1
|
van Gool R, Cay M, Ren B, Brodeur K, Golden E, Goodlett B, Yang E, Reilly T, Hastings C, Berry-Kravis EM, Lee PY, Di Biase M, Cropley V, Pantelis C, Velakoulis D, Shinn AK, Al-Hertani W, Walterfang M, Upadhyay J. Implications of the choroid plexus in Niemann-Pick disease Type C neuropathogenesis. Brain Behav Immun 2024; 124:376-384. [PMID: 39689839 DOI: 10.1016/j.bbi.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/04/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Niemann-Pick Disease Type C (NPC) is an ultra-rare disorder characterized by progressive psychiatric and neurologic manifestations, with late infantile, juvenile, and adolescent/adult presentations. We examined morphological properties of the choroid plexus, a protective blood-cerebrospinal fluid barrier, in NPC, and their relationship with neurodegeneration, clinical status, and circulatory markers. This study also determined whether choroid plexus morphology differentiates between NPC and more prevalent illnesses, schizophrenia (SZ) and bipolar disorder (BD), which have overlapping psychiatric symptoms with adolescent and adult-onset NPC and are associated with misdiagnosis. METHODS Patients with NPC were assessed using neuroimaging, clinical instruments, and plasma protein quantification focusing on inflammatory markers. Morphological properties (i.e., choroid plexus volumes) were compared between patients with NPC (n = 17), SZ (n = 20), BD (n = 24), and healthy controls (HCs, n = 106). RESULTS Choroid plexus enlargement (p < 0.05) and reduced thalamic volumes (p < 0.05) were observed in NPC patients versus HCs and SZ or BD patients. A logistic regression model with choroid plexus and thalamic volumes as predictors yielded high prediction accuracy for NPC vs. HCs, NPC vs. SZ, and NPC vs. BD (area under the receiver operating characteristics curve [AUROC] of 1). Choroid plexus volumes were negatively correlated with left (p = 0.009-0.012) and right (p = 0.007-0.025) thalamic volumes, left (r = -0.69, p = 0.003) and right (r = -0.71, p = 0.002) crus I of the cerebellum, and greater severity on the NPC-Suspicion Index psychiatric subscale (ρ = 0.72, p = 0.042). Targeted protein expression quantification revealed differential expression of TGFA, HLA-DRA, TNFSF12, EGF, INFG, and IL-18 in NPC patients vs. HCs (p < 0.05), with higher choroid plexus volumes correlating with IL-18 levels (ρ = 0.71, p = 0.047). CONCLUSION The choroid plexus may play a critical role in NPC neuropathogenesis and serve as a novel biomarker for monitoring neurodegenerative and inflammatory processes in NPC.
Collapse
Affiliation(s)
- Raquel van Gool
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Limburg, the Netherlands
| | - Mariesa Cay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Boyu Ren
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Kailey Brodeur
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Emma Golden
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Goodlett
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tom Reilly
- Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Caroline Hastings
- Department of Pediatric Hematology and Oncology, UCSF Benioff Children's Hospital Oakland (Children Hospital and Research Center Oakland), Oakland, CA
| | - Elizabeth M Berry-Kravis
- Department of Pediatrics, Neurological Sciences and Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Di Biase
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Vanessa Cropley
- Centre for Youth Mental Health, The University of Melbourne, Vic, Australia Orygen, Parkville, Vic, Australia
| | - Christos Pantelis
- Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia; Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville, Vic, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Ann K Shinn
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Schizophrenia and Bipolar Disorder Program, Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
| | - Walla Al-Hertani
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Walterfang
- Neuropsychiatry Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
2
|
Zhang C, Su K, Jiang X, Tian Y, Li K. Advances in research on potential therapeutic approaches for Niemann-Pick C1 disease. Front Pharmacol 2024; 15:1465872. [PMID: 39263569 PMCID: PMC11387184 DOI: 10.3389/fphar.2024.1465872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Keke Su
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuping Tian
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Antipova V, Heimes D, Seidel K, Schulz J, Schmitt O, Holzmann C, Rolfs A, Bidmon HJ, González de San Román Martín E, Huesgen PF, Amunts K, Keiler J, Hammer N, Witt M, Wree A. Differently increased volumes of multiple brain areas in Npc1 mutant mice following various drug treatments. Front Neuroanat 2024; 18:1430790. [PMID: 39081805 PMCID: PMC11286580 DOI: 10.3389/fnana.2024.1430790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Niemann-Pick disease type C1 (NPC1, MIM 257220) is a heritable lysosomal storage disease characterized by a progressive neurological degeneration that causes disability and premature death. A murine model of Npc1-/- displays a rapidly progressing form of Npc1 disease, which is characterized by weight loss, ataxia, and increased cholesterol storage. Npc1-/- mice receiving a combined therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) showed prevention of Purkinje cell loss, improved motor function and reduced intracellular lipid storage. Although therapy of Npc1-/- mice with COMBI, MIGLU or HPßCD resulted in the prevention of body weight loss, reduced total brain weight was not positively influenced. Methods In order to evaluate alterations of different brain areas caused by pharmacotherapy, fresh volumes (volumes calculated from the volumes determined from paraffin embedded brain slices) of various brain structures in sham- and drug-treated wild type and mutant mice were measured using stereological methods. Results In the wild type mice, the volumes of investigated brain areas were not significantly altered by either therapy. Compared with the respective wild types, fresh volumes of specific brain areas, which were significantly reduced in sham-treated Npc1-/- mice, partly increased after the pharmacotherapies in all treatment strategies; most pronounced differences were found in the CA1 area of the hippocampus and in olfactory structures. Discussion Volumes of brain areas of Npc1-/- mice were not specifically changed in terms of functionality after administering COMBI, MIGLU, or HPßCD. Measurements of fresh volumes of brain areas in Npc1-/- mice could monitor region-specific changes and response to drug treatment that correlated, in part, with behavioral improvements in this mouse model.
Collapse
Affiliation(s)
- Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Diana Heimes
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Katharina Seidel
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Klinik für Frauenheilkunde und Geburtshilfe, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
| | - Jennifer Schulz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| | - Arndt Rolfs
- Medical Faculty, University of Rostock, Rostock, Germany
| | - Hans-Jürgen Bidmon
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | | | - Pitter F. Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Institut für Biologie II, AG Funktional Proteomics, Freiburg, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, University Düsseldorf, Düsseldorf, Germany
| | - Jonas Keiler
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany
- Division of Biomechatronics, Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Technische Universität Dresden, Dresden, Germany
- Department of Anatomy, Institute of Biostructural Basics of Medical Sciences, Poznan Medical University, Poznan, Poland
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| |
Collapse
|
4
|
Tachibana H, Nomura M, Funakoshi T, Unuma K, Aki T, Uemura K. Incomplete autophagy and increased cholesterol synthesis during neuronal cell death caused by a synthetic cannabinoid, CP-55,940. Neurotoxicology 2024; 103:215-221. [PMID: 38942151 DOI: 10.1016/j.neuro.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
There is a propensity for synthetic cannabinoid abuse to spread worldwide. CP-55,940, a synthetic cannabinoid having the ability to activate both CB1 and CB2 receptors, has been shown to induce cell death in neurons as well as other cells. Here we investigate molecular events underling the adverse effects of CP-55,940 on neuronal cells. Exposure of mouse neuroblastoma Neuro2a cells to 10-50 µM CP-55,940 results in concentration-dependent cell death that is not accompanied by an induction of apoptosis. CP-55,940 also stimulates autophagy, but the stimulation is not followed by an increase in autophagic degradation. Transcriptome analysis using DNA microarray revealed the increased expression of genes for the cholesterol biosynthesis pathway that is associated with the activation of SREBP-2, the master transcriptional regulator of cholesterol biosynthesis. However, free cholesterol is localized mainly to cytoplasmic structures, although it is localized to the plasma membrane in healthy cells. Thus, cellular trafficking of cholesterol seems to be somewhat disrupted in CP-55,940 stimulated cells. These results show for the first time that CP-55,940 stimulates autophagy as well as cholesterol biosynthesis, although not all the processes involved in the cellular response to CP-55,940 seem to be complete in these cells.
Collapse
Affiliation(s)
- Hikari Tachibana
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Moeka Nomura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
5
|
Matsuo M, Sakakibara T, Sakiyama Y, So T, Kosuga M, Kakiuchi T, Ichinose F, Nakamura T, Ishitsuka Y, Irie T. Long-term efficacy of intrathecal cyclodextrin in patients with Niemann-Pick disease type C. Brain Dev 2024; 46:207-212. [PMID: 38448301 DOI: 10.1016/j.braindev.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND OBJECTIVES Niemann-Pick type C (NPC) is a rare lysosomal storage disease characterized by hepatosplenomegaly and progressive neurological deterioration due to abnormal intracellular cholesterol transport. Cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPBCD) is an effective treatment for NPC; however, few reports have shown its long-term efficacy and safety. To demonstrate long-term efficacy and safety of intrathecal HPBCD (IT-HPBCD) treatment for NPC, we herein reports five patients with NPC treated using IT-HPBCD for 4-11 years. CASES AND RESULTS Patients' ages at the onset ranged from 1.5 to 20 years. Notably, all patients showed rapid disease progression despite treatment with miglustat before IT-HPBCD treatment. Similarly, some patients showed transient improvement; however, all patients' conditions stabilized after long-term IT-HPBCD therapy. Mild-to-moderate hearing loss was observed in three patients. Furthermore, long-term treatment with IT-HPBCD may suppress neurological deterioration in patients with NPC; however, patients still experience some disease progression. CONCLUSIONS Long-term treatment with IT-HPBCD may suppress neurological deterioration in patients with NPC; however, the treatment outcome is dependent on the neurological status at the time of diagnosis, and disease progression is not completely inhibited. Awareness of the disease and newborn screening is needed for earlier disease detection. In addition, further optimization of the treatment protocol and additional treatments are needed to improve patient outcomes.
Collapse
Affiliation(s)
- Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan.
| | | | - Yoshio Sakiyama
- Department of Neurology, Jichi Medical University, Saitama Medical Center, Japan
| | - Tetsumin So
- Division of Medical Genetics, National Center for Child Health and Development, Japan
| | - Motomichi Kosuga
- Division of Medical Genetics, National Center for Child Health and Development, Japan
| | - Toshihiko Kakiuchi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Fumio Ichinose
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Takuji Nakamura
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
6
|
Bremova-Ertl T, Schneider S. Current advancements in therapy for Niemann-Pick disease: progress and pitfalls. Expert Opin Pharmacother 2023; 24:1229-1247. [PMID: 37211769 DOI: 10.1080/14656566.2023.2215386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Niemann-Pick disease type C (NPC) is a rare, autosomal recessive, lysosomal storage disorder. To combat the progressive neurodegeneration in NPC, disease-modifying treatment needs to be introduced early in the course of the disease. The only approved, disease-modifying treatment is a substrate-reduction treatment, miglustat. Given miglustat's limited efficacy, new compounds are under development, including gene therapy; however, many are still far from clinical use. Moreover, the phenotypic heterogeneity and variable course of the disease can impede the development and approval of new agents. AREAS COVERED Here, we offer an expert review of these therapeutic candidates, with a broad scope not only on the main pharmacotherapies, but also on experimental approaches, gene therapies, and symptomatic strategies. The National Institute of Health (NIH) database PubMed has been searched for the combination of the words 'Niemann-Pick type C'+ 'treatment' or 'therapy' or 'trial.' The website clinicaltrials.gov has also been consulted. EXPERT OPINION We conclude a combination of treatment strategies should be sought, with a holistic approach, to improve the quality of life of affected individuals and their families.
Collapse
Affiliation(s)
- Tatiana Bremova-Ertl
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, Bern, Switzerland
- Center for Rare Diseases, University Hospital Bern (Inselspital) and University of Bern, Bern, Switzerland
| | - Susanne Schneider
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
7
|
Braga SS. Molecular Mind Games: The Medicinal Action of Cyclodextrins in Neurodegenerative Diseases. Biomolecules 2023; 13:biom13040666. [PMID: 37189413 DOI: 10.3390/biom13040666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Cyclodextrins are often used as molecular carriers for small active ingredients in medicine. Recently, the intrinsic medicinal activity of some of these compounds has been under investigation, mainly related to their ability to interfere with cholesterol and, therefore, prevent and treat cholesterol-related diseases such as cardiovascular disease and neuronal diseases arising from altered cholesterol and lipid metabolism. One of the most promising compounds within the cyclodextrin family is 2-hydroxypropyl-β-cyclodextrin (HPβCD), owing to its superior biocompatibility profile. This work presents the most recent advances in the research and clinical use of HPβCD against Niemann-Pick disease, a congenital condition involving cholesterol accumulation inside lysosomes in brain cells, Alzheimer's and Parkinson's. HPβCD plays a complex role in each of these ailments, going beyond the mere sequestering of cholesterol molecules and involving an overall regulation of protein expression that helps restore the normal functioning of the organism.
Collapse
Affiliation(s)
- Susana Santos Braga
- LAQV-REQUIMTE (Associated Laboratory for Green Chemistry), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
9
|
Hammerschmidt TG, Donida B, Raabe M, Faverzani JL, de Fátima Lopes F, Machado AZ, Kessler RG, Reinhardt LS, Poletto F, Moura DJ, Vargas CR. Evidence of redox imbalance and mitochondrial dysfunction in Niemann-Pick type C 1 patients: the in vitro effect of combined therapy with antioxidants and β-cyclodextrin nanoparticles. Metab Brain Dis 2023; 38:507-518. [PMID: 36447062 DOI: 10.1007/s11011-022-01128-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Niemann-Pick C disease (NPC) is an autosomal recessive genetic disorder resulting from mutation in one of two cholesterol transport genes: NPC1 or NPC2, causing accumulation of unesterified cholesterol, together with glycosphingolipids, within the endosomal/lysosomal compartment of cells. The result is a severe disease in both multiple peripheral organs and the central nervous system, causing neurodegeneration and early death. However, the pathophysiological mechanisms of NPC1 remain poorly understood. Recent studies have shown that the primary lysosomal defect found in fibroblasts from NPC1 patients is accompanied by a deregulation of mitochondrial organization and function. There is currently no cure for NPC1, but recently the potential of β-cyclodextrin (β-CD) for the treatment of the disease was discovered, which resulted in the redistribution of cholesterol from subcellular compartments to the circulation and increased longevity in an animal model of NPC1. Considering the above, the present work evaluated the in vitro therapeutic potential of β-CD to reduce cholesterol in fibroblasts from NPC1 patients. β-CD was used in its free and nanoparticulate form. We also evaluated the β-CD potential to restore mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidants N-Acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). Besides, we evaluated oxidative and nitrative stress parameters in NPC1 patients. We showed that oxidative and nitrative stress could contribute to the pathophysiology of NPC1, as the levels of lipoperoxidation and the nitrite and nitrate levels were increased in these patients when compared to healthy individuals, as well as DNA damage. The nanoparticles containing β-CD reduced the cholesterol accumulated in the NPC1 fibroblasts. This result was potentiated by the concomitant use of the nanoparticles with the antioxidants NAC and CoQ10 compared to those presented by healthy individuals cells ́. In addition, treatments combining β-CD nanoparticles and antioxidants could reduce mitochondrial oxidative stress, demonstrating advantages compared to free β-CD. The results obtained are promising regarding the combined use of β-CD loaded nanoparticles and antioxidants in the treatment of NPC1 disease.
Collapse
Affiliation(s)
| | - Bruna Donida
- Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | - Marco Raabe
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciele de Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Andryele Z Machado
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Rejane G Kessler
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Luiza S Reinhardt
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Fernanda Poletto
- Programa de Pós-Graduação em Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dinara J Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Carmen R Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Cologna SM, Pathmasiri KC, Pergande MR, Rosenhouse-Dantsker A. Alterations in Cholesterol and Phosphoinositides Levels in the Intracellular Cholesterol Trafficking Disorder NPC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:143-165. [PMID: 36988880 DOI: 10.1007/978-3-031-21547-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lipid mistrafficking is a biochemical hallmark of Niemann-Pick Type C (NPC) disease and is classically characterized with endo/lysosomal accumulation of unesterified cholesterol due to genetic mutations in the cholesterol transporter proteins NPC1 and NPC2. Storage of this essential signaling lipid leads to a sequence of downstream events, including oxidative stress, calcium imbalance, neuroinflammation, and progressive neurodegeneration, another hallmark of NPC disease. These observations have been validated in a growing number of studies ranging from NPC cell cultures and animal models to patient specimens. In recent reports, alterations in the levels of another class of critical signaling lipids, namely phosphoinositides, have been described in NPC disease. Focusing on cholesterol and phosphoinositides, the chapter begins by reviewing the interactions of NPC proteins with cholesterol and their role in cholesterol transport. It then continues to describe the modulation of cholesterol efflux in NPC disease. The chapter concludes with a summary of findings related to the functional consequences of perturbations in phosphoinositides in this fatal disease.
Collapse
Affiliation(s)
| | | | - Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | |
Collapse
|
11
|
Hastings C, Liu B, Hurst B, Cox GF, Hrynkow S. Intravenous 2-hydroxypropyl-β-cyclodextrin (Trappsol® Cyclo™) demonstrates biological activity and impacts cholesterol metabolism in the central nervous system and peripheral tissues in adult subjects with Niemann-Pick Disease Type C1: Results of a phase 1 trial. Mol Genet Metab 2022; 137:309-319. [PMID: 36279795 DOI: 10.1016/j.ymgme.2022.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Niemann-Pick Disease Type C1 (NPC1) is a disorder of intracellular cholesterol and lipid trafficking that leads to the accumulation of cholesterol and lipids in the late endosomal/lysosomal compartment, resulting in systemic manifestations (including hepatosplenomegaly and lung infiltration) and neurodegeneration. Preclinical studies have demonstrated that systemically administered 2-hydroxypropyl-β-cyclodextrin (HPβCD; Trappsol® Cyclo™) restores cholesterol metabolism and homeostasis in peripheral organs and tissues and in the central nervous system (CNS). Here, we assessed the safety, pharmacokinetics, and pharmacodynamics of HPβCD in peripheral tissues and the CNS in adult subjects with NPC1. METHODS A Phase 1, randomized, double-blind, parallel group study enrolled 13 subjects with NPC1 who received either 1500 mg/kg or 2500 mg/kg HPβCD intravenously every 2 weeks for a total of 7 doses (14 weeks). Subjects were 18 years or older, with a confirmed diagnosis of NPC1 and evidence of systemic involvement on clinical assessment. Pharmacokinetic evaluations in plasma and cerebrospinal fluid (CSF) were performed at the first and seventh infusions. Pharmacodynamic assessments included biomarkers of systemic cholesterol synthesis (serum lathosterol) and degradation (serum 4β-hydroxycholesterol), secondary sphingomyelin storage (plasma lysosphingomyelin-509, now more accurately referred to as N-palmitoyl-O-phosphocholineserine [PPCS]), and CNS-specific biomarkers of neurodegeneration (CSF total Tau) and cholesterol metabolism (serum 24(S)-hydroxycholesterol [24(S)-HC]). Safety monitoring included assessments of liver and kidney function, infusion related adverse events, and hearing evaluations. RESULTS Ten subjects completed the study, with 6 at the 1500 mg/kg dose and 4 at the 2500 mg/kg dose. One subject withdrew following the first infusion after experiencing hypersensitivity pneumonitis, and 2 subjects withdrew after meeting a stopping rule related to hearing loss. Overall, HPβCD had an acceptable safety profile. The observed pharmacokinetic profile of HPβCD was similar following the first and seventh infusions, with a plasma half-life of 2 h, a maximum concentration reached at 6 to 8 h, and no evidence of accumulation. Serum biomarkers of cholesterol metabolism showed reduced synthesis and increased degradation. Compared to Baseline, filipin staining of liver tissue showed significant reductions of trapped unesterified cholesterol at both dose levels at Week 14. Plasma PPCS levels were also reduced. HPβCD was detected at low concentrations in the CSF (maximum, 33 μM) at both dose levels and persisted longer in CSF than in plasma. Total Tau levels in CSF decreased in most subjects. Serum levels of 24(S)-HC, a cholesterol metabolite from the CNS that is exported across the blood-brain barrier and into the circulation, decreased after both the first and seventh doses. Hence, pharmacodynamic assessments in both peripheral and CNS-related tissue show target engagement. While not the aim of the study, subjects reported favorable impacts on their quality of life. CONCLUSIONS The plasma pharmacokinetics and pharmacodynamics of HPβCD administered at two intravenous dose levels to subjects with NPC1 were comparable to those observed in preclinical models. HPβCD cleared cholesterol from the liver and improved peripheral biomarkers of cholesterol homeostasis. At low CSF concentrations, HPβCD appeared to be pharmacologically active in the CNS based on the increased efflux of 24(S)-HC and reduction in CSF total Tau, a biomarker of CNS neurodegeneration. These data support the initiation of longer-term clinical trials to evaluate the safety and efficacy of intravenous HPβCD in subjects with NPC1. (ClinicalTrials.gov numbers: present trial, NCT02939547; open-label extension of the present trial, NCT03893071; global pivotal trial, NCT04860960).
Collapse
Affiliation(s)
- Caroline Hastings
- Department of Pediatric Hematology Oncology, UCSF Benioff Children's Hospital Oakland, 747 52(nd) Street, Oakland, CA 94609-1809, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Benny Liu
- GI & Liver Clinics, Highland Hospital, Alameda Health System, Highland Hospital, Oakland, CA, USA; Division of Gastroenterology & Hepatology, Highland Hospital, Alameda Health Systems, Highland Care Pavilion 5th floor, 1411 East 31st Street, Oakland, CA 94602, USA
| | - Bryan Hurst
- Boyd Consultants, Electra House, Electra Avenue, Crewe CW1 6GL, UK
| | - Gerald F Cox
- Cyclo Therapeutics, Inc., 6714 NW 16(th) St., Ste B, Gainesville, FL 32653, USA
| | - Sharon Hrynkow
- Cyclo Therapeutics, Inc., 6714 NW 16(th) St., Ste B, Gainesville, FL 32653, USA
| |
Collapse
|
12
|
Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 191:114617. [PMID: 36356931 DOI: 10.1016/j.addr.2022.114617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide, is a pharmaceutical additive that improves the solubility of hydrophobic compounds. Recent research has focused on the potential active pharmaceutical abilities of CD. Lysosomal storage diseases are inherited metabolic diseases characterized by lysosomal dysfunction and abnormal lipid storage. Niemann-Pick disease type C (NPC) is caused by mutations in cholesterol transporter genes (NPC1, NPC2) and is characterized by cholesterol accumulation in lysosomes. A biocompatible cholesterol solubilizer 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was recently used in NPC patients for compassionate use and in clinical trials. HP-β-CD is an attractive drug candidate for NPC; however, its adverse effects, such as ototoxicity, should be solved. In this review, we discuss the current use of HP-β-CD in basic and clinical research and discuss alternative CD derivatives that may outperform HP-β-CD, which should be considered for clinical use. The potential of CD therapy for the treatment of other lysosomal storage diseases is also discussed.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
13
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
14
|
Gao G, Guo S, Zhang Q, Zhang H, Zhang C, Peng G. Kiaa1024L/Minar2 is essential for hearing by regulating cholesterol distribution in hair bundles. eLife 2022; 11:e80865. [PMID: 36317962 PMCID: PMC9714970 DOI: 10.7554/elife.80865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Unbiased genetic screens implicated a number of uncharacterized genes in hearing loss, suggesting some biological processes required for auditory function remain unexplored. Loss of Kiaa1024L/Minar2, a previously understudied gene, caused deafness in mice, but how it functioned in the hearing was unclear. Here, we show that disruption of kiaa1024L/minar2 causes hearing loss in the zebrafish. Defects in mechanotransduction, longer and thinner hair bundles, and enlarged apical lysosomes in hair cells are observed in the kiaa1024L/minar2 mutant. In cultured cells, Kiaa1024L/Minar2 is mainly localized to lysosomes, and its overexpression recruits cholesterol and increases cholesterol labeling. Strikingly, cholesterol is highly enriched in the hair bundle membrane, and loss of kiaa1024L/minar2 reduces cholesterol localization to the hair bundles. Lowering cholesterol levels aggravates, while increasing cholesterol levels rescues the hair cell defects in the kiaa1024L/minar2 mutant. Therefore, cholesterol plays an essential role in hair bundles, and Kiaa1024L/Minar2 regulates cholesterol distribution and homeostasis to ensure normal hearing.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Shuyu Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Quan Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Hefei Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Cuizhen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Gang Peng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
15
|
Nishida T, Yokoyama R, Kubohira Y, Maeda Y, Takeo T, Nakagata N, Takagi H, Ishikura K, Yanagihara K, Misumi S, Kishimoto N, Ishitsuka Y, Kondo Y, Irie T, Soga M, Era T, Onodera R, Higashi T, Motoyama K. Lactose-Appended Hydroxypropyl-β-Cyclodextrin Lowers Cholesterol Accumulation and Alleviates Motor Dysfunction in Niemann-Pick Type C Disease Model Mice. ACS APPLIED BIO MATERIALS 2022; 5:2377-2388. [PMID: 35506864 DOI: 10.1021/acsabm.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Niemann-Pick disease type C (NPC) is characterized by the accumulation of glycolipids such as free cholesterol, sphingomyelin, and gangliosides in late endosomes/lysosomes (endolysosomes) due to abnormalities in the membrane proteins NPC1 or NPC2. The main symptoms of NPC caused by free cholesterol accumulation in various tissues vary depending on the time of onset, but hepatosplenomegaly and neurological symptoms accompanied by decreased motor, cognitive, and mental functions are observed in all age groups. However, the efficacy of NPC treatment remains limited. Herein, we have fabricated lactose-appended hydroxypropyl-β-cyclodextrin (Lac-HPβCD) and evaluated its lowering effects on cholesterol accumulation in NPC model mice. We reveal that Lac-HPβCD lowers cholesterol accumulation in the liver and spleen by reducing the amount of free cholesterol. Moreover, Lac-HPβCD reduces the amount of free cholesterol in the cerebrum and slightly alleviates motor dysfunction. These results suggest that Lac-HPβCD has potential for the treatment of NPC.
Collapse
Affiliation(s)
- Takumi Nishida
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryoma Yokoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuto Kubohira
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Takeo
- Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroki Takagi
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Kandai Ishikura
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Kazunori Yanagihara
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Shogo Misumi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Naoki Kishimoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kondo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsumi Irie
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Minami Soga
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
16
|
Zingg JM, Stamatiou C, Montalto G, Daunert S. Modulation of CD36-mediated lipid accumulation and senescence by vitamin E analogs in monocytes and macrophages. Biofactors 2022; 48:665-682. [PMID: 35084073 DOI: 10.1002/biof.1821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023]
Abstract
The CD36/FAT scavenger receptor/fatty acids transporter regulates cellular lipid accumulation important for inflammation, atherosclerosis, lipotoxicity, and initiation of cellular senescence. Here we compared the regulatory effects of the vitamin E analogs alpha-tocopherol (αT), alpha-tocopheryl phosphate (αTP), and αTP/βCD (a nanocarrier complex between αTP and β-cyclodextrin [βCD]) and investigated their regulatory effects on lipid accumulation, phagocytosis, and senescence in THP-1 monocytes and macrophages. Both, αTP and αTP/βCD inhibited CD36 surface exposition stronger than αT leading to more pronounced CD36-mediated events such as inhibition of DiI-labeled oxLDL uptake, phagocytosis of fluorescent Staphylococcus aureus bioparticles, and cell proliferation. When compared to βCD, the complex of αTP/βCD extracted cholesterol from cellular membranes with higher efficiency and was associated with the delivery of αTP to the cells. Interestingly, both, αTP and more so αTP/βCD inhibited lysosomal senescence-associated beta-galactosidase (SA-β-gal) activity and increased lysosomal pH, suggesting CD36-mediated uptake into the endo-lysosomal phagocytic compartment. Accordingly, the observed pH increase was more pronounced with αTP/βCD in macrophages whereas no significant increase occurred with αT, alpha-tocopheryl acetate (αTA) or βCD. In contrast to αT and αTA, the αTP molecule is di-anionic at neutral pH, but upon moving into the acidic endo-lysosomal compartment becomes protonated and thus is acting as a base. Moreover, it is expected to be retained in lysosomes since it still carries one negative charge, similar to lysosomotropic drugs. Thus, treatment with αTP or αTP/βCD and/or inhibition of conversion of αTP to αT as it occurs in aged cells may counteract CD36-mediated overlapping inflammatory, senescent, and atherosclerotic events.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Christina Stamatiou
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Giulia Montalto
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Section of General Pathology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
- University of Miami Clinical and Translational Science Institute, University of Miami, Miami, Florida, USA
| |
Collapse
|
17
|
Gonçalves SC, Bassi BL, Kangussu LM, Alves DT, Ramos LK, Fernandes LF, Alves MT, Sinisterra R, Bruch GE, Santos RA, Massensini AR, Campagnole-Santos MJ. Alamandine Induces Neuroprotection in Ischemic Stroke Models. Curr Med Chem 2022; 29:3483-3498. [DOI: 10.2174/0929867329666220204145730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Background and Objective:
Stroke, a leading cause of mortality and disability, characterized by neuronal death, can be induced by a reduction or interruption of blood flow. In this study, the role of Alamandine, a new peptide of the renin-angiotensin system, was evaluated in in-vitro and in-vivo brain ischemia models.
Method:
In the in-vitro model, hippocampal slices from male C57/Bl6 mice were placed in a glucose-free aCSF solution and bubbled with 95% N2 and 5% CO2 to mimic brain ischemia. An Alamandine concentration-response curve was generated to evaluate cell damage, glutamatergic excitotoxicity, and cell death. In the in-vivo model, cerebral ischemia/reperfusion was induced by bilateral occlusion of common carotid arteries (BCCAo-untreated) in SD rats. An intracerebroventricular injection of Alamandine was given 20–30 min before BCCAo. Animals were subjected to neurological tests 24 h and 72 h after BCCAo. Cytokine levels, oxidative stress markers, and immunofluorescence were assessed in the brain 72 h after BCCAo.
Results:
Alamandine was able to protect brain slices from cellular damage, excitotoxicity and cell death. When the Alamandine receptor was blocked, protective effects were lost. ICV injection of Alamandine attenuated neurological deficits of animals subjected to BCCAo and reduced the number of apoptotic neurons/cells. Furthermore, Alamandine induced anti-inflammatory effects in BCCAo animals as shown by reductions in TNFα, IL-1β, IL-6, and antioxidant effects through attenuation of the decreased SOD, catalase, and GSH activities in the brain.
Conclusion:
This study showed, for the first time, a neuroprotective role for Alamandine in different ischemic stroke models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gisele E. Bruch
- Neuroscience Center, Department of Physiology and Biophysics
| | | | | | | |
Collapse
|
18
|
Aqul AA, Ramirez CM, Lopez AM, Burns DK, Repa JJ, Turley SD. Molecular markers of brain cholesterol homeostasis are unchanged despite a smaller brain mass in a mouse model of cholesteryl ester storage disease. Lipids 2022; 57:3-16. [PMID: 34618372 PMCID: PMC8766890 DOI: 10.1002/lipd.12325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Lysosomal acid lipase (LAL), encoded by the gene LIPA, facilitates the intracellular processing of lipids by hydrolyzing cholesteryl esters and triacylglycerols present in newly internalized lipoproteins. Loss-of-function mutations in LIPA result in cholesteryl ester storage disease (CESD) or Wolman disease when mutations cause complete loss of LAL activity. Although the phenotype of a mouse CESD model has been extensively characterized, there has not been a focus on the brain at different stages of disease progression. In the current studies, whole-brain mass and the concentrations of cholesterol in both the esterified (EC) and unesterified (UC) fractions were measured in Lal-/- and matching Lal+/+ mice (FVB-N strain) at ages ranging from 14 up to 280 days after birth. Compared to Lal+/+ controls at 50, 68-76, 140-142, and 230-280 days of age, Lal-/- mice had brain weights that averaged approximately 6%, 7%, 18%, and 20% less, respectively. Brain EC levels were higher in the Lal-/- mice at every age, being elevated 27-fold at 230-280 days. Brain UC concentrations did not show a genotypic difference at any age. The elevated brain EC levels in the Lal-/- mice did not reflect EC in residual blood. An mRNA expression analysis for an array of genes involved in the synthesis, catabolism, storage, and transport of cholesterol in the brains of 141-day old mice did not detect any genotypic differences although the relative mRNA levels for several markers of inflammation were moderately elevated in the Lal-/- mice. The possible sites of EC accretion in the central nervous system are discussed.
Collapse
Affiliation(s)
- Amal A. Aqul
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Charina M. Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Adam M. Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Dennis K. Burns
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Joyce J. Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Stephen D. Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| |
Collapse
|
19
|
Manohar S, Ding D, Jiang H, Li L, Chen GD, Kador P, Salvi R. Combined antioxidants and anti-inflammatory therapies fail to attenuate the early and late phases of cyclodextrin-induced cochlear damage and hearing loss. Hear Res 2021; 414:108409. [PMID: 34953289 DOI: 10.1016/j.heares.2021.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
Niemann-Pick C1 (NPC1) is a fatal neurodegenerative disease caused by aberrant cholesterol metabolism. The progression of the disease can be slowed by removing excess cholesterol with high-doses of 2-hyroxypropyl-beta-cyclodextrin (HPβCD). Unfortunately, HPβCD causes hearing loss; the initial first phase involves a rapid destruction of outer hair cells (OHCs) while the second phase, occurring 4-6 weeks later, involves the destruction of inner hair cells (IHCs), pillar cells, collapse of the organ of Corti and spiral ganglion neuron degeneration. To determine whether the first and/or second phase of HPβCD-induced cochlear damage is linked, in part, to excess oxidative stress or neuroinflammation, rats were treated with a single-dose of 3000 mg/kg HPβCD alone or together with one of two combination therapies. Each combination therapy was administered from 2-days before to 6-weeks after the HPβCD treatment. Combination 1 consisted of minocycline, an antibiotic that suppresses neuroinflammation, and HK-2, a multifunctional redox modulator that suppresses oxidative stress. Combination 2 was comprised of minocycline plus N-acetyl cysteine (NAC), which upregulates glutathione, a potent antioxidant. To determine if either combination therapy could prevent HPβCD-induced hearing impairment and cochlear damage, distortion product otoacoustic emissions (DPOAE) were measured to assess OHC function and the cochlear compound action potential (CAP) was measured to assess the function of IHCs and auditory nerve fibers. Cochleograms were prepared to quantify the amount of OHC, IHC and pillar cell (PC) loss. HPβCD significantly reduced DPOAE and CAP amplitudes and caused significant OHC, IHC and OPC losses with losses greater in the high-frequency base of the cochlea than the apex. Neither minocycline + HK-2 (MIN+ HK-2) nor minocycline + NAC (MIN+NAC) prevented the loss of DPOAEs, CAPs, OHCs, IHCs or IPCs caused by HPβCD. These results suggest that oxidative stress and neuroinflammation are unlikely to play major roles in mediating the first or second phase of HPβCD-induced cochlear damage. Thus, HPβCD-induced ototoxicity must be mediated by some other unknown cell-death pathway possibly involving loss of trophic support from damaged support cells or disrupted cholesterol metabolism.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Peter Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA.
| |
Collapse
|
20
|
Jarazo J, Barmpa K, Modamio J, Saraiva C, Sabaté-Soler S, Rosety I, Griesbeck A, Skwirblies F, Zaffaroni G, Smits LM, Su J, Arias-Fuenzalida J, Walter J, Gomez-Giro G, Monzel AS, Qing X, Vitali A, Cruciani G, Boussaad I, Brunelli F, Jäger C, Rakovic A, Li W, Yuan L, Berger E, Arena G, Bolognin S, Schmidt R, Schröder C, Antony PMA, Klein C, Krüger R, Seibler P, Schwamborn JC. Parkinson's Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by 2-Hydroxypropyl-β-Cyclodextrin Treatment. Mov Disord 2021; 37:80-94. [PMID: 34637165 PMCID: PMC9291890 DOI: 10.1002/mds.28810] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)‐induced putative kinase 1 (PINK1) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD. Objectives We sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds. Methods Using two‐dimensional and three‐dimensional models of patients' derived neurons we recapitulated PD‐related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model. Results PD patient‐derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2‐hydroxypropyl‐β‐cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient‐specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model. Conclusion We show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient‐derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Javier Jarazo
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg.,OrganoTherapeutics société à responsabilité limitée simplifiée (SARL-S), Esch-sur-Alzette, Luxembourg
| | - Kyriaki Barmpa
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jennifer Modamio
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cláudia Saraiva
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sònia Sabaté-Soler
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Isabel Rosety
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | | | - Gaia Zaffaroni
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
| | - Lisa M Smits
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jihui Su
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Jonathan Arias-Fuenzalida
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jonas Walter
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gemma Gomez-Giro
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna S Monzel
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Xiaobing Qing
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Armelle Vitali
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gerald Cruciani
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Disease Modeling and Screening Platform, Luxembourg Institute of Systems Biomedicine, University of Luxembourg and Luxembourg Institute of Health, Belvaux, Luxembourg
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Disease Modeling and Screening Platform, Luxembourg Institute of Systems Biomedicine, University of Luxembourg and Luxembourg Institute of Health, Belvaux, Luxembourg
| | | | - Christian Jäger
- Metabolomics Platform, Enzymology and Metabolism, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Wen Li
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Lin Yuan
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Emanuel Berger
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Giuseppe Arena
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Silvia Bolognin
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | | | - Paul M A Antony
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Centre Hospitalier de Luxembourg, Parkinson Research Clinic, Luxembourg, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
21
|
Glial contribution to cyclodextrin-mediated reversal of cholesterol accumulation in murine NPC1-deficient neurons in vivo. Neurobiol Dis 2021; 158:105469. [PMID: 34364974 DOI: 10.1016/j.nbd.2021.105469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Niemann-Pick type C disease is a rare and fatal lysosomal storage disorder presenting severe neurovisceral symptoms. Disease-causing mutations in genes encoding either NPC1 or NPC2 protein provoke accumulation of cholesterol and other lipids in specific structures of the endosomal-lysosomal system and degeneration of specific cells, notably neurons in the central nervous system (CNS). 2-hydroxypropyl-beta-cyclodextrin (CD) emerged as potential therapeutic approach based on animal studies and clinical data, but the mechanism of action in neurons has remained unclear. To address this topic in vivo, we took advantage of the retina as highly accessible part of the CNS and intravitreal injections as mode of drug administration. Coupling CD to gold nanoparticles allowed us to trace its intracellular location. We report that CD enters the endosomal-lysosomal system of neurons in vivo and enables the release of lipid-laden lamellar inclusions, which are then removed from the extracellular space by specific types of glial cells. Our data suggest that CD induces a concerted action of neurons and glial cells to restore lipid homeostasis in the central nervous system.
Collapse
|
22
|
Ding D, Jiang H, Manohar S, Liu X, Li L, Chen GD, Salvi R. Spatiotemporal Developmental Upregulation of Prestin Correlates With the Severity and Location of Cyclodextrin-Induced Outer Hair Cell Loss and Hearing Loss. Front Cell Dev Biol 2021; 9:643709. [PMID: 34109172 PMCID: PMC8181405 DOI: 10.3389/fcell.2021.643709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
2-Hyroxypropyl-beta-cyclodextrin (HPβCD) is being used to treat Niemann-Pick C1, a fatal neurodegenerative disease caused by abnormal cholesterol metabolism. HPβCD slows disease progression, but unfortunately causes severe, rapid onset hearing loss by destroying the outer hair cells (OHC). HPβCD-induced damage is believed to be related to the expression of prestin in OHCs. Because prestin is postnatally upregulated from the cochlear base toward the apex, we hypothesized that HPβCD ototoxicity would spread from the high-frequency base toward the low-frequency apex of the cochlea. Consistent with this hypothesis, cochlear hearing impairments and OHC loss rapidly spread from the high-frequency base toward the low-frequency apex of the cochlea when HPβCD administration shifted from postnatal day 3 (P3) to P28. HPβCD-induced histopathologies were initially confined to the OHCs, but between 4- and 6-weeks post-treatment, there was an unexpected, rapid and massive expansion of the lesion to include most inner hair cells (IHC), pillar cells (PC), peripheral auditory nerve fibers, and spiral ganglion neurons at location where OHCs were missing. The magnitude and spatial extent of HPβCD-induced OHC death was tightly correlated with the postnatal day when HPβCD was administered which coincided with the spatiotemporal upregulation of prestin in OHCs. A second, massive wave of degeneration involving IHCs, PC, auditory nerve fibers and spiral ganglion neurons abruptly emerged 4–6 weeks post-HPβCD treatment. This secondary wave of degeneration combined with the initial OHC loss results in a profound, irreversible hearing loss.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Xiaopeng Liu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
23
|
García‐Sanz P, M.F.G. Aerts J, Moratalla R. The Role of Cholesterol in α-Synuclein and Lewy Body Pathology in GBA1 Parkinson's Disease. Mov Disord 2021; 36:1070-1085. [PMID: 33219714 PMCID: PMC8247417 DOI: 10.1002/mds.28396] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease where dopaminergic neurons in the substantia nigra are lost, resulting in a decrease in striatal dopamine and, consequently, motor control. Dopaminergic degeneration is associated with the appearance of Lewy bodies, which contain membrane structures and proteins, including α-synuclein (α-Syn), in surviving neurons. PD displays a multifactorial pathology and develops from interactions between multiple elements, such as age, environmental conditions, and genetics. Mutations in the GBA1 gene represent one of the major genetic risk factors for PD. This gene encodes an essential lysosomal enzyme called β-glucocerebrosidase (GCase), which is responsible for degrading the glycolipid glucocerebroside into glucose and ceramide. GCase can generate glucosylated cholesterol via transglucosylation and can also degrade the sterol glucoside. Although the molecular mechanisms that predispose an individual to neurodegeneration remain unknown, the role of cholesterol in PD pathology deserves consideration. Disturbed cellular cholesterol metabolism, as reflected by accumulation of lysosomal cholesterol in GBA1-associated PD cellular models, could contribute to changes in lipid rafts, which are necessary for synaptic localization and vesicle cycling and modulation of synaptic integrity. α-Syn has been implicated in the regulation of neuronal cholesterol, and cholesterol facilitates interactions between α-Syn oligomers. In this review, we integrate the results of previous studies and describe the cholesterol landscape in cellular homeostasis and neuronal function. We discuss its implication in α-Syn and Lewy body pathophysiological mechanisms underlying PD, focusing on the role of GCase and cholesterol. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patricia García‐Sanz
- Instituto Cajal, CSICMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
| | - Johannes M.F.G. Aerts
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden UniversityFaculty of ScienceLeidenthe Netherlands
| | - Rosario Moratalla
- Instituto Cajal, CSICMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
24
|
Loss of NPC1 enhances phagocytic uptake and impairs lipid trafficking in microglia. Nat Commun 2021; 12:1158. [PMID: 33627648 PMCID: PMC7904859 DOI: 10.1038/s41467-021-21428-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Niemann-Pick type C disease is a rare neurodegenerative disorder mainly caused by mutations in NPC1, resulting in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is a prominent pathological feature, direct consequences of NPC1 loss on microglial function remain not fully characterized. We discovered pathological proteomic signatures and phenotypes in NPC1-deficient murine models and demonstrate a cell autonomous function of NPC1 in microglia. Loss of NPC1 triggers enhanced phagocytic uptake and impaired myelin turnover in microglia that precede neuronal death. Npc1−/− microglia feature a striking accumulation of multivesicular bodies and impaired trafficking of lipids to lysosomes while lysosomal degradation function remains preserved. Molecular and functional defects were also detected in blood-derived macrophages of NPC patients that provide a potential tool for monitoring disease. Our study underscores an essential cell autonomous role for NPC1 in immune cells and implies microglial therapeutic potential. Niemann-Pick type C disease is a rare childhood neurodegenerative disorder predominantly caused by mutations in NPC1, resulting in abnormal late endosomal and lysosomal defects. Here the authors show that NPC1 disruption largely impairs microglial function.
Collapse
|
25
|
Scantlebery AM, Tammaro A, Mills JD, Rampanelli E, Kors L, Teske GJ, Butter LM, Liebisch G, Schmitz G, Florquin S, Leemans JC, Roelofs JJ. The dysregulation of metabolic pathways and induction of the pentose phosphate pathway in renal ischaemia-reperfusion injury. J Pathol 2021; 253:404-414. [PMID: 33338266 PMCID: PMC7986929 DOI: 10.1002/path.5605] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Lipid accumulation is associated with various forms of acute renal injury; however, the causative factors and pathways underpinning this lipid accumulation have not been thoroughly investigated. In this study, we performed lipidomic profiling of renal tissue following ischaemia–reperfusion injury (IRI). We identified a significant accumulation of cholesterol and specific phospholipids and sphingolipids in kidneys 24 h after IRI. In light of these findings, we hypothesised that pathways involved in lipid metabolism may also be altered. Through the analysis of published microarray data, generated from sham and ischaemic kidneys, we identified nephron‐specific metabolic pathways affected by IRI and validated these findings in ischaemic renal tissue. In silico analysis revealed the downregulation of several energy and lipid metabolism pathways, including mitochondrial fatty acid beta‐oxidation (FAO), peroxisomal lipid metabolism, fatty acid (FA) metabolism, and glycolysis. The pentose phosphate pathway (PPP), which is fuelled by glycolysis, was the only metabolic pathway that was upregulated 24 h following IRI. In this study, we describe the effect of renal IRI on metabolic pathways and how this contributes to lipid accumulation. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Angelique Ml Scantlebery
- Department of Pathology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (Location AMC), Amsterdam, The Netherlands
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (Location AMC), Amsterdam, The Netherlands
| | - James D Mills
- Department of Pathology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (Location AMC), Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center (Location AMC), Amsterdam, The Netherlands
| | - Lotte Kors
- Department of Pathology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (Location AMC), Amsterdam, The Netherlands
| | - Gwendoline J Teske
- Department of Pathology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (Location AMC), Amsterdam, The Netherlands
| | - Loes M Butter
- Department of Pathology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (Location AMC), Amsterdam, The Netherlands
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Sandrine Florquin
- Department of Pathology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (Location AMC), Amsterdam, The Netherlands
| | - Jaklien C Leemans
- Department of Pathology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (Location AMC), Amsterdam, The Netherlands
| | - Joris Jth Roelofs
- Department of Pathology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (Location AMC), Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (Location AMC), Amsterdam, The Netherlands
| |
Collapse
|
26
|
Intracerebroventricular Treatment with 2-Hydroxypropyl-β-Cyclodextrin Decreased Cerebellar and Hepatic Glycoprotein Nonmetastatic Melanoma Protein B (GPNMB) Expression in Niemann-Pick Disease Type C Model Mice. Int J Mol Sci 2021; 22:ijms22010452. [PMID: 33466390 PMCID: PMC7795151 DOI: 10.3390/ijms22010452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Niemann–Pick disease type C (NPC) is a recessive hereditary disease caused by mutation of the NPC1 or NPC2 gene. It is characterized by abnormality of cellular cholesterol trafficking with severe neuronal and hepatic injury. In this study, we investigated the potential of glycoprotein nonmetastatic melanoma protein B (GPNMB) to act as a biomarker reflecting the therapeutic effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in an NPC mouse model. We measured serum, brain, and liver expression levels of GPNMB, and evaluated their therapeutic effects on NPC manifestations in the brain and liver after the intracerebroventricular administration of HP-β-CD in Npc1 gene-deficient (Npc1−/−) mice. Intracerebroventricular HP-β-CD inhibited cerebellar Purkinje cell damage in Npc1−/− mice and significantly reduced serum and cerebellar GPNMB levels. Interestingly, we also observed that the intracerebral administration significantly reduced hepatic GPNMB expression and elevated serum ALT in Npc1−/− mice. Repeated doses of intracerebroventricular HP-β-CD (30 mg/kg, started at 4 weeks of age and repeated every 2 weeks) drastically extended the lifespan of Npc1−/− mice compared with saline treatment. In summary, our results suggest that GPNMB level in serum is a potential biomarker for evaluating the attenuation of NPC pathophysiology by intracerebroventricular HP-β-CD treatment.
Collapse
|
27
|
Ramirez CM, Taylor AM, Lopez AM, Repa JJ, Turley SD. Delineation of metabolic responses of Npc1 -/-nih mice lacking the cholesterol-esterifying enzyme SOAT2 to acute treatment with 2-hydroxypropyl-β-cyclodextrin. Steroids 2020; 164:108725. [PMID: 32890578 PMCID: PMC7680374 DOI: 10.1016/j.steroids.2020.108725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022]
Abstract
Lipids present in lipoproteins cleared from the circulation are processed sequentially by three major proteins within the late endosomal/lysosomal (E/L) compartment of all cells: lysosomal acid lipase (LAL), Niemann-Pick (NPC) C2 and NPC1. When all three of these proteins are functioning normally, unesterified cholesterol (UC) exits the E/L compartment and is used in plasma membrane maintenance and various pathways in the endoplasmic reticulum including esterification by sterol O-acyltransferase 2 (SOAT2) or SOAT1 depending partly on cell type. Mutations in either NPC2 or NPC1 result in continual entrapment of UC and glycosphingolipids leading to neurodegeneration, pulmonary dysfunction, splenomegaly and liver damage. To date, the most effective agent for promoting release of entrapped UC in nearly all organs of NPC1-deficient mice and cats is 2-hydroxypropyl-β-cyclodextrin (2HPβCD). The cytotoxic nature of the liberated UC triggers various defenses including suppression of sterol synthesis and increased esterification. The present studies, using the Npc1-/-nih mouse model, measured the comparative quantitative importance of these two responses in the liver versus the spleen of Npc1-/-: Soat2+/+ and Npc1-/-: Soat2-/- mice in the 24 h following a single acute treatment with 2HPβCD. In the liver but not the spleen of both types of mice suppression of synthesis alone or in combination with increased esterification provided the major defense against the rise in unsequestered cellular UC content. These findings have implications for systemic 2HPβCD treatment in NPC1 patients in view of the purportedly low levels of SOAT2 activity in human liver.
Collapse
Affiliation(s)
- Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anna M Taylor
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joyce J Repa
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Ding D, Jiang H, Salvi R. Cochlear spiral ganglion neuron degeneration following cyclodextrin-induced hearing loss. Hear Res 2020; 400:108125. [PMID: 33302057 DOI: 10.1016/j.heares.2020.108125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023]
Abstract
Because cyclodextrins are capable of removing cholesterol from cell membranes, there is growing interest in using these compounds to treat diseases linked to aberrant cholesterol metabolism. One compound, 2-hydroxypropyl-beta-cyclodextrin (HPβCD), is currently being evaluated as a treatment for Niemann-Pick Type C1 disease, a rare, fatal neurodegenerative disease caused by the buildup of lipids in endosomes and lysosomes. HPβCD can reduce some debilitating symptoms and extend life span, but the therapeutic doses used to treat the disease cause hearing loss. Initial studies in rodents suggested that HPβCD selectively damaged only cochlear outer hair cells during the first week post-treatment. However, our recent in vivo and in vitro studies suggested that the damage could become progressively worse and more extensive over time. To test this hypothesis, we treated rats subcutaneously with 1, 2, 3 or 4 g/kg of HPβCD and waited for 8-weeks to assess the long-term histological consequences. Our new results indicate that the two highest doses of HPβCD caused extensive damage not only to OHC, but also to inner hair cells, pillar cells and other support cells resulting in the collapse and flattening of the sensory epithelium. The 4 g/kg dose destroyed all the outer hair cells and three-fourths of the inner hair cells over the basal two-thirds of the cochlea and more than 85% of the nerve fibers in the habenula perforata and more than 80% of spiral ganglion neurons in the middle of basal turn of the cochlea. The mechanisms that lead to the delayed degeneration of inner hair cells, pillar cells, nerve fibers and spiral ganglion neurons remain poorly understood, but may be related to the loss of trophic support caused by the degeneration of sensory and/or support cells in the organ of Corti. Despite the massive damage to the cochlear sensory epithelium, the blood vessels in the stria vascularis and the vestibular hair cells in the utricle and saccule remained normal.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA.
| |
Collapse
|
29
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
30
|
Ulloa ML, Froyshteter AB, Kret LN, Chang DP, Sarah GE, McCarthy RJ, Barnes SD, Berry-Kravis EM. Anesthetic management of pediatric patients with Niemann-Pick disease type C for intrathecal 2-hydroxypropyl-β-cyclodextrin injection. Paediatr Anaesth 2020; 30:766-772. [PMID: 32349180 DOI: 10.1111/pan.13902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Niemann-Pick disease type C is an autosomal-recessive, lysosomal storage disorder with variable age of onset and a heterogeneous clinical presentation that includes neurological, psychiatric, and visceral findings. Serial intrathecal injections of 2-hydroxypropyl-beta-cyclodextrin are being evaluated as a treatment modality for Niemann-Pick disease type C with a subset of patients requiring anesthesia for this procedure. AIMS The aim of this study was to evaluate the safety of anesthesia provided for patients undergoing intrathecal injection of 2-hydroxypropyl-beta-cyclodextrin. METHODS A retrospective review of pediatric patients who received serial intrathecal injections of 2-hydroxypropyl-beta-cyclodextrin with anesthesia at two tertiary care centers was conducted from December 2015 through April 2019. Data were extracted for analysis included preoperative comorbidities, demographics, vital signs, intraoperative anesthesia course, airway management technique, venous access, postoperative course, and perioperative complications. In total, 19 patients were identified and a total of 394 anesthetic encounters were included in this study. RESULTS All 394 2-hydroxypropyl-beta-cyclodextrin administration procedures were successfully performed, and there were no changes made in the anesthetic plan during the anesthesia encounters. Three hundred forty-nine anesthetics were performed utilizing inhalation induction and mask maintenance, and 45 anesthetics were performed with placement of a supraglottic airway device due to patient body habitus and provider preference. The incidence of a major adverse event (aspirations, arterial desaturation) was 5/394 (1.3%, 95% CI 0.05%-3.1%). Minor adverse events (emesis, delirium, hypotension, seizure, and airway obstruction) were observed in 19/394 encounters (4.8%, 95% CI 3.0%-7.5%). CONCLUSIONS Our findings suggest that general anesthesia induced via inhalation induction and maintained with volatile anesthetic via mask or supraglottic airway is a safe and effective option for pediatric patients with Niemann-Pick disease type C undergoing serial intrathecal injections of 2-hydroxypropyl-beta-cyclodextrin, supporting this technique as a viable option for anesthetic care in these patients.
Collapse
Affiliation(s)
- Morgan L Ulloa
- Department of Anesthesiology, Rush University, Chicago, USA
| | | | - Lauren N Kret
- Department of Anesthesiology, Rush University, Chicago, USA
| | - Denise P Chang
- Department of Anesthesia and Perioperative Care, UCSF Benioff Children's Hospital, San Francisco, USA
| | - Gabriel E Sarah
- Department of Anesthesia and Perioperative Care, UCSF Benioff Children's Hospital, San Francisco, USA
| | | | - Steve D Barnes
- Department of Anesthesiology, Rush University, Chicago, USA
| | | |
Collapse
|
31
|
Singhal A, Krystofiak ES, Jerome WG, Song B. 2-Hydroxypropyl-gamma-cyclodextrin overcomes NPC1 deficiency by enhancing lysosome-ER association and autophagy. Sci Rep 2020; 10:8663. [PMID: 32457374 PMCID: PMC7250861 DOI: 10.1038/s41598-020-65627-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/07/2020] [Indexed: 11/10/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused by mutations in NPC1 and NPC2 genes that result in an accumulation of cholesterol in lysosomes. The majority of children with NPC die in adolescence. Currently, no FDA-approved therapies exist for NPC and the mechanisms of NPC disease are not fully understood. Our recent study and the reports from other laboratories showed that 2-hydroxypropyl-γ-cyclodextrin (HPγCD) alleviates cholesterol accumulation in NPC1-deficient cells in spite of its low binding affinity for cholesterol. In this study, we explored the cellular changes that are induced upon HPγCD treatment in NPC1 patient-derived fibroblasts. We show that HPγCD treatment increases lysosome-ER association and enhances autophagic activity. Our study indicates that HPγCD induces an activation of the transcription factor EB (TFEB), a master regulator of lysosomal functions and autophagy. Lysosome-ER association could potentially function as conduits for cholesterol transport from lysosomes to the ER. Accumulating evidence suggests a role for autophagy in rescuing the cholesterol accumulation in NPC and other degenerative diseases. Collectively, our findings suggest that HPγCD restores cellular homeostasis in NPC1-deficient cells via enhancing lysosomal dynamics and functions. Understanding the mechanisms of HPγCD-induced cellular pathways could contribute to effective NPC therapies.
Collapse
Affiliation(s)
- Ashutosh Singhal
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - W Gray Jerome
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Byeongwoon Song
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA.
| |
Collapse
|
32
|
MAEKAWA M, MANO N. Identification and Evaluation of Biomarkers for Niemann-Pick Disease Type C Based on Chemical Analysis Techniques. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2020.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Nariyasu MANO
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| |
Collapse
|
33
|
Lopez AM, Ramirez CM, Taylor AM, Jones RD, Repa JJ, Turley SD. Ontogenesis and Modulation of Intestinal Unesterified Cholesterol Sequestration in a Mouse Model of Niemann-Pick C1 Disease. Dig Dis Sci 2020; 65:158-167. [PMID: 31312996 DOI: 10.1007/s10620-019-05736-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/11/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Mutations in the NPC1 gene result in sequestration of unesterified cholesterol (UC) and glycosphingolipids in most tissues leading to multi-organ disease, especially in the brain, liver, lungs, and spleen. Various data from NPC1-deficient mice suggest the small intestine (SI) is comparatively less affected, even in late stage disease. METHODS Using the Npc1nih mouse model, we measured SI weights and total cholesterol (TC) levels in Npc1-/- versus Npc1+/+ mice as a function of age, and then after prolonged ezetimibe-induced inhibition of cholesterol absorption. Next, we determined intestinal levels of UC and esterified cholesterol (EC), and cholesterol synthesis rates in Npc1-/- and Npc1+/+ mice, with and without the cholesterol-esterifying enzyme SOAT2, following a once-only subcutaneous injection with 2-hydroxypropyl-β-cyclodextrin (2HPβCD). RESULTS By ~ 42 days of age, intestinal TC levels averaged ~ 2.1-fold more (mostly UC) in the Npc1-/- versus Npc1+/+ mice with no further increase thereafter. Chronic ezetimibe treatment lowered intestinal TC levels in the Npc1-/- mice by only ~ 16%. In Npc1-/- mice given 2HPβCD 24 h earlier, UC levels fell, EC levels increased (although less so in mice lacking SOAT2), and cholesterol synthesis was suppressed equally in the Npc1-/-:Soat2+/+ and Npc1-/-:Soat2-/- mice. CONCLUSIONS The low and static levels of intestinal UC sequestration in Npc1-/- mice likely reflect the continual sloughing of cells from the mucosa. This sequestration is blunted by about the same extent following a single acute treatment with 2HPβCD as it is by a prolonged ezetimibe-induced block of cholesterol absorption.
Collapse
MESH Headings
- 2-Hydroxypropyl-beta-cyclodextrin/pharmacology
- Animals
- Cholesterol/metabolism
- Disease Models, Animal
- Ezetimibe/pharmacology
- Female
- Intestinal Absorption/drug effects
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Male
- Mice, 129 Strain
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Niemann-Pick C1 Protein
- Niemann-Pick Disease, Type C/drug therapy
- Niemann-Pick Disease, Type C/genetics
- Niemann-Pick Disease, Type C/metabolism
- Sterol O-Acyltransferase/genetics
- Sterol O-Acyltransferase/metabolism
- Sterol O-Acyltransferase 2
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Anna M Taylor
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| | - Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
34
|
Braga SS. Cyclodextrins: Emerging Medicines of the New Millennium. Biomolecules 2019; 9:E801. [PMID: 31795222 PMCID: PMC6995511 DOI: 10.3390/biom9120801] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclodextrins, since their discovery in the late 19th century, were mainly regarded as excipients. Nevertheless, developments in cyclodextrin research have shown that some of these hosts can capture and include biomolecules, highlighting fatty acids and cholesterol, which implies that they are not inert and that their action may be used in specific medicinal purposes. The present review, centered on literature reports from the year 2000 until the present day, presents a comprehensive description of the known biological activities of cyclodextrins and their implications for medicinal applications. The paper is divided into two main sections, one devoted to the properties and applications of cyclodextrins as active pharmaceutical ingredients in a variety of pathologies, from infectious ailments to cardiovascular dysfunctions and metabolic diseases. The second section is dedicated to the use of cyclodextrins in a range of biomedical technologies.
Collapse
Affiliation(s)
- Susana Santos Braga
- QOPNA & LAQV/REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
35
|
Addressing neurodegeneration in lysosomal storage disorders: Advances in Niemann Pick diseases. Neuropharmacology 2019; 171:107851. [PMID: 31734384 DOI: 10.1016/j.neuropharm.2019.107851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/11/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Most lysosomal storage disorders (LSDs) cause progressive neurodegeneration leading to early death. While the genetic defects that cause these disorders impact all cells of the body, neurons are particularly affected. This vulnerability may be explained by neuronal cells' critical dependence on the lysosomal degradative capacity, as they cannot use division to eliminate their waste. However, mounting evidence supports the extension of storage beyond lysosomes to other cellular compartments (mitochondria, plasma membrane and synapses) as a key event in pathogenesis. Impaired energy supply, oxidative stress, calcium imbalance, synaptic failure and glial alterations may all contribute to neuronal death and thus could be suitable therapeutic targets for these disorders. Here we review the pathological mechanisms underlying neurodegeneration in Niemann Pick diseases and therapeutic strategies developed in animal models and patients suffering from these devastating disorders. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
|
36
|
Mitroi DN, Pereyra‐Gómez G, Soto‐Huelin B, Senovilla F, Kobayashi T, Esteban JA, Ledesma MD. NPC1 enables cholesterol mobilization during long-term potentiation that can be restored in Niemann-Pick disease type C by CYP46A1 activation. EMBO Rep 2019; 20:e48143. [PMID: 31535451 PMCID: PMC6832102 DOI: 10.15252/embr.201948143] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/08/2019] [Accepted: 08/23/2019] [Indexed: 01/21/2023] Open
Abstract
NPC is a neurodegenerative disorder characterized by cholesterol accumulation in endolysosomal compartments. It is caused by mutations in the gene encoding NPC1, an endolysosomal protein mediating intracellular cholesterol trafficking. Cognitive and psychiatric alterations are hallmarks in NPC patients pointing to synaptic defects. However, the role of NPC1 in synapses has not been explored. We show that NPC1 is present in the postsynaptic compartment and is locally translated during LTP. A mutation in a region of the NPC1 gene commonly altered in NPC patients reduces NPC1 levels at synapses due to enhanced NPC1 protein degradation. This leads to shorter postsynaptic densities, increased synaptic cholesterol and impaired LTP in NPC1nmf164 mice with cognitive deficits. NPC1 mediates cholesterol mobilization and enables surface delivery of CYP46A1 and GluA1 receptors necessary for LTP, which is defective in NPC1nmf164 mice. Pharmacological activation of CYP46A1 normalizes synaptic levels of cholesterol, LTP and cognitive abilities, and extends life span of NPC1nmf164 mice. Our results unveil NPC1 as a regulator of cholesterol dynamics in synapses contributing to synaptic plasticity, and provide a potential therapeutic strategy for NPC patients.
Collapse
Affiliation(s)
- Daniel N Mitroi
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| | - Guadalupe Pereyra‐Gómez
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| | - Beatriz Soto‐Huelin
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| | - Fernando Senovilla
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| | - Toshihide Kobayashi
- Laboratoire de Biophotonique et PharmacologieFaculté de PharmacieUniversité de StrasbourgIllkirchFrance
| | - Jose A Esteban
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| | - María Dolores Ledesma
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| |
Collapse
|
37
|
Hastings C, Vieira C, Liu B, Bascon C, Gao C, Wang RY, Casey A, Hrynkow S. Expanded access with intravenous hydroxypropyl-β-cyclodextrin to treat children and young adults with Niemann-Pick disease type C1: a case report analysis. Orphanet J Rare Dis 2019; 14:228. [PMID: 31639011 PMCID: PMC6805667 DOI: 10.1186/s13023-019-1207-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background Niemann-Pick Disease Type C (NPC) is an inherited, often fatal neurovisceral lysosomal storage disease characterized by cholesterol accumulation in every cell with few known treatments. Defects in cholesterol transport cause sequestration of unesterified cholesterol within the endolysosomal system. The discovery that systemic administration of hydroxypropyl-beta cyclodextrin (HPβPD) to NPC mice could release trapped cholesterol from lysosomes, normalize cholesterol levels in the liver, and prolong life, led to expanded access use in NPC patients. HPβCD has been administered to NPC patients with approved INDs globally since 2009. Results Here we present safety, tolerability and efficacy data from 12 patients treated intravenously (IV) for over 7 years with HPβCD in the US and Brazil. Some patients subsequently received intrathecal (IT) treatment with HPβCD following on average 13 months of IV HPβCD. Several patients transitioned to an alternate HPβCD. Moderately affected NPC patients treated with HPβCD showed slowing of disease progression. Severely affected patients demonstrated periods of stability but eventually showed progression of disease. Neurologic and neurocognitive benefits were seen in most patients with IV alone, independent of the addition of IT administration. Physicians and caregivers reported improvements in quality of life for the patients on IV therapy. There were no safety issues, and the drug was well tolerated and easy to administer. Conclusions These expanded access data support the safety and potential benefit of systemic IV administration of HPβCD and provide a platform for two clinical trials to study the effect of intravenous administration of HPβCD in NPC patients.
Collapse
Affiliation(s)
- Caroline Hastings
- Department of Pediatric Hematology Oncology, UCSF Benioff Children's Hospital Oakland, 747 52nd Street, Oakland, CA, 94609-1809, USA. .,Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Camilo Vieira
- Universidade Federal da Bahia, Clínica Citta, Ed. Mundo Plaza, Av. Tancredo Neves, 620, Sala 1905, Camino dos Árvares, Salvador, Brazil
| | - Benny Liu
- GI & Liver Clinics, Highland Hospital, Alameda Health System, Highland Hospital, Oakland, CA, USA.,Division of Gastroenterology & Hepatology, Highland Hospital, Alameda Health Systems, Highland Care Pavilion 5th floor, 1411 East 31st Street, Oakland, CA, 94602, USA
| | - Cyrus Bascon
- Department of Pediatric Hematology Oncology, UCSF Benioff Children's Hospital Oakland, 747 52nd Street, Oakland, CA, 94609-1809, USA
| | - Claire Gao
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.,Present Address: Neuroscience Graduate Program, Brown University, 185 Meeting Street, Box GL-N, Providence, RI, 02912, USA
| | - Raymond Y Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County, CHOC Children's Specialists, 1201 W. La Veta Ave, Orange, CA, 92868, USA.,Department of Pediatrics, University of California, Irvine School of Medicine, Irvine, CA, 92868, USA
| | - Alicia Casey
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Sharon Hrynkow
- CTD Holdings, Inc., P.O. Box 1180, Alachua, FL, 32616, USA
| |
Collapse
|
38
|
Davidson J, Molitor E, Moores S, Gale SE, Subramanian K, Jiang X, Sidhu R, Kell P, Zhang J, Fujiwara H, Davidson C, Helquist P, Melancon BJ, Grigalunas M, Liu G, Salahi F, Wiest O, Xu X, Porter FD, Pipalia NH, Cruz DL, Holson EB, Schaffer JE, Walkley SU, Maxfield FR, Ory DS. 2-Hydroxypropyl-β-cyclodextrin is the active component in a triple combination formulation for treatment of Niemann-Pick C1 disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1545-1561. [PMID: 31051283 PMCID: PMC6679735 DOI: 10.1016/j.bbalip.2019.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Niemann-Pick type C1 (NPC1) disease is a fatal neurovisceral disease for which there are no FDA approved treatments, though cyclodextrin (HPβCD) slows disease progression in preclinical models and in an early phase clinical trial. Our goal was to evaluate the mechanism of action of a previously described combination-therapy, Triple Combination Formulation (TCF) - comprised of the histone deacetylase inhibitor (HDACi) vorinostat/HPβCD/PEG - shown to prolong survival in Npc1 mice. In these studies, TCF's benefit was attributed to enhanced vorinostat pharmacokinetics (PK). Here, we show that TCF reduced lipid storage, extended lifespan, and preserved neurological function in Npc1 mice. Unexpectedly, substitution of an inactive analog for vorinostat in TCF revealed similar efficacy. We demonstrate that the efficacy of TCF was attributable to enhanced HPβCD PK and independent of NPC1 protein expression. We conclude that although HDACi effectively reduce cholesterol storage in NPC1-deficient cells, HDACi are ineffective in vivo in Npc1 mice.
Collapse
Affiliation(s)
- Jessica Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth Molitor
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samantha Moores
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sarah E Gale
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kanagaraj Subramanian
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jesse Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hideji Fujiwara
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cristin Davidson
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670, USA
| | - Bruce J Melancon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670, USA
| | - Michael Grigalunas
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670, USA
| | - Gang Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670, USA
| | - Farbod Salahi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670, USA
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670, USA
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Dr., National Institutes of Health, Rockville, MD 20850, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - Nina H Pipalia
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Dana L Cruz
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Jean E Schaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Calias P. 2-Hydroxypropyl-β-cyclodextrins and the Blood-Brain Barrier: Considerations for Niemann-Pick Disease Type C1. Curr Pharm Des 2019; 23:6231-6238. [PMID: 29065825 PMCID: PMC5824462 DOI: 10.2174/1381612823666171019164220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 01/03/2023]
Abstract
The rare, chronic, autosomal-recessive lysosomal storage disease Niemann-Pick disease type C1 (NPC1) is characterized by progressively debilitating and ultimately fatal neurological manifestations. There is an urgent need for disease-modifying therapies that address NPC1 neurological pathophysiology, and passage through the blood-brain barrier represents an important consideration for novel NPC1 drugs. Animal investigations of 2-hydroxypropyl-β-cyclodextrins (HPβCD) in NPC1 in mice demonstrated that HPβCD does not cross the blood-brain barrier in significant amounts but suggested a potential for these complex oligosaccharides to moderately impact CNS manifestations when administered subcutaneously or intraperitoneally at very high doses; however, safety concerns regarding pulmonary toxicity were raised. Subsequent NPC1 investigations in cats demonstrated far greater HPβCD efficacy at much lower doses when the drug was administered directly to the CNS. Based on this, a phase 1/2a clinical trial was initiated with intrathecal administration of a specific, wellcharacterized mixture of HPβCD, with a tightly controlled molar substitution specification and a defined molecular "fingerprint" of the different species. The findings were very encouraging and a phase 2b/3 clinical trial has completed enrollment and is underway. In addition, phase 1 clinical studies utilizing high-dose intravenous administration of a different HPβCD are currently recruiting. Independent studies are needed for each product to satisfactorily address questions of safety, efficacy, dosing, and route of administration. The outcomes cannot be assumed to be translatable between HPβCD products and/or routes of administration.
Collapse
Affiliation(s)
- Pericles Calias
- Co-Founder and Pharmaceutical Development Consultant, Educational Trainers and Consultants, 39 Swains Pond Ave, Melrose, MA 02176, United States
| |
Collapse
|
40
|
Hammond N, Munkacsi AB, Sturley SL. The complexity of a monogenic neurodegenerative disease: More than two decades of therapeutic driven research into Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1109-1123. [PMID: 31002946 DOI: 10.1016/j.bbalip.2019.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 12/17/2022]
Abstract
Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.
Collapse
Affiliation(s)
- Natalie Hammond
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| | - Stephen L Sturley
- Department of Biology, Barnard College-Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
41
|
Hughes MP, Smith DA, Morris L, Fletcher C, Colaco A, Huebecker M, Tordo J, Palomar N, Massaro G, Henckaerts E, Waddington SN, Platt FM, Rahim AA. AAV9 intracerebroventricular gene therapy improves lifespan, locomotor function and pathology in a mouse model of Niemann-Pick type C1 disease. Hum Mol Genet 2019; 27:3079-3098. [PMID: 29878115 PMCID: PMC6097154 DOI: 10.1093/hmg/ddy212] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023] Open
Abstract
Niemann-Pick type C disease (NP-C) is a fatal neurodegenerative lysosomal storage disorder. It is caused in 95% of cases by a mutation in the NPC1 gene that encodes NPC1, an integral transmembrane protein localized to the limiting membrane of the lysosome. There is no cure for NP-C but there is a disease-modifying drug (miglustat) that slows disease progression but with associated side effects. Here, we demonstrate in a well-characterized mouse model of NP-C that a single administration of AAV-mediated gene therapy to the brain can significantly extend lifespan, improve quality of life, prevent or ameliorate neurodegeneration, reduce biochemical pathology and normalize or improve various indices of motor function. Over-expression of human NPC1 does not cause adverse effects in the brain and correctly localizes to late endosomal/lysosomal compartments. Furthermore, we directly compare gene therapy to licensed miglustat. Even at a low dose, gene therapy has all the benefits of miglustat but without adverse effects. On the basis of these findings and on-going ascendency of the field, we propose intracerebroventricular gene therapy as a potential therapeutic option for clinical use in NP-C.
Collapse
Affiliation(s)
- Michael P Hughes
- Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Dave A Smith
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | - Lauren Morris
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | - Claire Fletcher
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | | | - Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | - Julie Tordo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE19RT, UK
| | - Nuria Palomar
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE19RT, UK
| | - Giulia Massaro
- Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE19RT, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, UCL Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
42
|
Witt M, Thiemer R, Meyer A, Schmitt O, Wree A. Main Olfactory and Vomeronasal Epithelium Are Differently Affected in Niemann-Pick Disease Type C1. Int J Mol Sci 2018; 19:ijms19113563. [PMID: 30424529 PMCID: PMC6274921 DOI: 10.3390/ijms19113563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Olfactory impairment is one of the earliest symptoms in neurodegenerative disorders that has also been documented in Niemann-Pick disease type C1 (NPC1). NPC1 is a very rare, neurovisceral lipid storage disorder, characterized by a deficiency of Npc1 gene function that leads to progressive neurodegeneration. Here, we compared the pathologic effect of defective Npc1 gene on the vomeronasal neuroepithelium (VNE) with that of the olfactory epithelium (OE) in an NPC1 mouse model. METHODS Proliferation in the VNE and OE was assessed by applying a bromodeoxyuridine (BrdU) protocol. We further compared the immunoreactivities of anti-olfactory marker protein (OMP), and the lysosomal marker cathepsin-D in both epithelia. To investigate if degenerative effects of both olfactory systems can be prevented or reversed, some animals were treated with a combination of miglustat/allopregnanolone/2-hydroxypropyl-cyclodextrin (HPβCD), or a monotherapy with HPβCD alone. RESULTS Using BrdU to label dividing cells of the VNE, we detected a proliferation increase of 215% ± 12% in Npc1-/- mice, and 270% ± 10% in combination- treated Npc1-/- animals. The monotherapy with HPβCD led to an increase of 261% ± 10.5% compared to sham-treated Npc1-/- mice. Similar to the OE, we assessed the high regenerative potential of vomeronasal progenitor cells. OMP reactivity in the VNE of Npc1-/- mice was not affected, in contrast to that observed in the OE. Concomitantly, cathepsin-D reactivity in the VNE was virtually absent. Conclusion: Vomeronasal receptor neurons are less susceptible against NPC1 pathology than olfactory receptor neurons. Compared to control mice, however, the VNE of Npc1-/- mice displays an increased neuroregenerative potential, indicating compensatory cell renewal.
Collapse
Affiliation(s)
- Martin Witt
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - René Thiemer
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Anja Meyer
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Oliver Schmitt
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Andreas Wree
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
43
|
Lopez AM, Jones RD, Repa JJ, Turley SD. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function. Am J Physiol Gastrointest Liver Physiol 2018; 315:G454-G463. [PMID: 29878847 PMCID: PMC6230690 DOI: 10.1152/ajpgi.00124.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/31/2023]
Abstract
Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase (SOAT) 1 or SOAT2 in various cell types and lecithin cholesterol acyltransferase in plasma. Esterified cholesterol and triacylglycerol contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C (NPC) 2 and NPC 1, unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease, which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7-wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared with their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma alanine aminotransferase and aspartate aminotransferase activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency. NEW & NOTEWORTHY In Niemann-Pick type C1 (NPC1) disease, the entrapment of unesterified cholesterol (UC) in the endosomal/lysosomal compartment of all cells causes multiorgan disease, including neurodegeneration, pulmonary dysfunction, and liver failure. Some of this sequestered UC entered cells initially in the esterified form. When sterol O-acyltransferase 2, a cholesterol esterifying enzyme present in enterocytes and hepatocytes, is eliminated in NPC1-deficient mice, there is a reduction in their hepatomegaly, hepatic UC content, and cellular injury.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
44
|
Zhou Y, Takahashi S, Homma K, Duan C, Zheng J, Cheatham MA, Zheng J. The susceptibility of cochlear outer hair cells to cyclodextrin is not related to their electromotile activity. Acta Neuropathol Commun 2018; 6:98. [PMID: 30249300 PMCID: PMC6151916 DOI: 10.1186/s40478-018-0599-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/13/2018] [Indexed: 11/26/2022] Open
Abstract
Niemann-Pick Type C1 (NPC1) disease is a fatal neurovisceral disorder caused by dysfunction of NPC1 protein, which plays a role in intracellular cholesterol trafficking. The cholesterol-chelating agent, 2-hydroxypropyl-β-cyclodextrin (HPβCD), is currently undergoing clinical trials for treatment of this disease. Though promising in alleviating neurological symptoms, HPβCD causes irreversible hearing loss in NPC1 patients and outer hair cell (OHC) death in animal models. We recently found that HPβCD-induced OHC death can be significantly alleviated in a mouse model lacking prestin, an OHC-specific motor protein required for the high sensitivity and sharp frequency selectivity of mammalian hearing. Since cholesterol status is known to influence prestin’s electromotility, we examined how prestin contributes to HPβCD-induced OHC death in the disease context using the NPC1 knockout (KO) mouse model (NPC1-KO). We found normal expression and localization of prestin in NPC1-KO OHCs. Whole-cell patch-clamp recordings revealed a significant depolarization of the voltage-operating point of prestin in NPC1-KO mice, suggesting reduced levels of cholesterol in the lateral membrane of OHCs that lack NPC1. OHC loss and elevated thresholds were found for high frequency regions in NPC1-KO mice, whose OHCs retained their sensitivity to HPβCD. To investigate whether prestin’s electromotile function contributes to HPβCD-induced OHC death, the prestin inhibitor salicylate was co-administered with HPβCD to WT and NPC1-KO mice. Neither oral nor intraperitoneal administration of salicylate mitigated HPβCD-induced OHC loss. To further determine the contribution of prestin’s electromotile function, a mouse model expressing a virtually nonelectromotile prestin protein (499-prestin) was subjected to HPβCD treatment. 499-prestin knockin mice showed no resistance to HPβCD-induced OHC loss. As 499-prestin maintains its ability to bind cholesterol, our data imply that HPβCD-induced OHC death is ascribed to the structural role of prestin in maintaining the OHC’s lateral membrane, rather than its motor function.
Collapse
|
45
|
Lowering effect of dimethyl-α-cyclodextrin on GM1-ganglioside accumulation in GM1-gangliosidosis model cells and in brain of β-galactosidase-knockout mice. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0835-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Dominko K, Dikic D, Hecimovic S. Enhanced activity of superoxide dismutase is a common response to dietary and genetically induced increased cholesterol levels. Nutr Neurosci 2018; 23:398-410. [PMID: 30118401 DOI: 10.1080/1028415x.2018.1511027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Objectives: Hypercholesterolaemia has been implicated in the pathogenesis of neurodegenerative diseases. In this work, we tested whether cholesterol-mediated neurodegeneration induced either by cholesterol-rich diet or genetic mutation may share a common mechanism involving increased oxidative stress and mitochondria oxidant status. Additionally, we analysed whether upon cholesterol-rich diet, different brain regions (prefrontal cortex, cortex, hippocampus, and cerebellum) show distinct vulnerability to an oxidative stress response.Methods: Oxidative stress parameters were measured both in vivo (in the liver and in different brain regions) in cholesterol-fed mice and in vitro in genetically induced cholesterol accumulation in NPC1-null cells.Results: Increased superoxide dismutase (SOD) activity was a common feature of cholesterol-mediated antioxidant response in both models. Moreover, upon high-cholesterol diet, all four brain regions analysed responded via somewhat different capacity of antioxidant defence, hippocampus showing the highest basal activity of SOD. Increased activity of SOD upon cholesterol accumulation in vitro involves mitochondrial SOD2. We found that SOD/SOD2 activities are modulated by cholesterol levels.Discussion: Hypercholesterolaemia could potentiate brain dysfunction and neurodegenerative processes via oxidative stress, and activity of mitochondrial SOD2 may play a key role in this process. Our findings suggest that preventing/reducing mitochondrial oxidative stress may represent a common approach against neurodegenerative diseases.
Collapse
Affiliation(s)
- Kristina Dominko
- Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Domagoj Dikic
- Department of Animal Physiology, Biology Division, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Silva Hecimovic
- Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
47
|
Tseng WC, Loeb HE, Pei W, Tsai-Morris CH, Xu L, Cluzeau CV, Wassif CA, Feldman B, Burgess SM, Pavan WJ, Porter FD. Modeling Niemann-Pick disease type C1 in zebrafish: a robust platform for in vivo screening of candidate therapeutic compounds. Dis Model Mech 2018; 11:11/9/dmm034165. [PMID: 30135069 PMCID: PMC6176986 DOI: 10.1242/dmm.034165] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a rare autosomal recessive lysosomal storage disease primarily caused by mutations in NPC1. NPC1 is characterized by abnormal accumulation of unesterified cholesterol and glycolipids in late endosomes and lysosomes. Common signs include neonatal jaundice, hepatosplenomegaly, cerebellar ataxia, seizures and cognitive decline. Both mouse and feline models of NPC1 mimic the disease progression in humans and have been used in preclinical studies of 2-hydroxypropyl-β-cyclodextrin (2HPβCD; VTS-270), a drug that appeared to slow neurological progression in a Phase 1/2 clinical trial. However, there remains a need to identify additional therapeutic agents. High-throughput drug screens have been useful in identifying potential therapeutic compounds; however, current preclinical testing is time and labor intensive. Thus, development of a high-capacity in vivo platform suitable for screening candidate drugs/compounds would be valuable for compound optimization and prioritizing subsequent in vivo testing. Here, we generated and characterize two zebrafish npc1-null mutants using CRISPR/Cas9-mediated gene targeting. The npc1 mutants model both the early liver and later neurological disease phenotypes of NPC1. LysoTracker staining of npc1 mutant larvae was notable for intense staining of lateral line neuromasts, thus providing a robust in vivo screen for lysosomal storage. As a proof of principle, we were able to show that treatment of the npc1 mutant larvae with 2HPβCD significantly reduced neuromast LysoTracker staining. These data demonstrate the potential value of using this zebrafish NPC1 model for efficient and rapid in vivo optimization and screening of potential therapeutic compounds. This article has an associated First Person interview with the first author of the paper. Summary: A zebrafish genetic model of Niemann-Pick disease type C1 is suitable for performing in vivo screening of candidate therapeutic compounds by examining LysoTracker staining intensity in neuromasts.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Section on Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Hannah E Loeb
- Section on Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Chon-Hwa Tsai-Morris
- Zebrafish Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Lisha Xu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Celine V Cluzeau
- Section on Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Christopher A Wassif
- Section on Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Benjamin Feldman
- Zebrafish Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Barbero-Camps E, Roca-Agujetas V, Bartolessis I, de Dios C, Fernández-Checa JC, Marí M, Morales A, Hartmann T, Colell A. Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy 2018; 14:1129-1154. [PMID: 29862881 PMCID: PMC6103708 DOI: 10.1080/15548627.2018.1438807] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Macroautophagy/autophagy failure with the accumulation of autophagosomes is an early neuropathological feature of Alzheimer disease (AD) that directly affects amyloid beta (Aβ) metabolism. Although loss of presenilin 1 function has been reported to impair lysosomal function and prevent autophagy flux, the detailed mechanism leading to autophagy dysfunction in AD remains to be elucidated. The resemblance between pathological hallmarks of AD and Niemann-Pick Type C disease, including endosome-lysosome abnormalities and impaired autophagy, suggests cholesterol accumulation as a common link. Using a mouse model of AD (APP-PSEN1-SREBF2 mice), expressing chimeric mouse-human amyloid precursor protein with the familial Alzheimer Swedish mutation (APP695swe) and mutant presenilin 1 (PSEN1-dE9), together with a dominant-positive, truncated and active form of SREBF2/SREBP2 (sterol regulatory element binding factor 2), we demonstrated that high brain cholesterol enhanced autophagosome formation, but disrupted its fusion with endosomal-lysosomal vesicles. The combination of these alterations resulted in impaired degradation of Aβ and endogenous MAPT (microtubule associated protein tau), and stimulated autophagy-dependent Aβ secretion. Exacerbated Aβ-induced oxidative stress in APP-PSEN1-SREBF2 mice, due to cholesterol-mediated depletion of mitochondrial glutathione/mGSH, is critical for autophagy induction. In agreement, in vivo mitochondrial GSH recovery with GSH ethyl ester, inhibited autophagosome synthesis by preventing the oxidative inhibition of ATG4B deconjugation activity exerted by Aβ. Moreover, cholesterol-enrichment within the endosomes-lysosomes modified the levels and membrane distribution of RAB7A and SNAP receptors (SNAREs), which affected its fusogenic ability. Accordingly, in vivo treatment with 2-hydroxypropyl-β-cyclodextrin completely rescued these alterations, making it a potential therapeutic tool for AD.
Collapse
Affiliation(s)
- Elisabet Barbero-Camps
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Vicente Roca-Agujetas
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Isabel Bartolessis
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Cristina de Dios
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Departament de Biomedicina, Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Jose C Fernández-Checa
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,d Liver Unit , Hospital Clinic, CIBEREHD , Barcelona , Spain , Research Center for Alcoholic Liver and Pancreatic Diseases , Keck School of Medicine of the University of Southern California , Los Angeles , CA , USA
| | - Montserrat Marí
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Albert Morales
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Tobias Hartmann
- e Experimental Neurology , Saarland University , Homburg/Saar , Germany
| | - Anna Colell
- a Department of Cell Death and Proliferation , Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,b Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| |
Collapse
|
49
|
Lütjohann D, Lopez AM, Chuang JC, Kerksiek A, Turley SD. Identification of Correlative Shifts in Indices of Brain Cholesterol Metabolism in the C57BL6/Mecp2 tm1.1Bird Mouse, a Model for Rett Syndrome. Lipids 2018; 53:363-373. [PMID: 29770459 DOI: 10.1002/lipd.12041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Accepted: 04/03/2018] [Indexed: 01/14/2023]
Abstract
Rett syndrome (RS) is a pervasive neurodevelopmental disorder resulting from loss-of-function mutations in the X-linked gene methyl-Cpg-binding protein 2 (MECP2). Using a well-defined model for RS, the C57BL6/Mecp2tm1.1Bird mouse, we have previously found a moderate but persistently lower rate of cholesterol synthesis, measured in vivo, in the brains of Mecp2-/y mice, starting from about the third week after birth. There was no genotypic difference in the total cholesterol concentration throughout the brain at any age. This raised the question of whether the lower rate of cholesterol synthesis in the mutants was balanced by a fall in the rate at which cholesterol was converted via cholesterol 24-hydroxylase (Cyp46A1) to 24S-hydroxycholesterol (24S-OHC), the principal route through which cholesterol is ordinarily removed from the brain. Here, we show that while there were no genotypic differences in the concentrations in plasma and liver of three cholesterol precursors (lanosterol, lathosterol, and desmosterol), two plant sterols (sitosterol and campesterol), and two oxysterols (27-hydroxycholesterol [27-OHC] and 24S-OHC), the brains of the Mecp2 -/y mice had significantly lower concentrations of all three cholesterol precursors, campesterol, and both oxysterols, with the level of 24S-OHC being ~20% less than in their Mecp2 +/y controls. Together, these data suggest that coordinated regulation of cholesterol synthesis and catabolism in the central nervous system is maintained in this model for RS. Furthermore, we speculate that the adaptive changes in these two pathways conceivably resulted from a shift in the permeability of the blood-brain barrier as implied by the significantly lower campesterol and 27-OHC concentrations in the brains of the Mecp2-/y mice.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA
| | - Jen-Chieh Chuang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9060, USA
| | - Anja Kerksiek
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA
| |
Collapse
|
50
|
Serendipitous effects of β-cyclodextrin on murine model of Krabbe disease. Mol Genet Metab Rep 2018; 15:98-99. [PMID: 30023296 PMCID: PMC6047113 DOI: 10.1016/j.ymgmr.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/20/2022] Open
|