1
|
Naffaa MM. Neurogenesis dynamics in the olfactory bulb: deciphering circuitry organization, function, and adaptive plasticity. Neural Regen Res 2025; 20:1565-1581. [PMID: 38934393 DOI: 10.4103/nrr.nrr-d-24-00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover, the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Turrini L, Ricci P, Sorelli M, de Vito G, Marchetti M, Vanzi F, Pavone FS. Two-photon all-optical neurophysiology for the dissection of larval zebrafish brain functional and effective connectivity. Commun Biol 2024; 7:1261. [PMID: 39367042 PMCID: PMC11452506 DOI: 10.1038/s42003-024-06731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 10/06/2024] Open
Abstract
One of the most audacious goals of modern neuroscience is unraveling the complex web of causal relations underlying the activity of neuronal populations on a whole-brain scale. This endeavor, which was prohibitive only a couple of decades ago, has recently become within reach owing to the advancements in optical methods and the advent of genetically encoded indicators/actuators. These techniques, applied to the translucent larval zebrafish have enabled recording and manipulation of the activity of extensive neuronal populations spanning the entire vertebrate brain. Here, we present a custom two-photon optical system that couples light-sheet imaging and 3D excitation with acousto-optic deflectors for simultaneous high-speed volumetric recording and optogenetic stimulation. By employing a zebrafish line with pan-neuronal expression of both the calcium reporter GCaMP6s and the red-shifted opsin ReaChR, we implemented a crosstalk-free, noninvasive all-optical approach and applied it to reconstruct the functional and effective connectivity of the left habenula.
Collapse
Affiliation(s)
- Lapo Turrini
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| | - Pietro Ricci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Michele Sorelli
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Wang Y, Zheng AN, Yang H, Wang Q, Dai B, Wang JJ, Wan YT, Liu ZB, Liu SY. Olfactory Three-Needle Electroacupuncture Improved Synaptic Plasticity and Gut Microbiota of SAMP8 Mice by Stimulating Olfactory Nerve. Chin J Integr Med 2024; 30:729-741. [PMID: 37999886 DOI: 10.1007/s11655-023-3614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To investigate the effects and mechanisms of olfactory three-needle (OTN) electroacupuncture (EA) stimulation of the olfactory system on cognitive dysfunction, synaptic plasticity, and the gut microbiota in senescence-accelerated mouse prone 8 (SAMP8) mice. METHODS Thirty-six SAMP8 mice were randomly divided into the SAMP8 (P8), SAMP8+OTN (P8-OT), and SAMP8+nerve transection+OTN (P8-N-OT) groups according to a random number table (n=12 per group), and 12 accelerated senescence-resistant (SAMR1) mice were used as the control (R1) group. EA was performed at the Yintang (GV 29) and bilateral Yingxiang (LI 20) acupoints of SAMP8 mice for 4 weeks. The Morris water maze test, transmission electron microscopy, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, Nissl staining, Golgi staining, Western blot, and 16S rRNA sequencing were performed, respectively. RESULTS Compared with the P8 group, OTN improved the cognitive behavior of SAMP8 mice, inhibited neuronal apoptosis, increased neuronal activity, and attenuated hippocampal synaptic dysfunction (P<0.05 or P<0.01). Moreover, the expression levels of synaptic plasticity-related proteins N-methyl-D-aspartate receptor 1 (NMDAR1), NMDAR2B, synaptophysin (SYN), and postsynaptic density protein-95 (PSD95) in hippocampus were increased by OTN treatment (P<0.05 or P<0.01). Furthermore, OTN greatly enhanced the brain-derived neurotrophic factor (BDNF)/cAMP-response element binding (CREB) signaling and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling compared with the P8 group (P<0.05 or P<0.01). However, the neuroprotective effect of OTN was attenuated by olfactory nerve truncation. Compared with the P8 group, OTN had a very limited effect on the fecal microbial structure and composition of SAMP8 mice, while specifically increased the genera Oscillospira and Sutterella (P<0.05). Interestingly, the P8-N-OT group showed an abnormal fecal microbiota with higher microbial α-diversity, Firmicutes/Bacteroidetes ratio and pathogenic bacteria (P<0.05 or P<0.01). CONCLUSIONS OTN improved cognitive deficits and hippocampal synaptic plasticity by stimulating the olfactory nerve and activating the BDNF/CREB and PI3K/AKT/mTOR signaling pathways. Although the gut microbiota was not the main therapeutic target of OTN for Alzheimer's disease, the olfactory nerve was essential to maintain the homeostasis of gut microbiota.
Collapse
Affiliation(s)
- Yuan Wang
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - A-Ni Zheng
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Huan Yang
- Department of Traditional Chinese Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, 014040, China
| | - Qiang Wang
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Biao Dai
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Jia-Ju Wang
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Yi-Tong Wan
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Zhi-Bin Liu
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Si-Yang Liu
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
4
|
Ku SP, Atucha E, Alavi N, Mulla-Osman H, Kayumova R, Yoshida M, Csicsvari J, Sauvage MM. Phase locking of hippocampal CA3 neurons to distal CA1 theta oscillations selectively predicts memory performance. Cell Rep 2024; 43:114276. [PMID: 38814781 DOI: 10.1016/j.celrep.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
How the coordination of neuronal spiking and brain rhythms between hippocampal subregions supports memory function remains elusive. We studied the interregional coordination of CA3 neuronal spiking with CA1 theta oscillations by recording electrophysiological signals along the proximodistal axis of the hippocampus in rats that were performing a high-memory-demand recognition memory task adapted from humans. We found that CA3 population spiking occurs preferentially at the peak of distal CA1 theta oscillations when memory was tested but only when previously encountered stimuli were presented. In addition, decoding analyses revealed that only population cell firing of proximal CA3 together with that of distal CA1 can predict performance at test in the present non-spatial task. Overall, our work demonstrates an important role for the synchronization of CA3 neuronal activity with CA1 theta oscillations during memory testing.
Collapse
Affiliation(s)
- Shih-Pi Ku
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany.
| | - Erika Atucha
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Nico Alavi
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Halla Mulla-Osman
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Rukhshona Kayumova
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Motoharu Yoshida
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jozsef Csicsvari
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Magdalena M Sauvage
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Functional Neuroplasticity Department, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
5
|
Terrier C, Greco-Vuilloud J, Cavelius M, Thevenet M, Mandairon N, Didier A, Richard M. Long-term olfactory enrichment promotes non-olfactory cognition, noradrenergic plasticity and remodeling of brain functional connectivity in older mice. Neurobiol Aging 2024; 136:133-156. [PMID: 38364691 DOI: 10.1016/j.neurobiolaging.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Brain functional and structural changes lead to cognitive decline during aging, but a high level of cognitive stimulation during life can improve cognitive performances in the older adults, forming the cognitive reserve. Noradrenaline has been proposed as a molecular link between environmental stimulation and constitution of the cognitive reserve. Taking advantage of the ability of olfactory stimulation to activate noradrenergic neurons of the locus coeruleus, we used repeated olfactory enrichment sessions over the mouse lifespan to enable the cognitive reserve buildup. Mice submitted to olfactory enrichment, whether started in early or late adulthood, displayed improved olfactory discrimination at late ages and interestingly, improved spatial memory and cognitive flexibility. Moreover, olfactory and non-olfactory cognitive performances correlated with increased noradrenergic innervation in the olfactory bulb and dorsal hippocampus. Finally, c-Fos mapping and connectivity analysis revealed task-specific remodeling of functional neural networks in enriched older mice. Long-term olfactory enrichment thus triggers structural noradrenergic plasticity and network remodeling associated with better cognitive aging and thereby forms a promising mouse model of the cognitive reserve buildup.
Collapse
Affiliation(s)
- Claire Terrier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Juliette Greco-Vuilloud
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Matthias Cavelius
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Marc Thevenet
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Nathalie Mandairon
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Anne Didier
- Institut universitaire de France (IUF), France
| | - Marion Richard
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France.
| |
Collapse
|
6
|
Mihalj D, Borbelyova V, Pirnik Z, Bacova Z, Ostatnikova D, Bakos J. Shank3 Deficiency Results in a Reduction in GABAergic Postsynaptic Puncta in the Olfactory Brain Areas. Neurochem Res 2024; 49:1008-1016. [PMID: 38183586 PMCID: PMC10902016 DOI: 10.1007/s11064-023-04097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Dysfunctional sensory systems, including altered olfactory function, have recently been reported in patients with autism spectrum disorder (ASD). Disturbances in olfactory processing can potentially result from gamma-aminobutyric acid (GABA)ergic synaptic abnormalities. The specific molecular mechanism by which GABAergic transmission affects the olfactory system in ASD remains unclear. Therefore, the present study aimed to evaluate selected components of the GABAergic system in olfactory brain regions and primary olfactory neurons isolated from Shank3-deficient (-/-) mice, which are known for their autism-like behavioral phenotype. Shank3 deficiency led to a significant reduction in GEPHYRIN/GABAAR colocalization in the piriform cortex and in primary neurons isolated from the olfactory bulb, while no change of cell morphology was observed. Gene expression analysis revealed a significant reduction in the mRNA levels of GABA transporter 1 in the olfactory bulb and Collybistin in the frontal cortex of the Shank3-/- mice compared to WT mice. A similar trend of reduction was observed in the expression of Somatostatin in the frontal cortex of Shank3-/- mice. The analysis of the expression of other GABAergic neurotransmission markers did not yield statistically significant results. Overall, it appears that Shank3 deficiency leads to changes in GABAergic synapses in the brain regions that are important for olfactory information processing, which may represent basis for understanding functional impairments in autism.
Collapse
Affiliation(s)
- Denisa Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Veronika Borbelyova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zdeno Pirnik
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
7
|
Pekarek BT, Kochukov M, Lozzi B, Wu T, Hunt PJ, Tepe B, Hanson Moss E, Tantry EK, Swanson JL, Dooling SW, Patel M, Belfort BDW, Romero JM, Bao S, Hill MC, Arenkiel BR. Oxytocin signaling is necessary for synaptic maturation of adult-born neurons. Genes Dev 2022; 36:1100-1118. [PMID: 36617877 PMCID: PMC9851403 DOI: 10.1101/gad.349930.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
Neural circuit plasticity and sensory response dynamics depend on forming new synaptic connections. Despite recent advances toward understanding the consequences of circuit plasticity, the mechanisms driving circuit plasticity are unknown. Adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and circuit integration. We and others have shown that efficient adult-born neuron circuit integration hinges on presynaptic activity in the form of diverse signaling peptides. Here, we demonstrate a novel oxytocin-dependent mechanism of adult-born neuron synaptic maturation and circuit integration. We reveal spatial and temporal enrichment of oxytocin receptor expression within adult-born neurons in the murine olfactory bulb, with oxytocin receptor expression peaking during activity-dependent integration. Using viral labeling, confocal microscopy, and cell type-specific RNA-seq, we demonstrate that oxytocin receptor signaling promotes synaptic maturation of newly integrating adult-born neurons by regulating their morphological development and expression of mature synaptic AMPARs and other structural proteins.
Collapse
Affiliation(s)
- Brandon T Pekarek
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Mikhail Kochukov
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Brittney Lozzi
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Timothy Wu
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Patrick J Hunt
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Burak Tepe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Elizabeth Hanson Moss
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Evelyne K Tantry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Jessica L Swanson
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Sean W Dooling
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mayuri Patel
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Benjamin D W Belfort
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Juan M Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew C Hill
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Aghvami SS, Kubota Y, Egger V. Anatomical and Functional Connectivity at the Dendrodendritic Reciprocal Mitral Cell-Granule Cell Synapse: Impact on Recurrent and Lateral Inhibition. Front Neural Circuits 2022; 16:933201. [PMID: 35937203 PMCID: PMC9355734 DOI: 10.3389/fncir.2022.933201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
In the vertebrate olfactory bulb, reciprocal dendrodendritic interactions between its principal neurons, the mitral and tufted cells, and inhibitory interneurons in the external plexiform layer mediate both recurrent and lateral inhibition, with the most numerous of these interneurons being granule cells. Here, we used recently established anatomical parameters and functional data on unitary synaptic transmission to simulate the strength of recurrent inhibition of mitral cells specifically from the reciprocal spines of rat olfactory bulb granule cells in a quantitative manner. Our functional data allowed us to derive a unitary synaptic conductance on the order of 0.2 nS. The simulations predicted that somatic voltage deflections by even proximal individual granule cell inputs are below the detection threshold and that attenuation with distance is roughly linear, with a passive length constant of 650 μm. However, since recurrent inhibition in the wake of a mitral cell action potential will originate from hundreds of reciprocal spines, the summated recurrent IPSP will be much larger, even though there will be substantial mutual shunting across the many inputs. Next, we updated and refined a preexisting model of connectivity within the entire rat olfactory bulb, first between pairs of mitral and granule cells, to estimate the likelihood and impact of recurrent inhibition depending on the distance between cells. Moreover, to characterize the substrate of lateral inhibition, we estimated the connectivity via granule cells between any two mitral cells or all the mitral cells that belong to a functional glomerular ensemble (i.e., which receive their input from the same glomerulus), again as a function of the distance between mitral cells and/or entire glomerular mitral cell ensembles. Our results predict the extent of the three regimes of anatomical connectivity between glomerular ensembles: high connectivity within a glomerular ensemble and across the first four rings of adjacent glomeruli, substantial connectivity to up to eleven glomeruli away, and negligible connectivity beyond. Finally, in a first attempt to estimate the functional strength of granule-cell mediated lateral inhibition, we combined this anatomical estimate with our above simulation results on attenuation with distance, resulting in slightly narrowed regimes of a functional impact compared to the anatomical connectivity.
Collapse
Affiliation(s)
- S. Sara Aghvami
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
| | - Veronica Egger
- Neurophysiology, Institute of Zoology, Regensburg University, Regensburg, Germany
| |
Collapse
|
9
|
Wu J, Liu P, Mao X, Qiu F, Gong L, Wu J, Wang D, He M, Li A. Ablation of microRNAs in VIP + interneurons impairs olfactory discrimination and decreases neural activity in the olfactory bulb. Acta Physiol (Oxf) 2022; 234:e13767. [PMID: 34981885 DOI: 10.1111/apha.13767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/18/2021] [Accepted: 01/01/2022] [Indexed: 12/29/2022]
Abstract
AIM MicroRNAs (miRNAs) are abundantly expressed in vasoactive intestinal peptide expressing (VIP+ ) interneurons and are indispensable for their functional maintenance and survival. Here, we blocked miRNA biogenesis in postmitotic VIP+ interneurons in mice by selectively ablating Dicer, an enzyme essential for miRNA maturation, to study whether ablation of VIP+ miRNA affects olfactory function and neural activity in olfactory centres such as the olfactory bulb, which contains a large number of VIP+ interneurons. METHODS A go/no-go odour discrimination task and a food-seeking test were used to assess olfactory discrimination and olfactory detection. In vivo electrophysiological techniques were used to record single units and local field potentials. RESULTS Olfactory detection and olfactory discrimination behaviours were impaired in VIP+ -specific Dicer-knockout mice. In vivo electrophysiological recordings in awake, head-fixed mice showed that both spontaneous and odour-evoked firing rates were decreased in mitral/tufted cells in knockout mice. The power of ongoing and odour-evoked beta local field potentials response of the olfactory bulb and anterior piriform cortex were dramatically decreased. Furthermore, the coherence of theta oscillations between the olfactory bulb and anterior piriform cortex was decreased. Importantly, Dicer knockout restricted to olfactory bulb VIP+ interneurons recapitulated the behavioural and electrophysiological results of the global knockout. CONCLUSIONS VIP+ miRNAs are an important factor in sensory processing, affecting olfactory function and olfactory neural activity.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Fang Qiu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
- Department of Anesthesiology Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| |
Collapse
|
10
|
Olfactory Optogenetics: Light Illuminates the Chemical Sensing Mechanisms of Biological Olfactory Systems. BIOSENSORS-BASEL 2021; 11:bios11090309. [PMID: 34562900 PMCID: PMC8470751 DOI: 10.3390/bios11090309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/26/2023]
Abstract
The mammalian olfactory system has an amazing ability to distinguish thousands of odorant molecules at the trace level. Scientists have made great achievements on revealing the olfactory sensing mechanisms in decades; even though many issues need addressing. Optogenetics provides a novel technical approach to solve this dilemma by utilizing light to illuminate specific part of the olfactory system; which can be used in all corners of the olfactory system for revealing the olfactory mechanism. This article reviews the most recent advances in olfactory optogenetics devoted to elucidate the mechanisms of chemical sensing. It thus attempts to introduce olfactory optogenetics according to the structure of the olfactory system. It mainly includes the following aspects: the sensory input from the olfactory epithelium to the olfactory bulb; the influences of the olfactory bulb (OB) neuron activity patterns on olfactory perception; the regulation between the olfactory cortex and the olfactory bulb; and the neuromodulation participating in odor coding by dominating the olfactory bulb. Finally; current challenges and future development trends of olfactory optogenetics are proposed and discussed.
Collapse
|
11
|
Gribaudo S, Saraulli D, Nato G, Bonzano S, Gambarotta G, Luzzati F, Costanzi M, Peretto P, Bovetti S, De Marchis S. Neurogranin Regulates Adult-Born Olfactory Granule Cell Spine Density and Odor-Reward Associative Memory in Mice. Int J Mol Sci 2021; 22:ijms22084269. [PMID: 33924098 PMCID: PMC8074334 DOI: 10.3390/ijms22084269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Neurogranin (Ng) is a brain-specific postsynaptic protein, whose role in modulating Ca2+/calmodulin signaling in glutamatergic neurons has been linked to enhancement in synaptic plasticity and cognitive functions. Accordingly, Ng knock-out (Ng-ko) mice display hippocampal-dependent learning and memory impairments associated with a deficit in long-term potentiation induction. In the adult olfactory bulb (OB), Ng is expressed by a large population of GABAergic granule cells (GCs) that are continuously generated during adult life, undergo high synaptic remodeling in response to the sensory context, and play a key role in odor processing. However, the possible implication of Ng in OB plasticity and function is yet to be investigated. Here, we show that Ng expression in the OB is associated with the mature state of adult-born GCs, where its active-phosphorylated form is concentrated at post-synaptic sites. Constitutive loss of Ng in Ng-ko mice resulted in defective spine density in adult-born GCs, while their survival remained unaltered. Moreover, Ng-ko mice show an impaired odor-reward associative memory coupled with reduced expression of the activity-dependent transcription factor Zif268 in olfactory GCs. Overall, our data support a role for Ng in the molecular mechanisms underlying GC plasticity and the formation of olfactory associative memory.
Collapse
Affiliation(s)
- Simona Gribaudo
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
| | - Daniele Saraulli
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council, 00143 Rome, Italy;
| | - Giulia Nato
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Giovanna Gambarotta
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
- Department of Clinical and Biological Sciences (DSCB), University of Torino, 10043 Turin, Italy
| | - Federico Luzzati
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Marco Costanzi
- Department of Human Sciences, LUMSA University, 00193 Rome, Italy;
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
- Correspondence: (S.B.); (S.D.M.)
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
- Correspondence: (S.B.); (S.D.M.)
| |
Collapse
|
12
|
Shani-Narkiss H, Vinograd A, Landau ID, Tasaka G, Yayon N, Terletsky S, Groysman M, Maor I, Sompolinsky H, Mizrahi A. Young adult-born neurons improve odor coding by mitral cells. Nat Commun 2020; 11:5867. [PMID: 33203831 PMCID: PMC7673122 DOI: 10.1038/s41467-020-19472-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
New neurons are continuously generated in the adult brain through a process called adult neurogenesis. This form of plasticity has been correlated with numerous behavioral and cognitive phenomena, but it remains unclear if and how adult-born neurons (abNs) contribute to mature neural circuits. We established a highly specific and efficient experimental system to target abNs for causal manipulations. Using this system with chemogenetics and imaging, we found that abNs effectively sharpen mitral cells (MCs) tuning and improve their power to discriminate among odors. The effects on MCs responses peaked when abNs were young and decreased as they matured. To explain the mechanism of our observations, we simulated the olfactory bulb circuit by modelling the incorporation of abNs into the circuit. We show that higher excitability and broad input connectivity, two well-characterized features of young neurons, underlie their unique ability to boost circuit computation.
Collapse
Affiliation(s)
- H Shani-Narkiss
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Vinograd
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - I D Landau
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - G Tasaka
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - N Yayon
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Terletsky
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Groysman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - I Maor
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - H Sompolinsky
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
13
|
Wu A, Yu B, Chen Q, Matthews GA, Lu C, Campbell E, Tye KM, Komiyama T. Context-dependent plasticity of adult-born neurons regulated by cortical feedback. SCIENCE ADVANCES 2020; 6:6/42/eabc8319. [PMID: 33067236 PMCID: PMC7567600 DOI: 10.1126/sciadv.abc8319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/02/2020] [Indexed: 05/26/2023]
Abstract
In a complex and dynamic environment, the brain flexibly adjusts its circuits to preferentially process behaviorally relevant information. Here, we investigated how the olfactory bulb copes with this demand by examining the plasticity of adult-born granule cells (abGCs). We found that learning of olfactory discrimination elevates odor responses of young abGCs and increases their apical dendritic spines. This plasticity did not occur in abGCs during passive odor experience nor in resident granule cells (rGCs) during learning. Furthermore, we found that feedback projections from the piriform cortex show elevated activity during learning, and activating piriform feedback elicited stronger excitatory postsynaptic currents in abGCs than rGCs. Inactivation of piriform feedback blocked abGC plasticity during learning, and activation of piriform feedback during passive experience induced learning-like plasticity of abGCs. Our work describes a neural circuit mechanism that uses adult neurogenesis to update a sensory circuit to flexibly adapt to new behavioral demands.
Collapse
Affiliation(s)
- An Wu
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Bin Yu
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Qiyu Chen
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Chen Lu
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Evan Campbell
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
| | - Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Takaki Komiyama
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Imamura F, Ito A, LaFever BJ. Subpopulations of Projection Neurons in the Olfactory Bulb. Front Neural Circuits 2020; 14:561822. [PMID: 32982699 PMCID: PMC7485133 DOI: 10.3389/fncir.2020.561822] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Generation of neuronal diversity is a biological strategy widely used in the brain to process complex information. The olfactory bulb is the first relay station of olfactory information in the vertebrate central nervous system. In the olfactory bulb, axons of the olfactory sensory neurons form synapses with dendrites of projection neurons that transmit the olfactory information to the olfactory cortex. Historically, the olfactory bulb projection neurons have been classified into two populations, mitral cells and tufted cells. The somata of these cells are distinctly segregated within the layers of the olfactory bulb; the mitral cells are located in the mitral cell layer while the tufted cells are found in the external plexiform layer. Although mitral and tufted cells share many morphological, biophysical, and molecular characteristics, they differ in soma size, projection patterns of their dendrites and axons, and odor responses. In addition, tufted cells are further subclassified based on the relative depth of their somata location in the external plexiform layer. Evidence suggests that different types of tufted cells have distinct cellular properties and play different roles in olfactory information processing. Therefore, mitral and different types of tufted cells are considered as starting points for parallel pathways of olfactory information processing in the brain. Moreover, recent studies suggest that mitral cells also consist of heterogeneous subpopulations with different cellular properties despite the fact that the mitral cell layer is a single-cell layer. In this review, we first compare the morphology of projection neurons in the olfactory bulb of different vertebrate species. Next, we explore the similarities and differences among subpopulations of projection neurons in the rodent olfactory bulb. We also discuss the timing of neurogenesis as a factor for the generation of projection neuron heterogeneity in the olfactory bulb. Knowledge about the subpopulations of olfactory bulb projection neurons will contribute to a better understanding of the complex olfactory information processing in higher brain regions.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Brandon J LaFever
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
15
|
Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations. J Neurosci 2020; 40:5954-5969. [PMID: 32561671 DOI: 10.1523/jneurosci.0233-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022] Open
Abstract
Lateral inhibition is a fundamental feature of circuits that process sensory information. In the mammalian olfactory system, inhibitory interneurons called short axon cells (SACs) comprise the first network mediating lateral inhibition between glomeruli, the functional units of early olfactory coding and processing. The connectivity of this network and its impact on odor representations is not well understood. To explore this question, we constructed a computational model of the interglomerular inhibitory network using detailed characterizations of SAC morphologies taken from mouse olfactory bulb (OB). We then examined how this network transformed glomerular patterns of odorant-evoked sensory input (taken from previously-published datasets) as a function of the selectivity of interglomerular inhibition. We examined three connectivity schemes: selective (each glomerulus connects to few others with heterogeneous strength), nonselective (glomeruli connect to most others with heterogenous strength), or global (glomeruli connect to all others with equal strength). We found that both selective and nonselective interglomerular networks could mediate heterogeneous patterns of inhibition across glomeruli when driven by realistic sensory input patterns, but that global inhibitory networks were unable to produce input-output transformations that matched experimental data and were poor mediators of intensity-dependent gain control. We further found that networks whose interglomerular connectivities were tuned by sensory input profile decorrelated odor representations moreeffectively. These results suggest that, despite their multiglomerular innervation patterns, SACs are capable of mediating odorant-specific patterns of inhibition between glomeruli that could, theoretically, be tuned by experience or evolution to optimize discrimination of particular odorants.SIGNIFICANCE STATEMENT Lateral inhibition is a key feature of circuitry in many sensory systems including vision, audition, and olfaction. We investigate how lateral inhibitory networks mediated by short axon cells (SACs) in the mouse olfactory bulb (OB) might shape odor representations as a function of their interglomerular connectivity. Using a computational model of interglomerular connectivity derived from experimental data, we find that SAC networks, despite their broad innervation patterns, can mediate heterogeneous patterns of inhibition across glomeruli, and that the canonical model of global inhibition does not generate experimentally observed responses to stimuli. In addition, inhibitory connections tuned by input statistics yield enhanced decorrelation of similar input patterns. These results elucidate how the organization of inhibition between neural elements may affect computations.
Collapse
|
16
|
Kim JY, Choe J, Moon C. Distinct Developmental Features of Olfactory Bulb Interneurons. Mol Cells 2020; 43:215-221. [PMID: 32208366 PMCID: PMC7103883 DOI: 10.14348/molcells.2020.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/20/2023] Open
Abstract
The olfactory bulb (OB) has an extremely higher proportionof interneurons innervating excitatory neurons than otherbrain regions, which is evolutionally conserved across species.Despite the abundance of OB interneurons, little is knownabout the diversification and physiological functions ofOB interneurons compared to cortical interneurons. In thisreview, an overview of the general developmental processof interneurons from the angles of the spatial and temporalspecifications was presented. Then, the distinct featuresshown exclusively in OB interneurons development andmolecular machinery recently identified were discussed.Finally, we proposed an evolutionary meaning for thediversity of OB interneurons.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Jiyun Choe
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology, Daegu 4988, Korea
- Korea Brain Research Institute, Daegu 41062, Korea
| |
Collapse
|
17
|
Wu A, Yu B, Komiyama T. Plasticity in olfactory bulb circuits. Curr Opin Neurobiol 2020; 64:17-23. [PMID: 32062045 DOI: 10.1016/j.conb.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022]
Abstract
Olfaction is crucial for animal survival and human well-being. The olfactory bulb is the obligatory input station for olfactory information. In contrast to the traditional view as a static relay station, recent evidence indicates that the olfactory bulb dynamically processes olfactory information in an experience-dependent and context-dependent manner. Here, we review recent studies on experience-dependent plasticity of the main circuit components within the olfactory bulb of rodents. We argue that the olfactory bulb plasticity allows optimal representations of behaviorally-relevant odors in the continuously changing olfactory environment.
Collapse
Affiliation(s)
- An Wu
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bin Yu
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Long-term activity drives dendritic branch elaboration of a C. elegans sensory neuron. Dev Biol 2020; 461:66-74. [PMID: 31945343 PMCID: PMC7170766 DOI: 10.1016/j.ydbio.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Neuronal activity often leads to alterations in gene expression and cellular architecture. The nematode Caenorhabditis elegans, owing to its compact translucent nervous system, is a powerful system in which to study conserved aspects of the development and plasticity of neuronal morphology. Here we focus on one pair of sensory neurons, termed URX, which the worm uses to sense and avoid high levels of environmental oxygen. Previous studies have reported that the URX neuron pair has variable branched endings at its dendritic sensory tip. By controlling oxygen levels and analyzing mutants, we found that these microtubule-rich branched endings grow over time as a consequence of neuronal activity in adulthood. We also find that the growth of these branches correlates with an increase in cellular sensitivity to particular ranges of oxygen that is observable in the behavior of older worms. Given the strengths of C. elegans as a model organism, URX may serve as a potent system for uncovering genes and mechanisms involved in activity-dependent morphological changes in neurons and possible adaptive changes in the aging nervous system. The dendritic tip of an oxygen-sensing neuron grows elaborate microtubule-rich processes in adult C. elegans. Dendritic tip elaboration depends on the long-term activity of the neuron and calcium. The elaboration correlates with increased sensitivity of the neuron to certain ranges of oxygen as well as higher avoidance of oxygen during bordering behavior. The dendritic tip changes may reflect adaptive changes in physiology and behavior during adulthood.
Collapse
|
19
|
Target specific functions of EPL interneurons in olfactory circuits. Nat Commun 2019; 10:3369. [PMID: 31358754 PMCID: PMC6662826 DOI: 10.1038/s41467-019-11354-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/27/2019] [Indexed: 12/02/2022] Open
Abstract
Inhibitory interneurons are integral to sensory processing, yet revealing their cell type-specific roles in sensory circuits remains an ongoing focus. To Investigate the mouse olfactory system, we selectively remove GABAergic transmission from a subset of olfactory bulb interneurons, EPL interneurons (EPL-INs), and assay odor responses from their downstream synaptic partners — tufted cells and mitral cells. Using a combination of in vivo electrophysiological and imaging analyses, we find that inactivating this single node of inhibition leads to differential effects in magnitude, reliability, tuning width, and temporal dynamics between the two principal neurons. Furthermore, tufted and not mitral cell responses to odor mixtures become more linearly predictable without EPL-IN inhibition. Our data suggest that olfactory bulb interneurons, through exerting distinct inhibitory functions onto their different synaptic partners, play a significant role in the processing of odor information. The precise cell-type specific role of inhibitory interneurons in regulating sensory responses in the olfactory bulb is not known. Here, the authors report that removing GABAergic inhibition from one layer differentially affects response dynamics of the two main output cell types and changes odor mixture processing.
Collapse
|
20
|
Adams W, Graham JN, Han X, Riecke H. Top-down inputs drive neuronal network rewiring and context-enhanced sensory processing in olfaction. PLoS Comput Biol 2019; 15:e1006611. [PMID: 30668563 PMCID: PMC6358160 DOI: 10.1371/journal.pcbi.1006611] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 02/01/2019] [Accepted: 10/29/2018] [Indexed: 11/18/2022] Open
Abstract
Much of the computational power of the mammalian brain arises from its extensive top-down projections. To enable neuron-specific information processing these projections have to be precisely targeted. How such a specific connectivity emerges and what functions it supports is still poorly understood. We addressed these questions in silico in the context of the profound structural plasticity of the olfactory system. At the core of this plasticity are the granule cells of the olfactory bulb, which integrate bottom-up sensory inputs and top-down inputs delivered by vast top-down projections from cortical and other brain areas. We developed a biophysically supported computational model for the rewiring of the top-down projections and the intra-bulbar network via adult neurogenesis. The model captures various previous physiological and behavioral observations and makes specific predictions for the cortico-bulbar network connectivity that is learned by odor exposure and environmental contexts. Specifically, it predicts that-after learning-the granule-cell receptive fields with respect to sensory and with respect to cortical inputs are highly correlated. This enables cortical cells that respond to a learned odor to enact disynaptic inhibitory control specifically of bulbar principal cells that respond to that odor. For this the reciprocal nature of the granule cell synapses with the principal cells is essential. Functionally, the model predicts context-enhanced stimulus discrimination in cluttered environments ('olfactory cocktail parties') and the ability of the system to adapt to its tasks by rapidly switching between different odor-processing modes. These predictions are experimentally testable. At the same time they provide guidance for future experiments aimed at unraveling the cortico-bulbar connectivity.
Collapse
Affiliation(s)
- Wayne Adams
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - James N. Graham
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Xuchen Han
- Mathematics, Northwestern University, Evanston, IL, USA
| | - Hermann Riecke
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| |
Collapse
|
21
|
Vinograd A, Fuchs-Shlomai Y, Stern M, Mukherjee D, Gao Y, Citri A, Davison I, Mizrahi A. Functional Plasticity of Odor Representations during Motherhood. Cell Rep 2018; 21:351-365. [PMID: 29020623 PMCID: PMC5643523 DOI: 10.1016/j.celrep.2017.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 06/21/2017] [Accepted: 09/11/2017] [Indexed: 01/24/2023] Open
Abstract
Motherhood is accompanied by new behaviors aimed at ensuring the wellbeing of the offspring. Olfaction plays a key role in guiding maternal behaviors during this transition. We studied functional changes in the main olfactory bulb (OB) of mothers in mice. Using in vivo two-photon calcium imaging, we studied the sensory representation of odors by mitral cells (MCs). We show that MC responses to monomolecular odors become sparser and weaker in mothers. In contrast, responses to biologically relevant odors are spared from sparsening or strengthen. MC responses to mixtures and to a range of concentrations suggest that these differences between odor responses cannot be accounted for by mixture suppressive effects or gain control mechanisms. In vitro whole-cell recordings show an increase in inhibitory synaptic drive onto MCs. The increase of inhibitory tone may contribute to the general decrease in responsiveness and concomitant enhanced representation of specific odors. MCs of mothers show sparser responses for pure odors MCs of mothers have stronger inhibitory drive onto MCs MCs of mothers show stronger responses to natural odors MC ensemble coding is improved for natural but not pure odors
Collapse
Affiliation(s)
- Amit Vinograd
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Yael Fuchs-Shlomai
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Merav Stern
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Diptendu Mukherjee
- Department of Chemical Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Yuan Gao
- Department of Biology, Boston University, Boston, MA, USA
| | - Ami Citri
- Department of Chemical Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Ian Davison
- Department of Biology, Boston University, Boston, MA, USA
| | - Adi Mizrahi
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
22
|
McClard CK, Arenkiel BR. Neuropeptide Signaling Networks and Brain Circuit Plasticity. J Exp Neurosci 2018; 12:1179069518779207. [PMID: 29899664 PMCID: PMC5985544 DOI: 10.1177/1179069518779207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023] Open
Abstract
The brain is a remarkable network of circuits dedicated to sensory integration, perception, and response. The computational power of the brain is estimated to dwarf that of most modern supercomputers, but perhaps its most fascinating capability is to structurally refine itself in response to experience. In the language of computers, the brain is loaded with programs that encode when and how to alter its own hardware. This programmed "plasticity" is a critical mechanism by which the brain shapes behavior to adapt to changing environments. The expansive array of molecular commands that help execute this programming is beginning to emerge. Notably, several neuropeptide transmitters, previously best characterized for their roles in hypothalamic endocrine regulation, have increasingly been recognized for mediating activity-dependent refinement of local brain circuits. Here, we discuss recent discoveries that reveal how local signaling by corticotropin-releasing hormone reshapes mouse olfactory bulb circuits in response to activity and further explore how other local neuropeptide networks may function toward similar ends.
Collapse
Affiliation(s)
- Cynthia K McClard
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice. J Neurosci 2018; 38:4623-4640. [PMID: 29669746 DOI: 10.1523/jneurosci.3559-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023] Open
Abstract
Associative fear learning produces fear toward the conditioned stimulus (CS) and often generalization, the expansion of fear from the CS to similar, unlearned stimuli. However, how fear learning affects early sensory processing of learned and unlearned stimuli in relation to behavioral fear responses to these stimuli remains unclear. We subjected male and female mice expressing the fluorescent calcium indicator GCaMP3 in olfactory bulb mitral and tufted cells to a classical olfactory fear conditioning paradigm. We then used awake, in vivo calcium imaging to quantify learning-induced changes in glomerular odor responses, which constitute the first site of olfactory processing in the brain. The results demonstrate that odor-shock pairing nonspecifically enhances glomerular odor representations in a learning-dependent manner and increases representational similarity between the CS and nonconditioned odors, potentially priming the system toward generalization of learned fear. Additionally, CS-specific glomerular enhancements remain even when associative learning is blocked, suggesting two separate mechanisms lead to enhanced glomerular responses following odor-shock pairings.SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are uniquely coded in a spatial map that represents odor identity, making the OB a unique model system for investigating how learned fear alters sensory processing. Classical fear conditioning causes fear of the conditioned stimulus (CS) and of neutral stimuli, known as generalization. Combining fear conditioning with fluorescent calcium imaging of OB glomeruli, we found enhanced glomerular responses of the CS as well as neutral stimuli in awake mice, which mirrors fear generalization. We report that CS and neutral stimuli enhancements are, respectively, learning-independent and learning-dependent. Together, these results reveal distinct mechanisms leading to enhanced OB processing of fear-inducing stimuli and provide important implications for altered sensory processing in fear generalization.
Collapse
|
24
|
Tong MT, Kim TYP, Cleland TA. Kinase activity in the olfactory bulb is required for odor memory consolidation. ACTA ACUST UNITED AC 2018; 25:198-205. [PMID: 29661832 PMCID: PMC5903401 DOI: 10.1101/lm.046615.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/05/2018] [Indexed: 12/25/2022]
Abstract
Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)—a process that is closely associated with BDNF signaling. We sought to elucidate the role of neurotrophin signaling within the OB on odor memory consolidation. Male mice were trained on odor–reward associative discriminations after bilateral infusion of the kinase inhibitor K252a, or vehicle control, into the OB. K252a is a partially selective inhibitor of tyrosine kinase (Trk) receptors, including the TrkB receptor for BDNF, though it also inhibits other plasticity-related kinases such as PKC and CaMKII/IV. K252a infusion into the OB did not impair odor acquisition or short-term (2 h) memory for the learned discriminations, but significantly impaired long-term (48 h) odor memory (LTM). This LTM deficit also was associated with reduced selectivity for the conditioned odorant in a reward-seeking digging task. Infusions of K252a immediately prior to testing did not impair LTM recall. These results indicate that kinase activation in the OB is required for the consolidation of odor memory of incrementally acquired information.
Collapse
Affiliation(s)
- Michelle T Tong
- Department of Psychology, Cornell University, Ithaca, New York 14853, USA .,Department of Psychology, Earlham College, Richmond, Indiana 47374, USA
| | - Tae-Young P Kim
- Department of Psychology, Cornell University, Ithaca, New York 14853, USA
| | - Thomas A Cleland
- Department of Psychology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
25
|
Liu G, Patel JM, Tepe B, McClard CK, Swanson J, Quast KB, Arenkiel BR. An Objective and Reproducible Test of Olfactory Learning and Discrimination in Mice. J Vis Exp 2018. [PMID: 29630042 DOI: 10.3791/57142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Olfaction is the predominant sensory modality in mice and influences many important behaviors, including foraging, predator detection, mating, and parenting. Importantly, mice can be trained to associate novel odors with specific behavioral responses to provide insight into olfactory circuit function. This protocol details the procedure for training mice on a Go/No-Go operant learning task. In this approach, mice are trained on hundreds of automated trials daily for 2-4 weeks and can then be tested on novel Go/No-Go odor pairs to assess olfactory discrimination, or be used for studies on how odor learning alters the structure or function of the olfactory circuit. Additionally, the mouse olfactory bulb (OB) features ongoing integration of adult-born neurons. Interestingly, olfactory learning increases both the survival and synaptic connections of these adult-born neurons. Therefore, this protocol can be combined with other biochemical, electrophysiological, and imaging techniques to study learning and activity-dependent factors that mediate neuronal survival and plasticity.
Collapse
Affiliation(s)
- Gary Liu
- Program in Developmental Biology, Baylor College of Medicine; Medical Scientist Training Program, Baylor College of Medicine;
| | - Jay M Patel
- Medical Scientist Training Program, Baylor College of Medicine; Department of Neuroscience, Baylor College of Medicine
| | - Burak Tepe
- Program in Developmental Biology, Baylor College of Medicine
| | - Cynthia K McClard
- Medical Scientist Training Program, Baylor College of Medicine; Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Jessica Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Kathleen B Quast
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine; Department of Neuroscience, Baylor College of Medicine; Department of Molecular and Human Genetics, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital
| |
Collapse
|
26
|
POU6f1 Mediates Neuropeptide-Dependent Plasticity in the Adult Brain. J Neurosci 2018; 38:1443-1461. [PMID: 29305536 DOI: 10.1523/jneurosci.1641-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 01/20/2023] Open
Abstract
The mouse olfactory bulb (OB) features continued, activity-dependent integration of adult-born neurons, providing a robust model with which to examine mechanisms of plasticity in the adult brain. We previously reported that local OB interneurons secrete the neuropeptide corticotropin-releasing hormone (CRH) in an activity-dependent manner onto adult-born granule neurons and that local CRH signaling promotes expression of synaptic machinery in the bulb. This effect is mediated via activation of the CRH receptor 1 (CRHR1), which is developmentally regulated during adult-born neuron maturation. CRHR1 is a GS-protein-coupled receptor that activates CREB-dependent transcription in the presence of CRH. Therefore, we hypothesized that locally secreted CRH activates CRHR1 to initiate circuit plasticity programs. To identify such programs, we profiled gene expression changes associated with CRHR1 activity in adult-born neurons of the OB. Here, we show that CRHR1 activity influences expression of the brain-specific Homeobox-containing transcription factor POU Class 6 Homeobox 1 (POU6f1). To elucidate the contributions of POU6f1 toward activity-dependent circuit remodeling, we targeted CRHR1+ neurons in male and female mice for cell-type-specific manipulation of POU6f1 expression. Whereas loss of POU6f1 in CRHR1+ neurons resulted in reduced dendritic complexity and decreased synaptic connectivity, overexpression of POU6f1 in CRHR1+ neurons promoted dendritic outgrowth and branching and influenced synaptic function. Together, these findings suggest that the transcriptional program directed by POU6f1 downstream of local CRH signaling in adult-born neurons influences circuit dynamics in response to activity-dependent peptide signaling in the adult brain.SIGNIFICANCE STATEMENT Elucidating mechanisms of plasticity in the adult brain is helpful for devising strategies to understand and treat neurodegeneration. Circuit plasticity in the adult mouse olfactory bulb is exemplified by both continued cell integration and synaptogenesis. We previously reported that these processes are influenced by local neuropeptide signaling in an activity-dependent manner. Here, we show that local corticotropin-releasing hormone (CRH) signaling induces dynamic gene expression changes in CRH receptor expressing adult-born neurons, including altered expression of the transcription factor POU6f1 We further show that POU6f1 is necessary for proper dendrite specification and patterning, as well as synapse development and function in adult-born neurons. Together, these findings reveal a novel mechanism by which peptide signaling modulates adult brain circuit plasticity.
Collapse
|
27
|
Abstract
Generative models are computational models designed to generate appropriate values for all of their embedded variables, thereby simulating the response properties of a complex system based on the coordinated interactions of a multitude of physical mechanisms. In systems neuroscience, generative models are generally biophysically based compartmental models of neurons and networks that are explicitly multiscale, being constrained by experimental data at multiple levels of organization from cellular membrane properties to large-scale network dynamics. As such, they are able to explain the origins of emergent properties in complex systems, and serve as tests of sufficiency and as quantitative instantiations of working hypotheses that may be too complex to simply intuit. Moreover, when adequately constrained, generative biophysical models are able to predict novel experimental outcomes, and consequently are powerful tools for experimental design. We here outline a general strategy for the iterative design and implementation of generative, multiscale biophysical models of neural systems. We illustrate this process using our ongoing, iteratively developing model of the mammalian olfactory bulb. Because the olfactory bulb exhibits diverse and interesting properties at multiple scales of organization, it is an attractive system in which to illustrate the value of generative modeling across scales.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Psychology, Cornell University, Ithaca, NY, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
28
|
Li G, Cleland TA. A coupled-oscillator model of olfactory bulb gamma oscillations. PLoS Comput Biol 2017; 13:e1005760. [PMID: 29140973 PMCID: PMC5706731 DOI: 10.1371/journal.pcbi.1005760] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/29/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022] Open
Abstract
The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING), best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Guoshi Li
- Dept. Psychology, Cornell University, Ithaca, NY United States of America
| | - Thomas A. Cleland
- Dept. Psychology, Cornell University, Ithaca, NY United States of America
| |
Collapse
|
29
|
Burton SD. Inhibitory circuits of the mammalian main olfactory bulb. J Neurophysiol 2017; 118:2034-2051. [PMID: 28724776 DOI: 10.1152/jn.00109.2017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Synaptic inhibition critically influences sensory processing throughout the mammalian brain, including the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system. Decades of research across numerous laboratories have established a central role for granule cells (GCs), the most abundant GABAergic interneuron type in the MOB, in the precise regulation of principal mitral and tufted cell (M/TC) firing rates and synchrony through lateral and recurrent inhibitory mechanisms. In addition to GCs, however, the MOB contains a vast diversity of other GABAergic interneuron types, and recent findings suggest that, while fewer in number, these oft-ignored interneurons are just as important as GCs in shaping odor-evoked M/TC activity. Here I challenge the prevailing centrality of GCs. In this review, I first outline the specific properties of each GABAergic interneuron type in the rodent MOB, with particular emphasis placed on direct interneuron recordings and cell type-selective manipulations. On the basis of these properties, I then critically reevaluate the contribution of GCs vs. other interneuron types to the regulation of odor-evoked M/TC firing rates and synchrony via lateral, recurrent, and other inhibitory mechanisms. This analysis yields a novel model in which multiple interneuron types with distinct abundances, connectivity patterns, and physiologies complement one another to regulate M/TC activity and sensory processing.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; and .,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Pignatelli A, Belluzzi O. Dopaminergic Neurones in the Main Olfactory Bulb: An Overview from an Electrophysiological Perspective. Front Neuroanat 2017; 11:7. [PMID: 28261065 PMCID: PMC5306133 DOI: 10.3389/fnana.2017.00007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/02/2017] [Indexed: 02/03/2023] Open
Abstract
The olfactory bulb (OB), the first center processing olfactory information, is characterized by a vigorous life-long activity-dependent plasticity responsible for a variety of odor-evoked behavioral responses. It hosts the more numerous group of dopaminergic (DA) neurones in the central nervous system, cells strategically positioned at the entry of the bulbar circuitry, directly in contact with the olfactory nerve terminals, which play a key role in odor processing and in the adaptation of the bulbar network to external conditions. Here, we focus mainly on the electrophysiological properties of DA interneurones, reviewing findings concerning their excitability profiles in adulthood and in different phases of adult neurogenesis. We also discuss dynamic changes of the DA interneurones related to environmental stimuli and their possible functional implications.
Collapse
Affiliation(s)
- Angela Pignatelli
- Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| | - Ottorino Belluzzi
- Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| |
Collapse
|
31
|
Liu G, McClard CK, Tepe B, Swanson J, Pekarek B, Panneerselvam S, Arenkiel BR. Olfactory Cued Learning Paradigm. Bio Protoc 2017; 7:e2251. [PMID: 28752111 DOI: 10.21769/bioprotoc.2251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Sensory stimulation leads to structural changes within the CNS (Central Nervous System), thus providing the fundamental mechanism for learning and memory. The olfactory circuit offers a unique model for studying experience-dependent plasticity, partly due to a continuous supply of integrating adult born neurons. Our lab has recently implemented an olfactory cued learning paradigm in which specific odor pairs are coupled to either a reward or punishment to study downstream circuit changes. The following protocol outlines the basic set up for our learning paradigm. Here, we describe the equipment setup, programming of software, and method of behavioral training.
Collapse
Affiliation(s)
- Gary Liu
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
| | - Cynthia K McClard
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Burak Tepe
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
| | - Jessica Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Brandon Pekarek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | | | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, USA
| |
Collapse
|
32
|
Quast KB, Ung K, Froudarakis E, Huang L, Herman I, Addison AP, Ortiz-Guzman J, Cordiner K, Saggau P, Tolias AS, Arenkiel BR. Developmental broadening of inhibitory sensory maps. Nat Neurosci 2016; 20:189-199. [PMID: 28024159 DOI: 10.1038/nn.4467] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
Sensory maps are created by networks of neuronal responses that vary with their anatomical position, such that representations of the external world are systematically and topographically organized in the brain. Current understanding from studying excitatory maps is that maps are sculpted and refined throughout development and/or through sensory experience. Investigating the mouse olfactory bulb, where ongoing neurogenesis continually supplies new inhibitory granule cells into existing circuitry, we isolated the development of sensory maps formed by inhibitory networks. Using in vivo calcium imaging of odor responses, we compared functional responses of both maturing and established granule cells. We found that, in contrast to the refinement observed for excitatory maps, inhibitory sensory maps became broader with maturation. However, like excitatory maps, inhibitory sensory maps are sensitive to experience. These data describe the development of an inhibitory sensory map as a network, highlighting the differences from previously described excitatory maps.
Collapse
Affiliation(s)
- Kathleen B Quast
- Department of Molecular &Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin Ung
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Longwen Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Isabella Herman
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Angela P Addison
- SMART Program, Baylor College of Medicine, Houston, Texas, USA.,University of St. Thomas, Houston, Texas, USA
| | - Joshua Ortiz-Guzman
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Keith Cordiner
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Peter Saggau
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Allen Institute for Brain Science, Seattle, Washington, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA
| | - Benjamin R Arenkiel
- Department of Molecular &Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|