1
|
Zürcher NR, Chen JE, Wey HY. PET-MRI Applications and Future Prospects in Psychiatry. J Magn Reson Imaging 2024. [PMID: 38838352 DOI: 10.1002/jmri.29471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
This article reviews the synergistic application of positron emission tomography-magnetic resonance imaging (PET-MRI) in neuroscience with relevance for psychiatry, particularly examining neurotransmission, epigenetics, and dynamic imaging methodologies. We begin by discussing the complementary insights that PET and MRI modalities provide into neuroreceptor systems, with a focus on dopamine, opioids, and serotonin receptors, and their implications for understanding and treating psychiatric disorders. We further highlight recent PET-MRI studies using a radioligand that enables the quantification of epigenetic enzymes, specifically histone deacetylases, in the brain in vivo. Imaging epigenetics is used to exemplify the impact the quantification of novel molecular targets may have, including new treatment approaches for psychiatric disorders. Finally, we discuss innovative designs involving functional PET using [18F]FDG (fPET-FDG), which provides detailed information regarding dynamic changes in glucose metabolism. Concurrent acquisitions of fPET-FDG and functional MRI provide a time-resolved approach to studying brain function, yielding simultaneous metabolic and hemodynamic information and thereby opening new avenues for psychiatric research. Collectively, the review underscores the potential of a multimodal PET-MRI approach to advance our understanding of brain structure and function in health and disease, which could improve clinical care based on objective neurobiological features and treatment response monitoring. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, Massachusetts, USA
| | - Jingyuan E Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
2
|
Hahn A, Reed MB, Vraka C, Godbersen GM, Klug S, Komorowski A, Falb P, Nics L, Traub-Weidinger T, Hacker M, Lanzenberger R. High-temporal resolution functional PET/MRI reveals coupling between human metabolic and hemodynamic brain response. Eur J Nucl Med Mol Imaging 2024; 51:1310-1322. [PMID: 38052927 PMCID: PMC11399190 DOI: 10.1007/s00259-023-06542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Positron emission tomography (PET) provides precise molecular information on physiological processes, but its low temporal resolution is a major obstacle. Consequently, we characterized the metabolic response of the human brain to working memory performance using an optimized functional PET (fPET) framework at a temporal resolution of 3 s. METHODS Thirty-five healthy volunteers underwent fPET with [18F]FDG bolus plus constant infusion, 19 of those at a hybrid PET/MRI scanner. During the scan, an n-back working memory paradigm was completed. fPET data were reconstructed to 3 s temporal resolution and processed with a novel sliding window filter to increase signal to noise ratio. BOLD fMRI signals were acquired at 2 s. RESULTS Consistent with simulated kinetic modeling, we observed a constant increase in the [18F]FDG signal during task execution, followed by a rapid return to baseline after stimulation ceased. These task-specific changes were robustly observed in brain regions involved in working memory processing. The simultaneous acquisition of BOLD fMRI revealed that the temporal coupling between hemodynamic and metabolic signals in the primary motor cortex was related to individual behavioral performance during working memory. Furthermore, task-induced BOLD deactivations in the posteromedial default mode network were accompanied by distinct temporal patterns in glucose metabolism, which were dependent on the metabolic demands of the corresponding task-positive networks. CONCLUSIONS In sum, the proposed approach enables the advancement from parallel to truly synchronized investigation of metabolic and hemodynamic responses during cognitive processing. This allows to capture unique information in the temporal domain, which is not accessible to conventional PET imaging.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Arkadiusz Komorowski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Pia Falb
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Stewart BW, Keaser ML, Lee H, Margerison SM, Cormie MA, Moayedi M, Lindquist MA, Chen S, Mathur BN, Seminowicz DA. Pathological claustrum activity drives aberrant cognitive network processing in human chronic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.564054. [PMID: 37961503 PMCID: PMC10635040 DOI: 10.1101/2023.11.01.564054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aberrant cognitive network activity and cognitive deficits are established features of chronic pain. However, the nature of cognitive network alterations associated with chronic pain and their underlying mechanisms require elucidation. Here, we report that the claustrum, a subcortical nucleus implicated in cognitive network modulation, is activated by acute painful stimulation and pain-predictive cues in healthy participants. Moreover, we discover pathological activity of the claustrum and a lateral aspect of the right dorsolateral prefrontal cortex (latDLPFC) in migraine patients. Dynamic causal modeling suggests a directional influence of the claustrum on activity in this latDLPFC region, and diffusion weighted imaging (DWI) verifies their structural connectivity. These findings advance understanding of claustrum function during acute pain and provide evidence of a possible circuit mechanism driving cognitive impairments in chronic pain.
Collapse
Affiliation(s)
- Brent W. Stewart
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Michael L. Keaser
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Hwiyoung Lee
- Department of Epidemiology & Public Health, Maryland Psychiatric Research Center, Catonsville, MD, USA
| | - Sarah M. Margerison
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew A. Cormie
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, ON, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Clinical & Computational Neuroscience, Krembil Brain Institute, University Health Network
| | | | - Shuo Chen
- Department of Epidemiology & Public Health, Maryland Psychiatric Research Center, Catonsville, MD, USA
| | - Brian N. Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Theriault JE, Shaffer C, Dienel GA, Sander CY, Hooker JM, Dickerson BC, Barrett LF, Quigley KS. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments. Neurosci Biobehav Rev 2023; 153:105373. [PMID: 37634556 PMCID: PMC10591873 DOI: 10.1016/j.neubiorev.2023.105373] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
In aerobic glycolysis, oxygen is abundant, and yet cells metabolize glucose without using it, decreasing their ATP per glucose yield by 15-fold. During task-based stimulation, aerobic glycolysis occurs in localized brain regions, presenting a puzzle: why produce ATP inefficiently when, all else being equal, evolution should favor the efficient use of metabolic resources? The answer is that all else is not equal. We propose that a tradeoff exists between efficient ATP production and the efficiency with which ATP is spent to transmit information. Aerobic glycolysis, despite yielding little ATP per glucose, may support neuronal signaling in thin (< 0.5 µm), information-efficient axons. We call this the efficiency tradeoff hypothesis. This tradeoff has potential implications for interpretations of task-related BOLD "activation" observed in fMRI. We hypothesize that BOLD "activation" may index local increases in aerobic glycolysis, which support signaling in thin axons carrying "bottom-up" information, or "prediction error"-i.e., the BIAPEM (BOLD increases approximate prediction error metabolism) hypothesis. Finally, we explore implications of our hypotheses for human brain evolution, social behavior, and mental disorders.
Collapse
Affiliation(s)
- Jordan E Theriault
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Clare Shaffer
- Northeastern University, Department of Psychology, Boston, MA, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lisa Feldman Barrett
- Northeastern University, Department of Psychology, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Northeastern University, Department of Psychology, Boston, MA, USA; VA Bedford Healthcare System, Bedford, MA, USA
| |
Collapse
|