1
|
Verpeut JL, Oostland M. The significance of cerebellar contributions in early-life through aging. Front Comput Neurosci 2024; 18:1449364. [PMID: 39258107 PMCID: PMC11384999 DOI: 10.3389/fncom.2024.1449364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Marlies Oostland
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Mitoma H, Manto M, Shaikh AG. Alcohol Toxicity in the Developing Cerebellum. Diagnostics (Basel) 2024; 14:1415. [PMID: 39001305 PMCID: PMC11241390 DOI: 10.3390/diagnostics14131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The impact of ethanol on the fetus is a significant concern as an estimated 2-5% of live births may be affected by prenatal alcohol exposure. This exposure can lead to various functional and structural abnormalities in the cerebral cortex, basal ganglia, diencephalon, and cerebellum, resulting in region-specific symptoms. The deficits relate to the motor and cognitive domains, affecting, in particular, general intelligence, attention, executive functions, language, memory, visual perception, and social skills-collectively called the fetal alcohol spectrum disorder (FASD). Recent studies suggest that damage to the developing cerebellum (in form of alcohol exposure) can impair the cortical targets of the cerebello-thalamo-cortical tract. This malfunction in the cerebello-cerebral loop optimization may be due to disruptions in the formation of the foundational elements of the internal model within the developing cerebellum. Alcohol exposure targets multiple nodes in the reciprocal loops between the cerebellum and cerebral cortex. Here, we examine the possibility that prenatal alcohol exposure damages the developing cerebellum and disrupts the connectivity within the cerebello-cerebral neuronal circuits, exacerbating FASD-related cortical dysfunctions. We propose that malfunctions between cerebellar internal model (critically involved in predictions) and cerebral regions contribute to the deficits observed in FASD. Given the major role of the cerebellum in motor, cognitive, and affective functions, we suggest that therapies should target these malfunctions to mitigate the burden of FASD. We discuss the concept of therapies oriented towards malfunctioning cerebello-cerebral loops (TOMCCLs), emphasizing anti-inflammatory strategies and treatments aimed at modulating cerebellar myelination to restore optimal and predictive cerebello-cerebral functions.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, 6000 Charleroi, Belgium
- Service des Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Aasef G Shaikh
- Louis Stokes Cleveland VA Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Perez-Pouchoulen M, Holley AS, Reinl EL, VanRyzin JW, Mehrabani A, Dionisos C, Mirza M, McCarthy MM. Viral-mediated inflammation by Poly I:C induces the chemokine CCL5 in NK cells and its receptors CCR1 and CCR5 in microglia in the neonatal rat cerebellum. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:155-168. [PMID: 39175524 PMCID: PMC11338497 DOI: 10.1515/nipt-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024]
Abstract
Objectives To study the effect of viral inflammation induced by Polyinosinic:polycytidylic acid (PIC) on the cerebellum during a critical period of development in rats. Methods Neonatal rat pups were treated with PIC on postnatal days (PN) 8 and 10 after which we quantified RNA using Nanostring, qRT-PCR and RNAscope and analyzed immune cells through flow cytometry and immunohistochemistry on PN11. Using the same paradigm, we also analyzed play juvenile behavior, anxiety-like behavior, motor balance using the balance beam and the rotarod assays as well as fine motor behavior using the sunflower seed opening test. Results We determined that male and female pups treated with PIC reacted with a significant increase in CCL5, a chemotactic cytokine that attracts T-cells, eosinophils and basophils to the site of inflammation, at PN11. PIC treatment also increased the expression of two receptors for CCL5, CCR1 and CCR5 in the cerebellar vermis in both males and females at PN11. In-situ hybridization (RNAscope®) for specific transcripts revealed that microglia express both CCL5 receptors under inflammatory and non-inflammatory conditions in both males and females. PIC treatment also increased the total number of CCL5+ cells in the developing cerebellum which were determined to be both natural killer cells and T-cells. There were modest but significant impacts of PIC treatment on large and fine motor skills and juvenile play behavior. Conclusions Our findings suggest an important role for CCL5 and other immune cells in mediating inflammation in the developing cerebellum that potentially impact the maturation of cerebellar neurons during a critical period of development.
Collapse
Affiliation(s)
| | - Amanda S. Holley
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin L. Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amir Mehrabani
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christie Dionisos
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muhammed Mirza
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Margaret M. McCarthy
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Seiffe A, Kazlauskas N, Campolongo M, Depino AM. Juvenile peripheral LPS exposure overrides female resilience to prenatal VPA effects on adult sociability in mice. Sci Rep 2024; 14:11435. [PMID: 38763939 PMCID: PMC11102908 DOI: 10.1038/s41598-024-62217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024] Open
Abstract
Autism spectrum disorder (ASD) exhibits a gender bias, with boys more frequently affected than girls. Similarly, in mouse models induced by prenatal exposure to valproic acid (VPA), males typically display reduced sociability, while females are less affected. Although both males and females exhibit VPA effects on neuroinflammatory parameters, these effects are sex-specific. Notably, females exposed to VPA show increased microglia and astrocyte density during the juvenile period. We hypothesized that these distinct neuroinflammatory patterns contribute to the resilience of females to VPA. To investigate this hypothesis, we treated juvenile animals with intraperitoneal bacterial lipopolysaccharides (LPS), a treatment known to elicit brain neuroinflammation. We thus evaluated the impact of juvenile LPS-induced inflammation on adult sociability and neuroinflammation in female mice prenatally exposed to VPA. Our results demonstrate that VPA-LPS females exhibit social deficits in adulthood, overriding the resilience observed in VPA-saline littermates. Repetitive behavior and anxiety levels were not affected by either treatment. We also evaluated whether the effect on sociability was accompanied by heightened neuroinflammation in the cerebellum and hippocampus. Surprisingly, we observed reduced astrocyte and microglia density in the cerebellum of VPA-LPS animals. These findings shed light on the complex interactions between prenatal insults, juvenile inflammatory stimuli, and sex-specific vulnerability in ASD-related social deficits, providing insights into potential therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Araceli Seiffe
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Nadia Kazlauskas
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Marcos Campolongo
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Ament SA, Cortes-Gutierrez M, Herb BR, Mocci E, Colantuoni C, McCarthy MM. A single-cell genomic atlas for maturation of the human cerebellum during early childhood. Sci Transl Med 2023; 15:eade1283. [PMID: 37824600 DOI: 10.1126/scitranslmed.ade1283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Inflammation early in life is a clinically established risk factor for autism spectrum disorders and schizophrenia, yet the impact of inflammation on human brain development is poorly understood. The cerebellum undergoes protracted postnatal maturation, making it especially susceptible to perturbations contributing to the risk of developing neurodevelopmental disorders. Here, using single-cell genomics of postmortem cerebellar brain samples, we characterized the postnatal development of cerebellar neurons and glia in 1- to 5-year-old children, comparing individuals who had died while experiencing inflammation with those who had died as a result of an accident. Our analyses revealed that inflammation and postnatal cerebellar maturation are associated with extensive, overlapping transcriptional changes primarily in two subtypes of inhibitory neurons: Purkinje neurons and Golgi neurons. Immunohistochemical analysis of a subset of these postmortem cerebellar samples revealed no change to Purkinje neuron soma size but evidence for increased activation of microglia in those children who had experienced inflammation. Maturation-associated and inflammation-associated gene expression changes included genes implicated in neurodevelopmental disorders. A gene regulatory network model integrating cell type-specific gene expression and chromatin accessibility identified seven temporally specific gene networks in Purkinje neurons and suggested that inflammation may be associated with the premature down-regulation of developmental gene expression programs.
Collapse
Affiliation(s)
- Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcia Cortes-Gutierrez
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian R Herb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Evelina Mocci
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pain Sciences, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Carlo Colantuoni
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Margaret M McCarthy
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Ariyani W, Amano I, Koibuchi N. Isoflavones Mediate Dendritogenesis Mainly through Estrogen Receptor α. Int J Mol Sci 2023; 24:ijms24109011. [PMID: 37240356 DOI: 10.3390/ijms24109011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERβ or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., Bdnf, Camk2b, Rbfox3, Tubb3, Syn1, Dlg4, and Syp). Furthermore, isoflavones increased ERα levels, but not ERβ or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte-neuron communication, which may lead to isoflavone-induced neuritogenesis.
Collapse
Affiliation(s)
- Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| |
Collapse
|
7
|
Gano A, Deak T, Pautassi RM. A review on the reciprocal interactions between neuroinflammatory processes and substance use and misuse, with a focus on alcohol misuse. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:269-282. [PMID: 37148274 PMCID: PMC10524510 DOI: 10.1080/00952990.2023.2201944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/08/2023]
Abstract
Background: The last decade has witnessed a surge of findings implicating neuroinflammatory processes as pivotal players in substance use disorders. The directionality of effects began with the expectation that the neuroinflammation associated with prolonged substance misuse contributes to long-term neuropathological consequences. As the literature grew, however, it became evident that the interactions between neuroinflammatory processes and alcohol and drug intake were reciprocal and part of a pernicious cycle in which disease-relevant signaling pathways contributed to an escalation of drug intake, provoking further inflammation-signaling and thereby exacerbating the neuropathological effects of drug misuse.Objectives: The goal of this review and its associated special issue is to provide an overview of the emergent findings relevant to understanding these reciprocal interactions. The review highlights the importance of preclinical and clinical studies in testing and validation of immunotherapeutics as viable targets for curtailing substance use and misuse, with a focus on alcohol misuse.Methods: A narrative review of the literature on drug and neuroinflammation was conducted, as well as articles published in this Special Issue on Alcohol- and Drug-induced Neuroinflammation: Insights from Pre-clinical Models and Clinical Research.Results: We argue that (a) demographic variables and genetic background contribute unique sensitivity to drug-related neuroinflammation; (b) co-morbidities between substance use disorders and affect dysfunction may share common inflammation-related signatures that predict the efficacy of immunotherapeutic drugs; and (c) examination of polydrug interactions with neuroinflammation is a critical area where greater research emphasis is needed.Conclusions: This review provides an accessible and example-driven review of the relationship between drug misuse, neuroinflammatory processes, and their resultant neuropathological outcomes.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, United States of America
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, United States of America
| | - Ricardo Marcos Pautassi
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC – CONICET-Universidad Nacional de Córdoba), Córdoba, 5000, Argentina
| |
Collapse
|
8
|
Reinl EL, Blanchard AC, Graham EL, Edwards SW, Dionisos CV, McCarthy MM. The immune cell profile of the developing rat brain. Brain Behav Immun 2022; 106:198-226. [PMID: 36049705 DOI: 10.1016/j.bbi.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
Little is known about the peripheral immune cell (PIC) profile of the developing brain despite growing appreciation for these cells in the mature nervous system. To address this gap, the PIC profile, defined as which cells are present, where they are located, and for how long, was examined in the developing rat using spectral flow cytometry. Select regions of the rat brain (cerebellum, hippocampus, and hypothalamus) were examined at embryonic day 20, and postnatal days 0, 7 and 16. At their peak (E20), PICs were most abundant in the cerebellum, then the hippocampus and hypothalamus. Within the PIC pool, monocytes were most prevalent in all regions and time points, and shifted from being majority classical at E20 to non-classical by PN7. T cells increased over time, and shifted from majority cytotoxic to T-helper cells by PN7. This suggests the PIC profile transitions from reactive to adaptive and surveilling in the second postnatal week. NK cells and mast cells increased temporarily, and mast cells were restricted to the hippocampus and hypothalamus, suggesting they may play a specific role in the development of those regions. Mimicking a viral infection by administration of Poly I:C increased the influx of PICs into the neonatal brain, particularly of NK cells and in the case of males only, non-classical monocytes. This work provides a map for researchers as they study immune cell contributions to healthy and pathological brain development.
Collapse
Affiliation(s)
- Erin L Reinl
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Alexa C Blanchard
- University of Maryland School of Medicine, Program in Molecular Medicine and Medical Scientist Training Program, United States
| | - Emily L Graham
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Serena W Edwards
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Christie V Dionisos
- University of Maryland School of Medicine, Program in Neuroscience, United States
| | - Margaret M McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, United States; University of Maryland School of Medicine, Program in Neuroscience, United States
| |
Collapse
|
9
|
Christiansen DM, McCarthy MM, Seeman MV. Where Sex Meets Gender: How Sex and Gender Come Together to Cause Sex Differences in Mental Illness. Front Psychiatry 2022; 13:856436. [PMID: 35836659 PMCID: PMC9273892 DOI: 10.3389/fpsyt.2022.856436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/02/2022] [Indexed: 12/25/2022] Open
Abstract
Sex differences are prevalent in multiple mental disorders. Internalizing disorders are more commonly diagnosed in women, whereas externalizing and neurodevelopmental disorders are more often diagnosed in men. Significant sex/gender differences are reported in prevalence, symptom profile, age of onset, comorbidities, functional impairment, prognosis, as well as in responses to various treatments. In this conceptual article, we discuss theories and empirical studies of sex- and gender-related influences in mental health, by focusing on three examples: autism spectrum disorder (ASD), acknowledged as a disorder whose roots are mainly biological; eating disorders, whose origins are considered to be mainly psychosocial, and posttraumatic stress disorder (PTSD), an environmentally caused disorder with both psychosocial and biological underpinnings. We examine the ways in which sex differences emerge, from conception through adulthood. We also examine how gender dichotomies in exposures, expectations, role assumptions, and cultural traditions impact the expression of our three selected mental illnesses. We are especially interested in how sex-based influences and gender-based influences interact with one another to affect mental illness. We suggest that sex and gender are multi-faceted and complex phenomena that result in variations, not only between men and women, but also within each sex and gender through alterations in genes, hormone levels, self-perceptions, trauma experiences, and interpersonal relationships. Finally, we propose a conceptual diatheses-stress model, depicting how sex and gender come together to result in multiple sex/gender differences across mental disorders. In our model, we categorize diatheses into several categories: biological, intrapersonal, interpersonal, and environmental. These diatheses interact with exposure to stressors, ranging from relatively minor to traumatic, which allows for the sometimes bidirectional influences of acute and long-term stress responses. Sex and gender are discussed at every level of the model, thereby providing a framework for understanding and predicting sex/gender differences in expression, prevalence and treatment response of mental disorders. We encourage more research into this important field of study.
Collapse
Affiliation(s)
- Dorte M. Christiansen
- Department of Psychology, National Centre for Psychotraumatology, University of Southern Denmark, Odense, Denmark
| | - Margaret M. McCarthy
- Department of Pharmacology, University of Maryland, Baltimore, MD, United States
| | - Mary V. Seeman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Thabault M, Turpin V, Maisterrena A, Jaber M, Egloff M, Galvan L. Cerebellar and Striatal Implications in Autism Spectrum Disorders: From Clinical Observations to Animal Models. Int J Mol Sci 2022; 23:2294. [PMID: 35216408 PMCID: PMC8874522 DOI: 10.3390/ijms23042294] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are complex conditions that stem from a combination of genetic, epigenetic and environmental influences during early pre- and postnatal childhood. The review focuses on the cerebellum and the striatum, two structures involved in motor, sensory, cognitive and social functions altered in ASD. We summarize clinical and fundamental studies highlighting the importance of these two structures in ASD. We further discuss the relation between cellular and molecular alterations with the observed behavior at the social, cognitive, motor and gait levels. Functional correlates regarding neuronal activity are also detailed wherever possible, and sexual dimorphism is explored pointing to the need to apprehend ASD in both sexes, as findings can be dramatically different at both quantitative and qualitative levels. The review focuses also on a set of three recent papers from our laboratory where we explored motor and gait function in various genetic and environmental ASD animal models. We report that motor and gait behaviors can constitute an early and quantitative window to the disease, as they often correlate with the severity of social impairments and loss of cerebellar Purkinje cells. The review ends with suggestions as to the main obstacles that need to be surpassed before an appropriate management of the disease can be proposed.
Collapse
Affiliation(s)
- Mathieu Thabault
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Valentine Turpin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Alexandre Maisterrena
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Mohamed Jaber
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
- Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Matthieu Egloff
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
- Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Laurie Galvan
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| |
Collapse
|
11
|
Kight KE, Argue KJ, Bumgardner JG, Bardhi K, Waddell J, McCarthy MM. Social behavior in prepubertal neurexin 1α deficient rats: A model of neurodevelopmental disorders. Behav Neurosci 2021; 135:782-803. [PMID: 34323517 PMCID: PMC8649076 DOI: 10.1037/bne0000482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loss-of-function mutations in the synaptic protein neurexin1α (NRXN1α) are associated with several neurodevelopmental disorders, including autism spectrum disorder (ASD), schizophrenia, and attention-deficit hyperactivity disorder (ADHD), and many of these disorders are defined by core deficits in social cognition. Mouse models of Nrxn1α deficiency are not amenable to studying aspects of social cognition because, in general, mice do not engage in complex social interactions such as social play or prosocial helping behaviors. Rats, on the contrary, engage in these complex, well-characterized social behaviors. Using the Nrxn1tm1Sage Sprague Dawley rat, we tested a range of cognitive and social behaviors in juveniles with haplo- or biallelic Nrxn1α mutation. We found a deficit in ultrasonic vocalizations (USVs) of male and female neonatal rats with Nrxn1α deficiency. A male-specific deficit in social play was observed in Nrxn1α-deficient juveniles, although sociability and social discrimination were unaltered. Nurturing behavior induced by exposure to pups was enhanced in male and female juveniles with biallelic Nrxn1α mutation. Performance in tasks of prosocial helping behavior and food retrieval indicated severe deficits in learning and cognition in juveniles with biallelic Nrxn1α mutation, and a less severe deficit in haploinsufficient rats, although Pavlovian learning was altered only in haploinsufficient males. We also observed a male-specific increase in mobility and object investigation in juveniles with complete Nrxn1α deficiency. Together, these observations more fully characterize the Nrxn1tm1Sage Sprague Dawley rat as a model for Nrxn1α-related neurodevelopmental disorders, and support a rationale for the juvenile rat as a more appropriate model for disorders that involve core deficits in complex social behaviors. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Katherine E Kight
- Department of Pharmacology, University of Maryland School of Medicine
| | - Kathryn J Argue
- Department of Pharmacology, University of Maryland School of Medicine
| | | | - Keti Bardhi
- Department of Pediatrics, University of Maryland School of Medicine
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine
| | | |
Collapse
|
12
|
Bauer AZ, Swan SH, Kriebel D, Liew Z, Taylor HS, Bornehag CG, Andrade AM, Olsen J, Jensen RH, Mitchell RT, Skakkebaek NE, Jégou B, Kristensen DM. Paracetamol use during pregnancy - a call for precautionary action. Nat Rev Endocrinol 2021; 17:757-766. [PMID: 34556849 PMCID: PMC8580820 DOI: 10.1038/s41574-021-00553-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Paracetamol (N-acetyl-p-aminophenol (APAP), otherwise known as acetaminophen) is the active ingredient in more than 600 medications used to relieve mild to moderate pain and reduce fever. APAP is widely used by pregnant women as governmental agencies, including the FDA and EMA, have long considered APAP appropriate for use during pregnancy when used as directed. However, increasing experimental and epidemiological research suggests that prenatal exposure to APAP might alter fetal development, which could increase the risks of some neurodevelopmental, reproductive and urogenital disorders. Here we summarize this evidence and call for precautionary action through a focused research effort and by increasing awareness among health professionals and pregnant women. APAP is an important medication and alternatives for treatment of high fever and severe pain are limited. We recommend that pregnant women should be cautioned at the beginning of pregnancy to: forego APAP unless its use is medically indicated; consult with a physician or pharmacist if they are uncertain whether use is indicated and before using on a long-term basis; and minimize exposure by using the lowest effective dose for the shortest possible time. We suggest specific actions to implement these recommendations. This Consensus Statement reflects our concerns and is currently supported by 91 scientists, clinicians and public health professionals from across the globe.
Collapse
Affiliation(s)
- Ann Z Bauer
- Department of Public Health, University of Massachusetts School of Health Sciences, Lowell, MA, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Kriebel
- Department of Public Health, University of Massachusetts School of Health Sciences, Lowell, MA, USA
| | - Zeyan Liew
- Yale Center for Perinatal, Paediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale-New Haven Hospital, New Haven, CT, USA
| | - Carl-Gustaf Bornehag
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Anderson M Andrade
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Jørn Olsen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Rigmor H Jensen
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, Edinburgh, Scotland
| | - Niels E Skakkebaek
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S, 1085, Rennes, France
| | - David M Kristensen
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S, 1085, Rennes, France.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Kissoondoyal A, Rai-Bhogal R, Crawford DA. Abnormal dendritic morphology in the cerebellum of cyclooxygenase-2 - knockin mice. Eur J Neurosci 2021; 54:6355-6373. [PMID: 34510613 DOI: 10.1111/ejn.15454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
Abstract
Prostaglandin E2 (PGE2) is a bioactive signalling molecule metabolized from the phospholipid membranes by the enzymatic activity of cycloxygenase-2 (COX-2). In the developing brain, COX-2 constitutively regulates the production of PGE2, which is important in neuronal development. However, abnormal COX-2/PGE2 signalling has been linked to neurodevelopmental disorders including autism spectrum disorders (ASDs). We have previously demonstrated that COX-2- -KI mice show autism-related behaviours including social deficits, repetitive behaviours and anxious behaviours. COX-2-deficient mice also have deficits in pathways involved in synaptic transmission and dendritic spine formation. In this study, we use a Golgi-COX staining method to examine sex-dependent differences in dendritic and dendritic spine morphology in neurons of COX-2- -KI mice cerebellum compared with wild-type (WT) matched controls at postnatal day 25 (P25). We show that COX-2- -KI mice have increased dendritic arborization closer to the cell soma and increased dendritic looping. We also observed a sex-dependent effect of the COX-2- -KI on dendritic thickness, dendritic spine density, dendritic spine morphology, and the expression of β-actin and the actin-binding protein spinophilin. Our findings show that changes in COX-2/PGE2 signalling lead to impaired morphology of dendrites and dendritic spines in a sex-dependant manner and may contribute the pathology of the cerebellum seen in individuals with ASD. This study provides further evidence that the COX-2- -KI mouse model can be used to study a subset of ASD pathologies.
Collapse
Affiliation(s)
- Ashby Kissoondoyal
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| | - Ravneet Rai-Bhogal
- Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Delage CI, Nys G, Fillet M, Cornil CA. Effect of cyclo‑oxygenase inhibition on embryonic microglia and the sexual differentiation of the brain and behavior of Japanese quail (Coturnix japonica). Horm Behav 2021; 134:105024. [PMID: 34256221 DOI: 10.1016/j.yhbeh.2021.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
Enduring sex differences in the brain are established during a developmental process known as brain sexual differentiation and are mainly driven by estrogens during a critical period. In rodents, the masculinization of the preoptic area by estrogens derived from the central aromatization of testosterone depends in part on the interaction between microglia and prostaglandin E2 (PGE2), a pro-inflammatory hormone of the prostanoid subclass. In contrast, in birds, estrogens produced by females induce a demasculinization, but whether an interaction with the neuro-immune system is involved in this process is unknown. This study addressed this question by testing the effects of blockade of cyclo‑oxygenases (COX), the rate-limiting enzymes for prostanoid synthesis, on embryonic microglia and the sexual differentiation of brain and behavior using the Japanese quail as an animal model. The results show that COX inhibition does not affect the behavior of females, but impairs male sexual behavior and suppresses the sex difference in microglial profiles at embryonic day 12 (E12) in the medial preoptic nucleus by increasing the number of microglia in males only. However, neither prostanoid concentrations nor PGE2 receptors differed between sexes in the hypothalamus and preoptic area (HPOA) during development. Overall, these results uncovered a potential role of prostanoids in the demasculinization of Japanese quail. Moreover, the parallel effect of COX inhibition on behavior and microglia suggests an interaction between prostanoids and microglia in brain demasculinization, thus fueling the hypothesis of a conserved role of the neuroimmune system in the organization of the brain by estrogens.
Collapse
Affiliation(s)
- Charlotte I Delage
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Gwenael Nys
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Charlotte A Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium.
| |
Collapse
|
15
|
Seiffe A, Ramirez MF, Barrios CD, Albarrán MM, Depino AM. Early estradiol exposure masculinizes disease-relevant behaviors in female mice. Eur J Neurosci 2021; 53:2483-2499. [PMID: 33497491 DOI: 10.1111/ejn.15130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Most psychiatric disorders show a sex bias in incidence, symptomatology, and/or response to treatment. Males are more susceptible to neurodevelopmental disorders including autism spectrum disorder and attention-deficit activity disorder, while women are more prone to major depressive disorder and anxiety disorders after puberty. A striking difference between males and females in humans and other mammals is that males undergo a process of brain masculinization due to the early exposure to gonadal hormones. In rodents, this developmental organization of the brain is essential for adult males to express the appropriate sexual behaviors in the presence of a receptive female. Our goal was to determine whether this process of brain masculinization influences behaviors relevant to psychiatric disorders. To this aim, we studied sex differences and the effect of neonatal 17β-estradiol benzoate treatment of female mice on different disease-relevant behaviors. Our analysis includes postnatal behavior, juvenile play, and adult tests for sociability, repetitive behaviors, anxiety, and depression. Our results show that the sex differences observed in exploration, repetitive behaviors, and depression-related behaviors are largely reduced when females are neonatally treated with 17β-estradiol benzoate. These results suggest a role of neonatal sex steroids in the development of disease-relevant behaviors and provide evidence supporting a role for perinatal exposure to estrogens and androgens on the development and manifestation of psychiatric disorders.
Collapse
Affiliation(s)
- Araceli Seiffe
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauro Federico Ramirez
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Darío Barrios
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Milagros Albarrán
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
16
|
OSTATNÍKOVÁ D, LAKATOŠOVÁ S, BABKOVÁ J, HODOSY J, CELEC P. Testosterone and the Brain: From Cognition to Autism. Physiol Res 2021. [DOI: 10.33549/10.33549/physiolres.934592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sex and gender matter in all aspects of life. Humans exhibit sexual dimorphism in anatomy, physiology, but also pathology. Many of the differences are due to sex chromosomes and, thus, genetics, other due to endocrine factors such as sex hormones, some are of social origin. Over the past decades, huge number of scientific studies have revealed striking sex differences of the human brain with remarkable behavioral and cognitive consequences. Prenatal and postnatal testosterone influence brain structures and functions, respectively. Cognitive sex differences include especially certain spatial and language tasks, but they also affect many other aspects of the neurotypical brain. Sex differences of the brain are also relevant for the pathogenesis of neuropsychiatric disorders such as autism spectrum disorders, which are much more prevalent in the male population. Structural dimorphism in the human brain was well-described, but recent controversies now question its importance. On the other hand, solid evidence exists regarding gender differences in several brain functions. This review tries to summarize the current understanding of the complexity of the effects of testosterone on brain with special focus on their role in the known sex differences in healthy individuals and people in the autism spectrum.
Collapse
Affiliation(s)
- D OSTATNÍKOVÁ
- Institute of Physiology, Academic Research Centre for Autism, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - S LAKATOŠOVÁ
- Institute of Physiology, Academic Research Centre for Autism, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - J BABKOVÁ
- Institute of Physiology, Academic Research Centre for Autism, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - J HODOSY
- Institute of Physiology, Academic Research Centre for Autism, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - P CELEC
- Institute of Physiology, Academic Research Centre for Autism, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
17
|
Moussa-Tooks AB, Hetrick WP, Green JT. Differential effects of two early life stress paradigms on cerebellar-dependent delay eyeblink conditioning. Neurobiol Stress 2020; 13:100242. [PMID: 33344698 PMCID: PMC7739029 DOI: 10.1016/j.ynstr.2020.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 11/11/2022] Open
Abstract
Early life stress paradigms have become prominent in the animal literature to model atypical development. Currently, two models have prevailed within the literature: (1) limited bedding or nesting and (2) maternal separation or deprivation. Both models have produced aberrations spanning behavior and neural circuitry. Surprisingly, these two models have yet to be directly compared. The current study utilized delay eyeblink conditioning, an associative learning task with a well-defined cerebellar circuit, to compare the behavioral effects of standard limited bedding (postnatal day 2–9, n = 15) and maternal separation (60 min per day during postnatal day 2–14, n = 13) early life stress paradigms. Animals in all groups exhibited robust learning curves. Surprisingly, facilitated conditioning was observed in the maternal separation group. Rats that underwent limited bedding did not differ from the control or maternal separation groups on any conditioning measures. This study contributes to a clearer understanding of early life stress paradigms and the claims made about their mechanisms, which if better clarified can be properly leveraged to increase translational value.
Collapse
Affiliation(s)
- Alexandra B Moussa-Tooks
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States.,Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - William P Hetrick
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States.,Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John T Green
- Department of Psychological Science, University of Vermont, Burlington, VT, United States
| |
Collapse
|
18
|
Zhou CL, Xu GF, Yang Q, Wang HH, Guo MX, Xiong YM, Guo XY, Hou M, Jin LY, Sheng JZ, He L, Jin L, Huang HF. Diminished verbal ability among children conceived through ART with exposure to high serum estradiol in utero. J Assist Reprod Genet 2020; 37:1931-1938. [PMID: 32519010 PMCID: PMC7468024 DOI: 10.1007/s10815-020-01835-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023] Open
Abstract
Purpose Higher serum estradiol levels occur in women undergoing assisted reproductive technology (ART) owing to ovarian stimulation. Here, we investigated the association between maternal serum estradiol levels and the intellectual development of offspring conceived with ART. Methods A total of 204 singletons born after fresh embryo transfer were recruited for this cohort study. Among them, 102 children were born from mothers with high serum estradiol levels (> 12,000 pmol/L) on the day that human chorionic gonadotropin was administered. Another 102 children, matched by gestational age and age of the children, were recruited as controls from mothers with low serum estradiol (≤ 12,000 pmol/L). The Wechsler Preschool and Primary Scale of Intelligence was used to evaluate the intellectual development of the children. Results Children from mothers with higher serum estradiol levels scored lower in the verbal intelligence quotient (IQ) tests and verbal comprehension than children whose mothers had lower estradiol levels. The main difference between the two groups was in verbal subtests including information, vocabulary, and sorting. Partial correlation analysis revealed that the logarithm of maternal serum estradiol level negatively correlated with verbal IQ, performance IQ, and full scale IQ. Conclusion Our data demonstrate that a high maternal serum estradiol level may negatively associate the verbal ability of children conceived via ART.
Collapse
Affiliation(s)
- Cheng-Liang Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Gu-Feng Xu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Qian Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hui-Hui Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Meng-Xi Guo
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yi-Meng Xiong
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xiao-Yan Guo
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Min Hou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Lu-Yang Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Jian-Zhong Sheng
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin He
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Huashan Rd. 1961, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China.
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Pires JM, Foresti ML, Silva CS, Rêgo DB, Calió ML, Mosini AC, Nakamura TKE, Leslie ATF, Mello LE. Lipopolysaccharide-Induced Systemic Inflammation in the Neonatal Period Increases Microglial Density and Oxidative Stress in the Cerebellum of Adult Rats. Front Cell Neurosci 2020; 14:142. [PMID: 32581717 PMCID: PMC7283979 DOI: 10.3389/fncel.2020.00142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023] Open
Abstract
Inflammatory processes occurring in the perinatal period may affect different brain regions, resulting in neurologic sequelae. Injection of lipopolysaccharide (LPS) at different neurodevelopmental stages produces long-term consequences in several brain structures, but there is scarce evidence regarding alterations in the cerebellum. The aim of this study was to evaluate the long-term consequences on the cerebellum of a systemic inflammatory process induced by neonatal LPS injection. For this, neonatal rats were randomly assigned to three different groups: naïve, sham, and LPS. Saline (sham group) or LPS solution (1 mg/kg) was intraperitoneally injected on alternate postnatal days (PN) PN1, PN3, PN5, and PN7. Spontaneous activity was evaluated with the open field test in adulthood. The cerebellum was evaluated for different parameters: microglial and Purkinje cell densities, oxidative stress levels, and tumor necrosis factor alpha (TNF-α) mRNA expression. Our results show that administration of LPS did not result in altered spontaneous activity in adult animals. Our data also indicate increased oxidative stress in the cerebellum, as evidenced by an increase in superoxide fluorescence by dihydroethidium (DHE) indicator. Stereological analyses indicated increased microglial density in the cerebellum that was not accompanied by Purkinje cell loss or altered TNF-α expression in adult animals. Interestingly, Purkinje cells ectopically positioned in the granular and molecular layers of the cerebellum were observed in animals of the LPS group. Our data suggest that neonatal LPS exposure causes persistent cellular and molecular changes to the cerebellum, indicating the susceptibility of this region to systemic inflammatory insults in infancy. Further investigation of the consequences of these changes and the development of strategies to avoid those should be subject of future studies.
Collapse
Affiliation(s)
| | - Maira Licia Foresti
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | | | | | | | - Amanda Cristina Mosini
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Associação Brasileira de Epilepsia, São Paulo, Brazil
| | | | | | - Luiz Eugênio Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Moussa-Tooks AB, Larson ER, Gimeno AF, Leishman E, Bartolomeo LA, Bradshaw HB, Green JT, O'Donnell BF, Mackie K, Hetrick WP. Long-Term Aberrations To Cerebellar Endocannabinoids Induced By Early-Life Stress. Sci Rep 2020; 10:7236. [PMID: 32350298 PMCID: PMC7190863 DOI: 10.1038/s41598-020-64075-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence points to the role of the endocannabinoid system in long-term stress-induced neural remodeling with studies on stress-induced endocannabinoid dysregulation focusing on cerebral changes that are temporally proximal to stressors. Little is known about temporally distal and sex-specific effects, especially in cerebellum, which is vulnerable to early developmental stress and is dense with cannabinoid receptors. Following limited bedding at postnatal days 2-9, adult (postnatal day 70) cerebellar and hippocampal endocannabinoids, related lipids, and mRNA were assessed, and behavioral performance evaluated. Regional and sex-specific effects were present at baseline and following early-life stress. Limited bedding impaired peripherally-measured basal corticosterone in adult males only. In the CNS, early-life stress (1) decreased 2-arachidonoyl glycerol and arachidonic acid in the cerebellar interpositus nucleus in males only; (2) decreased 2-arachidonoyl glycerol in females only in cerebellar Crus I; and (3) increased dorsal hippocampus prostaglandins in males only. Cerebellar interpositus transcriptomics revealed substantial sex effects, with minimal stress effects. Stress did impair novel object recognition in both sexes and social preference in females. Accordingly, the cerebellar endocannabinoid system exhibits robust sex-specific differences, malleable through early-life stress, suggesting the role of endocannabinoids and stress to sexual differentiation of the brain and cerebellar-related dysfunctions.
Collapse
Affiliation(s)
- Alexandra B Moussa-Tooks
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Eric R Larson
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Alex F Gimeno
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Emma Leishman
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Lisa A Bartolomeo
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Heather B Bradshaw
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - John T Green
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Brian F O'Donnell
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ken Mackie
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - William P Hetrick
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, USA.
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
21
|
Perez-Pouchoulen M, Yu SJ, Roby CR, Bonsavage N, McCarthy MM. Regulatory Control of Microglial Phagocytosis by Estradiol and Prostaglandin E2 in the Developing Rat Cerebellum. THE CEREBELLUM 2020; 18:882-895. [PMID: 31435854 DOI: 10.1007/s12311-019-01071-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microglia are essential to sculpting the developing brain, and they achieve this in part through the process of phagocytosis which is regulated by microenvironmental signals associated with cell death and synaptic connectivity. In the rat cerebellum, microglial phagocytosis reaches its highest activity during the third postnatal week of development but the factors regulating this activity are unknown. A signaling pathway, involving prostaglandin E2 (PGE2) stimulation of the estrogen synthetic enzyme aromatase, peaks during the 2nd postnatal week and is a critical regulator of Purkinje cell maturation. We explored the relationship between the PGE2-estradiol pathway and microglia in the maturing cerebellum. Toward that end, we treated developing rat pups with pharmacological inhibitors of estradiol and PGE2 synthesis and then stained microglia with the universal marker Iba1 and quantified microglia engaged in phagocytosis as well as phagocytic cups in the vermis and cerebellar hemispheres. Inhibition of aromatase reduced the number of phagocytic cups in the vermis, but not in the cerebellar hemisphere at postnatal day 17. Similar results were found after treatment with nimesulide and indomethacin, inhibitors of the PGE2-producing enzymes cyclooxygenase 1 and 2. In contrast, treatment with estradiol or PGE2 had little effect on microglial phagocytosis in the developing cerebellum. Thus, endogenous estrogens and prostaglandins upregulate the phagocytic activity of microglia during a select window of postnatal cerebellar development, but exogenous treatment with these same signaling molecules does not further increase the already high levels of phagocytosis. This may be due to an upper threshold or evidence of resistance to exogenous perturbation.
Collapse
Affiliation(s)
- Miguel Perez-Pouchoulen
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA.
| | - Stacey J Yu
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Clinton R Roby
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Nicole Bonsavage
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| |
Collapse
|
22
|
Abstract
Elevated latent prenatal steroidogenic activity has been found in the amniotic fluid of autistic boys, based on measuring prenatal androgens and other steroid hormones. To date, it is unclear if other prenatal steroids also contribute to autism likelihood. Prenatal oestrogens need to be investigated, as they play a key role in synaptogenesis and corticogenesis during prenatal development, in both males and females. Here we test whether levels of prenatal oestriol, oestradiol, oestrone and oestrone sulphate in amniotic fluid are associated with autism, in the same Danish Historic Birth Cohort, in which prenatal androgens were measured, using univariate logistic regression (n = 98 cases, n = 177 controls). We also make a like-to-like comparison between the prenatal oestrogens and androgens. Oestradiol, oestrone, oestriol and progesterone each related to autism in univariate analyses after correction with false discovery rate. A comparison of standardised odds ratios showed that oestradiol, oestrone and progesterone had the largest effects on autism likelihood. These results for the first time show that prenatal oestrogens contribute to autism likelihood, extending the finding of elevated prenatal steroidogenic activity in autism. This likely affects sexual differentiation, brain development and function.
Collapse
|
23
|
Sex-specific effects of prenatal valproic acid exposure on sociability and neuroinflammation: Relevance for susceptibility and resilience in autism. Psychoneuroendocrinology 2019; 110:104441. [PMID: 31541913 DOI: 10.1016/j.psyneuen.2019.104441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with an incidence four times higher in boys than in girls. By analyzing the effect of sex in a mouse model of ASD, we were able to identify immune alterations that could underlie this sex bias. Pregnant mice were injected subcutaneously with 600 mg/kg of valproic acid (VPA) or saline at gestational day 12.5. Their male and female offspring were evaluated in a social interaction test at adulthood, and only male VPA mice showed reduced sociability levels and a lack of preference for the social stimulus over a novel object. We then analyzed the corticosterone (CORT) response to an inflammatory stimulus, as a measure of the hypothalamus-pituitary-adrenal (HPA) function, and the neuroinflammatory state in adult and young animals. Adult VPA males exhibited increased basal CORT levels, while VPA females showed levels comparable to controls. As male mice showed a blunted CORT response at PD21 when compared to female mice, we propose that this early dimorphism could explain the different effects of VPA on HPA function. In addition, prenatal VPA exposure resulted in altered astroglial and microglial cell density levels in the cerebellum and dentate gyrus of adult mice. These neuroinflammatory effects were more pronounced in females than males, and appeared at early developmental stages. Hence, these postnatal glial density differences could underlie the behavioral alterations observed in adulthood, when only males show a social deficit. Our work contributes to the understanding of biological mechanisms affected by VPA on male and female rodents and shed light on the study of possible resilience mechanisms in the female population and/or susceptibility to ASD in boys.
Collapse
|
24
|
Ariyani W, Miyazaki W, Koibuchi N. A Novel Mechanism of S-equol Action in Neurons and Astrocytes: The Possible Involvement of GPR30/GPER1. Int J Mol Sci 2019; 20:ijms20205178. [PMID: 31635400 PMCID: PMC6829462 DOI: 10.3390/ijms20205178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022] Open
Abstract
S-equol is a major bacterial metabolite of the soy isoflavone daidzein. It is known to be a phytoestrogen that acts by binding to the nuclear estrogen receptors (ERs) that are expressed in various brain regions, including the cerebellum. However, the effects of S-equol on cerebellar development and function have not yet been extensively studied. In this study, the effects of S-equol were evaluated using a mouse primary cerebellar culture, Neuro-2A clonal cells, and an astrocyte-enriched culture. S-equol augmented the dendrite arborization of Purkinje cells induced by triiodothyronine (T3) and the neurite growth of Neuro-2A cell differentiation. Such augmentation was suppressed by G15, a selective G-protein coupled ER (GPR30) antagonist, and ICI 182,780, an antagonist for ERs in both cultures. On the other hand, in astrocytes, S-equol induced cell proliferation and cell migration with an increase in the phosphorylated extracellular-signal-regulated kinase 1/2 and F-actin rearrangements. Such effects were suppressed by G15, but not by ICI. These findings indicated that S-equol may enhanced cerebellar development by affecting both neurons and astrocytes through several signaling pathways, including GPR30 and ERs. We here report a novel mechanism of S-equol in cerebellar development that may provide a novel possibility to use S-equol supplementation during development.
Collapse
Affiliation(s)
- Winda Ariyani
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi Maebashi, Gunma 371-8511, Japan.
| | - Wataru Miyazaki
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi Maebashi, Gunma 371-8511, Japan.
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Science, Hirosaki University, 66-1 Hon-cho Aomori, Hirosaki 036-8564, Japan.
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
25
|
Barrientos RM, Brunton PJ, Lenz KM, Pyter L, Spencer SJ. Neuroimmunology of the female brain across the lifespan: Plasticity to psychopathology. Brain Behav Immun 2019; 79:39-55. [PMID: 30872093 PMCID: PMC6591071 DOI: 10.1016/j.bbi.2019.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
The female brain is highly dynamic and can fundamentally remodel throughout the normal ovarian cycle as well as in critical life stages including perinatal development, pregnancy and old-age. As such, females are particularly vulnerable to infections, psychological disorders, certain cancers, and cognitive impairments. We will present the latest evidence on the female brain; how it develops through the neonatal period; how it changes through the ovarian cycle in normal individuals; how it adapts to pregnancy and postpartum; how it responds to illness and disease, particularly cancer; and, finally, how it is shaped by old age. Throughout, we will highlight female vulnerability to and resilience against disease and dysfunction in the face of environmental challenges.
Collapse
Affiliation(s)
- R M Barrientos
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH 43210, United States
| | - P J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK; Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, International Campus, Haining, Zhejiang 314400, PR China
| | - K M Lenz
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychology, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, United States
| | - L Pyter
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States
| | - S J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic. 3083, Australia.
| |
Collapse
|
26
|
Ning Z, Williams JM, Kumari R, Baranov PV, Moore T. Opposite Expression Patterns of Spry3 and p75NTR in Cerebellar Vermis Suggest a Male-Specific Mechanism of Autism Pathogenesis. Front Psychiatry 2019; 10:416. [PMID: 31275178 PMCID: PMC6591651 DOI: 10.3389/fpsyt.2019.00416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Autism is a genetically complex neurobehavioral disorder with a population prevalence of more than 1%. Cerebellar abnormalities, including Purkinje cell deficits in the vermis, are consistently reported, and rodent models of cerebellar dysfunction exhibit features analogous to human autism. We previously analyzed the regulation and expression of the pseudoautosomal region 2 gene SPRY3, which is adjacent to X chromosome-linked TMLHE, a known autism susceptibility gene. SPRY3 is a regulator of branching morphogenesis and is strongly expressed in Purkinje cells. We previously showed that mouse Spry3 is not expressed in cerebellar vermis lobules VI-VII and X, regions which exhibit significant Purkinje cell loss or abnormalities in autism. However, these lobules have relatively high expression of p75NTR, which encodes a neurotrophin receptor implicated in autism. We propose a mechanism whereby inappropriate SPRY3 expression in these lobules could interact with TrkB and p75NTR signaling pathways resulting in Purkinje cell pathology. We report preliminary characterization of X and Y chromosome-linked regulatory sequences upstream of SPRY3, which are polymorphic in the general population. We suggest that an OREG-annotated region on chromosome Yq12 ∼60 kb from SPRY3 acts as a silencer of Y-linked SPRY3 expression. Deletion of a β-satellite repeat, or alterations in chromatin structure in this region due to trans-acting factors, could affect the proposed silencing function, leading to reactivation and inappropriate expression of Y-linked SPRY3. This proposed male-specific mechanism could contribute to the male bias in autism prevalence.
Collapse
Affiliation(s)
| | | | | | | | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Brocca ME, Garcia-Segura LM. Non-reproductive Functions of Aromatase in the Central Nervous System Under Physiological and Pathological Conditions. Cell Mol Neurobiol 2019; 39:473-481. [PMID: 30084008 DOI: 10.1007/s10571-018-0607-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
The modulation of brain function and behavior by steroid hormones was classically associated with their secretion by peripheral endocrine glands. The discovery that the brain expresses the enzyme aromatase, which produces estradiol from testosterone, expanded this traditional concept. One of the best-studied roles of brain estradiol synthesis is the control of reproductive behavior. In addition, there is increasing evidence that estradiol from neural origin is also involved in a variety of non-reproductive functions. These include the regulation of neurogenesis, neuronal development, synaptic transmission, and plasticity in brain regions not directly related with the control of reproduction. Central aromatase is also involved in the modulation of cognition, mood, and non-reproductive behaviors. Furthermore, under pathological conditions aromatase is upregulated in the central nervous system. This upregulation represents a neuroprotective and likely also a reparative response by increasing local estradiol levels in order to maintain the homeostasis of the neural tissue. In this paper, we review the non-reproductive functions of neural aromatase and neural-derived estradiol under physiological and pathological conditions. We also consider the existence of sex differences in the role of the enzyme in both contexts.
Collapse
Affiliation(s)
- Maria Elvira Brocca
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Lenz KM, Pickett LA, Wright CL, Galan A, McCarthy MM. Prenatal Allergen Exposure Perturbs Sexual Differentiation and Programs Lifelong Changes in Adult Social and Sexual Behavior. Sci Rep 2019; 9:4837. [PMID: 30886382 PMCID: PMC6423032 DOI: 10.1038/s41598-019-41258-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/05/2019] [Indexed: 12/27/2022] Open
Abstract
Sexual differentiation is the early life process by which the brain is prepared for male or female typical behaviors, and is directed by sex chromosomes, hormones and early life experiences. We have recently found that innate immune cells residing in the brain, including microglia and mast cells, are more numerous in the male than female rat brain. Neuroimmune cells are also key participants in the sexual differentiation process, specifically organizing the synaptic development of the preoptic area and leading to male-typical sexual behavior in adulthood. Mast cells are known for their roles in allergic responses, thus in this study we sought to determine if exposure to an allergic response of the pregnant female in utero would alter the sexual differentiation of the preoptic area of offspring and resulting sociosexual behavior in later life. Pregnant rats were sensitized to ovalbumin (OVA), bred, and challenged intranasally with OVA on gestational day 15, which produced robust allergic inflammation, as measured by elevated immunoglobulin E. Offspring of these challenged mother rats were assessed relative to control rats in the early neonatal period for mast cell and microglia activation within their brains, downstream dendritic spine patterning on POA neurons, or grown to adulthood to assess behavior and dendritic spines. In utero exposure to allergic inflammation increased mast cell and microglia activation in the neonatal brain, and led to masculinization of dendritic spine density in the female POA. In adulthood, OVA-exposed females showed an increase in male-typical mounting behavior relative to control females. In contrast, OVA-exposed males showed evidence of dysmasculinization, including reduced microglia activation, reduced neonatal dendritic spine density, decreased male-typical copulatory behavior, and decreased olfactory preference for female-typical cues. Together these studies show that early life allergic events may contribute to natural variations in both male and female sexual behavior, potentially via underlying effects on brain-resident mast cells.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, USA.
| | - Lindsay A Pickett
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher L Wright
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, 43210, USA
| | - Margaret M McCarthy
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
29
|
Arambula SE, Reinl EL, El Demerdash N, McCarthy MM, Robertson CL. Sex differences in pediatric traumatic brain injury. Exp Neurol 2019; 317:168-179. [PMID: 30831070 DOI: 10.1016/j.expneurol.2019.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
Abstract
The response of the developing brain to traumatic injury is different from the response of the mature, adult brain. There are critical developmental trajectories in the young brain, whereby injury can lead to long term functional abnormalities. Emerging preclinical and clinical literature supports the presence of significant sex differences in both the response to and the recovery from pediatric traumatic brain injury (TBI). These sex differences are seen at all pediatric ages, including neonates/infants, pre-pubertal children, and adolescents. As importantly, the response to neuroprotective therapies or treatments can differ between male and females subjects. These sex differences can result from several biologic origins, and may manifest differently during the various phases of brain and body development. Recognizing and understanding these potential sex differences is crucial, and should be considered in both preclinical and clinical studies of pediatric TBI.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin L Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
30
|
Regional and sex-dependent alterations in Purkinje cell density in the valproate mouse model of autism. Neuroreport 2019; 30:82-88. [PMID: 30461560 DOI: 10.1097/wnr.0000000000001164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuropathological and neuroimaging studies indicate a decrease in Purkinje cell (PC) density in the cerebellum of autistic patients and rodent models of autism. Autism is far more prevalent in males than females, and sex-specific properties of PCs have been reported recently. We investigated the differential sensitivity of PCs in the valproate acid (VPA) mouse model of autism by estimating the linear density of PCs immununolabelled with calbindin in the cerebellum of males and females. Whereas prenatal VPA treatment surprisingly increased PC linear density in both sexes 13 days after birth (P13), it significantly reduced the linear density of PCs in the cerebellum of 40-day-old (P40) males, but not females. In males, PC loss was more pronounced in the posterior part of the cerebellum and was significant in the VIth, VIIth, IXth and paramedian lobules. In females, PC loss was restricted to the paramedian lobule. These results suggest that this sex-specific sensitivity of PCs to VPA may contribute towards the motor disturbances and behavioural abnormalities observed in autism.
Collapse
|
31
|
Wright CL, Hoffman JH, McCarthy MM. Evidence that inflammation promotes estradiol synthesis in human cerebellum during early childhood. Transl Psychiatry 2019; 9:58. [PMID: 30705253 PMCID: PMC6355799 DOI: 10.1038/s41398-018-0363-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023] Open
Abstract
Discovering and characterizing critical and sensitive periods in brain development is essential for unraveling the myriad variables that impact disease risk. In previous work, we identified a critical period in cerebellar development in the rat that depends upon an intrinsic gene expression program and links increased prostaglandin production to local estradiol synthesis by stimulating Cyp19a, the estradiol synthetic enzyme, aromatase. This intrinsic critical period is sensitive to disruption by either inflammation or administration of cyclooxygenase (COX) inhibitors, ultimately impacting Purkinje cell dendritic growth. In a first step towards determining if a similar sensitive period exists in humans, the same gene expression profile was characterized in post-mortem cerebellar tissue of 58 children aged 0 to 9 years. Subjects were categorized as experiencing inflammation or not at the time of death. In individuals experiencing inflammation and over 1 year of age, there was a significant increase in the messenger RNA (mRNA) of the COX-1 and COX-2 enzymes and this strongly correlated with mRNA levels of aromatase. A step-wise linear model accounted for 94% of the variance in aromatase mRNA levels by co-variance with the COX enzymes, prostaglandin E2 synthase and other inflammatory mediators (Toll-like receptor 4), and Purkinje cell markers (calbindin, estrogen receptor 2). The influence of inflammation on these measures was not seen in subjects younger than 1 year. These data suggest a sensitive period to inflammation in the human cerebellum begins at about 1 year of age and may provide insight into sources of vulnerability of very young children to either inflammation or drugs designed to treat it.
Collapse
Affiliation(s)
- Christopher L Wright
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jessica H Hoffman
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
32
|
Fitzgerald E, Boardman JP, Drake AJ. Preterm Birth and the Risk of Neurodevelopmental Disorders - Is There a Role for Epigenetic Dysregulation? Curr Genomics 2018; 19:507-521. [PMID: 30386170 PMCID: PMC6158617 DOI: 10.2174/1389202919666171229144807] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/06/2017] [Accepted: 12/17/2017] [Indexed: 12/29/2022] Open
Abstract
Preterm Birth (PTB) accounts for approximately 11% of all births worldwide each year and is a profound physiological stressor in early life. The burden of neuropsychiatric and developmental impairment is high, with severity and prevalence correlated with gestational age at delivery. PTB is a major risk factor for the development of cerebral palsy, lower educational attainment and deficits in cognitive functioning, and individuals born preterm have higher rates of schizophrenia, autistic spectrum disorder and attention deficit/hyperactivity disorder. Factors such as gestational age at birth, systemic inflammation, respiratory morbidity, sub-optimal nutrition, and genetic vulnerability are associated with poor outcome after preterm birth, but the mechanisms linking these factors to adverse long term outcome are poorly understood. One potential mechanism linking PTB with neurodevelopmental effects is changes in the epigenome. Epigenetic processes can be defined as those leading to altered gene expression in the absence of a change in the underlying DNA sequence and include DNA methylation/hydroxymethylation and histone modifications. Such epigenetic modifications may be susceptible to environmental stimuli, and changes may persist long after the stimulus has ceased, providing a mechanism to explain the long-term consequences of acute exposures in early life. Many factors such as inflammation, fluctuating oxygenation and excitotoxicity which are known factors in PTB related brain injury, have also been implicated in epigenetic dysfunction. In this review, we will discuss the potential role of epigenetic dysregulation in mediating the effects of PTB on neurodevelopmental outcome, with specific emphasis on DNA methylation and the α-ketoglutarate dependent dioxygenase family of enzymes.
Collapse
Affiliation(s)
| | | | - Amanda J. Drake
- Address correspondence to this author at the University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK; Tel: 44 131 2426748; Fax: 44 131 2426779; E-mail:
| |
Collapse
|
33
|
Wong CT, Bestard-Lorigados I, Crawford DA. Autism-related behaviors in the cyclooxygenase-2-deficient mouse model. GENES BRAIN AND BEHAVIOR 2018; 18:e12506. [PMID: 30027581 DOI: 10.1111/gbb.12506] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Prostaglandin E2 (PGE2) is an endogenous lipid molecule involved in normal brain development. Cyclooxygenase-2 (COX2) is the main regulator of PGE2 synthesis. Emerging clinical and molecular research provides compelling evidence that abnormal COX2/PGE2 signaling is associated with autism spectrum disorder (ASD). We previously found that COX2 knockout mice had dysregulated expression of many ASD genes belonging to important biological pathways for neurodevelopment. The present study is the first to show the connection between irregular COX2/PGE2 signaling and autism-related behaviors in male and female COX2-deficient knockin, (COX)-2- , mice at young (4-6 weeks) or adult (8-11 weeks) ages. Autism-related behaviors were prominent in male (COX)-2- mice for most behavioral tests. In the open field test, (COX)-2- mice traveled more than controls and adult male (COX)-2- mice spent less time in the center indicating elevated hyperactive and anxiety-linked behaviors. (COX)-2- mice also buried more marbles, with males burying more than females, suggesting increased anxiety and repetitive behaviors. Young male (COX)-2- mice fell more frequently in the inverted screen test revealing motor deficits. The three-chamber sociability test found that adult female (COX)-2- mice spent less time in the novel mouse chamber indicative of social abnormalities. In addition, male (COX)-2- mice showed altered expression of several autism-linked genes: Wnt2, Glo1, Grm5 and Mmp9. Overall, our findings offer new insight into the involvement of disrupted COX2/PGE2 signaling in ASD pathology with age-related differences and greater impact on males. We propose that (COX)-2- mice might serve as a novel model system to study specific types of autism.
Collapse
Affiliation(s)
- Christine T Wong
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada
| | - Isabel Bestard-Lorigados
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada
| | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada.,Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
34
|
Bauer AZ, Kriebel D, Herbert MR, Bornehag CG, Swan SH. Prenatal paracetamol exposure and child neurodevelopment: A review. Horm Behav 2018; 101:125-147. [PMID: 29341895 DOI: 10.1016/j.yhbeh.2018.01.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/09/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The non-prescription medication paracetamol (acetaminophen, APAP) is currently recommended as a safe pain and fever treatment during pregnancy. However, recent studies suggest a possible association between APAP use in pregnancy and offspring neurodevelopment. OBJECTIVES To conduct a review of publications reporting associations between prenatal APAP use and offspring neurodevelopmental outcomes. METHODS Relevant sources were identified through a key word search of multiple databases (Medline, CINAHL, OVID and TOXNET) in September 2016. All English language observational studies of pregnancy APAP and three classes of neurodevelopmental outcomes (autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and intelligence quotient (IQ)) were included. One reviewer (AZB) independently screened all titles and abstracts, extracted and analyzed the data. RESULTS 64 studies were retrieved and 55 were ineligible. Nine prospective cohort studies fulfilled all inclusion criteria. Data pooling was not appropriate due to heterogeneity in outcomes. All included studies suggested an association between prenatal APAP exposure and the neurodevelopmental outcomes; ADHD, ASD, or lower IQ. Longer duration of APAP use was associated with increased risk. Associations were strongest for hyperactivity and attention-related outcomes. Little modification of associations by indication for use was reported. CONCLUSIONS Together, these nine studies suggest an increased risk of adverse neurodevelopmental outcomes following prenatal APAP exposure. Further studies are urgently needed with; precise indication of use and exposure assessment of use both in utero and in early life. Given the current findings, pregnant women should be cautioned against indiscriminate use of APAP. These results have substantial public health implications.
Collapse
Affiliation(s)
- Ann Z Bauer
- Department of Public Health, University of Massachusetts, 1 University Avenue, Lowell, MA, 01854, USA.
| | - David Kriebel
- Department of Public Health, University of Massachusetts, 1 University Avenue, Lowell, MA, 01854, USA.
| | - Martha R Herbert
- Department of Neurology, MGH, Harvard Medical School, A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - Carl-Gustaf Bornehag
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Department of Health Sciences, Karlstad University, Karlstad, Sweden.
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| |
Collapse
|
35
|
Fiedler SE, Yadav V, Kerns AR, Tsang C, Markwardt S, Kim E, Spain R, Bourdette D, Salinthone S. Lipoic Acid Stimulates cAMP Production in Healthy Control and Secondary Progressive MS Subjects. Mol Neurobiol 2017; 55:6037-6049. [PMID: 29143287 DOI: 10.1007/s12035-017-0813-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/27/2017] [Indexed: 02/05/2023]
Abstract
Lipoic acid (LA) exhibits antioxidant and anti-inflammatory properties; supplementation reduces disease severity and T lymphocyte migration into the central nervous system in a murine model of multiple sclerosis (MS), and administration in secondary progressive MS (SPMS) subjects reduces brain atrophy compared to placebo. The mechanism of action (MOA) of LA's efficacy in suppression of MS pathology is incompletely understood. LA stimulates production of the immunomodulator cyclic AMP (cAMP) in vitro. To determine whether cAMP could be involved in the MOA of LA in vivo, we performed a clinical trial to examine whether LA stimulates cAMP production in healthy control and MS subjects, and whether there are differences in the bioavailability of LA between groups. We administered 1200 mg of oral LA to healthy control, relapsing remitting MS (RRMS) and SPMS subjects, and measured plasma LA and cAMP levels in peripheral blood mononuclear cells (PBMCs). There were no significant differences between the groups in pharmacokinetic (PK) parameters. Healthy and SPMS subjects had increased cAMP at 2 and 4 h post-LA treatment compared to baseline, while RRMS subjects showed decreases in cAMP. Additionally, plasma concentrations of prostaglandin E2 (PGE2, a known cAMP stimulator) were significantly lower in female RRMS subjects compared to female HC and SPMS subjects 4 h after LA ingestion. These data indicate that cAMP could be part of the MOA of LA in SPMS, and that there is a divergent response to LA in RRMS subjects that may have implications in the efficacy of immunomodulatory drugs. This clinical trial, "Defining the Anti-inflammatory Role of Lipoic Acid in Multiple Sclerosis," NCT00997438, is registered at https://clinicaltrials.gov/ct2/show/record/NCT00997438 .
Collapse
Affiliation(s)
- Sarah E Fiedler
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA
| | - Vijayshree Yadav
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Amelia R Kerns
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA
| | - Catherine Tsang
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA
| | - Sheila Markwardt
- OCTRI Biostatistics and Design Program, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Edward Kim
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Rebecca Spain
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Dennis Bourdette
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Sonemany Salinthone
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA. .,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
36
|
Yang S, Li J, Han L, Zhu G. Early maternal separation promotes apoptosis in dentate gyrus and alters neurological behaviors in adolescent rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10812-10820. [PMID: 31966424 PMCID: PMC6965815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/24/2017] [Indexed: 06/10/2023]
Abstract
Adverse early-life experience such as maternal separation (MS) affects the behavior of adult, and may also aggravate the outcome of neurological insults. In this study, we aimed to investigate the effects of early MS on hippocampus-related behaviors, and to assess the mechanisms. Newborn rats were randomly divided into normal control and MS groups. Our data showed that MS (P3-P21) impaired learning ability as well as memory retrieval, and caused depression-like activity, but decreased anxiety-like activity. Glutamate receptor 1 (GluR1) expression in the dentate gyrus (DG) region was significantly reduced in the adults (P60). Mechanically, MS promoted apoptosis, and reduced protein kinase B (AKT) phosphorylation in the DG region in the early phase (P21). By contrast, MS did not affect ERK phosphorylation. Our data implicate that the inactivation of AKT pathway and apoptosis of DG cells might contribute to MS-induced behavioral changes. This study would provide useful evidence implicating the pathological changes for MS.
Collapse
Affiliation(s)
- Sanjuan Yang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese MedicineHefei 230038, China
| | - Junyao Li
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese MedicineHefei 230038, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese MedicineHefei 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese MedicineHefei 230038, China
| |
Collapse
|
37
|
Systemic inflammation combined with neonatal cerebellar haemorrhage aggravates long-term structural and functional outcomes in a mouse model. Brain Behav Immun 2017; 66:257-276. [PMID: 28755859 DOI: 10.1016/j.bbi.2017.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/11/2017] [Accepted: 07/19/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Despite the increased recognition of cerebellar injury in survivors of preterm birth, the neurodevelopmental consequences of isolated cerebellar injury have been largely unexplored and our current understanding of the functional deficits requires further attention in order to translate knowledge to best practices. Preterm infants are exposed to multiple stressors during their postnatal development including perinatal cerebellar haemorrhage (CBH) and postnatal infection, two major risk factors for neurodevelopmental impairments. METHODS We developed a translational mouse model of CBH and/or inflammation to measure the short- and long-term outcomes in cerebellar structure and function. RESULTS Mice exposed to early combined insults of CBH and early inflammatory state (EIS) have a delay in grasping acquisition, neonatal motor deficits and deficient long-term memory. CBH combined with late inflammatory state (LIS) does not induce neonatal motor problems but leads to poor fine motor function and long-term memory deficits at adulthood. Early combined insults result in poor cerebellar growth from postnatal day 15 until adulthood shown by MRI, which are reflected in diminished volumes of cerebellar structures. There are also decreases in volumes of gray matter and hippocampus. Cerebellar microgliosis appears 24h after the combined insults and persists until postnatal day 15 in the cerebellar molecular layer and cerebellar nuclei in association with a disrupted patterning of myelin deposition, a delay of oligodendrocyte maturation and reduced white matter cerebellar volume. CONCLUSIONS Together, these findings reveal poor outcomes in developing brains exposed to combined cerebellar perinatal insults in association with cerebellar hypoplasia, persistence of microgliosis and alterations of cerebellar white matter maturation and growth.
Collapse
|
38
|
Li J, Yang S, Zhu G. Postnatal calpain inhibition elicits cerebellar cell death and motor dysfunction. Oncotarget 2017; 8:87997-88007. [PMID: 29152136 PMCID: PMC5675688 DOI: 10.18632/oncotarget.21324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/29/2017] [Indexed: 12/21/2022] Open
Abstract
Calpain-1 deletion elicits neurodevelopmental disorders, such as ataxia. However, the function of calpain in postnatal neurodevelopment and its mechanisms remain unknown. In this study, we revealed that postnatal intraperitoneal injection of various calpain inhibitors attenuated cerebellar cytosolic calpain activity. Moreover, postnatal application of calpeptin (2 mg/kg) apparently reduced spectrin breakdown, promoted suprachiasmatic nucleus circadian oscillatory protein (SCOP) accumulation in cerebellar tissue. In addition, application of calpeptin decreased phosphorylated protein kinase B (p-AKT) level (p<0.05), as well as total AKT level (p<0.05). We also evidenced that administration of calpeptin obviously increased phosphorylation of mammalian target of rapamycin (p-mTor) (p<0.01). Apoptosis of granular cells and activation of caspase-3 (p<0.01) were facilitated after calpain inhibition. Importantly, cell numbers of granular cells were reduced and motor function was remarkably impaired in 4-month-old rats receiving postnatal calpain inhibition. Taken together, our data implicated that calpain activity in the postnatal period was critical for the cerebellar development. Postnatal calpain inhibition causes cerebellar granular cell apoptosis and motor dysfunction, likely through SCOP/AKT and p-mTor signaling pathways.
Collapse
Affiliation(s)
- Junyao Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Sanjuan Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| |
Collapse
|
39
|
Perinatal inflammation and adult psychopathology: From preclinical models to humans. Semin Cell Dev Biol 2017; 77:104-114. [PMID: 28890420 DOI: 10.1016/j.semcdb.2017.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain.
Collapse
|
40
|
McCarthy MM, Wright CL. Convergence of Sex Differences and the Neuroimmune System in Autism Spectrum Disorder. Biol Psychiatry 2017; 81:402-410. [PMID: 27871670 PMCID: PMC5285451 DOI: 10.1016/j.biopsych.2016.10.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023]
Abstract
The male bias in autism spectrum disorder incidence is among the most extreme of all neuropsychiatric disorders, yet the origins of the sex difference remain obscure. Developmentally, males are exposed to high levels of testosterone and its byproduct, estradiol. Together these steroids modify the course of brain development by altering neurogenesis, cell death, migration, differentiation, dendritic and axonal growth, synaptogenesis, and synaptic pruning, all of which can be deleteriously impacted during the course of developmental neuropsychiatric disorders. Elucidating the cellular mechanisms by which steroids modulate brain development provides valuable insights into how these processes may go awry. An emerging theme is the role of inflammatory signaling molecules and the innate immune system in directing brain masculinization, the evidence for which we review here. Evidence is also emerging that the neuroimmune system is overactivated in individuals with autism spectrum disorder. These combined observations lead us to propose that the natural process of brain masculinization puts males at risk by moving them closer to a vulnerability threshold that could more easily be breached by inflammation during critical periods of brain development. Two brain regions are highlighted: the preoptic area and the cerebellum. Both are developmentally regulated by the inflammatory prostaglandin E2, but in different ways. Microglia, innate immune cells of the brain, and astrocytes are also critical contributors to masculinization and illustrate the importance of nonneuronal cells to the health of the developing brain.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Christopher L Wright
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|