1
|
Fafrowicz M, Tutajewski M, Sieradzki I, Ochab JK, Ceglarek-Sroka A, Lewandowska K, Marek T, Sikora-Wachowicz B, Podolak IT, Oświęcimka P. Classification of ROI-based fMRI data in short-term memory tasks using discriminant analysis and neural networks. Front Neuroinform 2024; 18:1480366. [PMID: 39759761 PMCID: PMC11695337 DOI: 10.3389/fninf.2024.1480366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Understanding brain function relies on identifying spatiotemporal patterns in brain activity. In recent years, machine learning methods have been widely used to detect connections between regions of interest (ROIs) involved in cognitive functions, as measured by the fMRI technique. However, it's essential to match the type of learning method to the problem type, and extracting the information about the most important ROI connections might be challenging. In this contribution, we used machine learning techniques to classify tasks in a working memory experiment and identify the brain areas involved in processing information. We employed classical discriminators and neural networks (convolutional and residual) to differentiate between brain responses to distinct types of visual stimuli (visuospatial and verbal) and different phases of the experiment (information encoding and retrieval). The best performance was achieved by the LGBM classifier with 1-time point input data during memory retrieval and a convolutional neural network during the encoding phase. Additionally, we developed an algorithm that took into account feature correlations to estimate the most important brain regions for the model's accuracy. Our findings suggest that from the perspective of considered models, brain signals related to the resting state have a similar degree of complexity to those related to the encoding phase, which does not improve the model's accuracy. However, during the retrieval phase, the signals were easily distinguished from the resting state, indicating their different structure. The study identified brain regions that are crucial for processing information in working memory, as well as the differences in the dynamics of encoding and retrieval processes. Furthermore, our findings indicate spatiotemporal distinctions related to these processes. The analysis confirmed the importance of the basal ganglia in processing information during the retrieval phase. The presented results reveal the benefits of applying machine learning algorithms to investigate working memory dynamics.
Collapse
Affiliation(s)
- Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków, Poland
| | - Marcin Tutajewski
- Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland
| | - Igor Sieradzki
- Group of Machine Learning Methods GMUM, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | - Jeremi K. Ochab
- Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, Kraków, Poland
| | - Anna Ceglarek-Sroka
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków, Poland
| | - Koryna Lewandowska
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków, Poland
| | - Tadeusz Marek
- Faculty of Psychology, SWPS University, Katowice, Poland
| | - Barbara Sikora-Wachowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków, Poland
| | - Igor T. Podolak
- Group of Machine Learning Methods GMUM, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | - Paweł Oświęcimka
- Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland
- Group of Machine Learning Methods GMUM, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
- Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
2
|
Su S, Xia LX. Neurostructural correlates of harm action/outcome aversion: The role of empathy. Neuroimage 2024; 305:120972. [PMID: 39672478 DOI: 10.1016/j.neuroimage.2024.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Harm aversion is essential for normal human functioning; however, the neuroanatomical mechanisms underlying harm aversion remain unclear. To explore this issue, we examined the brain structures associated with the two distinct dimensions of harm aversion (harm action/outcome aversion) and the potential mediating role of the four aspects of empathy: fantasy, perspective-taking, empathic concern, and personal distress. A sample of 214 healthy young adults underwent structural magnetic resonance imaging. Voxel-based morphometry was used to assess regional gray matter volume (rGMV) and regional gray matter density (rGMD). Whole-brain multiple regression analysis revealed significant correlations between harm action aversion and rGMV/rGMD in various brain regions, including the inferior frontal gyrus (IFG) and precuneus for both rGMV and rGMD, the cerebellum for rGMV, and the superior frontal gyrus for rGMD. The rGMV/rGMD in the IFG and the rGMD in the primary somatosensory cortex (S1) were correlated with harm outcome aversion. Utilizing 10-fold balanced cross-validation analysis, we confirmed the robustness of these significant associations between rGMV/rGMD in these brain regions and harm action/outcome aversion. Importantly, mediation analysis revealed that empathic concern mediated the relationship between rGMV/rGMD in the precuneus and harm action aversion. Additionally, empathic concern, personal distress, and total empathy mediated the relationship between rGMD in the S1 and harm outcome aversion. These findings enhance our understanding of the neural mechanism of harm aversion by integrating insights from the brain structure, harm aversion, and the personality hierarchy models while also extending the frontal asymmetry model of Emotion.
Collapse
Affiliation(s)
- Shu Su
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Ling-Xiang Xia
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
3
|
Enayati Z, Cacace AT. Vestibular and Balance Considerations in Type 2 Diabetes: A Tutorial on Pertinent Areas and Issues. Am J Audiol 2024; 33:1092-1103. [PMID: 39401206 DOI: 10.1044/2024_aja-24-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
PURPOSE The purpose of this study is to describe the effects of diabetes mellitus (DM) on vestibular and balance system functions in humans. Because Type 2 diabetes (T2D) represents the majority of individuals affected by this condition, this subgroup is the main focus of this tutorial. METHOD Evidence of dysfunction is based on epidemiological, anatomical, physiological, neuroimaging, and clinical findings. Preventative measures, therapeutic interventions, and other mitigating factors are also given consideration. RESULTS Experimental and clinical findings support the notion that T2D damages vestibular and balance systems to the extent that these effects are more prevalent in patients with higher blood glucose levels and longer duration of the disease. Evidence indicates that T2D increases the occurrence and re-occurrence rates of benign paroxysmal positional vertigo, particularly when it occurs in conjunction with hypertension, osteoarthritis, and otologic disorders like Ménière's disease. Type 2 diabetes also impairs vestibular compensation, which is exacerbated by disease duration. Investigational and clinical studies suggest that galvanic stimulation of the vestibular system can be effective in reducing blood glucose levels and improving rehabilitation outcomes. CONCLUSION Because DM is a chronic metabolic condition affecting cochlear, vestibular, and balance system functions, lowering blood glucose levels through diet, pharmacological interventions, and exercise can be effective in mitigating dysfunction.
Collapse
Affiliation(s)
- Zakaria Enayati
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
| | - Anthony T Cacace
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
| |
Collapse
|
4
|
Li Q, Zhu W, Wen X, Zang Z, Da Y, Lu J. Different baseline functional patterns of the frontal cortex in amyotrophic lateral sclerosis patients with Corticospinal tract hyperintensity. Brain Res 2024; 1844:149140. [PMID: 39111522 DOI: 10.1016/j.brainres.2024.149140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Nearly half of the amyotrophic lateral sclerosis (ALS) patients showed hyperintensity of the corticospinal tract (CST+), yet whether brain functional pattern differs between CST+and CST- patients remains obscure. In the current study, 19 ALS CST+, 41 ALS CST- patients and 37 healthy controls (HC) underwent resting state fMRI scans. We estimated local activity and connectivity patterns via the Amplitude of Low Frequency Fluctuations (ALFF) and the Network-Based Statistic (NBS) approaches respectively. The ALS CST+patients did not differ from the CST- patients in amyotrophic lateral sclerosis functional rating scale revised (ALSFRS-R) score and disease duration. ALFF of the superior frontal gyrus (SFG) and the inferior frontal gyrus pars opercularis (OIFG) were highest in the HC and lowest in the ALS CST- patients, resulting in significant group differences (PFWE<0.05). NBS analysis revealed a frontal network consisting of connections between SFG, OIFG, orbital frontal gyrus, middle cingulate cortex and the basal ganglia, which exhibited HC>ALS CST+ > ALS CST- group differences (PFWE=0.037) as well. The ALFF of the OIFG was significantly correlated with ALSFRS-R (R=0.34, P=0.028) and mean connectivity of the frontal network was trend-wise significantly correlated with disease duration (R=-0.31, P=0.052) in the ALS CST- patients. However, these correlations were insignificant in ALS CST+patients (P values > 0.8). In conclusion, The ALS CST+patients exhibited different patterns of baseline functional activity and connectivity in the frontal cortex which may indicate a functional compensatory effect.
Collapse
Affiliation(s)
- Qianwen Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Zhenxiang Zang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, No. 5, Dewai Ankang Hutong, Xicheng District, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
5
|
Chen C, Sun S, Chen R, Guo Z, Tang X, Chen G, Chen P, Tang G, Huang L, Wang Y. A multimodal neuroimaging meta-analysis of functional and structural brain abnormalities in attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111199. [PMID: 39615871 DOI: 10.1016/j.pnpbp.2024.111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND Numerous neuroimaging studies utilizing resting-state functional imaging and voxel-based morphometry (VBM) have identified variations in distinct brain regions among individuals with attention-deficit/hyperactivity disorder (ADHD). However, the results have been inconsistent. METHODS A comprehensive voxel-wise meta-analysis was performed on studies employing resting-state functional imaging and gray matter volume (GMV), examining discrepancies between individuals with ADHD and neurotypical controls (NCs). The analysis utilized the Seed-based d Mapping software. RESULTS A systematic review of the literature identified 21 functional imaging studies (595 ADHD and 564 controls) and 50 GMV studies (1907 ADHD and 1611 controls). In general, individuals with ADHD exhibited increased resting-state functional activity in the right parahippocampal gyrus and bilateral orbitofrontal cortex (OFC), as well as decreased resting-state functional activity in the bilateral cingulate cortex (including the posterior cingulate cortex [PCC], median cingulate cortex [MCC], and anterior cingulate cortex [ACC]). The VBM meta-analysis revealed decreased GMV in the bilateral OFC, right putamen (extending to right superior temporal gyrus [STG]), left inferior frontal gyrus (IFG), right superior frontal gyrus (SFG), ACC, and precentral gyrus among individuals with ADHD. CONCLUSIONS The multimodal meta-analyses indicated that individuals with ADHD exhibit abnormalities in both function and structure in the bilateral OFC. In addition, a few regions exhibited only functional or only structural abnormalities in ADHD, such as in the limbic, prefrontal, primary sensorimotor regions.
Collapse
Affiliation(s)
- Chao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shilin Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ruoyi Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Xinyue Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
6
|
Li Z, Liu Y, Liu W, Chen H. Is Being Male a Marker of Aggression? Evidence for the Decoupling of Sex and Gender Role Orientation. Brain Sci 2024; 14:1176. [PMID: 39766375 PMCID: PMC11674439 DOI: 10.3390/brainsci14121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES This study explores whether sex differences in reactive aggression (RA) and proactive aggression (PA) are attributable to sex, gender role orientation, or their interaction and explores the neuroanatomical characteristics of these sex differences. METHODS In a sample of 108 males and 126 females, we examined the sex-by-gender role orientation interaction on RA, PA, and brain gray matter volume (GMV). Then, we explored the relationship between aggression and regional GMV. RESULTS When the effects of sex and gender role orientation on aggression were disentangled, there were no sex differences in RA, regardless of gender role orientation. However, sex differences (male > female) in PA were observed within the masculine group but not within the feminine group. Brain imaging results revealed sex differences (male > female) on the right inferior frontal gyrus GMV, a region involved in cognitive control, within the masculine group. Moreover, a negative association between PA and the right inferior frontal gyrus GMV was observed in masculine females rather than masculine males. CONCLUSIONS These findings indicate that gender role orientation has a more significant effect on aggression than sex, particularly with regard to PA, and hint that the goal of cognitive control involved in displaying PA differs in masculine males and masculine females.
Collapse
Affiliation(s)
- Ziang Li
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (Z.L.); (W.L.)
- Research Center of Psychology and Social Development, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yutong Liu
- Department of Applied Psychology, Harbin Normal University, Harbin 150500, China;
| | - Weijun Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (Z.L.); (W.L.)
- Research Center of Psychology and Social Development, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (Z.L.); (W.L.)
- Research Center of Psychology and Social Development, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Wang L, Wang H, Zhang Y, Cai M, Zhang Z, Lei M, Zhang Y, Zhao J, Wang Y, Xu J, Zhai Y, Sun J, An Q, Cai W, Jiang Y, Liu F, Peng Y, Guo L. Transcriptional signatures of gray matter volume changes in mild traumatic brain injury. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111195. [PMID: 39536812 DOI: 10.1016/j.pnpbp.2024.111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Neuroimaging studies have shown that patients with mild traumatic brain injury (mTBI) often exhibit changes in gray matter volume (GMV) in the brain. However, the results regarding these changes are inconsistent, and the underlying molecular mechanisms remain unclear. This study aimed to investigate GMV changes in mTBI patients and uncover the molecular mechanisms driving these alterations. METHODS We conducted a neuroimaging meta-analysis on nine studies, involving 396 mTBI patients and 338 healthy controls, to identify consistent patterns of GMV changes. Additionally, we utilized the Allen Human Brain Atlas database to explore transcriptome-neuroimaging spatial correlations, identifying genes whose expression profiles are linked to GMV changes in mTBI patients. Enrichment analyses were also performed to determine the biological significance of the altered GMV-related genes. RESULTS We observed consistent GMV increases in the bilateral middle cingulate/paracingulate gyri, right striatum, and right dorsolateral superior frontal gyrus, along with GMV decreases in the right insula and left lingual gyrus. Moreover, we found spatial associations between mTBI-related GMV changes and the expression of 977 genes, which were primarily enriched in specific biological processes, body tissues, and developmental time windows of the cerebral cortex. CONCLUSION Our findings improve the understanding of GMV abnormalities in mTBI patients and provide insights into the molecular mechanisms underlying these changes.
Collapse
Affiliation(s)
- Lu Wang
- Department of Geriatrics and Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jiaxuan Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Ying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jinglei Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Ying Zhai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jinghan Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Qi An
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Wenjie Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Yifan Jiang
- School of Nursing, Tianjin Medical University, Tianjin 300070, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China.
| | - Yanmin Peng
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University, 300204 Tianjin, China.
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China.
| |
Collapse
|
8
|
Han J, Zhuang K, Chen X, Xiao M, Liu Y, Song S, Gao X, Chen H. Connectivity-based neuromarker for children's inhibitory control ability and its relevance to body mass index. Child Neuropsychol 2024; 30:1185-1202. [PMID: 38375872 DOI: 10.1080/09297049.2024.2314956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
Preserving a normal body mass index (BMI) is crucial for the healthy growth and development of children. As a core aspect of executive functions, inhibitory control plays a pivotal role in maintaining a normal BMI, which is key to preventing issues of childhood obesity. By studying individual variations in inhibitory control performance and its associated connectivity-based neuromarker in a sample of primary school students (N = 64; 9-12 yr), we aimed to unravel the pathway through which inhibitory control impacts children's BMI. Utilizing resting-state functional MRI scans and a connectivity-based psychometric prediction framework, we found that enhanced inhibitory control abilities were primarily associated with increased functional connectivity in brain structures vital to executive functions, such as the superior frontal lobule, superior parietal lobule, and posterior cingulate cortex. Conversely, inhibitory control abilities displayed a negative relationship with functional connectivity originating from reward-related brain structures, such as the orbital frontal and ventral medial prefrontal lobes. Furthermore, we revealed that both inhibitory control and its corresponding neuromarker can moderate the association between food-related delayed gratification and BMI in children. However, only the neuromarker of inhibitory control maintained its moderating effect on children's future BMI, as determined in the follow-up after one year. Overall, our findings shed light on the potential mechanisms of how inhibitory control in children impacts BMI, highlighting the utility of the connectivity-based neuromarker of inhibitory control in the context of childhood obesity.
Collapse
Affiliation(s)
- Jinfeng Han
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Kaixiang Zhuang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Shiqing Song
- Faculty of Psychology, Shaanxi Normal University, Xi'an, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Kim G, Khan RA, Tai Y, Shahsavarani S, Husain FT. Gray matter volumetric changes in tinnitus: The impact of hearing loss and severity. Brain Res 2024; 1846:149264. [PMID: 39369776 DOI: 10.1016/j.brainres.2024.149264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Tinnitus is a phantom auditory sensation that commonly co-occurs with hearing loss. Both tinnitus and hearing loss can impact the quality of life, emotional well-being, and cognitive functioning of the affected individuals. While previous studies have highlighted structural alterations in hearing loss and/or tinnitus, the fundamental neural mechanisms underpinning tinnitus severity remain poorly understood. In this study, we conducted a voxel-based morphometry to investigate gray matter (GM) volume differences among groups of participants with varying tinnitus severity and hearing status, and controls within a large sample. We observed reduced GM volume in the left anterior insula and right planum polare in participants with hearing loss, regardless of their tinnitus status, compared to normal hearing controls. We noted decreased GM volume in the bilateral anterior and posterior insula for those with tinnitus and normal hearing compared to a normal hearing control group. Further, the tinnitus with hearing loss group showed decreased GM volume in the left planum polare, left inferior temporal gyrus, bilateral anterior temporal gyri, and right superior frontal gyrus compared to the normal hearing control group, suggesting a combined effect of hearing loss and tinnitus. While tinnitus severity did not show a significant overall effect, there was a significant positive correlation between tinnitus distress and GM volume in bilateral planum polare. Our findings enhance the understanding of structural brain changes related to hearing loss and tinnitus, and advance the overall knowledge of tinnitus pathophysiology, which can contribute to the development of more effective treatments for tinnitus.
Collapse
Affiliation(s)
- Gibbeum Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - Rafay A Khan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Yihsin Tai
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Department of Speech Pathology and Audiology, Ball State University, Muncie, IN 47306, United States
| | - Somayeh Shahsavarani
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Audiology, San Jose State University, San Jose, CA 95192, United States
| | - Fatima T Husain
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States.
| |
Collapse
|
10
|
Ren L, Lv M, Wang X, Schwieter JW, Liu H. iTBS reveals the roles of domain-general cognitive control and language-specific brain regions during word formation rule learning. Cereb Cortex 2024; 34:bhae356. [PMID: 39233376 DOI: 10.1093/cercor/bhae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Repeated exposure to word forms and meanings improves lexical knowledge acquisition. However, the roles of domain-general and language-specific brain regions during this process remain unclear. To investigate this, we applied intermittent theta burst stimulation over the domain-general (group left dorsolateral prefrontal cortex) and domain-specific (Group L IFG) brain regions, with a control group receiving sham intermittent theta burst stimulation. Intermittent theta burst stimulation effects were subsequently assessed in functional magnetic resonance imaging using an artificial word learning task which consisted of 3 learning phases. A generalized psychophysiological interaction analysis explored the whole brain functional connectivity, while dynamic causal modeling estimated causal interactions in specific brain regions modulated by intermittent theta burst stimulation during repeated exposure. Compared to sham stimulation, active intermittent theta burst stimulation improved word learning performance and reduced activation of the left insula in learning phase 2. Active intermittent theta burst stimulation over the domain-general region increased whole-brain functional connectivity and modulated effective connectivity between brain regions during repeated exposure. This effect was not observed when active intermittent theta burst stimulation was applied to the language-specific region. These findings suggest that the domain-general region plays a crucial role in word formation rule learning, with intermittent theta burst stimulation enhancing whole-brain connectivity and facilitating efficient information exchange between key brain regions during new word learning.
Collapse
Affiliation(s)
- Lanlan Ren
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - Mengjie Lv
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - Xiyuan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - John W Schwieter
- Language Acquisition, Cognition, and Multilingualism Laboratory/Bilingualism Matters, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada
- Department of Linguistics and Languages, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M2, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| |
Collapse
|
11
|
Huang BK, Zhou JH, Deng Y, Li CH, Ning BL, Ye ZY, Huang XC, Zhao MM, Dong D, Liu M, Zhang DL, Fu WB. Perceived stress and brain connectivity in subthreshold depression: Insights from eyes-closed and eyes-open states. Brain Res 2024; 1838:148947. [PMID: 38657887 DOI: 10.1016/j.brainres.2024.148947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Perceived stress is an acknowledged risk factor for subthreshold depression (StD), and fluctuations in perceived stress are thought to disrupt the harmony of brain networks essential for emotional and cognitive functioning. This study aimed to elucidate the relationship between eye-open (EO) and eye-closed (EC) states, perceived stress, and StD. We recruited 27 individuals with StD and 33 healthy controls, collecting resting state fMRI data under both EC and EO conditions. We combined intrinsic connectivity and seed-based functional connectivity analyses to construct the functional network and explore differences between EC and EO conditions. Graph theory analysis revealed weakened connectivity strength in the right superior frontal gyrus (SFG) and right median cingulate and paracingulate gyrus (MCC) among participants with StD, suggesting an important role for these regions in the stress-related emotions dysregulation. Notably, altered SFG connectivity was observed to significantly relate to perceived stress levels in StD, and the SFG connection emerges as a neural mediator potentially influencing the relationship between perceived stress and StD. These findings highlight the role of SFG and MCC in perceived stress and suggest that understanding EC and EO states in relation to these regions is important in the neurobiological framework of StD. This may offer valuable perspectives for early prevention and intervention strategies in mental health disorders.
Collapse
Affiliation(s)
- Bin-Kun Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Jun-He Zhou
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Ying Deng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Chang-Hong Li
- College of Teacher Education, Guangdong University of Education, Guangzhou 510303, China
| | - Bai-Le Ning
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Zi-Yu Ye
- Acupuncture and Rehabilitation Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Xi-Chang Huang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Mi-Mi Zhao
- Acupuncture and Rehabilitation Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Dian Dong
- Acupuncture and Rehabilitation Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Ming Liu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - De-Long Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.
| | - Wen-Bin Fu
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| |
Collapse
|
12
|
Moore HTA, Sampaio A, Pinal D. Age differences in the principal temporo-spatial components of EEG activity during a proactive interference task. Biol Psychol 2024; 191:108828. [PMID: 38885893 DOI: 10.1016/j.biopsycho.2024.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Proactive interference (PI) is the disruptive effect of no longer relevant information on current working memory (WM) processing. PI effects in EEG data have been previously found to be altered in healthy aging, although it remains unclear the extent to which such changes reflect delayed or different brain mechanisms employed to overcome PI. Hence, we had twenty-six young (18-34 years) and sixteen old (53-68 years) healthy adults complete a Recent Probes task while EEG was recorded. Compared to young adults, old adults were slower, less accurate and less able to discriminate when they last saw a given stimulus, but PI effects on reaction time were greater in the former, likely due to a general difficulty that old adults had in the task. Temporo-spatial principal component analysis of the EEG data showed young and older adults to differ in terms of temporal and spatial characteristics of brain activity associated with resolving PI. YA showed a factor indicative of a medial frontal negativity (MFN) that showed greater amplitude in low compared to high PI trials. OA, in contrast, showed a late positive component (LPC), although similarly with larger amplitude in low compared to high PI trials. The modulation of the MFN component in YA may reflect the recruitment of cognitive control to overcome PI. The modulation of the LPC in OA may represent the detection of conflict between familiarity and context recollection during PI.
Collapse
Affiliation(s)
- Harry T A Moore
- Psychological Neuroscience Laboratory, CIPsi, University of Minho, Braga, Portugal; Department of Psychology, Catholic University of Murcia (UCAM), Spain.
| | - Adriana Sampaio
- Psychological Neuroscience Laboratory, CIPsi, University of Minho, Braga, Portugal.
| | - Diego Pinal
- Psychological Neuroscience Laboratory, CIPsi, University of Minho, Braga, Portugal; Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Inagaki S, Matsuura H, Sakurai K, Minati L, Yoshimura N. Decline in Sensory Integration in Old Age and Its Related Functional Brain Connectivity Correlates Observed during a Virtual Reality Task. Brain Sci 2024; 14:840. [PMID: 39199531 PMCID: PMC11352474 DOI: 10.3390/brainsci14080840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Sensory integration is an essential human function whose decline impacts quality of life, particularly in older adults. Herein, we propose an arm-reaching task based on a virtual reality head-mounted display system to assess sensory integration in daily life, and we examined whether reaching task performance was associated with resting-state functional connectivity (rsFC) between the brain regions involved in sensory integration. We hypothesized that declining sensory integration would affect performance during a reaching task with multiple cognitive loads. Using a task in which a young/middle-aged group showed only small individual differences, older adults showed large individual differences in the gap angle between the reaching hand and the target position, which was used to assess sensory integration function. Additionally, rsfMRI data were used to identify correlations between rsFC and performance in older adults, showing that performance was correlated with connectivity between the primary motor area and the left inferior temporal gyrus and temporo-occipital region. Connectivity between areas is related to visuomotor integration; thus, the results suggest the involvement of visuomotor integration in the decline of sensory integration function and the validity of the gap angle during this VR reaching task as an index of functional decline.
Collapse
Affiliation(s)
- Satoru Inagaki
- Human Centered Science and Biomedical Engineering, Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo 226-8501, Japan;
| | - Hirokazu Matsuura
- Information and Communications Engineering, Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo 226-8501, Japan; (H.M.); (K.S.)
| | - Kazuki Sakurai
- Information and Communications Engineering, Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo 226-8501, Japan; (H.M.); (K.S.)
| | - Ludovico Minati
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 226-8501, Japan;
- Center for Mind/Brain Science, University of Trento, 38122 Trento, Italy
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Natsue Yoshimura
- School of Computing, Tokyo Institute of Technology, Tokyo 226-8501, Japan
| |
Collapse
|
14
|
Ahulló-Fuster MA, Sánchez-Sánchez ML, Varela-Donoso E, Ortiz T. Early attentional processing and cortical remapping strategies of tactile stimuli in adults with an early and late-onset visual impairment: A cross-sectional study. PLoS One 2024; 19:e0306478. [PMID: 38980866 PMCID: PMC11232978 DOI: 10.1371/journal.pone.0306478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Neuroplastic changes appear in people with visual impairment (VI) and they show greater tactile abilities. Improvements in performance could be associated with the development of enhanced early attentional processes based on neuroplasticity. Currently, the various early attentional and cortical remapping strategies that are utilized by people with early (EB) and late-onset blindness (LB) remain unclear. Thus, more research is required to develop effective rehabilitation programs and substitution devices. Our objective was to explore the differences in spatial tactile brain processing in adults with EB, LB and a sighted control group (CG). In this cross-sectional study 27 participants with VI were categorized into EB (n = 14) and LB (n = 13) groups. They were then compared with a CG (n = 15). A vibrotactile device and event-related potentials (ERPs) were utilized while participants performed a spatial tactile line recognition task. The P100 latency and cortical areas of maximal activity were analyzed during the task. The three groups had no statistical differences in P100 latency (p>0.05). All subjects showed significant activation in the right superior frontal areas. Only individuals with VI activated the left superior frontal regions. In EB subjects, a higher activation was found in the mid-frontal and occipital areas. A higher activation of the mid-frontal, anterior cingulate cortex and orbitofrontal zones was observed in LB participants. Compared to the CG, LB individuals showed greater activity in the left orbitofrontal zone, while EB exhibited greater activity in the right superior parietal cortex. The EB had greater activity in the left orbitofrontal region compared to the LB. People with VI may not have faster early attentional processing. EB subjects activate the occipital lobe and right superior parietal cortex during tactile stimulation because of an early lack of visual stimuli and a multimodal information processing. In individuals with LB and EB the orbitofrontal area is activated, suggesting greater emotional processing.
Collapse
Affiliation(s)
- Mónica-Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, Madrid, Spain
| | - M. Luz Sánchez-Sánchez
- Physiotherapy in Motion, Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Enrique Varela-Donoso
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, Madrid, Spain
| | - Tomás Ortiz
- Department of Legal Medicine, Psychiatry and Pathology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
15
|
Zhang R, Tomasi D, Shokri-Kojori E, Manza P, Demiral SB, Wang GJ, Volkow ND. Seasonality in regional brain glucose metabolism. Psychol Med 2024; 54:2264-2272. [PMID: 38634486 DOI: 10.1017/s0033291724000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Daylength and the rates of changes in daylength have been associated with seasonal fluctuations in psychiatric symptoms and in cognition and mood in healthy adults. However, variations in human brain glucose metabolism in concordance with seasonal changes remain under explored. METHODS In this cross-sectional study, we examined seasonal effects on brain glucose metabolism, which we measured using 18F-fluorodeoxyglucose-PET in 97 healthy participants. To maximize the sensitivity of regional effects, we computed relative metabolic measures by normalizing the regional measures to white matter metabolism. Additionally, we explored the role of rest-activity rhythms/sleep-wake activity measured with actigraphy in the seasonal variations of regional brain metabolic activity. RESULTS We found that seasonal variations of cerebral glucose metabolism differed across brain regions. Glucose metabolism in prefrontal regions increased with longer daylength and with greater day-to-day increases in daylength. The cuneus and olfactory bulb had the maximum and minimum metabolic values around the summer and winter solstice respectively (positively associated with daylength), whereas the temporal lobe, brainstem, and postcentral cortex showed maximum and minimum metabolic values around the spring and autumn equinoxes, respectively (positively associated with faster daylength gain). Longer daylength was associated with greater amplitude and robustness of diurnal activity rhythms suggesting circadian involvement. CONCLUSIONS The current findings advance our knowledge of seasonal patterns in a key indicator of brain function relevant for mood and cognition. These data could inform treatment interventions for psychiatric symptoms that peak at specific times of the year.
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sukru Baris Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Liu W, Ding C, Li Z, Chen H. Relationships between Grey Matter Volume in the Bilateral Superior Frontal Gyrus and Reactive Aggression Varied by Level of Traditional Masculinity. Brain Sci 2024; 14:605. [PMID: 38928605 PMCID: PMC11201878 DOI: 10.3390/brainsci14060605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Although previous behavioral studies have associated reactive aggression (RA) and proactive aggression (PA) with traditional masculinity, further investigation is needed into the traditional masculinity-linked neuroanatomical characteristics of RA and PA. This study analyzed the traditional masculinity-by-aggression interaction in 705 participants (350 men) by measuring grey matter volume (GMV). We have expanded on previous studies and found that traditional masculinity was not associated with RA and PA when not controlled for traditional femininity. However, the association appeared when controlling for it. Furthermore, we found significant traditional masculinity-by-RA interactions on the GMV in the bilateral superior frontal gyrus, a region known to be involved in cognitive control. When traditional masculinity scores were 1 standard deviation above the mean, there was a positive correlation between RA and the GMV in the bilateral superior frontal gyrus. Conversely, when traditional masculinity scores were 1 standard deviation below the mean, there was a negative correlation between RA and the GMV in the region. However, no traditional masculinity-linked neuroanatomical characteristics of PA were found. The results indicated that individuals with high/low traditional masculinity perceived RA as a different outcome (gain or loss) of self-control. The results supported an opportunity to develop prevention or intervention strategies for RA.
Collapse
Affiliation(s)
- Weijun Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (W.L.); (Z.L.)
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
- Research Center of Psychology and Social Development, Southwest University, Chongqing 400715, China
| | - Cody Ding
- Department of Education Sciences & Professional Programs, University of Missouri-St. Louis, St. Louis, MO 63121-4400, USA;
| | - Ziang Li
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (W.L.); (Z.L.)
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
- Research Center of Psychology and Social Development, Southwest University, Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (W.L.); (Z.L.)
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
- Research Center of Psychology and Social Development, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Shao S, Zou Y, Kennedy KG, Dimick MK, Andreazza AC, Young LT, Goncalves VF, MacIntosh BJ, Goldstein BI. Pilot study of circulating cell-free mitochondrial DNA in relation to brain structure in youth bipolar disorder. Int J Bipolar Disord 2024; 12:21. [PMID: 38874862 PMCID: PMC11178693 DOI: 10.1186/s40345-024-00334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is implicated in the neuropathology of bipolar disorder (BD). Higher circulating cell-free mitochondrial DNA (ccf-mtDNA), generally reflecting poorer mitochondrial health, has been associated with greater symptoms severity in BD. The current study examines the association of serum ccf-mtDNA and brain structure in relation to youth BD. We hypothesized that higher ccf-mtDNA will be associated with measures of lower brain structure, particularly in the BD group. METHODS Participants included 40 youth (BD, n = 19; Control group [CG], n = 21; aged 13-20 years). Serum ccf-mtDNA levels were assayed. T1-weighted brain images were acquired using 3T-MRI. Region of interest (ROI) analyses examined prefrontal cortex (PFC) and whole brain gray matter, alongside exploratory vertex-wise analyses. Analyses examined ccf-mtDNA main-effects and ccf-mtDNA-by-diagnosis interaction effects controlling for age, sex, and intracranial volume. RESULTS There was no significant difference in ccf-mtDNA levels between BD and CG. In ROI analyses, higher ccf-mtDNA was associated with higher PFC surface area (SA) (β = 0.32 p < 0.001) and PFC volume (β = 0.32 p = 0.002) in the overall sample. In stratified analyses, higher ccf-mtDNA was associated with higher PFC SA within both subgroups (BD: β = 0.39 p = 0.02; CG: β = 0.24 p = 0.045). Higher ccf-mtDNA was associated with higher PFC volume within the BD group (β = 0.39 p = 0.046). In vertex-wise analyses, higher ccf-mtDNA was associated with higher SA and volume in frontal clusters within the overall sample and within the BD group. There were significant ccf-mtDNA-by-diagnosis interactions in three frontal and parietal clusters, whereby higher ccf-mtDNA was associated with higher neurostructural metrics in the BD group but lower neurostructural metrics in CG. CONCLUSIONS Contrasting our hypothesis, higher ccf-mtDNA was consistently associated with higher, rather than lower, regional neuralstructural metrics among youth with BD. While this finding may reflect a compensatory mechanism, future repeated-measures prospective studies evaluating the inter-relationship among ccf-mtDNA, mood, and brain structure across developmental epochs and illness stages are warranted.
Collapse
Affiliation(s)
- Suyi Shao
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Yi Zou
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ana C Andreazza
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - L Trevor Young
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa F Goncalves
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Xu P, Lin F, Alimu G, Zhang J, Jin Z, Li L. The Important Role of the Right Dorsolateral Prefrontal Cortex in Conflict Adaptation: A Combined Voxel-Based Morphometry and Continuous Theta Burst Stimulation Study. J Cogn Neurosci 2024; 36:1172-1183. [PMID: 38579250 DOI: 10.1162/jocn_a_02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Humans can flexibly adjust their executive control to resolve conflicts. Conflict adaptation and conflict resolution are crucial aspects of conflict processing. Functional neuroimaging studies have associated the dorsolateral prefrontal cortex (DLPFC) with conflict processing, but its causal role remains somewhat controversial. Moreover, the neuroanatomical basis of conflict processing has not been thoroughly examined. In this study, the Stroop task, a well-established measure of conflict, was employed to investigate (1) the neuroanatomical basis of conflict resolution and conflict adaptation with the voxel-based morphometry analysis, (2) the causal role of DLPFC in conflict processing with the application of the continuous theta burst stimulation to DLPFC. The results revealed that the Stroop effect was correlated to the gray matter volume of the precuneus, postcentral gyrus, and cerebellum, and the congruency sequence effect was correlated to the gray matter volume of superior frontal gyrus, postcentral gyrus, and lobule paracentral gyrus. These findings indicate the neuroanatomical basis of conflict resolution and adaptation. In addition, the continuous theta burst stimulation over the right DLPFC resulted in a significant reduction in the Stroop effect of RT after congruent trials compared with vertex stimulation and a significant increase in the Stroop effect of accuracy rate after incongruent trials than congruent trials, demonstrating the causal role of right DLPFC in conflict adaptation. Moreover, the DLPFC stimulation did not affect the Stroop effect of RT and accuracy rate. Overall, our study offers further insights into the neural mechanisms underlying conflict resolution and adaptation.
Collapse
Affiliation(s)
- Ping Xu
- University of Electronic Science and Technology of China
| | - Feng Lin
- University of Electronic Science and Technology of China
| | | | - Junjun Zhang
- University of Electronic Science and Technology of China
| | - Zhenlan Jin
- University of Electronic Science and Technology of China
| | - Ling Li
- University of Electronic Science and Technology of China
| |
Collapse
|
19
|
Orth L, Meeh J, Leiding D, Habel U, Neuner I, Sarkheil P. Aberrant Functional Connectivity of the Salience Network in Adult Patients with Tic Disorders: A Resting-State fMRI Study. eNeuro 2024; 11:ENEURO.0223-23.2024. [PMID: 38744491 PMCID: PMC11167695 DOI: 10.1523/eneuro.0223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 05/16/2024] Open
Abstract
Tic disorders (TD) are characterized by the presence of motor and/or vocal tics. Common neurophysiological frameworks suggest dysregulations of the cortico-striatal-thalamo-cortical (CSTC) brain circuit that controls movement execution. Besides common tics, there are other "non-tic" symptoms that are primarily related to sensory perception, sensorimotor integration, attention, and social cognition. The existence of these symptoms, the sensory tic triggers, and the modifying effect of attention and cognitive control mechanisms on tics may indicate the salience network's (SN) involvement in the neurophysiology of TD. Resting-state functional MRI measurements were performed in 26 participants with TD and 25 healthy controls (HC). The group differences in resting-state functional connectivity patterns were measured based on seed-to-voxel connectivity analyses. Compared to HC, patients with TD exhibited altered connectivity between the core regions of the SN (insula, anterior cingulate cortex, and temporoparietal junction) and sensory, associative, and motor-related cortices. Furthermore, connectivity changes were observed in relation to the severity of tics in the TD group. The SN, particularly the insula, is likely to be an important site of dysregulation in TD. Our results provide evidence for large-scale neural deviations in TD beyond the CSTC pathologies. These findings may be relevant for developing treatment targets.
Collapse
Affiliation(s)
- Linda Orth
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Johanna Meeh
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany
| | - Delia Leiding
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Pegah Sarkheil
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany
| |
Collapse
|
20
|
Camacho-Téllez V, Castro MN, Wainsztein AE, Goldberg X, De Pino G, Costanzo EY, Cardoner N, Menchón JM, Soriano-Mas C, Guinjoan SM, Villarreal MF. Childhood adversity modulates structural brain changes in borderline personality but not in major depression disorder. Psychiatry Res Neuroimaging 2024; 340:111803. [PMID: 38460393 DOI: 10.1016/j.pscychresns.2024.111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/24/2023] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Adverse childhood experiences (ACEs) negatively affect the function and structure of emotion brain circuits, increasing the risk of various psychiatric disorders. It is unclear if ACEs show disorder specificity with respect to their effects on brain structure. We aimed to investigate whether the structural brain effects of ACEs differ between patients with major depression (MDD) and borderline personality disorder (BPD). These disorders share many symptoms but likely have different etiologies. To achieve our goal, we obtained structural 3T-MRI images from 20 healthy controls (HC), 19 MDD patients, and 18 BPD patients, and measured cortical thickness and subcortical gray matter volumes. We utilized the Adverse Childhood Experiences (ACE) questionnaire to quantify self-reported exposure to childhood trauma. Our findings suggest that individuals with MDD exhibit a smaller cortical thickness when compared to those with BPD. However, ACEs showed a significantly affected relationship with cortical thickness in BPD but not in MDD. ACEs were found to be associated with thinning in cortical regions involved in emotional behavior in BPD, whereas HC showed an opposite association. Our results suggest a potential mechanism of ACE effects on psychopathology involving changes in brain structure. These findings highlight the importance of early detection and intervention strategies.
Collapse
Affiliation(s)
- Vicente Camacho-Téllez
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Mariana N Castro
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina.
| | - Agustina E Wainsztein
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Ximena Goldberg
- Mental Health Department, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain; ISGlobal, Barcelona, Spain
| | - Gabriela De Pino
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Laboratorio de Neuroimágenes, Departamento de Imágenes, Fleni, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Argentina
| | - Elsa Y Costanzo
- Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Narcís Cardoner
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José M Menchón
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Carles Soriano-Mas
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, USA; Department of Psychiatry, Health Sciences Center, Oklahoma University, and Oxley College, Tulsa University, Tulsa, Oklahoma, USA
| | - Mirta F Villarreal
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Argentina
| |
Collapse
|
21
|
Gao Z, Duberg K, Warren SL, Zheng L, Hinshaw SP, Menon V, Cai W. Reduced temporal and spatial stability of neural activity patterns predict cognitive control deficits in children with ADHD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596493. [PMID: 38854066 PMCID: PMC11160739 DOI: 10.1101/2024.05.29.596493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This study explores the neural underpinnings of cognitive control deficits in ADHD, focusing on overlooked aspects of trial-level variability of neural coding. We employed a novel computational approach to neural decoding on a single-trial basis alongside a cued stop-signal task which allowed us to distinctly probe both proactive and reactive cognitive control. Typically developing (TD) children exhibited stable neural response patterns for efficient proactive and reactive dual control mechanisms. However, neural coding was compromised in children with ADHD. Children with ADHD showed increased temporal variability and diminished spatial stability in neural responses in salience and frontal-parietal network regions, indicating disrupted neural coding during both proactive and reactive control. Moreover, this variability correlated with fluctuating task performance and with more severe symptoms of ADHD. These findings underscore the significance of modeling single-trial variability and representational similarity in understanding distinct components of cognitive control in ADHD, highlighting new perspectives on neurocognitive dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Zhiyao Gao
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine Duberg
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Stacie L Warren
- Department of Psychology, University of Texas, Dallas, TX, USA
| | - Li Zheng
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Stephen P. Hinshaw
- Department of Psychology, University of California, Berkeley
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Maternal & Child Health Research Institute, Stanford, CA, USA
| | - Weidong Cai
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Maternal & Child Health Research Institute, Stanford, CA, USA
| |
Collapse
|
22
|
Malik MA, Weber AM, Lang D, Vanderwal T, Zwicker JG. Changes in cortical grey matter volume with Cognitive Orientation to daily Occupational Performance intervention in children with developmental coordination disorder. Front Hum Neurosci 2024; 18:1316117. [PMID: 38841123 PMCID: PMC11150831 DOI: 10.3389/fnhum.2024.1316117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Cognitive Orientation to daily Occupational Performance (CO-OP) is a cognitive-based, task-specific intervention recommended for children with developmental coordination disorder (DCD). We recently showed structural and functional brain changes after CO-OP, including increased cerebellar grey matter. This study aimed to determine whether CO-OP intervention induced changes in cortical grey matter volume in children with DCD, and if these changes were associated with improvements in motor performance and movement quality. Methods This study is part of a randomized waitlist-control trial (ClinicalTrials.gov ID: NCT02597751). Children with DCD (N = 78) were randomized to either a treatment or waitlist group and underwent three MRIs over 6 months. The treatment group received intervention (once weekly for 10 weeks) between the first and second scan; the waitlist group received intervention between the second and third scan. Cortical grey matter volume was measured using voxel-based morphometry (VBM). Behavioral outcome measures included the Performance Quality Rating Scale (PQRS) and Bruininks-Oseretsky Test of Motor Proficiency-2 (BOT-2). Of the 78 children, 58 were excluded (mostly due to insufficient data quality), leaving a final N = 20 for analyses. Due to the small sample size, we combined both groups to examine treatment effects. Cortical grey matter volume differences were assessed using a repeated measures ANOVA, controlling for total intracranial volume. Regression analyses examined the relationship of grey matter volume changes to BOT-2 (motor performance) and PQRS (movement quality). Results After CO-OP, children had significantly decreased grey matter in the right superior frontal gyrus and middle/posterior cingulate gyri. We found no significant associations of grey matter volume changes with PQRS or BOT-2 scores. Conclusion Decreased cortical grey matter volume generally reflects greater brain maturity. Decreases in grey matter volume after CO-OP intervention were in regions associated with self-regulation and motor control, consistent with our other studies. Decreased grey matter volume may be due to focal increases in synaptic pruning, perhaps as a result of strengthening networks in the brain via the repeated learning and actions in therapy. Findings from this study add to the growing body of literature demonstrating positive neuroplastic changes in the brain after CO-OP intervention.
Collapse
Affiliation(s)
- Myrah Anum Malik
- Graduate Programs in Rehabilitation Science, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Mark Weber
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Donna Lang
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Tamara Vanderwal
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jill G. Zwicker
- Brain, Behaviour, and Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Occupational Science and Occupational Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Xie Y, Li C, Guan M, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. The efficacy of low frequency repetitive transcial magnetic stimulation for treating auditory verbal hallucinations in schizophrenia: Insights from functional gradient analyses. Heliyon 2024; 10:e30194. [PMID: 38707410 PMCID: PMC11066630 DOI: 10.1016/j.heliyon.2024.e30194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Background Auditory Verbal Hallucinations (AVH) constitute a prominent feature of schizophrenia. Although low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated therapeutic benefits in ameliorating AVH, the underlying mechanisms of its efficacy necessitate further elucidation. Objective This study investigated the cortical gradient characteristics and their associations with clinical responses in schizophrenia patients with AVH, mediated through 1 Hz rTMS targeting the left temporoparietal junction. Method Functional gradient metrics were employed to examine the hierarchy patterns of cortical organization, capturing whole-brain functional connectivity profiles in patients and controls. Results The 1 Hz rTMS treatment effectively ameliorated the positive symptoms in patients, specifically targeting AVH. Initial evaluations revealed expanded global gradient distribution patterns and specific principal gradient variations in certain brain regions in patients at baseline compared to a control cohort. Following treatment, these divergent global and local patterns showed signs of normalizing. Furthermore, there was observed a closer alignment in between-network dispersion among various networks after treatment, including the somatomotor, attention, and limbic networks, indicating a potential harmonization of brain functionality. Conclusion Low-frequency rTMS induces alternations in principal functional gradient patterns, may serve as imaging markers to elucidate the mechanisms underpinning the therapeutic efficacy of rTMS on AVH in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Pindus DM, Ai M, Chaddock-Heyman L, Burzynska AZ, Gothe NP, Salerno EA, Fanning J, Arnold Anteraper SRA, Castanon AN, Whitfield-Gabrieli S, Hillman CH, McAuley E, Kramer AF. Physical activity-related individual differences in functional human connectome are linked to fluid intelligence in older adults. Neurobiol Aging 2024; 137:94-104. [PMID: 38460470 DOI: 10.1016/j.neurobiolaging.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 03/11/2024]
Abstract
The study examined resting state functional connectivity (rs-FC) associated with moderate-to-vigorous physical activity (MV-PA), sedentary time (ST), TV viewing, computer use, and their relationship to cognitive performance in older adults. We used pre-intervention data from 119 participants from the Fit & Active Seniors trial. Multivariate pattern analysis revealed two seeds associated with MV-PA: right superior frontal gyrus (SFG; spanning frontoparietal [FPN] and ventral attention networks [VAN]) and right precentral (PrG) and postcentral gyri (PoG) of the somatosensory network (SN). A positive correlation between the right SFG seed and a cluster spanning default mode (DMN), dorsal attention (DAN), FPN, and visual networks (VIS) was linked to higher fluid intelligence, as was FC between the right PrG/PoG seed and a cluster in VIS. No significant rs-FC patterns associated with ST, TV viewing, or computer use were found. Our findings suggest that greater functional integration within networks implementing top-down control and within those supporting visuospatial abilities, paired with segregation between networks critical and those not critical to top-down control, may help promote cognitive reserve in more physically active seniors.
Collapse
Affiliation(s)
- Dominika M Pindus
- Department of Kinesiology and Community Health, the University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Meishan Ai
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | - Agnieszka Z Burzynska
- College of Health and Human Sciences, Colorado State University, Fort Collins, CO, USA
| | - Neha P Gothe
- Department of Kinesiology and Community Health, the University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | | | - Jason Fanning
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
| | | | | | | | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, MA, USA; Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | - Edward McAuley
- Department of Kinesiology and Community Health, the University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Psychology, Northeastern University, Boston, MA, USA
| |
Collapse
|
25
|
Rosen D, Oh Y, Chesebrough C, Zhang FZ, Kounios J. Creative flow as optimized processing: Evidence from brain oscillations during jazz improvisations by expert and non-expert musicians. Neuropsychologia 2024; 196:108824. [PMID: 38387554 DOI: 10.1016/j.neuropsychologia.2024.108824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Using a creative production task, jazz improvisation, we tested alternative hypotheses about the flow experience: (A) that it is a state of domain-specific processing optimized by experience and characterized by minimal interference from task-negative default-mode network (DMN) activity versus (B) that it recruits domain-general task-positive DMN activity supervised by the fronto-parietal control network (FPCN) to support ideation. We recorded jazz guitarists' electroencephalograms (EEGs) while they improvised to provided chord sequences. Their flow-states were measured with the Core Flow State Scale. Flow-related neural sources were reconstructed using SPM12. Over all musicians, high-flow (relative to low-flow) improvisations were associated with transient hypofrontality. High-experience musicians' high-flow improvisations showed reduced activity in posterior DMN nodes. Low-experience musicians showed no flow-related DMN or FPCN modulation. High-experience musicians also showed modality-specific left-hemisphere flow-related activity while low-experience musicians showed modality-specific right-hemisphere flow-related deactivations. These results are consistent with the idea that creative flow represents optimized domain-specific processing enabled by extensive practice paired with reduced cognitive control.
Collapse
Affiliation(s)
- David Rosen
- Department of Psychological and Brain Sciences, Drexel University, United States.
| | - Yongtaek Oh
- Department of Psychological and Brain Sciences, Drexel University, United States.
| | | | - Fengqing Zoe Zhang
- Department of Psychological and Brain Sciences, Drexel University, United States.
| | - John Kounios
- Department of Psychological and Brain Sciences, Drexel University, United States.
| |
Collapse
|
26
|
Gupta RS, Simmons AN, Dugas NN, Stout DM, Harlé KM. Motivational context and neurocomputation of stop expectation moderate early attention responses supporting proactive inhibitory control. Front Hum Neurosci 2024; 18:1357868. [PMID: 38628969 PMCID: PMC11019005 DOI: 10.3389/fnhum.2024.1357868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Alterations in attention to cues signaling the need for inhibitory control play a significant role in a wide range of psychopathology. However, the degree to which motivational and attentional factors shape the neurocomputations of proactive inhibitory control remains poorly understood. The present study investigated how variation in monetary incentive valence and stake modulate the neurocomputational signatures of proactive inhibitory control. Adults (N = 46) completed a Stop-Signal Task (SST) with concurrent EEG recording under four conditions associated with stop performance feedback: low and high punishment (following unsuccessful stops) and low and high reward (following successful stops). A Bayesian learning model was used to infer individual's probabilistic expectations of the need to stop on each trial: P(stop). Linear mixed effects models were used to examine whether interactions between motivational valence, stake, and P(stop) parameters predicted P1 and N1 attention-related event-related potentials (ERPs) time-locked to the go-onset stimulus. We found that P1 amplitudes increased at higher levels of P(stop) in punished but not rewarded conditions, although P1 amplitude differences between punished and rewarded blocks were maximal on trials when the need to inhibit was least expected. N1 amplitudes were positively related to P(stop) in the high punishment condition (low N1 amplitude), but negatively related to P(stop) in the high reward condition (high N1 amplitude). Critically, high P(stop)-related N1 amplitude to the go-stimulus predicted behavioral stop success during the high reward block, providing evidence for the role of motivationally relevant context and inhibitory control expectations in modulating the proactive allocation of attentional resources that affect inhibitory control. These findings provide novel insights into the neurocomputational mechanisms underlying proactive inhibitory control under valence-dependent motivational contexts, setting the stage for developing motivation-based interventions that boost inhibitory control.
Collapse
Affiliation(s)
- Resh S. Gupta
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Alan N. Simmons
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Nathalie N. Dugas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Daniel M. Stout
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Katia M. Harlé
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
27
|
Israelyan A, Ludlow J, Pyatka N, Durant EJ. A 78-Year-Old Woman with Sudden Onset of Left-Sided Hemiballismus. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e941840. [PMID: 38433438 PMCID: PMC10926233 DOI: 10.12659/ajcr.941840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/17/2024] [Accepted: 12/14/2023] [Indexed: 03/05/2024]
Abstract
BACKGROUND Hemiballismus is the most severe form of chorea and is a hyperkinetic disorder characterized by involuntary, high-amplitude movements of the ipsilateral arm and leg, due to lesions of the contralateral side of the central nervous system. Ischemic or hemorrhagic strokes and nonketotic hyperglycemia are predominant etiologies of hemiballismus. Case reports highlighting hemiballismus associated with temporal and parietal lobe infarcts have been published, although research of frontal lobe involvement is limited. CASE REPORT A 78-year-old woman presented to the Emergency Department with sudden-onset left-sided hemiballismus. On examination, she was alert, oriented to self and time, and able to follow commands. Her neurologic examination was notable for left-sided hemiballismus, described by the provider as periodic, uncontrolled, and involving a "flinging" motion of the left upper and lower extremities, sparing the face. She was treated with benzodiazepines in the Emergency Department and administered intravenous levetiracetam. Computed tomography of the head without contrast revealed an old left basal ganglia lacunar infarct. The patient was then admitted to the inpatient service, where magnetic resonance imaging of the brain revealed an acute punctate left superior frontal gyrus cortical infarct. Outpatient electroencephalogram revealed right anterior hemisphere dysfunction. CONCLUSIONS We describe a patient with left-sided sudden onset hemiballismus with an acute infarct of the ipsilateral superior frontal gyrus. This case highlights that brain lesions separate from the basal ganglia can induce hemiballismus, particularly within the frontal lobe, which warrants further research into precentral sulcus functioning and its role in modulating motor activity.
Collapse
Affiliation(s)
- Arman Israelyan
- Department of Emergency, Kaiser Permanente Central Valley, Modesto, CA, USA
| | - John Ludlow
- Department of Emergency, Kaiser Permanente Central Valley, Modesto, CA, USA
| | - Nataliya Pyatka
- Department of Neurology, Kaiser Permanente Central Valley, Modesto, CA, USA
| | - Edward J. Durant
- Department of Emergency, Kaiser Permanente Central Valley, Modesto, CA, USA
| |
Collapse
|
28
|
Wu H, Guo Y, Zhang Y, Zhao L, Guo C. Self-esteem and cortical thickness correlate with aggression in healthy children: A surface-based analysis. Behav Brain Res 2024; 458:114737. [PMID: 37924850 DOI: 10.1016/j.bbr.2023.114737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Aggressive behavior can have serious physical, psychological, and social consequences. However, little is known about the personality and neurological antecedents underlying aggressive behavior in children. The objective of this study was to investigate the relationship between self-esteem, aggression, and brain structure (i.e., cortical thickness and surface area) in a population of healthy children (N = 78; 9-12 years; mean age: 9.95 ± 0.90 years). The results revealed that self-esteem showed a negative association with aggression and significantly predicted aggressive behavior. No gender differences were found in aggression and its neural correlates. We performed the cortical parcellation method to further explore the neural foundations underlying the association of self-esteem with aggression. Children with higher aggression had increased cortical thickness in four clusters after multiple comparison correction: right medial orbitofrontal cortex, right lateral orbitofrontal cortex, right superior frontal gyrus, and left insula. In a mediation analysis, cortical thickness in the right medial orbitofrontal cortex contributed to the effect of self-esteem on aggression. These findings extend our understanding of morphological correlates of aggression in children, suggesting that an increased cortical thickness in childhood is a potential mechanism linking low self-esteem to aggression.
Collapse
Affiliation(s)
- Huimin Wu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yiqun Guo
- School of Innovation and Entrepreneurship Education, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yaoyao Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Le Zhao
- School of Applied Psychology, Beijing Normal University, Zhuhai, China
| | - Cheng Guo
- Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
29
|
Chaudhary S, Wong HK, Chen Y, Zhang S, Li CSR. Sex differences in the effects of individual anxiety state on regional responses to negative emotional scenes. Biol Sex Differ 2024; 15:15. [PMID: 38351045 PMCID: PMC10863151 DOI: 10.1186/s13293-024-00591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Men and women are known to show differences in the incidence and clinical manifestations of mood and anxiety disorders. Many imaging studies have investigated the neural correlates of sex differences in emotion processing. However, it remains unclear how anxiety might impact emotion processing differently in men and women. METHOD We recruited 119 healthy adults and assessed their levels of anxiety using State-Trait Anxiety Inventory (STAI) State score. With functional magnetic resonance imaging (fMRI), we examined regional responses to negative vs. neutral (Neg-Neu) picture matching in the Hariri task. Behavioral data were analyzed using regression and repeated-measures analysis of covariance with age as a covariate, and fMRI data were analyzed using a full-factorial model with sex as a factor and age as a covariate. RESULTS Men and women did not differ in STAI score, or accuracy rate or reaction time (RT) (Neg-Neu). However, STAI scores correlated positively with RT (Neg-Neu) in women but not in men. Additionally, in women, STAI score correlated positively with lingual gyrus (LG) and negatively with medial prefrontal cortex (mPFC) and superior frontal gyrus (SFG) activity during Neg vs. Neu trials. The parameter estimates (βs) of mPFC also correlated with RT (Neg-Neu) in women but not in men. Generalized psychophysiological interaction (gPPI) analysis in women revealed mPFC connectivity with the right inferior frontal gyrus, right SFG, and left parahippocampal gyrus during Neg vs. Neu trials in positive correlation with both STAI score and RT (Neg-Neu). In a mediation analysis, mPFC gPPI but not mPFC activity fully mediated the association between STAI scores and RT (Neg-Neu). CONCLUSION With anxiety affecting the behavioral and neural responses to negative emotions in women but not in men and considering the known roles of the mPFC in emotion regulation, we discussed heightened sensitivity and regulatory demands during negative emotion processing as neurobehavioral markers of anxiety in women.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA.
| | | | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
30
|
Le TM, Oba T, Couch L, McInerney L, Li CSR. The Neural Correlates of Individual Differences in Reinforcement Learning during Pain Avoidance and Reward Seeking. eNeuro 2024; 11:ENEURO.0437-23.2024. [PMID: 38365840 PMCID: PMC10901196 DOI: 10.1523/eneuro.0437-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Organisms learn to gain reward and avoid punishment through action-outcome associations. Reinforcement learning (RL) offers a critical framework to understand individual differences in this associative learning by assessing learning rate, action bias, pavlovian factor (i.e., the extent to which action values are influenced by stimulus values), and subjective impact of outcomes (i.e., motivation to seek reward and avoid punishment). Nevertheless, how these individual-level metrics are represented in the brain remains unclear. The current study leveraged fMRI in healthy humans and a probabilistic learning go/no-go task to characterize the neural correlates involved in learning to seek reward and avoid pain. Behaviorally, participants showed a higher learning rate during pain avoidance relative to reward seeking. Additionally, the subjective impact of outcomes was greater for reward trials and associated with lower response randomness. Our imaging findings showed that individual differences in learning rate and performance accuracy during avoidance learning were positively associated with activities of the dorsal anterior cingulate cortex, midcingulate cortex, and postcentral gyrus. In contrast, the pavlovian factor was represented in the precentral gyrus and superior frontal gyrus (SFG) during pain avoidance and reward seeking, respectively. Individual variation of the subjective impact of outcomes was positively predicted by activation of the left posterior cingulate cortex. Finally, action bias was represented by the supplementary motor area (SMA) and pre-SMA whereas the SFG played a role in restraining this action tendency. Together, these findings highlight for the first time the neural substrates of individual differences in the computational processes during RL.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Takeyuki Oba
- Human Informatics and Interaction Research Institute, the National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
| | - Luke Couch
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Lauren McInerney
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
| |
Collapse
|
31
|
Imms P, Chowdhury NF, Chaudhari NN, Amgalan A, Poudel G, Caeyenberghs K, Irimia A. Prediction of cognitive outcome after mild traumatic brain injury from acute measures of communication within brain networks. Cortex 2024; 171:397-412. [PMID: 38103453 PMCID: PMC10922490 DOI: 10.1016/j.cortex.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/04/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023]
Abstract
A considerable but ill-defined proportion of patients with mild traumatic brain injury (mTBI) experience persistent cognitive sequelae; the ability to identify such individuals early can help their neurorehabilitation. Here we tested the hypothesis that acute measures of efficient communication within brain networks are associated with patients' risk for unfavorable cognitive outcome six months after mTBI. Diffusion and T1-weighted magnetic resonance imaging, alongside cognitive measures, were obtained to map connectomes both one week and six months post injury in 113 adult patients with mTBI (71 males). For task-related brain networks, communication measures (characteristic path length, global efficiency, navigation efficiency) were moderately correlated with changes in cognition. Taking into account the covariance of age and sex, more unfavorable communication within networks were associated with worse outcomes within cognitive domains frequently impacted by mTBI (episodic and working memory, verbal fluency, inductive reasoning, and processing speed). Individuals with more unfavorable outcomes had significantly longer and less efficient pathways within networks supporting verbal fluency (all t > 2.786, p < .006), highlighting the vulnerability of language to mTBI. Participants in whom a task-related network was relatively inefficient one week post injury were up to eight times more likely to have unfavorable cognitive outcome pertaining to that task. Our findings suggest that communication measures within task-related networks identify mTBI patients who are unlikely to develop persistent cognitive deficits after mTBI. Our approach and findings can help to stratify mTBI patients according to their expected need for follow-up and/or neurorehabilitation.
Collapse
Affiliation(s)
- Phoebe Imms
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA.
| | - Nahian F Chowdhury
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA.
| | - Nikhil N Chaudhari
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA USA.
| | - Anar Amgalan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA.
| | - Govinda Poudel
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne Burwood Campus, Burwood, VIC, Australia.
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA USA; Department of Quantitative & Computational Biology, Dana and David Dornsife College of Arts & Sciences, University of Southern California, Los Angeles, CA USA.
| |
Collapse
|
32
|
Walia P, Fu Y, Norfleet J, Schwaitzberg SD, Intes X, De S, Cavuoto L, Dutta A. Brain-behavior analysis of transcranial direct current stimulation effects on a complex surgical motor task. FRONTIERS IN NEUROERGONOMICS 2024; 4:1135729. [PMID: 38234492 PMCID: PMC10790853 DOI: 10.3389/fnrgo.2023.1135729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcranial Direct Current Stimulation (tDCS) has demonstrated its potential in enhancing surgical training and performance compared to sham tDCS. However, optimizing its efficacy requires the selection of appropriate brain targets informed by neuroimaging and mechanistic understanding. Previous studies have established the feasibility of using portable brain imaging, combining functional near-infrared spectroscopy (fNIRS) with tDCS during Fundamentals of Laparoscopic Surgery (FLS) tasks. This allows concurrent monitoring of cortical activations. Building on these foundations, our study aimed to explore the multi-modal imaging of the brain response using fNIRS and electroencephalogram (EEG) to tDCS targeting the right cerebellar (CER) and left ventrolateral prefrontal cortex (PFC) during a challenging FLS suturing with intracorporeal knot tying task. Involving twelve novices with a medical/premedical background (age: 22-28 years, two males, 10 females with one female with left-hand dominance), our investigation sought mechanistic insights into tDCS effects on brain areas related to error-based learning, a fundamental skill acquisition mechanism. The results revealed that right CER tDCS applied to the posterior lobe elicited a statistically significant (q < 0.05) brain response in bilateral prefrontal areas at the onset of the FLS task, surpassing the response seen with sham tDCS. Additionally, right CER tDCS led to a significant (p < 0.05) improvement in FLS scores compared to sham tDCS. Conversely, the left PFC tDCS did not yield a statistically significant brain response or improvement in FLS performance. In conclusion, right CER tDCS demonstrated the activation of bilateral prefrontal brain areas, providing valuable mechanistic insights into the effects of CER tDCS on FLS peformance. These insights motivate future investigations into the effects of CER tDCS on error-related perception-action coupling through directed functional connectivity studies.
Collapse
Affiliation(s)
- Pushpinder Walia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Yaoyu Fu
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, United States
| | - Jack Norfleet
- U.S. Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL, United States
| | - Steven D. Schwaitzberg
- University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, United States
| | - Xavier Intes
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Suvranu De
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Lora Cavuoto
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, United States
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
33
|
Lee AJ, Stark JH, Hayes SM. Baseline Frontoparietal Gray Matter Volume Predicts Executive Function Performance in Aging and Mild Cognitive Impairment at 24-Month Follow-Up. J Alzheimers Dis 2024; 100:357-374. [PMID: 38875035 DOI: 10.3233/jad-231468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Background Executive dysfunction in mild cognitive impairment (MCI) has been associated with gray matter atrophy. Prior studies have yielded limited insight into associations between gray matter volume and executive function in early and late amnestic MCI (aMCI). Objective To examine the relative importance of predictors of executive function at 24 months and relationships between baseline regional gray matter volume and executive function performance at 24-month follow-up in non-demented older adults. Methods 147 participants from the Alzheimer's Disease Neuroimaging Initiative (mean age = 70.6 years) completed brain magnetic resonance imaging and neuropsychological testing and were classified as cognitively normal (n = 49), early aMCI (n = 60), or late aMCI (n = 38). Analyses explored the importance of demographic, APOEɛ4, biomarker (p-tau/Aβ42, t-tau/Aβ42), and gray matter regions-of-interest (ROI) variables to 24-month executive function, whether ROIs predicted executive function, and whether relationships varied by baseline diagnostic status. Results Across all participants, baseline anterior cingulate cortex and superior parietal lobule volumes were the strongest predictors of 24-month executive function performance. In early aMCI, anterior cingulate cortex volume was the strongest predictor and demonstrated a significant interaction such that lower volume related to worse 24-month executive function in early aMCI. Educational attainment and inferior frontal gyrus volume were the strongest predictors of 24-month executive function performance for cognitively normal and late aMCI groups, respectively. Conclusions Baseline frontoparietal gray matter regions were significant predictors of executive function performance in the context of aMCI and may identify those at risk of Alzheimer's disease. Anterior cingulate cortex volume may predict executive function performance in early aMCI.
Collapse
Affiliation(s)
- Ann J Lee
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Jessica H Stark
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Scott M Hayes
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
34
|
Chaudhary S, Wong HK, Chen Y, Zhang S, Li CSR. Sex differences in the effects of individual anxiety state on regional responses to negative emotional scenes. RESEARCH SQUARE 2023:rs.3.rs-3701951. [PMID: 38196586 PMCID: PMC10775373 DOI: 10.21203/rs.3.rs-3701951/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Men and women are known to show differences in the incidence and clinical manifestations of mood and anxiety disorders. Many imaging studies have investigated the neural correlates of sex differences in emotion processing. However, it remains unclear how anxiety might impact emotion processing differently in men and women. Method We recruited 119 healthy adults and assessed their levels of anxiety using State-Trait Anxiety Inventory (STAI) State score. With functional magnetic resonance imaging (fMRI), we examined regional responses to negative vs. neutral (Neg-Neu) picture matching in the Hariri task. Behavioral data were analyzed using regression and repeated-measures analysis of covariance with age as a covariate, and fMRI data were analyzed using a full-factorial model with sex as a factor and age as a covariate. Results Men and women did not differ in STAI score, or accuracy rate or reaction time (RT) (Neg-Neu). However, STAI scores correlated positively with RT (Neg-Neu) in women but not in men. Additionally, in women, STAI score correlated positively with lingual gyrus (LG) and negatively with medial prefrontal cortex (mPFC) and superior frontal gyrus (SFG) activity during Neg vs. Neu trials. The parameter estimates (β's) of mPFC also correlated with RT (Neg-Neu) in women but not in men. Generalized psychophysiological interaction (gPPI) analysis in women revealed mPFC connectivity with the right inferior frontal gyrus, right SFG, and left parahippocampal gyrus during Neg vs. Neu trials in positive correlation with both STAI score and RT (Neg-Neu). In a mediation analysis, mPFC gPPI but not mPFC activity fully mediated the association between STAI scores and RT (Neg-Neu). Conclusion With anxiety affecting the behavioral and neural responses to negative emotions in women but not in men and considering the known roles of the mPFC in emotion regulation, we discussed heightened sensitivity and regulatory demands during negative emotion processing as neurobehavioral markers of anxiety in women.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Yale School of Medicine: Yale University School of Medicine
| | - Sheng Zhang
- Yale School of Medicine: Yale University School of Medicine
| | | |
Collapse
|
35
|
Xia J, Chen N, Qiu A. Multi-level and joint attention networks on brain functional connectivity for cross-cognitive prediction. Med Image Anal 2023; 90:102921. [PMID: 37666116 DOI: 10.1016/j.media.2023.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Deep learning on resting-state functional MRI (rs-fMRI) has shown great success in predicting a single cognition or mental disease. Nevertheless, cognitive functions or mental diseases may share neural mechanisms that can benefit their prediction/classification. We propose a multi-level and joint attention (ML-Joint-Att) network to learn high-order representations of brain functional connectivities that are specific and shared across multiple tasks. We design the ML-Joint-Att network with edge and node convolutional operators, an adaptive inception module, and three attention modules, including network-wise, region-wise, and region-wise joint attention modules. The adaptive inception learns brain functional connectivity at multiple spatial scales. The network-wise and region-wise attention modules take the multi-scale functional connectivities as input and learn features at the network and regional levels for individual tasks. Moreover, the joint attention module is designed as region-wise joint attention to learn shared brain features that contribute to and compensate for the prediction of multiple tasks. We employed the Adolescent Brain Cognitive Development (ABCD) dataset (n =9092) to evaluate the ML-Joint-Att network for the prediction of cognitive flexibility and inhibition. Our experiments demonstrated the usefulness of the three attention modules and identified brain functional connectivities and regions specific and common between cognitive flexibility and inhibition. In particular, the joint attention module can significantly improve the prediction of both cognitive functions. Moreover, leave-one-site cross-validation showed that the ML-Joint-Att network is robust to independent samples obtained from different sites of the ABCD study. Our network outperformed existing machine learning techniques, including Brain Bias Set (BBS), spatio-temporal graph convolution network (ST-GCN), and BrainNetCNN. We demonstrated the generalization of our method to other applications, such as the prediction of fluid intelligence and crystallized intelligence, which also outperformed the ST-GCN and BrainNetCNN.
Collapse
Affiliation(s)
- Jing Xia
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Nanguang Chen
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore; NUS (Suzhou) Research Institute, National University of Singapore, China; Institute of Data Science, National University of Singapore, Singapore; Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong; Department of Biomedical Engineering, the Johns Hopkins University, USA.
| |
Collapse
|
36
|
Yang L, Xiao X, Yu L, Shen Z, Luo Y, Zhao G, Dou Z, Lin W, Yang J, Yang L, Yu S. Neural mechanisms of working memory dysfunction in patients with chronic insomnia disorder. Sleep Med 2023; 112:151-158. [PMID: 37865032 DOI: 10.1016/j.sleep.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/17/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE This study aimed to investigate the neural mechanisms underlying working memory impairment in patients with chronic insomnia disorder (CID) using event-related potentials (ERP) and resting-state functional connectivity (rsFC) approaches. METHODS Participants, including CID patients and healthy controls (HCs), completed clinical scales and underwent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). EEG analysis compared reaction times, P3 amplitudes, event-related spectral perturbations (ERSP), and inter-trial phase synchronisation (ITPS) between CID patients and HCs. Subsequently, frontal regions (i.e., the Superior Frontal Gyrus [SFG] and Middle Frontal Gyrus [MFG]) corresponding to the EEG were selected as seeds for rsFC analysis. Correlation analyses were conducted to further investigate the relationship between functional connectivity abnormalities in brain regions and clinical symptom severity and P3 amplitude in CID patients. RESULTS Compared to HCs, CID patients exhibited slower reaction times across all working memory conditions, with the deficits becoming more pronounced as memory load increased. ERP analysis revealed increased P3 amplitude, theta wave power, and reduced inter-trial synchrony in CID patients. rsFC analysis showed decreased connectivity of SFG-posterior cingulated cortex (PCC), SFG-MFG, and MFG-frontal pole (FP), and increased connectivity of MFG- Middle Temporal Gyrus (MTG)in CID patients. Importantly, a significant correlation was found between the rsFC of SFG-MTG and P3 amplitude during 1-back. CONCLUSION This study confirms deficits in working memory capacity in patients with CID, specifically in the neural mechanisms of cognitive processing that vary depending on the level of cognitive load. Alterations in connectivity patterns within and between the frontal and temporal regions may be the neural basis of the cognitive impairment.
Collapse
Affiliation(s)
- Lu Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangwen Xiao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhifu Shen
- Center of Interventional Medicine, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lili Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
37
|
Lu J, Wu Z, Zeng F, Shi B, Liu M, Wu J, Liu Y. Modulation of smoker brain activity and functional connectivity by tDCS: A go/no-go task-state fMRI study. Heliyon 2023; 9:e21074. [PMID: 37920488 PMCID: PMC10618481 DOI: 10.1016/j.heliyon.2023.e21074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Background Transcranial direct current stimulation (tDCS) applied to particular brain areas may reduce a smoker's smoking cravings. Most studies on tDCS mechanisms are performed on brains in the resting state. Therefore, brain activity changes induced by tDCS during tasks need to be further studied. Methods Forty-six male smokers were randomised to receive anodal tDCS of the left/right dorsolateral prefrontal cortex (DLPFC) or sham tDCS. A go/no-go task was performed before and after stimulation, respectively. Brain activity and functional connectivity (FC) changes during the task state before and after tDCS were used for comparison. Results This study revealed that the anodal stimulation over one DLPFC area caused decreased activity in the ipsilateral precuneus during the go task state. Right DLPFC stimulation increased the FC between the bilateral DLPFCs and the right anterior cingulate cortex (ACC), which is closely associated with cognition and inhibition of executive functions. Additionally, the study showed variations in brain activity depending on whether the anode was positioned over the right or left DLPFC (R-DLPFC or L-DLPFC). Conclusion During the go task, tDCS might exert a suppressive effect on some brain areas, such as the precuneus. Stimulation on the R-DLPFC might strengthen the FC between the right ACC and the bilateral DLPFCs, which could enhance the ability of behavioural decision-making and inhibition to solve conflicts effectively. Stimulating the L-DLPFC alone could increase the FC of bilateral DLPFCs with some brain regions associated with response inhibition.
Collapse
Affiliation(s)
| | | | - Feiyan Zeng
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Bin Shi
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Mengqiu Liu
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Jiaoyan Wu
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Ying Liu
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| |
Collapse
|
38
|
Szabo E, Ashina S, Melo-Carrillo A, Bolo NR, Borsook D, Burstein R. Peripherally acting anti-CGRP monoclonal antibodies alter cortical gray matter thickness in migraine patients: A prospective cohort study. Neuroimage Clin 2023; 40:103531. [PMID: 37866119 PMCID: PMC10623369 DOI: 10.1016/j.nicl.2023.103531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Migraine is underpinned by central nervous system neuroplastic alterations thought to be caused by the repetitive peripheral afferent barrage the brain receives during the headache phase (cortical hyperexcitability). Calcitonin gene-related peptide monoclonal antibodies (anti-CGRP-mAbs) are highly effective migraine preventative treatments. Their ability to alter brain morphometry in treatment-responders vs. non-responders is not well understood. Our aim was to determine the effects of the anti-CGRP-mAb galcanezumab on cortical thickness after 3-month treatment of patients with high-frequency episodic or chronic migraine. High-resolution magnetic resonance imaging was performed pre- and post-treatment in 36 migraine patients. In this group, 19 patients were classified responders (≥50 % reduction in monthly migraine days) and 17 were considered non-responders (<50 % reduction in monthly migraine days). Following cross-sectional processing to analyze the baseline differences in cortical thickness, two-stage longitudinal processing and symmetrized percent change were conducted to investigate treatment-related brain changes. At baseline, no significant differences were found between the responders and non-responders. After 3-month treatment, decreased cortical thickness (compared to baseline) was observed in the responders in regions of the somatosensory cortex, anterior cingulate cortex, medial frontal cortex, superior frontal gyrus, and supramarginal gyrus. Non-responders demonstrated decreased cortical thickness in the left dorsomedial cortex and superior frontal gyrus. We interpret the cortical thinning seen in the responder group as suggesting that reduction in head pain could lead to changes in neural swelling and dendritic complexity and that such changes reflect the recovery process from maladaptive neural activity. This conclusion is further supported by our recent study showing that 3 months after treatment initiation, the incidence of premonitory symptoms and prodromes that are followed by headache decreases but not the incidence of the premonitory symptoms or prodromes themselves (that is, cortical thinning relates to reductions in the nociceptive signals in the responders). We speculate that a much longer recovery period is required to allow the brain to return to a more 'normal' functioning state whereby prodromes and premonitory symptoms no longer occur.
Collapse
Affiliation(s)
- Edina Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA
| | - Sait Ashina
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA; Comprehensive Headache Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA
| | - Nicolas R Bolo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David Borsook
- Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA; Comprehensive Headache Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
39
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
40
|
Li Y, Ma X, Sunderraman R, Ji S, Kundu S. Accounting for temporal variability in functional magnetic resonance imaging improves prediction of intelligence. Hum Brain Mapp 2023; 44:4772-4791. [PMID: 37466292 PMCID: PMC10400788 DOI: 10.1002/hbm.26415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Neuroimaging-based prediction methods for intelligence have seen a rapid development. Among different neuroimaging modalities, prediction using functional connectivity (FC) has shown great promise. Most literature has focused on prediction using static FC, with limited investigations on the merits of such analysis compared to prediction using dynamic FC or region-level functional magnetic resonance imaging (fMRI) times series that encode temporal variability. To account for the temporal dynamics in fMRI, we propose a bi-directional long short-term memory (bi-LSTM) approach that incorporates feature selection mechanism. The proposed pipeline is implemented via an efficient algorithm and applied for predicting intelligence using region-level time series and dynamic FC. We compare the prediction performance using different fMRI features acquired from the Adolescent Brain Cognitive Development (ABCD) study involving nearly 7000 individuals. Our detailed analysis illustrates the consistently inferior performance of static FC compared to region-level time series or dynamic FC for single and combined rest and task fMRI experiments. The joint analysis of task and rest fMRI leads to improved intelligence prediction under all models compared to using fMRI from only one experiment. In addition, the proposed bi-LSTM pipeline based on region-level time series identifies several shared and differential important brain regions across fMRI experiments that drive intelligence prediction. A test-retest analysis of the selected regions shows strong reliability across cross-validation folds. Given the large sample size of ABCD study, our results provide strong evidence that superior prediction of intelligence can be achieved by accounting for temporal variations in fMRI.
Collapse
Affiliation(s)
- Yang Li
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Xin Ma
- Department of BiostatisticsColumbia UniversityNew YorkNew YorkUSA
| | - Raj Sunderraman
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Shihao Ji
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Suprateek Kundu
- Department of BiostatisticsThe University of Texas at MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
41
|
Hanewald B, Lockhofen DEL, Sammer G, Stingl M, Gallhofer B, Mulert C, Iffland JR. Functional connectivity in a monetary and social incentive delay task in medicated patients with schizophrenia. Front Psychiatry 2023; 14:1200860. [PMID: 37711426 PMCID: PMC10498543 DOI: 10.3389/fpsyt.2023.1200860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Numerous studies indicate impaired reward-related learning in individuals with schizophrenia, with various factors such as illness duration, medication, disease severity, and level of analysis (behavioral or neurophysiological data) potentially confounding the results. Patients with schizophrenia who are treated with second-generation antipsychotics have been found to have a less affected reward system. However, this finding does not explain the neural dysfunctions observed in previous studies. This study aimed to address the open question of whether the less impaired reward-related behavior is associated with unimpaired task-related functional connectivity or altered task-related functional connectivity. Methods The study included 23 participants diagnosed within the schizophrenia spectrum and 23 control participants matched in terms of age, sex, and education. Participants underwent an MRI while performing a monetary incentive delay task and a social incentive delay task. The collected data were analyzed in terms of behavior and functional connectivity. Results Both groups exhibited a main effect of reward type on behavioral performance, indicating faster reaction times in the social incentive delay task, but no main effect of reward level. Altered functional connectivity was observed in predictable brain regions within the patient group, depending on the chosen paradigm, but not when compared to healthy individuals. Discussion In addition to expected slower response times, patients with schizophrenia demonstrated similar response patterns to control participants at the behavioral level. The similarities in behavioral data may underlie different connectivity patterns. Our findings suggest that perturbations in reward processing do not necessarily imply disturbances in underlying connectivities. Consequently, we were able to demonstrate that patients with schizophrenia are indeed capable of exhibiting goal-directed, reward-responsive behavior, although there are differences depending on the type of reward.
Collapse
Affiliation(s)
- Bernd Hanewald
- Center for Psychiatry, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhao F, Tomita M, Dutta A. Operational Modal Analysis of Near-Infrared Spectroscopy Measure of 2-Month Exercise Intervention Effects in Sedentary Older Adults with Diabetes and Cognitive Impairment. Brain Sci 2023; 13:1099. [PMID: 37509027 PMCID: PMC10377417 DOI: 10.3390/brainsci13071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The Global Burden of Disease Study (GBD 2019 Diseases and Injuries Collaborators) found that diabetes significantly increases the overall burden of disease, leading to a 24.4% increase in disability-adjusted life years. Persistently high glucose levels in diabetes can cause structural and functional changes in proteins throughout the body, and the accumulation of protein aggregates in the brain that can be associated with the progression of Alzheimer's Disease (AD). To address this burden in type 2 diabetes mellitus (T2DM), a combined aerobic and resistance exercise program was developed based on the recommendations of the American College of Sports Medicine. The prospectively registered clinical trials (NCT04626453, NCT04812288) involved two groups: an Intervention group of older sedentary adults with T2DM and a Control group of healthy older adults who could be either active or sedentary. The completion rate for the 2-month exercise program was high, with participants completing on an average of 89.14% of the exercise sessions. This indicated that the program was practical, feasible, and well tolerated, even during the COVID-19 pandemic. It was also safe, requiring minimal equipment and no supervision. Our paper presents portable near-infrared spectroscopy (NIRS) based measures that showed muscle oxygen saturation (SmO2), i.e., the balance between oxygen delivery and oxygen consumption in muscle, drop during bilateral heel rise task (BHR) and the 6 min walk task (6MWT) significantly (p < 0.05) changed at the post-intervention follow-up from the pre-intervention baseline in the T2DM Intervention group participants. Moreover, post-intervention changes from pre-intervention baseline for the prefrontal activation (both oxyhemoglobin and deoxyhemoglobin) showed statistically significant (p < 0.05, q < 0.05) effect at the right superior frontal gyrus, dorsolateral, during the Mini-Cog task. Here, operational modal analysis provided further insights into the 2-month exercise intervention effects on the very-low-frequency oscillations (<0.05 Hz) during the Mini-Cog task that improved post-intervention in the sedentary T2DM Intervention group from their pre-intervention baseline when compared to active healthy Control group. Then, the 6MWT distance significantly (p < 0.01) improved in the T2DM Intervention group at post-intervention follow-up from pre-intervention baseline that showed improved aerobic capacity and endurance. Our portable NIRS based measures have practical implications at the point of care for the therapists as they can monitor muscle and brain oxygenation changes during physical and cognitive tests to prescribe personalized physical exercise doses without triggering individual stress response, thereby, enhancing vascular health in T2DM.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Machiko Tomita
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN67TS, UK
| |
Collapse
|
43
|
Zang S, Chen Y, Chen H, Shi H, Zhou L. Effects of acupuncture on the brain in primary insomnia: a coordinate-based meta-analysis of fMRI studies. Front Neurol 2023; 14:1180393. [PMID: 37533466 PMCID: PMC10392941 DOI: 10.3389/fneur.2023.1180393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023] Open
Abstract
Importance Primary insomnia (PI) has a high global incidence, and effective treatments with fewer side effects are needed. Acupuncture, a treatment used in traditional Chinese medicine, has become increasingly established as a treatment method for PI and is recognized by many physicians and patients. Some evidence has suggested that acupuncture was associated with improvements in objective sleep parameters and might induce changes in some brain regions. Individual studies with limited sample size and low detection thresholds may lead to false positives, and no systematic review of the effects of acupuncture has been conducted in PI. Objective The aim of this systematic review and coordinate-based meta-analysis was to summarize the literature on fMRI evaluation of patients with PI treated with acupuncture. Design We performed a methodical and comprehensive search of multiple publication databases (from inception to December 2022): Web of Science, PubMed, ScienceDirect, Embase, Wan Fang, China National Knowledge Infrastructure, and Chinese Scientific Journal Database. Bias and quality of studies were evaluated by three researchers. Furthermore, a seed-based D-mapping meta-analysis with permutation of subject images (SDM-PSI) was applied to investigate the central mechanisms behind acupuncture treatment at PI. The International Prospective Registry of Systematic Reviews received the protocol for this study. (PROSPERO: CRD42023400086). Results The analysis included 305 patients with PI and 116 healthy controls from 11 studies. SDM-PSI analysis showed that patients with PI exhibited increased amplitudes of regional homogeneity and low-frequency fluctuations in the left superior frontal gyrus (1352 voxels, p = 0.0028), right angular gyrus (14 voxels, p = 0.0457), and cerebellum (12 voxels, p = 0.0446). Acupuncture improved the function of right superior frontal gyrus (1, 404 voxels, p = 0.0123), left inferior frontal gyrus (1068 voxels, p = 0.0088), left inferior temporal gyrus (903 voxels, p = 0.0074), left supramarginal gyrus (888 voxels, p = 0.0113), left precuneus (457 voxels, p = 0.0247), right precuneus (302 voxels, p = 0.0191), left supplementary motor area (82 voxels, p = 0.0354), and right parahippocampal gyrus (28 voxels, p = 0.0379). The brain regions affected by non-acupoint acupuncture were all located in the frontal lobe. The Cochrane risk-of bias tool and MINORS5 were used for quality assessment and the included articles had high performance bias and attrition bias. Conclusion This coordinate-based meta-analysis found that acupuncture in patients with PI had significant effects on the default mode network, particularly on the frontal lobe and precuneus, and that non-acupoint acupuncture may provide some benefit to frontal brain region function. Systematic review registration PROSPERO: CRD42023400086.
Collapse
Affiliation(s)
- Shuhan Zang
- The First School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Chen
- The First School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haonan Chen
- The First School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huawei Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Kanda K, Tei S, Takahashi H, Fujino J. Neural basis underlying the sense of coherence in medical professionals revealed by the fractional amplitude of low-frequency fluctuations. PLoS One 2023; 18:e0288042. [PMID: 37390054 PMCID: PMC10313006 DOI: 10.1371/journal.pone.0288042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Although mitigating burnout has long been a pressing issue in healthcare, recent global disasters, including the COVID-19 pandemic and wars, have exacerbated this problem. Medical professionals are frequently exposed to diverse job-induced distress; furthermore, the importance of people's sense of coherence (SOC) over work has been addressed to better deal with burnout. However, the neural mechanisms underlying SOC in medical professionals are not sufficiently investigated. In this study, the intrinsic fractional amplitude of low-frequency fluctuations (fALFF) were measured as an indicator of regional brain spontaneous activity using resting-state functional magnetic resonance imaging in registered nurses. The associations between participants' SOC levels and the fALFF values within brain regions were subsequently explored. The SOC scale scores were positively correlated with fALFF values in the right superior frontal gyrus (SFG) and the left inferior parietal lobule. Furthermore, the SOC levels of the participants mediated the link between their fALFF values in the right SFG and the depersonalization dimension of burnout. The results deepened the understanding of the counter role of SOC on burnout in medical professionals and may provide practical insights for developing efficient interventions.
Collapse
Affiliation(s)
- Kota Kanda
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shisei Tei
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Institute of Applied Brain Sciences, Waseda University, Tokorozawa, Saitama, Japan
- School of Human and Social Sciences, Tokyo International University, Kawagoe, Saitama, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
45
|
Dadario NB, Tanglay O, Sughrue ME. Deconvoluting human Brodmann area 8 based on its unique structural and functional connectivity. Front Neuroanat 2023; 17:1127143. [PMID: 37426900 PMCID: PMC10323427 DOI: 10.3389/fnana.2023.1127143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
Brodmann area 8 (BA8) is traditionally defined as the prefrontal region of the human cerebrum just anterior to the premotor cortices and enveloping most of the superior frontal gyrus. Early studies have suggested the frontal eye fields are situated at its most caudal aspect, causing many to consider BA8 as primarily an ocular center which controls contralateral gaze and attention. However, years of refinement in cytoarchitectural studies have challenged this traditional anatomical definition, providing a refined definition of its boundaries with neighboring cortical areas and the presence of meaningful subdivisions. Furthermore, functional imaging studies have suggested its involvement in a diverse number of higher-order functions, such as motor, cognition, and language. Thus, our traditional working definition of BA8 has likely been insufficient to truly understand the complex structural and functional significance of this area. Recently, large-scale multi-modal neuroimaging approaches have allowed for improved mapping of the neural connectivity of the human brain. Insight into the structural and functional connectivity of the brain connectome, comprised of large-scale brain networks, has allowed for greater understanding of complex neurological functioning and pathophysiological diseases states. Simultaneously, the structural and functional connectivity of BA8 has recently been highlighted in various neuroimaging studies and detailed anatomic dissections. However, while Brodmann's nomenclature is still widely used today, such as for clinical discussions and the communication of research findings, the importance of the underlying connectivity of BA8 requires further review.
Collapse
Affiliation(s)
- Nicholas B. Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, NSW, Australia
| | | |
Collapse
|
46
|
Nock NL, Jiang H, Rao SM, Dimitropoulos A. Neural correlates of inhibitory control in severe class III compared with class I/II obesity using a sample of endometrial cancer survivors seeking weight loss. Obesity (Silver Spring) 2023; 31:1558-1568. [PMID: 37157057 DOI: 10.1002/oby.23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE No prior studies have evaluated inhibitory control in people with severe class III compared with class I/II obesity. Thus, the study aim was to evaluate inhibitory control and neural correlates of response inhibition by obesity class using a sample of endometrial cancer (EC) survivors with obesity, who have a higher risk of overall but not cancer-specific mortality. METHODS Forty-eight stage I EC survivors with obesity (class I/II: n = 21; class III: n = 27) seeking weight loss in a lifestyle intervention at baseline completed a stop signal task during functional magnetic resonance imaging. RESULTS It was found that participants with class III obesity had a longer stop signal reaction time (mean [SD], 278.8 [51.3] vs. 251.5 [34.0] milliseconds, p < 0.01) compared with those with class I/II obesity, indicating that patients with EC with severe obesity had greater impulsivity and poorer inhibitory control. Results also showed increased activation in the thalamus and superior frontal gyrus for the incorrect versus correct inhibition contrast in class III but not class I/II obesity (whole brain cluster corrected, p < 0.05). CONCLUSIONS These results provide novel insights into inhibitory control and corresponding neural correlates in severe versus less severe classes of obesity and highlight the importance of targeting inhibitory control processes in weight-loss interventions, particularly for people with severe obesity and greater impulsivity.
Collapse
Affiliation(s)
- Nora L Nock
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Huangqi Jiang
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephen M Rao
- Department of the Lou Ruvo Center for Brain Health, Schey Center for Cognitive Neuroimaging, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
47
|
Taremian F, Eskandari Z, Dadashi M, Hosseini SR. Disrupted resting-state functional connectivity of frontal network in opium use disorder. APPLIED NEUROPSYCHOLOGY. ADULT 2023; 30:297-305. [PMID: 34155942 DOI: 10.1080/23279095.2021.1938051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Opioid use disorder (OUD) as a chronic relapsing disorder is initially driven by dysfunction of brain reward networks and associated with several psychiatric disorders. Resting-state EEG was recorded in 24 healthy participants as well as 31 patients with OUD. Healthy participants do not meet OUD criteria. After pre-processing of the raw EEG, functional connectivity in the frontal network using eLORETA and all networks using graph analysis method were calculated. Patients with OUD had higher electrical neuronal activity compared to healthy participants in higher frequency bands. The statistical analysis revealed that patients with OUD had significantly decreased phase synchronization in β1 and β2 frequency bands compared with the healthy group in the frontal network. Regarding global network topology, we found a significant decrease in the characteristic path length and an increase in global efficiency, clustering coefficient, and transitivity in patients compared with the healthy group. These changes indicated that local specialization and global integration of the brain were disrupted in OUD and it suggests a tendency toward random network configuration of functional brain networks in patients with OUD. Disturbances in EEG-based brain network indices might reflect an altered cortical functional network in OUD. These findings might provide useful biomarkers to understand cortical brain pathology in opium use disorder.
Collapse
Affiliation(s)
- Farhad Taremian
- Substance Abuse and Dependence Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zakaria Eskandari
- Department of Clinical Psychology and Addiction Studies, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohsen Dadashi
- Department of Clinical Psychology and Addiction Studies, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Ruhollah Hosseini
- Department of Psychology, Faculty of Education Sciences and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
48
|
Kearney BE, Terpou BA, Densmore M, Shaw SB, Théberge J, Jetly R, McKinnon MC, Lanius RA. How the body remembers: Examining the default mode and sensorimotor networks during moral injury autobiographical memory retrieval in PTSD. Neuroimage Clin 2023; 38:103426. [PMID: 37207593 PMCID: PMC10206209 DOI: 10.1016/j.nicl.2023.103426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023]
Abstract
Neural representations of sensory percepts and motor responses constitute key elements of autobiographical memory. However, these representations may remain as unintegrated sensory and motor fragments in traumatic memory, thus contributing toward re-experiencing and reliving symptoms in trauma-related conditions such as post-traumatic stress disorder (PTSD). Here, we investigated the sensorimotor network (SMN) and posterior default mode network (pDMN) using a group independent component analysis (ICA) by examining their functional connectivity during a script-driven memory retrieval paradigm of (potentially) morally injurious events in individuals with PTSD and healthy controls. Moral injury (MI), where an individual acts or fails to act in a morally aligned manner, is examined given its inherent ties to disrupted motor planning and thus sensorimotor mechanisms. Our findings revealed significant differences in functional network connectivity across the SMN and pDMN during MI retrieval in participants with PTSD (n = 65) as compared to healthy controls (n = 25). No such significant group-wise differences emerged during retrieval of a neutral memory. PTSD-related alterations included hyperconnectivity between the SMN and pDMN, enhanced within-network connectivity of the SMN with premotor areas, and increased recruitment of the supramarginal gyrus into both the SMN and the pDMN during MI retrieval. In parallel with these neuroimaging findings, a positive correlation was found between PTSD severity and subjective re-experiencing intensity ratings after MI retrieval. These results suggest a neural basis for traumatic re-experiencing, where reliving and/or re-enacting a past morally injurious event in the form of sensory and motor fragments occurs in place of retrieving a complete, past-contextualized narrative as put forth by Brewin and colleagues (1996) and Conway and Pleydell-Pearce (2000). These findings have implications for bottom-up treatments targeting directly the sensory and motoric elements of traumatic experiences.
Collapse
Affiliation(s)
- Breanne E Kearney
- Department of Neuroscience, Western University, London, Ontario, Canada
| | - Braeden A Terpou
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | - Saurabh B Shaw
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Rakesh Jetly
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada
| | - Ruth A Lanius
- Department of Neuroscience, Western University, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada.
| |
Collapse
|
49
|
Iyer KK, Bell N, Copland DA, Arnott WL, Wilson WJ, Angwin AJ. Modulations of right hemisphere connectivity in young children relates to the perception of spoken words. Neuropsychologia 2023; 183:108532. [PMID: 36906221 DOI: 10.1016/j.neuropsychologia.2023.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
The early school years shape a young brain's capability to comprehend and contextualize words within milliseconds of exposure. Parsing word sounds (phonological interpretation) and word recognition (enabling semantic interpretation) are integral to this process. Yet little is known about the causal mechanisms of cortical activity during these early developmental stages. In this study, we aimed to explore these causal mechanisms via dynamic causal modelling of event-related potentials (ERPs) acquired from 30 typically developing children (ages 6-8 years) as they completed a spoken word-picture matching task. Source reconstruction of high-density electroencephalography (128 channels) was used to ascertain differences in whole-brain cortical activity during semantically "congruent" and "incongruent" conditions. Source activations analyzed during the N400 ERP window identified significant regions-of-interest (pFWE<.05) localized primarily in the right hemisphere when contrasting congruent and incongruent word-picture stimuli. Dynamic causal models (DCMs) were tested on source activations in the fusiform gyrus (rFusi), inferior parietal lobule (rIPL), inferior temporal gyrus (rITG) and superior frontal gyrus (rSFG). DCM results indicated that a fully connected bidirectional model with self-(inhibiting) connections over rFusi, rIPL and rSFG provided the highest model evidence, based on exceedance probabilities derived from Bayesian statistical inferences. Connectivity parameters of rITG and rSFG regions from the winning DCM were negatively correlated with behavioural measures of receptive vocabulary and phonological memory (pFDR<.05), such that lower scores on these assessments corresponded with increased connectivity between temporal pole and anterior frontal regions. The findings suggest that children with lower language processing skills required increased recruitment of right hemisphere frontal/temporal areas during task performance.
Collapse
Affiliation(s)
- Kartik K Iyer
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, 4101, QLD, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Nicola Bell
- School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, 4067, QLD, Brisbane, Australia; MultiLit Research Unit, MultiLit Pty Ltd, Macquarie Park, 2113, NSW, Sydney, Australia
| | - David A Copland
- School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, 4067, QLD, Brisbane, Australia
| | - Wendy L Arnott
- School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, 4067, QLD, Brisbane, Australia
| | - Wayne J Wilson
- School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, 4067, QLD, Brisbane, Australia
| | - Anthony J Angwin
- School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, 4067, QLD, Brisbane, Australia
| |
Collapse
|
50
|
Yuan D, Hahn S, Allgaier N, Owens MM, Chaarani B, Potter A, Garavan H. Machine learning approaches linking brain function to behavior in the ABCD STOP task. Hum Brain Mapp 2023; 44:1751-1766. [PMID: 36534603 PMCID: PMC9921227 DOI: 10.1002/hbm.26172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
The stop-signal task (SST) is one of the most common fMRI tasks of response inhibition, and its performance measure, the stop-signal reaction-time (SSRT), is broadly used as a measure of cognitive control processes. The neurobiology underlying individual or clinical differences in response inhibition remain unclear, consistent with the general pattern of quite modest brain-behavior associations that have been recently reported in well-powered large-sample studies. Here, we investigated the potential of multivariate, machine learning (ML) methods to improve the estimation of individual differences in SSRT with multimodal structural and functional region of interest-level neuroimaging data from 9- to 11-year-olds children in the ABCD Study. Six ML algorithms were assessed across modalities and fMRI tasks. We verified that SST activation performed best in predicting SSRT among multiple modalities including morphological MRI (cortical surface area/thickness), diffusion tensor imaging, and fMRI task activations, and then showed that SST activation explained 12% of the variance in SSRT using cross-validation and out-of-sample lockbox data sets (n = 7298). Brain regions that were more active during the task and that showed more interindividual variation in activation were better at capturing individual differences in performance on the task, but this was only true for activations when successfully inhibiting. Cortical regions outperformed subcortical areas in explaining individual differences but the two hemispheres performed equally well. These results demonstrate that the detection of reproducible links between brain function and performance can be improved with multivariate approaches and give insight into a number of brain systems contributing to individual differences in this fundamental cognitive control process.
Collapse
Affiliation(s)
- Dekang Yuan
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Sage Hahn
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | | | - Max M. Owens
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Bader Chaarani
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Alexandra Potter
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Hugh Garavan
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|