1
|
Mendoza G, Fonseca E, Merchant H, Gutierrez R. Neuronal Sequences and dynamic coding of water-sucrose categorization in rat gustatory cortices. iScience 2024; 27:111287. [PMID: 39640568 PMCID: PMC11617401 DOI: 10.1016/j.isci.2024.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
The gustatory system allows us to perceive and distinguish sweetness from water. We studied this phenomenon by recording neural activity in rats' anterior insular (aIC) and orbitofrontal (OFC) cortices while they categorized varying sucrose concentrations against water. Neurons in both aIC and OFC encoded the categorical distinction between sucrose and water rather than specific sucrose concentrations. Notably, aIC encoded this distinction faster than OFC. Conversely, the OFC slightly preceded the aIC in representing choice information, although both cortices encoded the rat's choices in parallel. Further analyses revealed dynamic and sequential encoding of sensory and categorical decisions, forming brief sequences of encoding neurons throughout the trial rather than long-lasting neuronal representations. Our findings, supported by single-cell, population decoding, and principal-component analysis (PCA), demonstrate that gustatory cortices employ neuronal sequences to compute sensorimotor transformations, from taste detection to categorical decisions, and continuously update this process as new taste information emerges using dynamic coding.
Collapse
Affiliation(s)
- Germán Mendoza
- Laboratory of Systems Neurophysiology, Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla Querétaro 76230, Mexico
| | - Esmeralda Fonseca
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
- Laboratory Neurobiology of Appetite, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Hugo Merchant
- Laboratory of Systems Neurophysiology, Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla Querétaro 76230, Mexico
| | - Ranier Gutierrez
- Laboratory Neurobiology of Appetite, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
- Laboratory Neurobiology of Appetite, Centro de Investigación Sobre el Envejecimiento CIE Cinvestav sede Sur, Mexico City, Mexico
| |
Collapse
|
2
|
Arroyo B, Hernandez-Lemus E, Gutierrez R. The flow of reward information through neuronal ensembles in the accumbens. Cell Rep 2024; 43:114838. [PMID: 39395166 DOI: 10.1016/j.celrep.2024.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/05/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024] Open
Abstract
The nucleus accumbens shell (NAcSh) integrates reward information through diverse and specialized neuronal ensembles, influencing decision-making. By training rats in a probabilistic choice task and recording NAcSh neuronal activity, we found that rats adapt their choices based solely on the presence or absence of a sucrose reward, suggesting they build an internal representation of reward likelihood. We further demonstrate that NAcSh ensembles dynamically process different aspects of reward-guided behavior, with changes in composition and functional connections observed throughout the reinforcement learning process. The NAcSh forms a highly connected network characterized by a heavy-tailed distribution and the presence of neuronal hubs, facilitating efficient information flow. Reward delivery enhances mutual information, indicating increased communication between ensembles and network synchronization, whereas reward omission decreases it. Our findings reveal how reward information flows through dynamic NAcSh ensembles, whose flexible membership adapts as the rat learns to obtain rewards (energy) in an ever-changing environment.
Collapse
Affiliation(s)
- Benjamin Arroyo
- Laboratory Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City 07360, Mexico; Laboratory Neurobiology of Appetite, Center for Research on Aging (CIE), Cinvestav Sede Sur, Mexico City 14330, Mexico
| | - Enrique Hernandez-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; Center for Complexity Sciences, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Ranier Gutierrez
- Laboratory Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City 07360, Mexico; Laboratory Neurobiology of Appetite, Center for Research on Aging (CIE), Cinvestav Sede Sur, Mexico City 14330, Mexico.
| |
Collapse
|
3
|
Levitan D, Gilad A. Amygdala and Cortex Relationships during Learning of a Sensory Discrimination Task. J Neurosci 2024; 44:e0125242024. [PMID: 39025676 PMCID: PMC11340284 DOI: 10.1523/jneurosci.0125-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
During learning of a sensory discrimination task, the cortical and subcortical regions display complex spatiotemporal dynamics. During learning, both the amygdala and cortex link stimulus information to its appropriate association, for example, a reward. In addition, both structures are also related to nonsensory parameters such as body movements and licking during the reward period. However, the emergence of the cortico-amygdala relationships during learning is largely unknown. To study this, we combined wide-field cortical imaging with fiber photometry to simultaneously record cortico-amygdala population dynamics as male mice learn a whisker-dependent go/no-go task. We were able to simultaneously record neuronal populations from the posterior cortex and either the basolateral amygdala (BLA) or central/medial amygdala (CEM). Prior to learning, the somatosensory and associative cortex responded during sensation, while amygdala areas did not show significant responses. As mice became experts, amygdala responses emerged early during the sensation period, increasing in the CEM, while decreasing in the BLA. Interestingly, amygdala and cortical responses were associated with task-related body movement, displaying significant responses ∼200 ms before movement initiation which led to licking for the reward. A correlation analysis between the cortex and amygdala revealed negative and positive correlation with the BLA and CEM, respectively, only in the expert case. These results imply that learning induces an involvement of the cortex and amygdala which may aid to link sensory stimuli with appropriate associations.
Collapse
Affiliation(s)
- David Levitan
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ariel Gilad
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
4
|
Fraser KM, Kim TH, Castro M, Drieu C, Padovan-Hernandez Y, Chen B, Pat F, Ottenheimer DJ, Janak PH. Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala. iScience 2024; 27:109652. [PMID: 38650988 PMCID: PMC11033178 DOI: 10.1016/j.isci.2024.109652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/28/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
Dysregulation of the central amygdala is thought to underlie aberrant choice in alcohol use disorder, but the role of central amygdala neural activity during reward choice and consumption is unclear. We recorded central amygdala neurons in male rats as they consumed alcohol or sucrose. We observed activity changes at the time of reward approach, as well as lick-entrained activity during ongoing consumption of both rewards. In choice scenarios where rats could drink sucrose, alcohol, or quinine-adulterated alcohol with or without central amygdala optogenetic stimulation, rats drank more of stimulation-paired options when the two bottles contained identical options. Given a choice among different options, central amygdala stimulation usually enhanced consumption of stimulation-paired rewards. However, optogenetic stimulation during consumption of the less-preferred option, alcohol, was unable to enhance alcohol intake while sucrose was available. These findings indicate that the central amygdala contributes to refining motivated pursuit toward the preferred available option.
Collapse
Affiliation(s)
- Kurt M. Fraser
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Tabitha H. Kim
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Matilde Castro
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Céline Drieu
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Yasmin Padovan-Hernandez
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Bridget Chen
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Fiona Pat
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - David J. Ottenheimer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Patricia H. Janak
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
- Johns Hopkins University Kavli Neuroscience Discovery Institute, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| |
Collapse
|
5
|
Gutierrez R. Studying behavior under constrained movement. eLife 2023; 12:e91145. [PMID: 37646772 PMCID: PMC10468203 DOI: 10.7554/elife.91145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
A new platform for studying how brain activity is linked to behavior enables researchers to perform diverse experiments on mice that have their heads immobilized.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology and Appetite, Department of Pharmacology, CINVESTAVMexico CityMexico
| |
Collapse
|
6
|
Bouaichi CG, Odegaard KE, Neese C, Vincis R. Intraoral thermal processing in the gustatory cortex of awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.526681. [PMID: 36798208 PMCID: PMC9934522 DOI: 10.1101/2023.02.06.526681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Oral temperature is a sensory cue relevant to food preference and nutrition. To understand how orally-sourced thermal inputs are represented in the gustatory cortex (GC) we recorded neural responses from the GC of male and female mice presented with deionized water at different innocuous temperatures (14 °C, 25 °C, 36 °C) and taste stimuli (room temperature). Our results demonstrate that GC neurons encode orally-sourced thermal information in the absence of classical taste qualities at the single neuron and population levels, as confirmed through additional experiments comparing GC neuron responses to water and artificial saliva. Analysis of thermal-evoked responses showed broadly tuned neurons that responded to temperature in a mostly monotonic manner. Spatial location may play a minor role regarding thermosensory activity; aside from the most ventral GC, neurons reliably responded to and encoded thermal information across the dorso-ventral and antero-postero cortical axes. Additional analysis revealed that more than half of GC neurons that encoded chemosensory taste stimuli also accurately discriminated thermal information, providing additional evidence of the GC's involvement in processing thermosensory information important for ingestive behaviors. In terms of convergence, we found that GC neurons encoding information about both taste and temperature were broadly tuned and carried more information than taste-selective only neurons; both groups encoded similar information about the palatability of stimuli. Altogether, our data reveal new details of the cortical code for the mammalian intraoral thermosensory system in behaving mice and pave the way for future investigations on GC functions and operational principles with respect to thermogustation.
Collapse
Affiliation(s)
- Cecilia G Bouaichi
- Florida State University, Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics
| | - Katherine E Odegaard
- Florida State University, Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics
| | - Camden Neese
- Florida State University, Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics
| | - Roberto Vincis
- Florida State University, Department of Biological Science and Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology
| |
Collapse
|
7
|
Fraser KM, Kim TH, Castro M, Drieu C, Padovan-Hernandez Y, Chen B, Pat F, Ottenheimer DJ, Janak PH. Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546936. [PMID: 37425773 PMCID: PMC10327036 DOI: 10.1101/2023.06.28.546936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The ability to evaluate and select a preferred option among a variety of available offers is an essential aspect of goal-directed behavior. Dysregulation of this valuation process is characteristic of alcohol use disorder, with the central amygdala being implicated in persistent alcohol pursuit. However, the mechanism by which the central amygdala encodes and promotes the motivation to seek and consume alcohol remains unclear. We recorded single-unit activity in male Long-Evans rats as they consumed 10% ethanol or 14.2% sucrose. We observed significant activity at the time of approach to alcohol or sucrose, as well as lick-entrained activity during the ongoing consumption of both alcohol and sucrose. We then evaluated the ability of central amygdala optogenetic manipulation time-locked to consumption to alter ongoing intake of alcohol or sucrose, a preferred non-drug reward. In closed two-choice scenarios where rats could drink only sucrose, alcohol, or quinine-adulterated alcohol with or without central amygdala stimulation, rats drank more of stimulation-paired options. Microstructural analysis of licking patterns suggests these effects were mediated by changes in motivation, not palatability. Given a choice among different options, central amygdala stimulation enhanced consumption if the stimulation was associated with the preferred reward while closed-loop inhibition only decreased consumption if the options were equally valued. However, optogenetic stimulation during consumption of the less-preferred option, alcohol, was unable to enhance overall alcohol intake while sucrose was available. Collectively, these findings indicate that the central amygdala processes the motivational value of available offers to promote pursuit of the most preferred available option.
Collapse
Affiliation(s)
- Kurt M Fraser
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tabitha H Kim
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matilde Castro
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Céline Drieu
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yasmin Padovan-Hernandez
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bridget Chen
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Fiona Pat
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David J Ottenheimer
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patricia H Janak
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Bouaichi CG, Odegaard KE, Neese C, Vincis R. Oral thermal processing in the gustatory cortex of awake mice. Chem Senses 2023; 48:bjad042. [PMID: 37850853 PMCID: PMC10630187 DOI: 10.1093/chemse/bjad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/19/2023] Open
Abstract
Oral temperature is a sensory cue relevant to food preference and nutrition. To understand how orally sourced thermal inputs are represented in the gustatory cortex (GC), we recorded neural responses from the GC of male and female mice presented with deionized water at different innocuous temperatures (14 °C, 25 °C, and 36 °C) and taste stimuli (room temperature). Our results demonstrate that GC neurons encode orally sourced thermal information in the absence of classical taste qualities at the single neuron and population levels, as confirmed through additional experiments comparing GC neuron responses to water and artificial saliva. Analysis of thermal-evoked responses showed broadly tuned neurons that responded to temperature in a mostly monotonic manner. Spatial location may play a minor role regarding thermosensory activity; aside from the most ventral GC, neurons reliably responded to and encoded thermal information across the dorso-ventral and antero-postero cortical axes. Additional analysis revealed that more than half of the GC neurons that encoded chemosensory taste stimuli also accurately discriminated thermal information, providing additional evidence of the GC's involvement in processing thermosensory information important for ingestive behaviors. In terms of convergence, we found that GC neurons encoding information about both taste and temperature were broadly tuned and carried more information than taste-selective-only neurons; both groups encoded similar information about the palatability of stimuli. Altogether, our data reveal new details of the cortical code for the mammalian oral thermosensory system in behaving mice and pave the way for future investigations on GC functions and operational principles with respect to thermogustation.
Collapse
Affiliation(s)
- Cecilia G Bouaichi
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Katherine E Odegaard
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Camden Neese
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Roberto Vincis
- Department of Biological Science and Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
9
|
White SR, Laubach M. The rostral medial frontal cortex is crucial for engagement in consummatory behavior. Behav Neurosci 2022; 136:551-560. [PMID: 35771511 PMCID: PMC9671839 DOI: 10.1037/bne0000523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The medial frontal cortex (MFC) in rodents emits rhythmic activity that is entrained to the animal's licking cycle during consumption and encodes the value of consumed fluids. These signals are especially prominent in the rostral half of the MFC. This region is located above an orbitofrontal region where mu-opioid receptors regulate intake and reversible inactivation reduces behavioral measures associated with the incentive value and palatability of liquid sucrose. Here, we examined the effects of reversible inactivation and stimulation of mu-opioid receptors in rostral MFC on behavior in an incentive contrast licking task. Adult male rats licked to receive access to liquid sucrose, which alternated between high (16%) and low (4%) values over 30 s periods. Bilateral infusion of muscimol reduced the total number of licks over the 30 min test sessions, the time spent actively consuming sucrose, and the ratio of licks for the higher and lower value fluids. Inactivation did not alter licking frequency or variability or microstructural measures such as the duration of licking bouts that are classically associated with the palatability of a liquid reward. Infusions of [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO; 1 μg/μL) at the same sites had inconsistent behavioral effects across different subjects. Our findings suggest that the rostral MFC has a distinct role in the control of consummatory behavior and contributes to persistent consumption and not to the expression of palatability. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Samantha R. White
- Department of Neuroscience, American University, Washington, DC, USA, 20016
| | - Mark Laubach
- Department of Neuroscience, American University, Washington, DC, USA, 20016
| |
Collapse
|
10
|
Moore S, Kuchibhotla KV. Slow or sudden: Re-interpreting the learning curve for modern systems neuroscience. IBRO Neurosci Rep 2022; 13:9-14. [PMID: 35669385 PMCID: PMC9163689 DOI: 10.1016/j.ibneur.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/27/2022] Open
|
11
|
Neese C, Bouaichi CG, Needham T, Bauer M, Bertram R, Vincis R. Active Licking Shapes Cortical Taste Coding. J Neurosci 2022; 42:8658-8669. [PMID: 36195439 PMCID: PMC9671578 DOI: 10.1523/jneurosci.0942-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Neurons in the gustatory cortex (GC) represent taste through time-varying changes in their spiking activity. The predominant view is that the neural firing rate represents the sole unit of taste information. It is currently not known whether the phase of spikes relative to lick timing is used by GC neurons for taste encoding. To address this question, we recorded spiking activity from >500 single GC neurons in male and female mice permitted to freely lick to receive four liquid gustatory stimuli and water. We developed a set of data analysis tools to determine the ability of GC neurons to discriminate gustatory information and then to quantify the degree to which this information exists in the spike rate versus the spike timing or phase relative to licks. These tools include machine learning algorithms for classification of spike trains and methods from geometric shape and functional data analysis. Our results show that while GC neurons primarily encode taste information using a rate code, the timing of spikes is also an important factor in taste discrimination. A further finding is that taste discrimination using spike timing is improved when the timing of licks is considered in the analysis. That is, the interlick phase of spiking provides more information than the absolute spike timing itself. Overall, our analysis demonstrates that the ability of GC neurons to distinguish among tastes is best when spike rate and timing is interpreted relative to the timing of licks.SIGNIFICANCE STATEMENT Neurons represent information from the outside world via changes in their number of action potentials (spikes) over time. This study examines how neurons in the mouse gustatory cortex (GC) encode taste information when gustatory stimuli are experienced through the active process of licking. We use electrophysiological recordings and data analysis tools to evaluate the ability of GC neurons to distinguish tastants and then to quantify the degree to which this information exists in the spike rate versus the spike timing relative to licks. We show that the neuron's ability to distinguish between tastes is higher when spike rate and timing are interpreted relative to the timing of licks, indicating that the lick cycle is a key factor for taste processing.
Collapse
Affiliation(s)
- Camden Neese
- Department of Statistics, Florida State University, Tallahassee, Florida 32306
| | - Cecilia G Bouaichi
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Tom Needham
- Department of Mathematics, Florida State University, Tallahassee, Florida 32306
| | - Martin Bauer
- Department of Mathematics, Florida State University, Tallahassee, Florida 32306
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Roberto Vincis
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
12
|
Abstract
Anorexia is a loss of appetite or an inability to eat and is often associated with eating disorders. However, animal anorexia is physiologically regulated as a part of the life cycle; for instance, during hibernation, migration or incubation. Anorexia nervosa (AN), on the other hand, is a common eating disorder among adolescent females that experience an intense fear of gaining weight due to body image distortion that results in voluntary avoidance of food intake and, thus, severe weight loss. It has been shown that the neurobiology of feeding extends beyond the hypothalamus. The prefrontal cortex (PFC) is involved in food choice and body image perception, both relevant in AN. However, little is known about the neurobiology of AN, and the lack of effective treatments justifies the use of animal models. Glial cells, the dominant population of nerve cells in the central nervous system, are key in maintaining brain homeostasis. Accordingly, recent studies suggest that glial function may be compromised by anorexia. In this review, we summarize recent findings about anorexia and glial cells.
Collapse
|
13
|
Stone BT, Lin JY, Mahmood A, Sanford AJ, Katz DB. LiCl-induced sickness modulates rat gustatory cortical responses. PLoS Biol 2022; 20:e3001537. [PMID: 35877759 PMCID: PMC9352195 DOI: 10.1371/journal.pbio.3001537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/04/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Gustatory cortex (GC), a structure deeply involved in the making of consumption decisions, presumably performs this function by integrating information about taste, experiences, and internal states related to the animal's health, such as illness. Here, we investigated this assertion, examining whether illness is represented in GC activity, and how this representation impacts taste responses and behavior. We recorded GC single-neuron activity and local field potentials (LFPs) from healthy rats and rats made ill (via LiCl injection). We show (consistent with the extant literature) that the onset of illness-related behaviors arises contemporaneously with alterations in 7 to 12 Hz LFP power at approximately 12 min following injection. This process was accompanied by reductions in single-neuron taste response magnitudes and discriminability, and with enhancements in palatability-relatedness-a result reflecting the collapse of responses toward a simple "good-bad" code visible in the entire sample, but focused on a specific subset of GC neurons. Overall, our data show that a state (illness) that profoundly reduces consumption changes basic properties of the sensory cortical response to tastes, in a manner that can easily explain illness' impact on consumption.
Collapse
Affiliation(s)
- Bradly T. Stone
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jian-You Lin
- Department of Psychology, Neuroscience Program, and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Abuzar Mahmood
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts, United States of America
| | - Alden J. Sanford
- Department of Psychology, Neuroscience Program, and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Donald B. Katz
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts, United States of America
- Department of Psychology, Neuroscience Program, and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
14
|
Coss A, Suaste E, Gutierrez R. Lateral NAc Shell D1 and D2 neural ensembles concurrently predict licking behavior and categorize sucrose concentrations in a context-dependent manner. Neuroscience 2022; 493:81-98. [DOI: 10.1016/j.neuroscience.2022.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023]
|
15
|
Toyoda H, Koga K. Nicotine Exposure during Adolescence Leads to Changes of Synaptic Plasticity and Intrinsic Excitability of Mice Insular Pyramidal Cells at Later Life. Int J Mol Sci 2021; 23:ijms23010034. [PMID: 35008455 PMCID: PMC8744609 DOI: 10.3390/ijms23010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
To find satisfactory treatment for nicotine addiction, synaptic and cellular mechanisms should be investigated comprehensively. Synaptic transmission, plasticity and intrinsic excitability in various brain regions are known to be altered by acute nicotine exposure. However, it has not been addressed whether and how nicotine exposure during adolescence alters these synaptic events and intrinsic excitability in the insular cortex in adulthood. To address this question, we performed whole-cell patch-clamp recordings to examine the effects of adolescent nicotine exposure on synaptic transmission, plasticity and intrinsic excitability in layer V pyramidal neurons (PNs) of the mice insular cortex five weeks after the treatment. We found that excitatory synaptic transmission and potentiation were enhanced in these neurons. Following adolescent nicotine exposure, insular layer V PNs displayed enhanced intrinsic excitability, which was reflected in changes in relationship between current strength and spike number, inter-spike interval, spike current threshold and refractory period. In addition, spike-timing precision evaluated by standard deviation of spike timing was decreased following nicotine exposure. Our data indicate that adolescent nicotine exposure enhances synaptic transmission, plasticity and intrinsic excitability in layer V PNs of the mice insular cortex at later life, which might contribute to severe nicotine dependence in adulthood.
Collapse
Affiliation(s)
- Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
- Correspondence:
| | - Kohei Koga
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
| |
Collapse
|
16
|
Samuelsen CL, Vincis R. Cortical Hub for Flavor Sensation in Rodents. Front Syst Neurosci 2021; 15:772286. [PMID: 34867223 PMCID: PMC8636119 DOI: 10.3389/fnsys.2021.772286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
The experience of eating is inherently multimodal, combining intraoral gustatory, olfactory, and somatosensory signals into a single percept called flavor. As foods and beverages enter the mouth, movements associated with chewing and swallowing activate somatosensory receptors in the oral cavity, dissolve tastants in the saliva to activate taste receptors, and release volatile odorant molecules to retronasally activate olfactory receptors in the nasal epithelium. Human studies indicate that sensory cortical areas are important for intraoral multimodal processing, yet their circuit-level mechanisms remain unclear. Animal models allow for detailed analyses of neural circuits due to the large number of molecular tools available for tracing and neuronal manipulations. In this review, we concentrate on the anatomical and neurophysiological evidence from rodent models toward a better understanding of the circuit-level mechanisms underlying the cortical processing of flavor. While more work is needed, the emerging view pertaining to the multimodal processing of food and beverages is that the piriform, gustatory, and somatosensory cortical regions do not function solely as independent areas. Rather they act as an intraoral cortical hub, simultaneously receiving and processing multimodal sensory information from the mouth to produce the rich and complex flavor experience that guides consummatory behavior.
Collapse
Affiliation(s)
- Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Roberto Vincis
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
17
|
|
18
|
Lorenzo PMD. Neural Coding of Food Is a Multisensory, Sensorimotor Function. Nutrients 2021; 13:nu13020398. [PMID: 33513918 PMCID: PMC7911409 DOI: 10.3390/nu13020398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
This review is a curated discussion of the relationship between the gustatory system and the perception of food beginning at the earliest stage of neural processing. A brief description of the idea of taste qualities and mammalian anatomy of the taste system is presented first, followed by an overview of theories of taste coding. The case is made that food is encoded by the several senses that it stimulates beginning in the brainstem and extending throughout the entire gustatory neuraxis. In addition, the feedback from food-related movements is seamlessly melded with sensory input to create the representation of food objects in the brain.
Collapse
Affiliation(s)
- Patricia M Di Lorenzo
- Department of Psychology, Binghamton University, Box 6000, Binghamton, NY 13902-6000, USA
| |
Collapse
|
19
|
Garcia A, Coss A, Luis-Islas J, Puron-Sierra L, Luna M, Villavicencio M, Gutierrez R. Lateral Hypothalamic GABAergic Neurons Encode and Potentiate Sucrose's Palatability. Front Neurosci 2021; 14:608047. [PMID: 33551725 PMCID: PMC7859279 DOI: 10.3389/fnins.2020.608047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Sucrose is attractive to most species in the animal kingdom, not only because it induces a sweet taste sensation but also for its positive palatability (i.e., oromotor responses elicited by increasing sucrose concentrations). Although palatability is such an important sensory attribute, it is currently unknown which cell types encode and modulate sucrose's palatability. Studies in mice have shown that activation of GABAergic LHAVgat+ neurons evokes voracious eating; however, it is not known whether these neurons would be driving consumption by increasing palatability. Using optrode recordings, we measured sucrose's palatability while VGAT-ChR2 transgenic mice performed a brief access sucrose test. We found that a subpopulation of LHAVgat+ neurons encodes palatability by increasing (or decreasing) their activity as a function of the increment in licking responses evoked by sucrose concentrations. Optogenetic gain of function experiments, where mice were able to choose among available water, 3% and 18% sucrose solutions, uncovered that opto-stimulation of LHAVgat+ neurons consistently promoted higher intake of the most palatable stimulus (18% sucrose). In contrast, if they self-stimulated near the less palatable stimulus, some VGAT-ChR2 mice preferred water over 18% sucrose. Unexpectedly, activation of LHAVgat+ neurons increased quinine intake but only during water deprivation, since in sated animals, they failed to promote quinine intake or tolerate an aversive stimulus. Conversely, these neurons promoted overconsumption of sucrose when it was the nearest stimulus. Also, experiments with solid foods further confirmed that these neurons increased food interaction time with the most palatable food available. We conclude that LHAVgat+ neurons increase the drive to consume, but it is potentiated by the palatability and proximity of the tastant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico
| |
Collapse
|
20
|
Dikecligil GN, Graham DM, Park IM, Fontanini A. Layer- and Cell Type-Specific Response Properties of Gustatory Cortex Neurons in Awake Mice. J Neurosci 2020; 40:9676-9691. [PMID: 33172981 PMCID: PMC7726536 DOI: 10.1523/jneurosci.1579-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/27/2020] [Accepted: 10/24/2020] [Indexed: 01/07/2023] Open
Abstract
Studies in visual, auditory, and somatosensory cortices have revealed that different cell types as well as neurons located in different laminae display distinct stimulus response profiles. The extent to which these layer and cell type-specific distinctions generalize to gustatory cortex (GC) remains unknown. In this study, we performed extracellular recordings in adult female mice to monitor the activity of putative pyramidal and inhibitory neurons located in deep and superficial layers of GC. Awake, head-restrained mice were trained to lick different tastants (sucrose, salt, citric acid, quinine, and water) from a lick spout. We found that deep layer neurons show higher baseline firing rates (FRs) in GC with deep-layer inhibitory neurons displaying highest FRs at baseline and following the stimulus. GC's activity shows robust modulations before animals' contact with tastants, and this phenomenon is most prevalent in deep-layer inhibitory neurons. Furthermore, we show that licking activity strongly shapes the spiking pattern of GC pyramidal neurons, eliciting phase-locked spiking across trials and tastants. We demonstrate that there is a greater percentage of taste-coding neurons in deep versus superficial layers with chemosensitive neurons across all categories showing similar breadth of tuning, but different decoding performance. Lastly, we provide evidence for functional convergence in GC, with neurons that can show prestimulus activity, licking-related rhythmicity and taste responses. Overall, our results demonstrate that baseline and stimulus-evoked firing profiles of GC neurons and their processing schemes change as a function of cortical layer and cell type in awake mice.SIGNIFICANCE STATEMENT Sensory cortical areas show a laminar structure, with each layer composed of distinct cell types embedded in different circuits. While studies in other primary sensory areas have elucidated that pyramidal and inhibitory neurons belonging to distinct layers show distinct response properties, whether and how response properties of gustatory cortex (GC) neurons change as a function of their laminar position and cell type remains uninvestigated. Here, we show that there are several notable differences in baseline, prestimulus, and stimulus-evoked response profiles of pyramidal and inhibitory neurons belonging to deep and superficial layers of GC.
Collapse
Affiliation(s)
- Gulce Nazli Dikecligil
- Department of Neurobiology and Behavior and Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Dustin M Graham
- Department of Neurobiology and Behavior and Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Il Memming Park
- Department of Neurobiology and Behavior and Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior and Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, New York 11794
| |
Collapse
|
21
|
Kalyanasundar B, Perez CI, Arroyo B, Moreno MG, Gutierrez R. The Appetite Suppressant D-norpseudoephedrine (Cathine) Acts via D1/D2-Like Dopamine Receptors in the Nucleus Accumbens Shell. Front Neurosci 2020; 14:572328. [PMID: 33177980 PMCID: PMC7596745 DOI: 10.3389/fnins.2020.572328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/09/2020] [Indexed: 02/05/2023] Open
Abstract
D-norpseudoephedrine (NPE), also known as cathine, is found naturally in the shrub Catha edulis “Khat.” NPE has been widely used as an appetite suppressant for the treatment of obesity. Although it is known that NPE acts on α1-adrenergic receptors, there is little information about the role of dopamine receptors on NPE’s induced anorectic and weight loss effects. Equally untouched is the question of how NPE modulates neuronal activity in the nucleus accumbens shell (NAcSh), a brain reward center, and a pharmacological target for many appetite suppressants. To do this, in rats, we characterized the pharmacological effects induced by NPE on weight loss, food intake, and locomotion. We also determined the involvement of dopamine D1- and D2-like receptors using systemic and intra-NAcSh antagonists, and finally, we recorded single-unit activity in the NAcSh in freely moving rats. We found that NPE decreased 24-h food intake, induced weight loss, and as side effects increased locomotor activity and wakefulness. Also, intraperitoneal and intra-NAcSh administration of D1 and D2 dopamine antagonists partially reversed NPE’s induced weight loss and food intake suppression. Furthermore, the D1 antagonist, SCH-23390, eliminated NPE-induced locomotion, whereas the D2 antagonist, raclopride, only delayed its onset. We also found that NPE evoked a net activation imbalance in NAcSh that propelled the population activity trajectories into a dynamic pharmacological brain state, which correlated with the onset of NPE-induced wakefulness. Together, our data demonstrate that NPE modulates NAcSh spiking activity and that both dopamine D1 and D2 receptors are necessary for NPE’s induced food intake suppression and weight loss.
Collapse
Affiliation(s)
- B Kalyanasundar
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Claudia I Perez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Benjamin Arroyo
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Mario Gil Moreno
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
22
|
Chen K, Kogan JF, Fontanini A. Spatially Distributed Representation of Taste Quality in the Gustatory Insular Cortex of Behaving Mice. Curr Biol 2020; 31:247-256.e4. [PMID: 33186554 PMCID: PMC7855361 DOI: 10.1016/j.cub.2020.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/28/2022]
Abstract
Visual, auditory, and somatosensory cortices are topographically organized, with neurons responding to similar sensory features clustering in adjacent portions of the cortex. Such topography has not been observed in the piriform cortex, whose responses to odorants are sparsely distributed across the cortex. The spatial organization of taste responses in the gustatory insular cortex (GC) is currently debated, with conflicting evidence from anesthetized rodents pointing to alternative and mutually exclusive models. Here, we rely on calcium imaging to determine how taste and task-related variables are represented in the superficial layers of GC of alert, licking mice. Our data show that the various stimuli evoke sparse responses from a combination of broadly and narrowly tuned neurons. Analysis of the distribution of responses over multiple spatial scales demonstrates that taste representations are distributed across the cortex, with no sign of spatial clustering or topography. Altogether, data presented here support the idea that the representation of taste qualities in GC of alert mice is sparse and distributed, analogous to the representation of odorants in piriform cortex.
Collapse
Affiliation(s)
- Ke Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Joshua F Kogan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
23
|
Abstract
Rhythms are a fundamental and defining feature of neuronal activity in animals including humans. This rhythmic brain activity interacts in complex ways with rhythms in the internal and external environment through the phenomenon of 'neuronal entrainment', which is attracting increasing attention due to its suggested role in a multitude of sensory and cognitive processes. Some senses, such as touch and vision, sample the environment rhythmically, while others, like audition, are faced with mostly rhythmic inputs. Entrainment couples rhythmic brain activity to external and internal rhythmic events, serving fine-grained routing and modulation of external and internal signals across multiple spatial and temporal hierarchies. This interaction between a brain and its environment can be experimentally investigated and even modified by rhythmic sensory stimuli or invasive and non-invasive neuromodulation techniques. We provide a comprehensive overview of the topic and propose a theoretical framework of how neuronal entrainment dynamically structures information from incoming neuronal, bodily and environmental sources. We discuss the different types of neuronal entrainment, the conceptual advances in the field, and converging evidence for general principles.
Collapse
Affiliation(s)
- Peter Lakatos
- Translational Neuroscience Laboratories, Nathan Kline Institute, Old Orangeburg Road 140, Orangeburg, New York 10962, USA; Department of Psychiatry, New York University School of Medicine, One, 8, Park Ave, New York, NY 10016, USA.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany; Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| | - Gregor Thut
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| |
Collapse
|
24
|
Orbitofrontal Cortex Encodes Preference for Alcohol. eNeuro 2020; 7:ENEURO.0402-19.2020. [PMID: 32661066 PMCID: PMC7365858 DOI: 10.1523/eneuro.0402-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 01/03/2023] Open
Abstract
Orbitofrontal cortex (OFC) plays a key role in representation and regulation of reward value, preference, and seeking. OFC function is disrupted in drug use and dependence, but its specific role in alcohol use disorders has not been thoroughly studied. In alcohol-dependent humans OFC activity is increased by alcohol cue presentation. Ethanol (EtOH) also alters OFC neuron excitability in vitro, and OFC manipulation influences EtOH seeking and drinking in rodents. Orbitofrontal cortex (OFC) plays a key role in representation and regulation of reward value, preference, and seeking. OFC function is disrupted in drug use and dependence, but its specific role in alcohol use disorders has not been thoroughly studied. In alcohol-dependent humans OFC activity is increased by alcohol cue presentation. Ethanol (EtOH) also alters OFC neuron excitability in vitro, and OFC manipulation influences EtOH seeking and drinking in rodents. To understand the relationship between OFC function and individual alcohol use, we recorded OFC neuron activity in rats during EtOH self-administration, characterizing the neural correlates of individual preference for alcohol. After one month of intermittent access to 20% EtOH, male Long–Evans rats were trained to self-administer 20% EtOH, 10% EtOH, and 15% sucrose. OFC neuronal activity was recorded and associated with task performance and EtOH preference. Rats segregated into high and low EtOH drinkers based on homecage consumption and operant seeking of 20% EtOH. Motivation for 10% EtOH and sucrose was equally high in both groups. OFC neuronal activity was robustly increased or decreased during sucrose and EtOH seeking and consumption, and strength of changes in OFC activity was directly associated with individual preference for 20% EtOH. EtOH-associated OFC activity was more similar to sucrose-associated activity in high versus low EtOH drinkers. The results show that OFC neurons are activated during alcohol seeking based on individual preference, supporting this brain region as a potential substrate for alcohol motivation that may be dysregulated in alcohol misuse.
Collapse
|
25
|
Bouaichi CG, Vincis R. Cortical processing of chemosensory and hedonic features of taste in active licking mice. J Neurophysiol 2020; 123:1995-2009. [PMID: 32319839 DOI: 10.1152/jn.00069.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the last two decades, a considerable amount of work has been devoted to investigating the neural processing and dynamics of the primary taste cortex of rats. Surprisingly, much less information is available on cortical taste electrophysiology in awake mice, an animal model that is taking on a more prominent role in taste research. Here we present electrophysiological evidence demonstrating how the gustatory cortex (GC) encodes the basic taste qualities (sweet, salty, sour, and bitter) and water when stimuli are actively sampled through licking, the stereotyped behavior by which mice control the access of fluids in the mouth. Mice were trained to receive each stimulus on a fixed ratio schedule in which they had to lick a dry spout six times to receive a tastant on the seventh lick. Electrophysiological recordings confirmed that GC neurons encode both chemosensory and hedonic aspects of actively sampled tastants. In addition, our data revealed two other main findings: GC neurons rapidly encode information about taste qualities in as little as 120 ms, and nearly half of the recorded neurons exhibit spiking activity entrained to licking at rates up to 8 Hz. Overall, our results highlight how the GC of active licking mice rapidly encodes information about taste qualities as well as ongoing sampling behavior, expanding our knowledge on cortical taste processing.NEW & NOTEWORTHY Relatively little information is available on the neural dynamics of taste processing in the mouse gustatory cortex (GC). In this study we investigate how the GC encodes chemosensory and palatability features of a wide panel of gustatory stimuli when actively sampled through licking. Our results show that GC neurons broadly encode basic taste qualities but also process taste hedonics and licking information in a temporally dynamic manner.
Collapse
Affiliation(s)
- Cecilia G Bouaichi
- Department of Biological Science, Florida State University, Tallahassee, Florida.,Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Roberto Vincis
- Department of Biological Science, Florida State University, Tallahassee, Florida.,Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
26
|
Gil-Lievana E, Balderas I, Moreno-Castilla P, Luis-Islas J, McDevitt RA, Tecuapetla F, Gutierrez R, Bonci A, Bermúdez-Rattoni F. Glutamatergic basolateral amygdala to anterior insular cortex circuitry maintains rewarding contextual memory. Commun Biol 2020; 3:139. [PMID: 32198461 PMCID: PMC7083952 DOI: 10.1038/s42003-020-0862-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Findings have shown that anterior insular cortex (aIC) lesions disrupt the maintenance of drug addiction, while imaging studies suggest that connections between amygdala and aIC participate in drug-seeking. However, the role of the BLA → aIC pathway in rewarding contextual memory has not been assessed. Using a cre-recombinase under the tyrosine hydroxylase (TH+) promoter mouse model to induce a real-time conditioned place preference (rtCPP), we show that photoactivation of TH+ neurons induced electrophysiological responses in VTA neurons, dopamine release and neuronal modulation in the aIC. Conversely, memory retrieval induced a strong release of glutamate, dopamine, and norepinephrine in the aIC. Only intra-aIC blockade of the glutamatergic N-methyl-D-aspartate receptor accelerated rtCPP extinction. Finally, photoinhibition of glutamatergic BLA → aIC pathway produced disinhibition of local circuits in the aIC, accelerating rtCPP extinction and impairing reinstatement. Thus, activity of the glutamatergic projection from the BLA to the aIC is critical for maintenance of rewarding contextual memory.
Collapse
Affiliation(s)
- Elvi Gil-Lievana
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Israela Balderas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Perla Moreno-Castilla
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico.,Global Institutes on Addiction, 1221 Brickell Ave, Miami, FL33131, USA
| | - Jorge Luis-Islas
- Departamento de Farmacología, Centro de Estudios Avanzados, Instituto Politécnico Nacional, 07360, México City, Mexico
| | - Ross A McDevitt
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Fatuel Tecuapetla
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Ranier Gutierrez
- Departamento de Farmacología, Centro de Estudios Avanzados, Instituto Politécnico Nacional, 07360, México City, Mexico
| | - Antonello Bonci
- Global Institutes on Addiction, 1221 Brickell Ave, Miami, FL33131, USA
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico.
| |
Collapse
|
27
|
Perez CI, Kalyanasundar B, Moreno MG, Gutierrez R. The Triple Combination Phentermine Plus 5-HTP/Carbidopa Leads to Greater Weight Loss, With Fewer Psychomotor Side Effects Than Each Drug Alone. Front Pharmacol 2019; 10:1327. [PMID: 31780943 PMCID: PMC6851240 DOI: 10.3389/fphar.2019.01327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity has become a serious public health problem. Although diet, surgery, and exercise are the primary treatments for obesity, these activities are often supplemented using appetite suppressants. A previous study reported that obesity specialists frequently prescribed a new drug combination for its treatment that includes phentermine (Phen; dopaminergic appetite suppressant), a serotonin (5-HT) precursor 5-hydroxytryptophan (5-HTP; an appetite suppressant that increases the 5-HT concentration), and carbidopa (CB; peripheral blocker of conversion of 5-HTP to 5-HT). Despite its widespread use, there is neither a preclinical study confirming the drug efficacy nor studies of its effects on the brain. To fill this gap, in rats for seven consecutive days, we administered Phen intraperitoneally at different doses either alone or in combination with a fixed dose of 5-HTP/CB. In a different group, we infused drugs via an intraperitoneal catheter while extracellular-recordings were performed in the nucleus accumbens shell (NAcSh), a brain region with dopamine-releasing effects that is involved in the action of appetite suppressants. We found that the triple-drug combination leads to greater weight-loss than each drug alone. Moreover, and as the treatment progresses, the triple drug combination partially reversed psychomotor side-effects induced by Phen. Electrophysiological results revealed that Phen alone evoked a net inhibitory imbalance in NAcSh population activity that correlated with the onset of psychomotor effects. In addition, and unlike the greater weight loss, the addition of 5-HTP/CB did not alter the Phen-evoked inhibitory imbalance in NAcSh responses. Subsequent experiments shed light on the underlying mechanism. That is the majority of NAcSh neurons modulated by 5-HTP/CB were suppressed by Phen. Notably, and despite acting via a different mechanism of action (DA for Phen vs. 5-HT for 5-HTP/CB), both drugs recruited largely overlapping NAcSh neuronal ensembles. These data suggest that the neural correlates of the greater weight loss could be located outside the NAcSh, in other brain circuits. Furthermore, we conclude that Phen + 5-HTP/CB is a potential treatment for overweight and obesity.
Collapse
Affiliation(s)
| | | | | | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico
| |
Collapse
|
28
|
Weiss MS, Hajnal A, Czaja K, Di Lorenzo PM. Taste Responses in the Nucleus of the Solitary Tract of Awake Obese Rats Are Blunted Compared With Those in Lean Rats. Front Integr Neurosci 2019; 13:35. [PMID: 31417373 PMCID: PMC6683675 DOI: 10.3389/fnint.2019.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Taste perception changes with obesity but the underlying neural changes remain poorly understood. To address this issue, we recorded taste responses from single cells in the nucleus tractus solitarius (NTS, the first synapse in the central gustatory circuit) in awake, diet-induced obese [(DIO; ≥ 8 weeks on a high-energy diet (45%fat, 17% sugar; HED)], and lean rats. Rats were implanted with a bundle of microelectrodes in the NTS and allowed to recover. Water-deprived rats were allowed to freely lick various tastants in an experimental chamber. Taste stimuli included an array of sapid stimuli dissolved in artificial saliva (AS). Each taste trial consisted of five consecutive licks followed by five AS licks presented on a VR5 schedule. Results showed that taste responses (n = 49 for DIO; n = 74 for lean rats) in NTS cells in DIO rats were smaller in magnitude, shorter in duration, and longer in latency that those in lean rats. However, there were proportionately more taste-responsive cells in DIO than in lean rats. Lick coherence in DIO rats was significantly lower than in lean rats, both in taste-responsive, and lick-related cells (n = 172 in lean; n = 65 in DIO). Analyses of temporal coding showed that taste cells in DIO rats conveyed less information about taste quality than cells in lean rats. Collectively, results suggest that a HED produces blunted, but more prevalent, responses to taste in the NTS, and a weakened association of taste responses with ingestive behavior. These neural adaptations may represent both negative effects and compensatory mechanisms of a HED that may underlie deficits in taste-related behavior associated with obesity.
Collapse
Affiliation(s)
- Michael S Weiss
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Krzysztof Czaja
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
29
|
Polo-Castillo LE, Villavicencio M, Ramírez-Lugo L, Illescas-Huerta E, Moreno MG, Ruiz-Huerta L, Gutierrez R, Sotres-Bayon F, Caballero-Ruiz A. Reimplantable Microdrive for Long-Term Chronic Extracellular Recordings in Freely Moving Rats. Front Neurosci 2019; 13:128. [PMID: 30846926 PMCID: PMC6393392 DOI: 10.3389/fnins.2019.00128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/05/2019] [Indexed: 12/29/2022] Open
Abstract
Extracellular recordings of electrical activity in freely moving rats are fundamental to understand brain function in health and disease. Such recordings require a small-size, lightweight device that includes movable electrodes (microdrive) to record either a new set of neurons every day or the same set of neurons over time. Ideally, microdrives should be easy to implant, allowing precise and smooth displacement of electrodes. The main caveat of most commercially available microdrives is their relatively short half-life span, in average ranging from weeks to a month. For most experiments, recording days-weeks is sufficient, but when the experiment depends on training animals for several months, it is crucial to develop new approaches. Here, we present a low-cost, reusable, and reimplantable device design as a solution to extend chronic recordings to long-term. This device is composed of a baseplate that is permanently fixed to the rodent's skull, as well as a reusable and replaceable microdrive that can be attached and detached from the baseplate, allowing its implantation and reimplantation. Reimplanting this microdrive is particularly convenient when no clear neuronal signal is present, or when the signal gradually decays across days. Our microdrive incorporates a mechanism for moving a 16 tungsten-wire bundle within a small (∼15 mm3) lightweight device (∼4 g). We present details of the design, manufacturing, and assembly processes. As a proof of concept, we show that recordings of the nucleus accumbens core (NAcc) in a freely behaving rat are stable over a month. Additionally, during a lever-press task, we found, as expected, that NAc single-unit activity was associated with rewarded lever presses. Furthermore, we also show that NAc shell (NAcSh) responses evoked by freely licking for sucrose, consistent with our previously published results, were conserved from a first implant to a second microdrive reimplant in the same rat, notably showing reimplantation is possible without overtly affecting the functional responses of the area of interest. In sum, here we present a novel microdrive design (low-cost, small size, and light weight) that can be used for long-term chronic recordings and reimplanted in freely behaving rats.
Collapse
Affiliation(s)
- Leopoldo Emmanuel Polo-Castillo
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,National Laboratory for Additive and Digital Manufacturing, Mexico City, Mexico
| | - Miguel Villavicencio
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Leticia Ramírez-Lugo
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Illescas-Huerta
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mario Gil Moreno
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Leopoldo Ruiz-Huerta
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,National Laboratory for Additive and Digital Manufacturing, Mexico City, Mexico
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Francisco Sotres-Bayon
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alberto Caballero-Ruiz
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,National Laboratory for Additive and Digital Manufacturing, Mexico City, Mexico
| |
Collapse
|
30
|
Abstract
The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.
Collapse
|
31
|
Denman AJ, Sammons JD, Victor JD, Di Lorenzo PM. Heterogeneity of neuronal responses in the nucleus of the solitary tract suggests sensorimotor integration in the neural code for taste. J Neurophysiol 2018; 121:634-645. [PMID: 30565959 DOI: 10.1152/jn.00578.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Theories of neural coding in the taste system typically rely exclusively on data gleaned from taste-responsive cells. However, even in the nucleus tractus solitarius (NTS), the first stage of central processing, neurons with taste selectivity coexist with neurons whose activity is linked to motor behavior related to ingestion. We recorded from a large ( n = 324) sample of NTS neurons recorded in awake rats, examining both their taste selectivity and the association of their activity with licking. All subjects were implanted with a bundle of microelectrodes aimed at the NTS and allowed to recover. Following moderate water deprivation, rats were placed in an experimental chamber where tastants or artificial saliva (AS) were delivered from a lick spout. Electrophysiological responses were recorded, and waveforms from single cells were isolated offline. Results showed that only a minority of NTS cells responded to taste stimuli as determined by conventional firing-rate measures. In contrast, most cells, including taste-responsive cells, tracked the lick pattern, as evidenced by significant lick coherence in the 5- to 7-Hz range. Several quantitative measures of taste selectivity and lick relatedness showed that the population formed a continuum, ranging from cells dominated by taste responses to those dominated by lick relatedness. Moreover, even neurons whose responses were highly correlated with lick activity could convey substantial information about taste quality. In all, data point to a blurred boundary between taste-dominated and lick-related cells in NTS, suggesting that information from the taste of food and from the movements it evokes are seamlessly integrated. NEW & NOTEWORTHY Neurons in the rostral nucleus of the solitary tract (NTS) are known to encode information about taste. However, recordings from awake rats reveal that only a minority of NTS cells respond exclusively to taste stimuli. The majority of neurons track behaviors associated with food consumption, and even strongly lick-related neurons could convey information about taste quality. These findings suggest that the NTS integrates information from both taste and behavior to identify food.
Collapse
Affiliation(s)
| | - Joshua D Sammons
- Department of Psychology, Binghamton University , Binghamton, New York
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medical College , New York, New York
| | | |
Collapse
|
32
|
Fonseca E, de Lafuente V, Simon SA, Gutierrez R. Sucrose intensity coding and decision-making in rat gustatory cortices. eLife 2018; 7:e41152. [PMID: 30451686 PMCID: PMC6292697 DOI: 10.7554/elife.41152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022] Open
Abstract
Sucrose's sweet intensity is one attribute contributing to the overconsumption of high-energy palatable foods. However, it is not known how sucrose intensity is encoded and used to make perceptual decisions by neurons in taste-sensitive cortices. We trained rats in a sucrose intensity discrimination task and found that sucrose evoked a widespread response in neurons recorded in posterior-Insula (pIC), anterior-Insula (aIC), and Orbitofrontal cortex (OFC). Remarkably, only a few Intensity-selective neurons conveyed the most information about sucrose's intensity, indicating that for sweetness the gustatory system uses a compact and distributed code. Sucrose intensity was encoded in both firing-rates and spike-timing. The pIC, aIC, and OFC neurons tracked movement direction, with OFC neurons yielding the most robust response. aIC and OFC neurons encoded the subject's choices, whereas all three regions tracked reward omission. Overall, these multimodal areas provide a neural representation of perceived sucrose intensity, and of task-related information underlying perceptual decision-making.
Collapse
Affiliation(s)
- Esmeralda Fonseca
- Laboratory of Neurobiology of Appetite, Department of PharmacologyCenter for Research and Advanced Studies of the National Polytechnic InstituteMexico CityMexico
| | - Victor de Lafuente
- Institute of NeurobiologyNational Autonomous University of MexicoJuriquilla QuerétaroMexico
| | - Sidney A Simon
- Department of NeurobiologyDuke University Medical CenterDurhamUnited States
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of PharmacologyCenter for Research and Advanced Studies of the National Polytechnic InstituteMexico CityMexico
| |
Collapse
|
33
|
Luo J, Macias S, Ness TV, Einevoll GT, Zhang K, Moss CF. Neural timing of stimulus events with microsecond precision. PLoS Biol 2018; 16:e2006422. [PMID: 30365484 PMCID: PMC6221347 DOI: 10.1371/journal.pbio.2006422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 11/07/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022] Open
Abstract
Temporal analysis of sound is fundamental to auditory processing throughout the animal kingdom. Echolocating bats are powerful models for investigating the underlying mechanisms of auditory temporal processing, as they show microsecond precision in discriminating the timing of acoustic events. However, the neural basis for microsecond auditory discrimination in bats has eluded researchers for decades. Combining extracellular recordings in the midbrain inferior colliculus (IC) and mathematical modeling, we show that microsecond precision in registering stimulus events emerges from synchronous neural firing, revealed through low-latency variability of stimulus-evoked extracellular field potentials (EFPs, 200–600 Hz). The temporal precision of the EFP increases with the number of neurons firing in synchrony. Moreover, there is a functional relationship between the temporal precision of the EFP and the spectrotemporal features of the echolocation calls. In addition, EFP can measure the time difference of simulated echolocation call–echo pairs with microsecond precision. We propose that synchronous firing of populations of neurons operates in diverse species to support temporal analysis for auditory localization and complex sound processing. We routinely rely on a stopwatch to precisely measure the time it takes for an athlete to reach the finish line. Without the assistance of such a timing device, our measurement of elapsed time becomes imprecise. By contrast, some animals, such as echolocating bats, naturally perform timing tasks with remarkable precision. Behavioral research has shown that echolocating bats can estimate the elapsed time between sonar cries and echo returns with a precision in the range of microseconds. However, the neural basis for such microsecond precision has remained a puzzle to scientists. Combining extracellular recordings in the bat’s inferior colliculus (IC)—a midbrain nucleus of the auditory pathway—and mathematical modeling, we show that microsecond precision in registering stimulus events emerges from synchronous neural firing. Our recordings revealed a low-latency variability of stimulus-evoked extracellular field potentials (EFPs), which, according to our mathematical modeling, was determined by the number of firing neurons and their synchrony. Moreover, the acoustic features of echolocation calls, such as signal duration and bandwidth, which the bat dynamically modulates during prey capture, also modulate the precision of EFPs. These findings have broad implications for understanding temporal analysis of acoustic signals in a wide range of auditory behaviors across the animal kingdom.
Collapse
Affiliation(s)
- Jinhong Luo
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (JL); (CFM)
| | - Silvio Macias
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Torbjørn V. Ness
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Gaute T. Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Kechen Zhang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (JL); (CFM)
| |
Collapse
|
34
|
Villavicencio M, Moreno MG, Simon SA, Gutierrez R. Encoding of Sucrose's Palatability in the Nucleus Accumbens Shell and Its Modulation by Exteroceptive Auditory Cues. Front Neurosci 2018; 12:265. [PMID: 29780300 PMCID: PMC5945833 DOI: 10.3389/fnins.2018.00265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 04/05/2018] [Indexed: 01/19/2023] Open
Abstract
Although the palatability of sucrose is the primary reason for why it is over consumed, it is not well understood how it is encoded in the nucleus accumbens shell (NAcSh), a brain region involved in reward, feeding, and sensory/motor transformations. Similarly, untouched are issues regarding how an external auditory stimulus affects sucrose palatability and, in the NAcSh, the neuronal correlates of this behavior. To address these questions in behaving rats, we investigated how food-related auditory cues modulate sucrose's palatability. The goals are to determine whether NAcSh neuronal responses would track sucrose's palatability (as measured by the increase in hedonically positive oromotor responses lick rate), sucrose concentration, and how it processes auditory information. Using brief-access tests, we found that sucrose's palatability was enhanced by exteroceptive auditory cues that signal the start and the end of a reward epoch. With only the start cue the rejection of water was accelerated, and the sucrose/water ratio was enhanced, indicating greater palatability. However, the start cue also fragmented licking patterns and decreased caloric intake. In the presence of both start and stop cues, the animals fed continuously and increased their caloric intake. Analysis of the licking microstructure confirmed that auditory cues (either signaling the start alone or start/stop) enhanced sucrose's oromotor-palatability responses. Recordings of extracellular single-unit activity identified several distinct populations of NAcSh responses that tracked either the sucrose palatability responses or the sucrose concentrations by increasing or decreasing their activity. Another neural population fired synchronously with licking and exhibited an enhancement in their coherence with increasing sucrose concentrations. The population of NAcSh's Palatability-related and Lick-Inactive neurons were the most important for decoding sucrose's palatability. Only the Lick-Inactive neurons were phasically activated by both auditory cues and may play a sentinel role monitoring relevant auditory cues to increase caloric intake and sucrose's palatability. In summary, we found that auditory cues that signal the availability of sucrose modulate its palatability and caloric intake in a task dependent-manner and had neural correlates in the NAcSh. These findings show that exteroceptive cues associated with feeding may enhance positive hedonic oromotor-responses elicited by sucrose's palatability.
Collapse
Affiliation(s)
- Miguel Villavicencio
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario G Moreno
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
35
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
36
|
Activation of Glutamatergic Fibers in the Anterior NAc Shell Modulates Reward Activity in the aNAcSh, the Lateral Hypothalamus, and Medial Prefrontal Cortex and Transiently Stops Feeding. J Neurosci 2017; 36:12511-12529. [PMID: 27974611 DOI: 10.1523/jneurosci.1605-16.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/09/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
Although the release of mesoaccumbal dopamine is certainly involved in rewarding responses, recent studies point to the importance of the interaction between it and glutamate. One important component of this network is the anterior nucleus accumbens shell (aNAcSh), which sends GABAergic projections into the lateral hypothalamus (LH) and receives extensive glutamatergic inputs from, among others, the medial prefrontal cortex (mPFC). The effects of glutamatergic activation of aNAcSh on the ingestion of rewarding stimuli as well as its effect in the LH and mPFC are not well understood. Therefore, we studied behaving mice that express a light-gated channel (ChR2) in glutamatergic fibers in their aNAcSh while recording from neurons in the aNAcSh, or mPFC or LH. In Thy1-ChR2, but not wild-type, mice activation of aNAcSh fibers transiently stopped the mice licking for sucrose or an empty sipper. Stimulation of aNAcSh fibers both activated and inhibited single-unit responses aNAcSh, mPFC, and LH, in a manner that maintains firing rate homeostasis. One population of licking-inhibited pMSNs in the aNAcSh was also activated by optical stimulation, suggesting their relevance in the cessation of feeding. A rewarding aspect of stimulation of glutamatergic inputs was found when the Thy1-ChR2 mice learned to nose-poke to self-stimulate these inputs, indicating that bulky stimulation of these fibers are rewarding in the sense of wanting. Stimulation of excitatory afferents evoked both monosynaptic and polysynaptic responses distributed in the three recorded areas. In summary, we found that activation of glutamatergic aNAcSh fibers is both rewarding and transiently inhibits feeding. SIGNIFICANCE STATEMENT We have established that the activation of glutamatergic fibers in the anterior nucleus accumbens shell (aNAcSh) transiently stops feeding and yet, because mice self-stimulate, is rewarding in the sense of wanting. Moreover, we have characterized single-unit responses of distributed components of a hedonic network (comprising the aNAcSh, medial prefrontal cortex, and lateral hypothalamus) recruited by activation of glutamatergic aNAcSh afferents that are involved in encoding a positive valence signal important for the wanting of a reward and that transiently stops ongoing consummatory actions, such as licking.
Collapse
|
37
|
Activation of Glutamatergic Fibers in the Anterior NAc Shell Modulates Reward Activity in the aNAcSh, the Lateral Hypothalamus, and Medial Prefrontal Cortex and Transiently Stops Feeding. J Neurosci 2016. [PMID: 27974611 DOI: 10.1523/jneurosci.1605‐16.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the release of mesoaccumbal dopamine is certainly involved in rewarding responses, recent studies point to the importance of the interaction between it and glutamate. One important component of this network is the anterior nucleus accumbens shell (aNAcSh), which sends GABAergic projections into the lateral hypothalamus (LH) and receives extensive glutamatergic inputs from, among others, the medial prefrontal cortex (mPFC). The effects of glutamatergic activation of aNAcSh on the ingestion of rewarding stimuli as well as its effect in the LH and mPFC are not well understood. Therefore, we studied behaving mice that express a light-gated channel (ChR2) in glutamatergic fibers in their aNAcSh while recording from neurons in the aNAcSh, or mPFC or LH. In Thy1-ChR2, but not wild-type, mice activation of aNAcSh fibers transiently stopped the mice licking for sucrose or an empty sipper. Stimulation of aNAcSh fibers both activated and inhibited single-unit responses aNAcSh, mPFC, and LH, in a manner that maintains firing rate homeostasis. One population of licking-inhibited pMSNs in the aNAcSh was also activated by optical stimulation, suggesting their relevance in the cessation of feeding. A rewarding aspect of stimulation of glutamatergic inputs was found when the Thy1-ChR2 mice learned to nose-poke to self-stimulate these inputs, indicating that bulky stimulation of these fibers are rewarding in the sense of wanting. Stimulation of excitatory afferents evoked both monosynaptic and polysynaptic responses distributed in the three recorded areas. In summary, we found that activation of glutamatergic aNAcSh fibers is both rewarding and transiently inhibits feeding. SIGNIFICANCE STATEMENT We have established that the activation of glutamatergic fibers in the anterior nucleus accumbens shell (aNAcSh) transiently stops feeding and yet, because mice self-stimulate, is rewarding in the sense of wanting. Moreover, we have characterized single-unit responses of distributed components of a hedonic network (comprising the aNAcSh, medial prefrontal cortex, and lateral hypothalamus) recruited by activation of glutamatergic aNAcSh afferents that are involved in encoding a positive valence signal important for the wanting of a reward and that transiently stops ongoing consummatory actions, such as licking.
Collapse
|
38
|
Parent MA, Amarante LM, Swanson K, Laubach M. Cholinergic and ghrelinergic receptors and KCNQ channels in the medial PFC regulate the expression of palatability. Front Behav Neurosci 2015; 9:284. [PMID: 26578914 PMCID: PMC4620145 DOI: 10.3389/fnbeh.2015.00284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 11/13/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is a key brain region for the control of consummatory behavior. Neuronal activity in this area is modulated when rats initiate consummatory licking and reversible inactivations eliminate reward contrast effects and reduce a measure of palatability, the duration of licking bouts. Together, these data suggest the hypothesis that rhythmic neuronal activity in the mPFC is crucial for the control of consummatory behavior. The muscarinic cholinergic system is known to regulate membrane excitability and control low-frequency rhythmic activity in the mPFC. Muscarinic receptors (mAChRs) act through KCNQ (Kv7) potassium channels, which have recently been linked to the orexigenic peptide ghrelin. To understand if drugs that act on KCNQ channels within the mPFC have effects on consummatory behavior, we made infusions of several muscarinic drugs (scopolamine, oxotremorine, physostigmine), the KCNQ channel blocker XE-991, and ghrelin into the mPFC and evaluated their effects on consummatory behavior. A consistent finding across all drugs was an effect on the duration of licking bouts when animals consume solutions with a relatively high concentration of sucrose. The muscarinic antagonist scopolamine reduced bout durations, both systemically and intra-cortically. By contrast, the muscarinic agonist oxotremorine, the cholinesterase inhibitor physostigmine, the KCNQ channel blocker XE-991, and ghrelin all increased the durations of licking bouts when infused into the mPFC. Our findings suggest that cholinergic and ghrelinergic signaling in the mPFC, acting through KCNQ channels, regulates the expression of palatability.
Collapse
Affiliation(s)
- Marc A Parent
- The John B. Pierce Laboratory New Haven, CT, USA ; Department of Neurobiology, Yale University School of Medicine New Haven, CT, USA
| | - Linda M Amarante
- Department of Biology and Center for Behavioral Neuroscience, American University Washington, DC, USA
| | - Kyra Swanson
- Department of Biology and Center for Behavioral Neuroscience, American University Washington, DC, USA
| | - Mark Laubach
- Department of Biology and Center for Behavioral Neuroscience, American University Washington, DC, USA
| |
Collapse
|
39
|
Chen JL, Margolis DJ, Stankov A, Sumanovski LT, Schneider BL, Helmchen F. Pathway-specific reorganization of projection neurons in somatosensory cortex during learning. Nat Neurosci 2015; 18:1101-8. [DOI: 10.1038/nn.4046] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
|
40
|
Rossi MA, Yin HH. Elevated dopamine alters consummatory pattern generation and increases behavioral variability during learning. Front Integr Neurosci 2015; 9:37. [PMID: 26029064 PMCID: PMC4432675 DOI: 10.3389/fnint.2015.00037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
The role of dopamine in controlling behavior remains poorly understood. In this study we examined licking behavior in an established hyperdopaminergic mouse model—dopamine transporter knockout (DAT KO) mice. DAT KO mice showed higher rates of licking, which is due to increased perseveration of licking in a bout. By contrast, they showed increased individual lick durations, and reduced inter-lick intervals. During extinction, both KO and control mice transiently increased variability in lick pattern generation while reducing licking rate, yet they showed very different behavioral patterns. Control mice gradually increased lick duration as well as variability. By contrast, DAT KO mice exhibited more immediate (within 10 licks) adjustments—an immediate increase in lick duration variability, as well as more rapid extinction. These results suggest that the level of dopamine can modulate the persistence and pattern generation of a highly stereotyped consummatory behavior like licking, as well as new learning in response to changes in environmental feedback. Increased dopamine in DAT KO mice not only increased perseveration of bouts and individual lick duration, but also increased the behavioral variability in response to the extinction contingency and the rate of extinction.
Collapse
Affiliation(s)
- Mark A Rossi
- Department of Psychology and Neuroscience, Duke University Durham, NC, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University Durham, NC, USA ; Department of Neurobiology, Duke University Durham, NC, USA ; Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| |
Collapse
|
41
|
Kalyanasundar B, Perez CI, Luna A, Solorio J, Moreno MG, Elias D, Simon SA, Gutierrez R. D1 and D2 antagonists reverse the effects of appetite suppressants on weight loss, food intake, locomotion, and rebalance spiking inhibition in the rat NAc shell. J Neurophysiol 2015; 114:585-607. [PMID: 25972577 DOI: 10.1152/jn.00012.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/06/2015] [Indexed: 12/18/2022] Open
Abstract
Obesity is a worldwide health problem that has reached epidemic proportions. To ameliorate this problem, one approach is the use of appetite suppressants. These compounds are frequently amphetamine congeners such as diethylpropion (DEP), phentermine (PHEN), and bupropion (BUP), whose effects are mediated through serotonin, norepinephrine, and dopaminergic pathways. The nucleus accumbens (NAc) shell receives dopaminergic inputs and is involved in feeding and motor activity. However, little is known about how appetite suppressants modulate its activity. Therefore, we characterized behavioral and neuronal NAc shell responses to short-term treatments of DEP, PHEN, and BUP. These compounds caused a transient decrease in weight and food intake while increasing locomotion, stereotypy, and insomnia. They evoked a large inhibitory imbalance in NAc shell spiking activity that correlated with the onset of locomotion and stereotypy. Analysis of the local field potentials (LFPs) showed that all three drugs modulated beta, theta, and delta oscillations. These oscillations do not reflect an aversive-malaise brain state, as ascertained from taste aversion experiments, but tracked both the initial decrease in weight and food intake and the subsequent tolerance to these drugs. Importantly, the appetite suppressant-induced weight loss and locomotion were markedly reduced by intragastric (and intra-NAc shell) infusions of dopamine antagonists SCH-23390 (D1 receptor) or raclopride (D2 receptor). Furthermore, both antagonists attenuated appetite suppressant-induced LFP oscillations and partially restored the imbalance in NAc shell activity. These data reveal that appetite suppressant-induced behavioral and neuronal activity recorded in the NAc shell depend, to various extents, on dopaminergic activation and thus point to an important role for D1/D2-like receptors (in the NAc shell) in the mechanism of action for these anorexic compounds.
Collapse
Affiliation(s)
- B Kalyanasundar
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Claudia I Perez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Alvaro Luna
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico; Department of Bioelectronics, CINVESTAV, Mexico City, Mexico
| | - Jessica Solorio
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Mario G Moreno
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - David Elias
- Department of Bioelectronics, CINVESTAV, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico;
| |
Collapse
|
42
|
Abstract
In natural conditions, gustatory stimuli are typically expected. Anticipatory and contextual cues provide information that allows animals to predict the availability and the identity of the substance to be ingested. Recording in alert rats trained to self-administer tastants following a go signal revealed that neurons in the primary gustatory cortex (GC) can respond to anticipatory cues. These experiments were optimized to demonstrate that even the most general form of expectation can activate neurons in GC, and did not provide indications on whether cues predicting different tastants could be encoded selectively by GC neurons. Here we recorded single-neuron activity in GC of rats engaged in a task where one auditory cue predicted sucrose, while another predicted quinine. We found that GC neurons respond differentially to the two cues. Cue-selective responses develop in parallel with learning. Comparison between cue and sucrose responses revealed that cues could trigger the activation of anticipatory representations. Additional experiments showed that an expectation of sucrose leads a subset of neurons to produce sucrose-like responses even when the tastant was omitted. Altogether, the data show that primary sensory cortices can encode for cues predicting different outcomes, and that specific expectations result in the activation of anticipatory representations.
Collapse
|
43
|
Abstract
Animals actively acquire sensory information from the outside world, with rodents sniffing to smell and whisking to feel. Licking, a rapid motor sequence used for gustation, serves as the primary means of controlling stimulus access to taste receptors in the mouth. Using a novel taste-quality discrimination task in head-restrained mice, we measured and compared reaction times to four basic taste qualities (salt, sour, sweet, and bitter) and found that certain taste qualities are perceived inherently faster than others, driven by the precise biomechanics of licking and functional organization of the peripheral gustatory system. The minimum time required for accurate perception was strongly dependent on taste quality, ranging from the sensory-motor limits of a single lick (salt, ∼100 ms) to several sampling cycles (bitter, >500 ms). Further, disruption of sensory input from the anterior tongue significantly impaired the speed of perception of some taste qualities, with little effect on others. Overall, our results show that active sensing may play an important role in shaping the timing of taste-quality representations and perception in the gustatory system.
Collapse
|
44
|
Hayes DJ, Duncan NW, Xu J, Northoff G. A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neurosci Biobehav Rev 2014; 45:350-68. [PMID: 25010558 DOI: 10.1016/j.neubiorev.2014.06.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 11/30/2022]
Abstract
Distinguishing potentially harmful or beneficial stimuli is necessary for the self-preservation and well-being of all organisms. This assessment requires the ongoing valuation of environmental stimuli. Despite much work on the processing of aversive- and appetitive-related brain signals, it is not clear to what degree these two processes interact across the brain. To help clarify this issue, this report used a cross-species comparative approach in humans (i.e. meta-analysis of imaging data) and other mammals (i.e. targeted review of functional neuroanatomy in rodents and non-human primates). Human meta-analysis results suggest network components that appear selective for appetitive (e.g. ventromedial prefrontal cortex, ventral tegmental area) or aversive (e.g. cingulate/supplementary motor cortex, periaqueductal grey) processing, or that reflect overlapping (e.g. anterior insula, amygdala) or asymmetrical, i.e. apparently lateralized, activity (e.g. orbitofrontal cortex, ventral striatum). However, a closer look at the known value-related mechanisms from the animal literature suggests that all of these macroanatomical regions are involved in the processing of both appetitive and aversive stimuli. Differential spatiotemporal network dynamics may help explain similarities and differences in appetitive- and aversion-related activity.
Collapse
Affiliation(s)
- Dave J Hayes
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Toronto Western Research Institute, Brain, Imaging and Behaviour - Systems Neuroscience, University of Toronto, Division of Neurosurgery, 399 Bathurst Street, Toronto, Canada.
| | - Niall W Duncan
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Department of Biology, University of Carleton, 1125 Colonel By Drive, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China
| | - Jiameng Xu
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China; Taipei Medical University, Shuang Ho Hospital, Brain and Consciousness Research Center, Graduate Institute of Humanities in Medicine, Taipei, Taiwan; National Chengchi University, Research Center for Mind, Brain and Learning, Taipei, Taiwan
| |
Collapse
|
45
|
Masquelier T. Oscillations can reconcile slowly changing stimuli with short neuronal integration and STDP timescales. NETWORK (BRISTOL, ENGLAND) 2014; 25:85-96. [PMID: 24571100 DOI: 10.3109/0954898x.2014.881574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Oscillatory brain activity has been widely reported experimentally, yet its functional roles, if any, are still under debate. In this review we argue two things: firstly, thanks to oscillations, even slowly changing stimuli can be encoded in precise relative spike times, decodable by downstream "coincidence detector" neurons in a feedforward manner. Secondly, the required connectivity to do so can spontaneously emerge with spike timing-dependent plasticity (STDP), in an unsupervised manner. The key here is that a common oscillatory drive enables neurons to remain under a fluctuation-driven regime. In this regime spike time jitter does not accumulate and can thus be lower than the intrinsic timescales of stimulus fluctuations, which leads to so-called "temporal encoding". Furthermore, the oscillatory drive formats the spikes in discrete oversampling volleys, and the relative spike times between neurons indicate the eventual differences in their activation levels. The oversampling accelerates the STDP-based learning for downstream neurons. After learning, readout only takes one oscillatory cycle. Finally, we also discuss experimental evidence, and the question of how the theory is complementary to the so-called "communication through coherence" theory.
Collapse
Affiliation(s)
- Timothée Masquelier
- CNRS and UPMC, Lab. of Neurobiology of Adaptive Processes (UMR7102), 9 quai St. Bernard , Paris , 75005 France
| |
Collapse
|
46
|
Herzog L, Salehi K, Bohon KS, Wiest MC. Prestimulus frontal-parietal coherence predicts auditory detection performance in rats. J Neurophysiol 2014; 111:1986-2000. [PMID: 24572093 DOI: 10.1152/jn.00781.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrophysiology in primates has implicated long-range neural coherence as a potential mechanism for enhancing sensory detection. To test whether local synchronization and long-range neural coherence support detection performance in rats, we recorded local field potentials (LFPs) in frontal and parietal cortex while rats performed an auditory detection task. We observed significantly elevated power at multiple low frequencies (<15 Hz) preceding the target beep when the animal failed to respond to the signal (misses), in both frontal and parietal cortex. In terms of long-range coherence, we observed significantly more frontal-parietal coherence in the beta band (15-30 Hz) before the signal on misses compared with hits. This effect persisted after regressing away linear trends in the coherence values during a session, showing that the excess frontal-parietal beta coherence prior to misses cannot be explained by slow motivational changes during a session. In addition, a trend toward higher low-frequency (<15 Hz) coherence prior to miss trials compared with hits became highly significant when we rereferenced the LFPs to the mean voltage on each recording array, suggesting that the results are specific to our frontal and parietal areas. These results do not support a role for long-range frontal-parietal coherence or local synchronization in facilitating the detection of external stimuli. Rather, they extend to long-range frontal-parietal coherence previous findings that correlate local synchronization of low-frequency (<15 Hz) oscillations with inattention to external stimuli and synchronization of beta rhythms (15-30 Hz) with voluntary or involuntary prolongation of the current cognitive or motor state.
Collapse
Affiliation(s)
- Linnea Herzog
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts
| | - Kia Salehi
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts
| | - Kaitlin S Bohon
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts
| | - Michael C Wiest
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts
| |
Collapse
|
47
|
Processing of hedonic and chemosensory features of taste in medial prefrontal and insular networks. J Neurosci 2014; 33:18966-78. [PMID: 24285901 DOI: 10.1523/jneurosci.2974-13.2013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most of the research on cortical processing of taste has focused on either the primary gustatory cortex (GC) or the orbitofrontal cortex (OFC). However, these are not the only areas involved in taste processing. Gustatory information can also reach another frontal region, the medial prefrontal cortex (mPFC), via direct projections from GC. mPFC has been studied extensively in relation to its role in controlling goal-directed action and reward-guided behaviors, yet very little is known about its involvement in taste coding. The experiments presented here address this important point and test whether neurons in mPFC can significantly process the physiochemical and hedonic dimensions of taste. Spiking responses to intraorally delivered tastants were recorded from rats implanted with bundles of electrodes in mPFC and GC. Analysis of single-neuron and ensemble activity revealed similarities and differences between the two areas. Neurons in mPFC can encode the chemosensory identity of gustatory stimuli. However, responses in mPFC are sparser, more narrowly tuned, and have a later onset than in GC. Although taste quality is more robustly represented in GC, taste palatability is coded equally well in the two areas. Additional analysis of responses in neurons processing the hedonic value of taste revealed differences between the two areas in temporal dynamics and sensitivities to palatability. These results add mPFC to the network of areas involved in processing gustatory stimuli and demonstrate significant differences in taste-coding between GC and mPFC.
Collapse
|
48
|
New insights into the specificity and plasticity of reward and aversion encoding in the mesolimbic system. J Neurosci 2013; 33:17569-76. [PMID: 24198347 DOI: 10.1523/jneurosci.3250-13.2013] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mesocorticolimbic system, consisting, at its core, of the ventral tegmental area, the nucleus accumbens, and medial prefrontal cortex, has historically been investigated primarily for its role in positively motivated behaviors and reinforcement learning, and its dysfunction in addiction, schizophrenia, depression, and other mood disorders. Recently, researchers have undertaken a more comprehensive analysis of this system, including its role in not only reward but also punishment, as well as in both positive and negative reinforcement. This focus has been facilitated by new anatomical, physiological, and behavioral approaches to delineate functional circuits underlying behaviors and to determine how this system flexibly encodes and responds to positive and negative states and events, beyond simple associative learning. This review is a summary of topics covered in a mini-symposium at the 2013 Society for Neuroscience annual meeting.
Collapse
|
49
|
Processing of hedonic and chemosensory features of taste in medial prefrontal and insular networks. J Neurosci 2013. [PMID: 24285901 DOI: 10.1523/jneurosci.2974‐13.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most of the research on cortical processing of taste has focused on either the primary gustatory cortex (GC) or the orbitofrontal cortex (OFC). However, these are not the only areas involved in taste processing. Gustatory information can also reach another frontal region, the medial prefrontal cortex (mPFC), via direct projections from GC. mPFC has been studied extensively in relation to its role in controlling goal-directed action and reward-guided behaviors, yet very little is known about its involvement in taste coding. The experiments presented here address this important point and test whether neurons in mPFC can significantly process the physiochemical and hedonic dimensions of taste. Spiking responses to intraorally delivered tastants were recorded from rats implanted with bundles of electrodes in mPFC and GC. Analysis of single-neuron and ensemble activity revealed similarities and differences between the two areas. Neurons in mPFC can encode the chemosensory identity of gustatory stimuli. However, responses in mPFC are sparser, more narrowly tuned, and have a later onset than in GC. Although taste quality is more robustly represented in GC, taste palatability is coded equally well in the two areas. Additional analysis of responses in neurons processing the hedonic value of taste revealed differences between the two areas in temporal dynamics and sensitivities to palatability. These results add mPFC to the network of areas involved in processing gustatory stimuli and demonstrate significant differences in taste-coding between GC and mPFC.
Collapse
|
50
|
Geran L, Travers S. Temporal characteristics of gustatory responses in rat parabrachial neurons vary by stimulus and chemosensitive neuron type. PLoS One 2013; 8:e76828. [PMID: 24124597 PMCID: PMC3790754 DOI: 10.1371/journal.pone.0076828] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 09/01/2013] [Indexed: 12/21/2022] Open
Abstract
It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of “sweet” (sucrose), “salty” (NaCl), “sour” (citric acid), and “bitter” (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs.
Collapse
Affiliation(s)
- Laura Geran
- Division of Oral Biology, College of Dentistry, the Ohio State University, Columbus, Ohio, United States of America
| | - Susan Travers
- Division of Oral Biology, College of Dentistry, the Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|