being put forward. In parallel, by describing and understanding bodily illusions, researchers have suggested multisensory integration of bodily inputs within the peripersonal space as a key mechanism in bodily self-consciousness. Importantly, certain aspects of bodily self-consciousness, although still very much a minority, have been recently casted under the light of modern computational understandings of multisensory integration. In doing so, we argue, the field of bodily self-consciousness may borrow mechanistic descriptions regarding the neural implementation of inference computations outlined by the multisensory field. This computational approach, leveraged on the understanding of multisensory processes generally, promises to advance scientific comprehension regarding one of the most mysterious questions puzzling humankind, that is, how our brain creates the experience of a self in interaction with the environment.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience (LNCO), Center for Neuroprosthetics (CNP), Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Neurology, University of Geneva, Geneva, Switzerland
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
Audio-visual sensory deprivation degrades visuo-tactile peri-personal space. Conscious Cogn 2018; 61:61-75. [DOI: 10.1016/j.concog.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 11/24/2022]
|
49
|
Noel JP, Blanke O, Magosso E, Serino A. Neural adaptation accounts for the dynamic resizing of peripersonal space: evidence from a psychophysical-computational approach. J Neurophysiol 2018. [PMID: 29537917 PMCID: PMC6032111 DOI: 10.1152/jn.00652.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interactions between the body and the environment occur within the peripersonal space (PPS), the space immediately surrounding the body. The PPS is encoded by multisensory (audio-tactile, visual-tactile) neurons that possess receptive fields (RFs) anchored on the body and restricted in depth. The extension in depth of PPS neurons' RFs has been documented to change dynamically as a function of the velocity of incoming stimuli, but the underlying neural mechanisms are still unknown. Here, by integrating a psychophysical approach with neural network modeling, we propose a mechanistic explanation behind this inherent dynamic property of PPS. We psychophysically mapped the size of participant's peri-face and peri-trunk space as a function of the velocity of task-irrelevant approaching auditory stimuli. Findings indicated that the peri-trunk space was larger than the peri-face space, and, importantly, as for the neurophysiological delineation of RFs, both of these representations enlarged as the velocity of incoming sound increased. We propose a neural network model to mechanistically interpret these findings: the network includes reciprocal connections between unisensory areas and higher order multisensory neurons, and it implements neural adaptation to persistent stimulation as a mechanism sensitive to stimulus velocity. The network was capable of replicating the behavioral observations of PPS size remapping and relates behavioral proxies of PPS size to neurophysiological measures of multisensory neurons' RF size. We propose that a biologically plausible neural adaptation mechanism embedded within the network encoding for PPS can be responsible for the dynamic alterations in PPS size as a function of the velocity of incoming stimuli. NEW & NOTEWORTHY Interactions between body and environment occur within the peripersonal space (PPS). PPS neurons are highly dynamic, adapting online as a function of body-object interactions. The mechanistic underpinning PPS dynamic properties are unexplained. We demonstrate with a psychophysical approach that PPS enlarges as incoming stimulus velocity increases, efficiently preventing contacts with faster approaching objects. We present a neurocomputational model of multisensory PPS implementing neural adaptation to persistent stimulation to propose a neurophysiological mechanism underlying this effect.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Faculty of Life Science, Ecole Polytechnique Federale de Lausanne, Lausanne , Switzerland.,Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Lausanne , Switzerland.,Vanderbilt Brain Institute, Vanderbilt University , Nashville, Tennessee
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Faculty of Life Science, Ecole Polytechnique Federale de Lausanne, Lausanne , Switzerland.,Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Lausanne , Switzerland.,Department of Neurology, University of Geneva , Geneva , Switzerland
| | - Elisa Magosso
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi, " University of Bologna , Cesena , Italy
| | - Andrea Serino
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Faculty of Life Science, Ecole Polytechnique Federale de Lausanne, Lausanne , Switzerland.,Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Lausanne , Switzerland.,MySpace Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
50
|
Gabbiani F, Dewell RB. Collision Avoidance: Broadening the Toolkit for Directionally Selective Motion Computations. Curr Biol 2018; 28:R124-R126. [PMID: 29408261 DOI: 10.1016/j.cub.2017.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Visually-guided escape behaviors are critical for survival. New research reveals how neurons selectively coding for local motion directions can be assembled into collision detecting ones using a simple recipe.
Collapse
Affiliation(s)
- Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Richard B Dewell
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|