1
|
Sandoval SO, Méndez-Albelo NM, Xu Z, Zhao X. From wings to whiskers to stem cells: why every model matters in fragile X syndrome research. J Neurodev Disord 2024; 16:30. [PMID: 38872088 PMCID: PMC11177515 DOI: 10.1186/s11689-024-09545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by epigenetic silencing of the X-linked fragile X messenger ribonucleoprotein 1 (FMR1) gene located on chromosome Xq27.3, which leads to the loss of its protein product, fragile X messenger ribonucleoprotein (FMRP). It is the most prevalent inherited form of intellectual disability and the highest single genetic cause of autism. Since the discovery of the genetic basis of FXS, extensive studies using animal models and human pluripotent stem cells have unveiled the functions of FMRP and mechanisms underlying FXS. However, clinical trials have not yielded successful treatment. Here we review what we have learned from commonly used models for FXS, potential limitations of these models, and recommendations for future steps.
Collapse
Affiliation(s)
- Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhiyan Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Yu X, Wang Y. Peripheral Fragile X messenger ribonucleoprotein is required for the timely closure of a critical period for neuronal susceptibility in the ventral cochlear nucleus. Front Cell Neurosci 2023; 17:1186630. [PMID: 37305436 PMCID: PMC10248243 DOI: 10.3389/fncel.2023.1186630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Alterations in neuronal plasticity and critical periods are common across neurodevelopmental diseases, including Fragile X syndrome (FXS), the leading single-gene cause of autism. Characterized with sensory dysfunction, FXS is the result of gene silencing of Fragile X messenger ribonucleoprotein 1 (FMR1) and loss of its product, Fragile X messenger ribonucleoprotein (FMRP). The mechanisms underlying altered critical period and sensory dysfunction in FXS are obscure. Here, we performed genetic and surgical deprivation of peripheral auditory inputs in wildtype and Fmr1 knockout (KO) mice across ages and investigated the effects of global FMRP loss on deafferentation-induced neuronal changes in the ventral cochlear nucleus (VCN) and auditory brainstem responses. The degree of neuronal cell loss during the critical period was unchanged in Fmr1 KO mice. However, the closure of the critical period was delayed. Importantly, this delay was temporally coincidental with reduced hearing sensitivity, implying an association with sensory inputs. Functional analyses further identified early-onset and long-lasting alterations in signal transmission from the spiral ganglion to the VCN, suggesting a peripheral site of FMRP action. Finally, we generated conditional Fmr1 KO (cKO) mice with selective deletion of FMRP in spiral ganglion but not VCN neurons. cKO mice recapitulated the delay in the VCN critical period closure in Fmr1 KO mice, confirming an involvement of cochlear FMRP in shaping the temporal features of neuronal critical periods in the brain. Together, these results identify a novel peripheral mechanism of neurodevelopmental pathogenesis.
Collapse
Affiliation(s)
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
3
|
Saleh AJ, Ahmed Y, Peters LO, Nothwang HG. Comparative expression analysis of the Atoh7 gene regulatory network in the mouse and chicken auditory hindbrain. Cell Tissue Res 2023:10.1007/s00441-023-03763-9. [PMID: 36961563 DOI: 10.1007/s00441-023-03763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
The mammalian and avian auditory brainstem likely arose by independent evolution. To compare the underlying molecular mechanisms, we focused on Atoh7, as its expression pattern in the mammalian hindbrain is restricted to bushy cells in the ventral cochlear nucleus. We thereby took advantage of an Atoh7 centered gene regulatory network (GRN) in the retina including upstream regulators, Hes1 and Pax6, and downstream targets, Ebf3 and Eya2. In situ hybridization demonstrated for the latter four genes broad expression in all three murine cochlear nuclei at postnatal days (P) 4 and P30, contrasting the restricted expression of Atoh7. In chicken, all five transcription factors were expressed in all auditory hindbrain nuclei at embryonic day (E) 13 and P14. Notably, all five genes showed graded expression in the embryonic nucleus magnocellularis (NM). Atoh7 was highly expressed in caudally located neurons, whereas the other four transcription factors were highly expressed in rostrally located neurons. Thus, Atoh7 shows a strikingly different expression between the mammalian and avian auditory hindbrain. This together with the consistent absence of graded expression of GRN components in developing mammalian nuclei provide the first molecular support to the current view of convergent evolution as a major mechanism in the amniote auditory hindbrain. The graded expression of five transcription factors specifically in the developing NM confirms this nucleus as a central organizer of tonotopic features in birds. Finally, the expression of all five retinal GRN components in the auditory system suggests co-options of genes for development of sensory systems of distinct modalities.
Collapse
Affiliation(s)
- Ali Jason Saleh
- Division of Neurogenetics and Cluster of Excellence "Hearing4all", School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Yannis Ahmed
- Institute of Neurophysiopathology (INP), Aix-Marseille University, CNRS, Marseille, France
| | - Lars-Oliver Peters
- Division of Neurogenetics and Cluster of Excellence "Hearing4all", School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Division of Neurogenetics and Cluster of Excellence "Hearing4all", School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Department of Neuroscience, Cluster of Excellence "Hearing4all", Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
4
|
Wang X, Sela-Donenfeld D, Wang Y. Axonal and presynaptic FMRP: Localization, signal, and functional implications. Hear Res 2023; 430:108720. [PMID: 36809742 PMCID: PMC9998378 DOI: 10.1016/j.heares.2023.108720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Fragile X mental retardation protein (FMRP) binds a selected set of mRNAs and proteins to guide neural circuit assembly and regulate synaptic plasticity. Loss of FMRP is responsible for Fragile X syndrome, a neuropsychiatric disorder characterized with auditory processing problems and social difficulty. FMRP actions in synaptic formation, maturation, and plasticity are site-specific among the four compartments of a synapse: presynaptic and postsynaptic neurons, astrocytes, and extracellular matrix. This review summarizes advancements in understanding FMRP localization, signals, and functional roles in axons and presynaptic terminals.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
5
|
Wang X, Fan Q, Yu X, Wang Y. Cellular distribution of the Fragile X mental retardation protein in the inner ear: a developmental and comparative study in the mouse, rat, gerbil, and chicken. J Comp Neurol 2023; 531:149-169. [PMID: 36222577 PMCID: PMC9691623 DOI: 10.1002/cne.25420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
The Fragile X mental retardation protein (FMRP) is an mRNA binding protein that is essential for neural circuit assembly and synaptic plasticity. Loss of functional FMRP leads to Fragile X syndrome (FXS), a neurodevelopmental disorder characterized by sensory dysfunction including abnormal auditory processing. While the central mechanisms of FMRP regulation have been studied in the brain, whether FMRP is expressed in the auditory periphery and how it develops and functions remains unknown. In this study, we characterized the spatiotemporal distribution pattern of FMRP immunoreactivity in the inner ear of mice, rats, gerbils, and chickens. Across species, FMRP was expressed in hair cells and supporting cells, with a particularly high level in immature hair cells during the prehearing period. Interestingly, the distribution of cytoplasmic FMRP displayed an age-dependent translocation in hair cells, and this feature was conserved across species. In the auditory ganglion (AG), FMRP immunoreactivity was detected in neuronal cell bodies as well as their peripheral and central processes. Distinct from hair cells, FMRP intensity in AG neurons was high both during development and after maturation. Additionally, FMRP was evident in mature glial cells surrounding AG neurons. Together, these observations demonstrate distinct developmental trajectories across cell types in the auditory periphery. Given the importance of peripheral inputs to the maturation of auditory circuits, these findings implicate involvement of FMRP in inner ear development as well as a potential contribution of periphery FMRP to the generation of auditory dysfunction in FXS.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Qiwei Fan
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaoyan Yu
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Curnow E, Wang Y. New Animal Models for Understanding FMRP Functions and FXS Pathology. Cells 2022; 11:1628. [PMID: 35626665 PMCID: PMC9140010 DOI: 10.3390/cells11101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fragile X encompasses a range of genetic conditions, all of which result as a function of changes within the FMR1 gene and abnormal production and/or expression of the FMR1 gene products. Individuals with Fragile X syndrome (FXS), the most common heritable form of intellectual disability, have a full-mutation sequence (>200 CGG repeats) which brings about transcriptional silencing of FMR1 and loss of FMR protein (FMRP). Despite considerable progress in our understanding of FXS, safe, effective, and reliable treatments that either prevent or reduce the severity of the FXS phenotype have not been approved. While current FXS animal models contribute their own unique understanding to the molecular, cellular, physiological, and behavioral deficits associated with FXS, no single animal model is able to fully recreate the FXS phenotype. This review will describe the status and rationale in the development, validation, and utility of three emerging animal model systems for FXS, namely the nonhuman primate (NHP), Mongolian gerbil, and chicken. These developing animal models will provide a sophisticated resource in which the deficits in complex functions of perception, action, and cognition in the human disorder are accurately reflected and aid in the successful translation of novel therapeutics and interventions to the clinic setting.
Collapse
Affiliation(s)
- Eliza Curnow
- REI Division, Department of ObGyn, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
8
|
Chatterjee R, Paluh JL, Chowdhury S, Mondal S, Raha A, Mukherjee A. SyNC, a Computationally Extensive and Realistic Neural Net to Identify Relative Impacts of Synaptopathy Mechanisms on Glutamatergic Neurons and Their Networks in Autism and Complex Neurological Disorders. Front Cell Neurosci 2021; 15:674030. [PMID: 34354570 PMCID: PMC8330424 DOI: 10.3389/fncel.2021.674030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
Synaptic function and experience-dependent plasticity across multiple synapses are dependent on the types of neurons interacting as well as the intricate mechanisms that operate at the molecular level of the synapse. To understand the complexity of information processing at synaptic networks will rely in part on effective computational models. Such models should also evaluate disruptions to synaptic function by multiple mechanisms. By co-development of algorithms alongside hardware, real time analysis metrics can be co-prioritized along with biological complexity. The hippocampus is implicated in autism spectrum disorders (ASD) and within this region glutamatergic neurons constitute 90% of the neurons integral to the functioning of neuronal networks. Here we generate a computational model referred to as ASD interrogator (ASDint) and corresponding hardware to enable in silicon analysis of multiple ASD mechanisms affecting glutamatergic neuron synapses. The hardware architecture Synaptic Neuronal Circuit, SyNC, is a novel GPU accelerator or neural net, that extends discovery by acting as a biologically relevant realistic neuron synapse in real time. Co-developed ASDint and SyNC expand spiking neural network models of plasticity to comparative analysis of retrograde messengers. The SyNC model is realized in an ASIC architecture, which enables the ability to compute increasingly complex scenarios without sacrificing area efficiency of the model. Here we apply the ASDint model to analyse neuronal circuitry dysfunctions associated with autism spectral disorder (ASD) synaptopathies and their effects on the synaptic learning parameter and demonstrate SyNC on an ideal ASDint scenario. Our work highlights the value of secondary pathways in regard to evaluating complex ASD synaptopathy mechanisms. By comparing the degree of variation in the synaptic learning parameter to the response obtained from simulations of the ideal scenario we determine the potency and time of the effect of a particular evaluated mechanism. Hence simulations of such scenarios in even a small neuronal network now allows us to identify relative impacts of changed parameters and their effect on synaptic function. Based on this, we can estimate the minimum fraction of a neuron exhibiting a particular dysfunction scenario required to lead to complete failure of a neural network to coordinate pre-synaptic and post-synaptic outputs.
Collapse
Affiliation(s)
- Rounak Chatterjee
- Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
| | - Janet L Paluh
- SUNY Polytechnic Institute, College of Nanoscale Science and Engineering, Nanobioscience, Albany, NY, United States
| | - Souradeep Chowdhury
- Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
| | - Soham Mondal
- Flash Controller Team, Memory Solutions, Samsung Semiconductor India Research, Samsung Electronics Co., Ltd., Bangalore, India
| | - Arnab Raha
- Advanced Architecture Research, Intel Intelligent Systems Group, Intel Edge AI, Intel Corporation, Santa Clara, CA, United States
| | | |
Collapse
|
9
|
Saleh AJ, Nothwang HG. Differential expression of microRNAs in the developing avian auditory hindbrain. J Comp Neurol 2021; 529:3477-3496. [PMID: 34180540 DOI: 10.1002/cne.25205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/08/2022]
Abstract
The avian auditory hindbrain is a longstanding model for studying neural circuit development. Information on gene regulatory network (GRN) components underlying this process, however, is scarce. Recently, the spatiotemporal expression of 12 microRNAs (miRNAs) was investigated in the mammalian auditory hindbrain. As a comparative study, we here investigated the spatiotemporal expression of the orthologous miRNAs during development of the chicken auditory hindbrain. All miRNAs were expressed both at E13, an immature stage, and P14, a mature stage of the auditory system. In most auditory nuclei, a homogeneous expression pattern was observed at both stages, like the mammalian system. An exception was the nucleus magnocellularis (NM). There, at E13, nine miRNAs showed a differential expression pattern along the cochleotopic axis with high expression at the rostromedial pole. One of them showed a gradient expression whereas eight showed a spatially selective expression at the rostral pole that reflected the different rhombomeric origins of this composite nucleus. The miRNA differential expression persisted in the NM to the mature stage, with the selective expression changed to linear gradients. Bioinformatics analysis predicted mRNA targets that are associated with neuronal developmental processes such as neurite and synapse organization, calcium and ephrin-Eph signaling, and neurotransmission. Overall, this first analysis of miRNAs in the chicken central auditory system reveals shared and strikingly distinct features between chicken and murine orthologues. The embryonic gradient expression of these GRN elements in the NM adds miRNA patterns to the list of cochleotopic and developmental gradients in the central auditory system.
Collapse
Affiliation(s)
- Ali Jason Saleh
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Clifton NE, Rees E, Holmans PA, Pardiñas AF, Harwood JC, Di Florio A, Kirov G, Walters JTR, O'Donovan MC, Owen MJ, Hall J, Pocklington AJ. Genetic association of FMRP targets with psychiatric disorders. Mol Psychiatry 2021; 26:2977-2990. [PMID: 33077856 PMCID: PMC8505260 DOI: 10.1038/s41380-020-00912-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
Genes encoding the mRNA targets of fragile X mental retardation protein (FMRP) are enriched for genetic association with psychiatric disorders. However, many FMRP targets possess functions that are themselves genetically associated with psychiatric disorders, including synaptic transmission and plasticity, making it unclear whether the genetic risk is truly related to binding by FMRP or is alternatively mediated by the sampling of genes better characterised by another trait or functional annotation. Using published common variant, rare coding variant and copy number variant data, we examined the relationship between FMRP binding and genetic association with schizophrenia, major depressive disorder and bipolar disorder. High-confidence targets of FMRP, derived from studies of multiple tissue types, were enriched for common schizophrenia risk alleles, as well as rare loss-of-function and de novo nonsynonymous variants in schizophrenia cases. Similarly, through common variation, FMRP targets were associated with major depressive disorder, and we present novel evidence of association with bipolar disorder. These relationships could not be explained by other functional annotations known to be associated with psychiatric disorders, including those related to synaptic structure and function. This study reinforces the evidence that targeting by FMRP captures a subpopulation of genes enriched for genetic association with a range of psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Janet C Harwood
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Arianna Di Florio
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Andrew J Pocklington
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
11
|
Shen Z, Liu B, Wu B, Zhou H, Wang X, Cao J, Jiang M, Zhou Y, Guo F, Xue C, Wu ZS. FMRP regulates STAT3 mRNA localization to cellular protrusions and local translation to promote hepatocellular carcinoma metastasis. Commun Biol 2021; 4:540. [PMID: 33972660 PMCID: PMC8110961 DOI: 10.1038/s42003-021-02071-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Most hepatocellular carcinoma (HCC)-associated mortalities are related to the metastasis of cancer cells. The localization of mRNAs and their products to cell protrusions has been reported to play a crucial role in the metastasis. Our previous findings demonstrated that STAT3 mRNA accumulated in the protrusions of metastatic HCC cells. However, the underlying mechanism and functional significance of this localization of STAT3 mRNA has remained unexplored. Here we show that fragile X mental retardation protein (FMRP) modulates the localization and translation of STAT3 mRNA, accelerating HCC metastasis. The results of molecular analyses reveal that the 3′UTR of STAT3 mRNA is responsible for the localization of STAT3 mRNA to cell protrusions. FMRP is able to interact with the 3′UTR of STAT3 mRNA and facilitates its localization to protrusions. Importantly, FMRP could promote the IL-6-mediated translation of STAT3, and serine 114 of FMRP is identified as a potential phosphorylation site required for IL-6-mediated STAT3 translation. Furthermore, FMRP is highly expressed in HCC tissues and FMRP knockdown efficiently suppresses HCC metastasis in vitro and in vivo. Collectively, our findings provide further insights into the mechanism of HCC metastasis associated with the regulation of STAT3 mRNA localization and translation. Shen et al. propose a mechanism for the metastasis of hepatocellular carcinoma (HCC) cells through the localization and translation modulation of the STAT3 oncogene by fragile X mental retardation protein (FMRP). To this end, the authors also find that FMRP knockdown efficiently suppresses HCC metastasis in vitro and in vivo.
Collapse
Affiliation(s)
- Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China. .,Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China.
| | - Bowen Liu
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Biting Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyun Wang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinling Cao
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Min Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingying Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Feixia Guo
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
12
|
Bland KM, Aharon A, Widener EL, Song MI, Casey ZO, Zuo Y, Vidal GS. FMRP regulates the subcellular distribution of cortical dendritic spine density in a non-cell-autonomous manner. Neurobiol Dis 2021; 150:105253. [PMID: 33421563 PMCID: PMC7878418 DOI: 10.1016/j.nbd.2021.105253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of intellectual disability that arises from the dysfunction of a single gene-Fmr1. The main neuroanatomical correlate of FXS is elevated dendritic spine density on cortical pyramidal neurons, which has been modeled in Fmr1-/Y mice. However, the cell-autonomous contribution of Fmr1 on cortical dendritic spine density has not been assessed. Even less is known about the role of Fmr1 in heterozygous female mosaic mice, which are a putative model for human Fmr1 full mutation carriers (i.e., are heterozygous for the full Fmr1-silencing mutation). In this neuroanatomical study, spine density in cortical pyramidal neurons of Fmr1+/- and Fmr1-/Y mice was studied at multiple subcellular compartments, layers, and brain regions. Spine density in Fmr1+/- mice is higher than WT but lower than Fmr1-/Y. Not all subcellular compartments in layer V Fmr1+/- and Fmr1-/Y cortical pyramidal neurons are equally affected: the apical dendrite, a key subcellular compartment, is principally affected over basal dendrites. Within apical dendrites, spine density is differentially affected across branch orders. Finally, identification of FMRP-positive and FMRP-negative neurons within Fmr1+/- permitted the study of the cell-autonomous effect of Fmr1 on spine density. Surprisingly, layer V cortical pyramidal spine density between FMRP-positive and FMRP-negative neurons does not differ, suggesting that the regulation of the primary neuroanatomical defect of FXS-elevated spine density-is non-cell-autonomous.
Collapse
Affiliation(s)
- Katherine M Bland
- Department of Biology, James Madison University, Harrisonburg, VA 22801, United States
| | - Adam Aharon
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Eden L Widener
- Department of Biology, James Madison University, Harrisonburg, VA 22801, United States
| | - M Irene Song
- Department of Biology, James Madison University, Harrisonburg, VA 22801, United States
| | - Zachary O Casey
- Department of Biology, James Madison University, Harrisonburg, VA 22801, United States
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| | - George S Vidal
- Department of Biology, James Madison University, Harrisonburg, VA 22801, United States.
| |
Collapse
|
13
|
Huebschman JL, Corona KS, Guo Y, Smith LN. The Fragile X Mental Retardation Protein Regulates Striatal Medium Spiny Neuron Synapse Density and Dendritic Spine Morphology. Front Mol Neurosci 2020; 13:161. [PMID: 33013316 PMCID: PMC7511717 DOI: 10.3389/fnmol.2020.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/05/2020] [Indexed: 01/23/2023] Open
Abstract
The fragile X mental retardation protein (FMRP), an RNA-binding protein that mediates the transport, stability, and translation of hundreds of brain RNAs, is critically involved in regulating synaptic function. Loss of FMRP, as in fragile X syndrome (FXS), is a leading monogenic cause of autism and results in altered structural and functional synaptic plasticity, widely described in the hippocampus and cortex. Though FXS is associated with hyperactivity, impaired social interaction, and the development of repetitive or stereotyped behaviors, all of which are influenced by striatal activity, few studies have investigated the function of FMRP here. Utilizing a cortical-striatal co-culture model, we find that striatal medium spiny neurons (MSNs) lacking FMRP fail to make normal increases in PSD95 expression over a short time period and have significant deficits in dendritic spine density and colocalized synaptic puncta at the later measured time point compared to wildtype (WT) MSNs. Acute expression of wtFMRP plasmid in Fmr1 KO co-cultures results in contrasting outcomes for these measures on MSNs at the more mature time point, reducing spine density across multiple spine types but making no significant changes in colocalized puncta. FMRP’s KH2 and RGG RNA-binding domains are required for normal elimination of PSD95, and interruption of these domains slightly favors elimination of immature spine types. Further, KH2 is required for normal levels of colocalized puncta. Our data are largely consistent with a basal role for FMRP and its RNA-binding domains in striatal synapse stabilization on developing MSNs, and in light of previous findings, suggest distinct regional and/or cell type-specific roles for FMRP in regulating synapse structure.
Collapse
Affiliation(s)
- Jessica L Huebschman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Kitzia S Corona
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
14
|
Wang X, Kohl A, Yu X, Zorio DAR, Klar A, Sela-Donenfeld D, Wang Y. Temporal-specific roles of fragile X mental retardation protein in the development of the hindbrain auditory circuit. Development 2020; 147:dev.188797. [PMID: 32747436 DOI: 10.1242/dev.188797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein abundant in the nervous system. Functional loss of FMRP leads to sensory dysfunction and severe intellectual disabilities. In the auditory system, FMRP deficiency alters neuronal function and synaptic connectivity and results in perturbed processing of sound information. Nevertheless, roles of FMRP in embryonic development of the auditory hindbrain have not been identified. Here, we developed high-specificity approaches to genetically track and manipulate throughout development of the Atoh1+ neuronal cell type, which is highly conserved in vertebrates, in the cochlear nucleus of chicken embryos. We identified distinct FMRP-containing granules in the growing axons of Atoh1+ neurons and post-migrating NM cells. FMRP downregulation induced by CRISPR/Cas9 and shRNA techniques resulted in perturbed axonal pathfinding, delay in midline crossing, excess branching of neurites, and axonal targeting errors during the period of circuit development. Together, these results provide the first in vivo identification of FMRP localization and actions in developing axons of auditory neurons, and demonstrate the importance of investigating early embryonic alterations toward understanding the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.,Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Xiaoyan Yu
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Diego A R Zorio
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Avihu Klar
- Department of Medical Neurobiology IMRIC, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
15
|
Lottes EN, Cox DN. Homeostatic Roles of the Proteostasis Network in Dendrites. Front Cell Neurosci 2020; 14:264. [PMID: 33013325 PMCID: PMC7461941 DOI: 10.3389/fncel.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.
Collapse
Affiliation(s)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
16
|
Yu X, Wang X, Sakano H, Zorio DAR, Wang Y. Dynamics of the fragile X mental retardation protein correlates with cellular and synaptic properties in primary auditory neurons following afferent deprivation. J Comp Neurol 2020; 529:481-500. [PMID: 32449186 DOI: 10.1002/cne.24959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Afferent activity dynamically regulates neuronal properties and connectivity in the central nervous system. The Fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates cellular and synaptic properties in an activity-dependent manner. Whether and how FMRP level and localization are regulated by afferent input remains sparsely examined and how such regulation is associated with neuronal response to changes in sensory input is unknown. We characterized changes in FMRP level and localization in the chicken nucleus magnocellularis (NM), a primary cochlear nucleus, following afferent deprivation by unilateral cochlea removal. We observed rapid (within 2 hr) aggregation of FMRP immunoreactivity into large granular structures in a subset of deafferented NM neurons. Neurons that exhibited persistent FMRP aggregation at 12-24 hr eventually lost cytoplasmic Nissl substance, indicating cell death. A week later, FMRP expression in surviving neurons regained its homeostasis, with a slightly reduced immunostaining intensity and enhanced heterogeneity. Correlation analyses under the homeostatic status (7-14 days) revealed that neurons expressing relatively more FMRP had a higher capability of maintaining cell body size and ribosomal activity, as well as a better ability to detach inactive presynaptic terminals. Additionally, the intensity of an inhibitory postsynaptic protein, gephyrin, was reduced following deafferentation and was positively correlated with FMRP intensity, implicating an involvement of FMRP in synaptic dynamics in response to reduced afferent inputs. Collectively, this study demonstrates that afferent input regulates FMRP expression and localization in ways associated with multiple types of neuronal responses and synaptic rearrangements.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Xiaoyu Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.,Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, China
| | - Hitomi Sakano
- Department of Otolaryngology, Bloedel Hearing Research Center, University of Washington, Seattle, Washington, USA.,Department of Otolaryngology, University of Rochester, Rochester, New York, USA
| | - Diego A R Zorio
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
17
|
McCullagh EA, Rotschafer SE, Auerbach BD, Klug A, Kaczmarek LK, Cramer KS, Kulesza RJ, Razak KA, Lovelace JW, Lu Y, Koch U, Wang Y. Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB J 2020; 34:3501-3518. [PMID: 32039504 DOI: 10.1096/fj.201902435r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 01/14/2023]
Abstract
Autism spectrum disorders (ASD) are strongly associated with auditory hypersensitivity or hyperacusis (difficulty tolerating sounds). Fragile X syndrome (FXS), the most common monogenetic cause of ASD, has emerged as a powerful gateway for exploring underlying mechanisms of hyperacusis and auditory dysfunction in ASD. This review discusses examples of disruption of the auditory pathways in FXS at molecular, synaptic, and circuit levels in animal models as well as in FXS individuals. These examples highlight the involvement of multiple mechanisms, from aberrant synaptic development and ion channel deregulation of auditory brainstem circuits, to impaired neuronal plasticity and network hyperexcitability in the auditory cortex. Though a relatively new area of research, recent discoveries have increased interest in auditory dysfunction and mechanisms underlying hyperacusis in this disorder. This rapidly growing body of data has yielded novel research directions addressing critical questions regarding the timing and possible outcomes of human therapies for auditory dysfunction in ASD.
Collapse
Affiliation(s)
- Elizabeth A McCullagh
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA.,Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Sarah E Rotschafer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.,Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Benjamin D Auerbach
- Center for Hearing and Deafness, Department of Communicative Disorders & Sciences, SUNY at Buffalo, Buffalo, NY, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Randy J Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, CA, USA
| | | | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, Berlin, Germany
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
18
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
19
|
Kokash J, Alderson EM, Reinhard SM, Crawford CA, Binder DK, Ethell IM, Razak KA. Genetic reduction of MMP-9 in the Fmr1 KO mouse partially rescues prepulse inhibition of acoustic startle response. Brain Res 2019; 1719:24-29. [PMID: 31128097 DOI: 10.1016/j.brainres.2019.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 12/31/2022]
Abstract
Sensory processing abnormalities are consistently associated with autism, but the underlying mechanisms and treatment options are unclear. Fragile X Syndrome (FXS) is the leading known genetic cause of intellectual disabilities and autism. One debilitating symptom of FXS is hypersensitivity to sensory stimuli. Sensory hypersensitivity is seen in both humans with FXS and FXS mouse model, the Fmr1 knock out (Fmr1 KO) mouse. Abnormal sensorimotor gating may play a role in the hypersensitivity to sensory stimuli. Humans with FXS and Fmr1 KO mice show abnormalities in acoustic startle response (ASR) and prepulse inhibition (PPI) of startle, responses commonly used to quantify sensorimotor gating. Recent studies have suggested high levels of matrix metalloproteinase-9 (MMP-9) as a potential mechanism of sensory abnormalities in FXS. Here we tested the hypothesis that genetic reduction of MMP-9 in Fmr1 KO mice rescues ASR and PPI phenotypes in adult Fmr1 KO mice. We measured MMP-9 levels in the inferior colliculus (IC), an integral region of the PPI circuit, of WT and Fmr1 KO mice at P7, P12, P18, and P40. MMP-9 levels were higher in the IC of Fmr1 KO mice during early development (P7, P12), but not in adults. We compared ASR and PPI responses in young (P23-25) and adult (P50-80) Fmr1 KO mice to their age-matched wildtype (WT) controls. We found that both ASR and PPI were reduced in the young Fmr1 KO mice compared to age-matched WT mice. There was no genotype difference for ASR in the adult mice, but PPI was significantly reduced in the adult Fmr1 KO mice. The adult mouse data are similar to those observed in humans with FXS. Genetic reduction of MMP-9 in the Fmr1 KO mice resulted in a rescue of adult PPI responses to WT levels. Taken together, these results show sensorimotor gating abnormalities in Fmr1 KO mice, and suggest the potential for MMP-9 regulation as a therapeutic target to reduce sensory hypersensitivity.
Collapse
Affiliation(s)
- Jamiela Kokash
- Graduate Neuroscience Program, University of California, Riverside, United States
| | - Erin M Alderson
- Dept. of Psychology, University of California, Riverside, United States
| | - Sarah M Reinhard
- Dept. of Psychology, University of California, Riverside, United States
| | - Cynthia A Crawford
- Psychology Dept. California State University, San Bernardino, United States
| | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, United States; Biomedical Sciences Division, School of Medicine, University of California, Riverside, United States
| | - Iryna M Ethell
- Graduate Neuroscience Program, University of California, Riverside, United States; Biomedical Sciences Division, School of Medicine, University of California, Riverside, United States
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, United States; Dept. of Psychology, University of California, Riverside, United States.
| |
Collapse
|