1
|
Vaidya SP, Anversa RG, Pinares-Garcia P, Walker LC, Pracejus N, Reid CA, Lawrence AJ. Inhibition of HCN channels decreases motivation for alcohol and deprivation-induced drinking in alcohol preferring rats. Neuropharmacology 2025:110371. [PMID: 39983913 DOI: 10.1016/j.neuropharm.2025.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Globally, around 400 million people live with an alcohol use disorder (AUD), yet current treatments available are suboptimal at a population level. Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels are implicated in the modulation of complex motivated behaviours, including reward seeking. Here, we investigated the potential involvement of HCN channels in alcohol reinforcing effects, contributing to alcohol intake and relapse-like drinking following abstinence in iP rats. The functional role of HCN channels in the motivation to acquire alcohol and relapse-like behaviour was tested in vivo through intracerebroventricular (ICV) infusion of a HCN channel inhibitor, ZD7288 prior to operant progressive ratio responding or the alcohol deprivation effect. Acute ICV infusion of ZD7288 (3 μg/5 μL) significantly reduced motivation to acquire alcohol and attenuated the alcohol deprivation effect after 14 days of abstinence, without affecting spontaneous locomotor activity. HCN channels are densely expressed in cholinergic neurons of the medial habenula (mHb), which have been implicated in stress, aversion, and drug/alcohol intake-associated behaviours. To investigate the impact of alcohol on the expression of HCN channels, cholinergic markers and acetylcholine receptors, we performed qPCR on mHb tissue in alcohol-preferring (iP) rats following chronic voluntary alcohol intake or abstinence. qPCR results showed an upregulation of mRNA encoding key ion channels in the mHb following abstinence from chronic voluntary alcohol use. Collectively, these findings suggest that HCN channels contribute to motivation to consume alcohol and relapse-like behaviour during abstinence in iP rats.
Collapse
Affiliation(s)
- Shivani P Vaidya
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Roberta G Anversa
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Paulo Pinares-Garcia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Natasha Pracejus
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia.
| |
Collapse
|
2
|
Maddern XJ, Walker LC, Anversa RG, Lawrence AJ, Campbell EJ. Understanding sex differences and the translational value of models of persistent substance use despite negative consequences. Neurobiol Learn Mem 2024; 213:107944. [PMID: 38825163 DOI: 10.1016/j.nlm.2024.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Persistent substance use despite negative consequences is a key facet of substance use disorder. The last decade has seen the preclinical field adopt the use of punishment to model adverse consequences associated with substance use. This has largely involved the pairing of drug use with either electric foot shock or quinine, a bitter tastant. Whilst at face value, these punishers may model aspects of the physical and psychological consequences of substance use, such models are yet to assist the development of approved medications for treatment. This review discusses progress made with animal models of punishment to understand the behavioral consequences of persistent substance use despite negative consequences. We highlight the importance of examining sex differences, especially when the behavioral response to punishment changes following drug exposure. Finally, we critique the translational value these models provide for the substance use disorder field.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Erin J Campbell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
3
|
De Oliveira Sergio T, Darevsky D, Kellner J, de Paula Soares V, de Cassia Albino M, Maulucci D, Wean S, Hopf FW. Sex- and estrous-related response patterns for alcohol depend critically on the level of compulsion-like challenge. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111008. [PMID: 38641236 PMCID: PMC11423807 DOI: 10.1016/j.pnpbp.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Alcohol use disorder is a substantial social and economic burden. During the last years, the number of women with drinking problems has been increasing, and one main concern is that they are particularly more vulnerable to negative consequences of alcohol. However, little is known about female-specific response patterns for alcohol, and potential underlying differences in brain mechanisms, including for compulsion-like alcohol drinking (when intake persists despite adverse consequences). We used lickometry to assess behavioral microstructure in adult Wistar male and female rats (n = 28-30) during alcohol-only drinking or moderate- or higher-challenge alcohol compulsion (10 or 60 mg/l quinine in alcohol, respectively). Estrous stages were determined and related to drinking levels and patterns of responding to alcohol, as was ovariectomy. Our findings showed that females (where we didn't determine estrus stage) had similar total licks in a session as males, but significantly longer licking bouts under alcohol-only and moderate-challenge, suggesting greater persistence. Further, greater intake under alcohol-only and moderate-challenge was related to faster licking in males, while female consumption was not related to licking speed. Thus, females could have increased persistence without greater vigor, unlike males. However, under higher-challenge, faster licking did predict higher intake in females, similar to males. To better understand female higher-challenge responding, we examined drinking in relation to phases of the estrous cycle. Higher-challenge had longer bouts only in late diestrus. In addition, ovariectomy led to longer bouts only under higher-challenge, suggesting that conditions with reduced hormone levels could increase female persistence for alcohol under higher-challenge. However, ovariectomy also reduced alcohol-only and moderate-challenge drinking but did not reduce bout length. Thus, intake level and response strategy could be regulated somewhat differently by ovarian hormones. Finally, moderate-challenge licking speed was less variable during early diestrus, and we previously showed more stereotyped responding specifically under moderate-challenge in males. By combining behavioral microstructure and sex- and estrus-related changes in drinking patterns, our results suggest that females have greater persistence for alcohol under lower-challenge drinking, while late diestrus and ovariectomy unmasked greater persistence under higher-challenge. Together, our novel insights could help develop more effective and personalized treatments for problematic alcohol use.
Collapse
Affiliation(s)
- Thatiane De Oliveira Sergio
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - David Darevsky
- University of California at Berkeley-UCSF Graduate Program in Bioengineering, USA; UCSF Medical Scientist Training Program, San Francisco, CA, USA
| | - Jacob Kellner
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - Vanessa de Paula Soares
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maryelle de Cassia Albino
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Danielle Maulucci
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - Sarah Wean
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - Frederic W Hopf
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Honeycutt S, Mukherjee A, Paladino M, Gilles-Thomas E, Loney G. Adolescent nicotine exposure promotes adulthood opioid consumption that persists despite adverse consequences and increases the density of insular perineuronal nets. ADDICTION NEUROSCIENCE 2024; 11:100150. [PMID: 38911872 PMCID: PMC11192509 DOI: 10.1016/j.addicn.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Adolescence marks a sensitive period for neurodevelopment wherein exposure to drugs of abuse may disrupt maturation and induce persistent changes in neurophysiology which may exacerbate the risk for developing substance use disorders in adulthood. Adolescent nicotine exposure (ANE) enhances motivation to obtain drugs of abuse, particularly opioids, and increases vulnerability for the development of opioid use disorder (OUD). Here, we characterized ANE effects on learning about the adverse consequences of opioid consumption in adulthood in the absence of further nicotine administration. First, we show that ANE engenders punishment resistant fentanyl self-administration in a heterogenous seeking-taking chain schedule of reinforcement at least at the tested dose of fentanyl (0.75 μg/kg). We found that ANE rats consumed significantly more fentanyl and contingent foot shock punishment was less efficacious in limiting fentanyl seeking in ANE rats, relative to nicotine-naïve controls. Next, we demonstrated that ANE limits learning about the deleterious consequences of acute opioid intoxication in adulthood. In a combined conditioned taste avoidance and place preference paradigm we found that ANE resulted in significant reductions in the strength of morphine-induced CTA, and a simultaneous enhancement of CPP at a higher dose that was less capable of driving reinforcement in naïve controls. Finally, we examined the expression of perineuronal nets (PNNs) within insular cortex (IC) and found ANE rats to have increased density of PNNs across the anterior IC and significantly more parvalbumin-labeled IC cells relative to naïve controls. Together, these data lay the framework for a mechanistic explanation of the extreme comorbidity between nicotine use and development of OUDs.
Collapse
|
5
|
Broomer MC, Beacher NJ, Wang MW, Lin DT. Examining a punishment-related brain circuit with miniature fluorescence microscopes and deep learning. ADDICTION NEUROSCIENCE 2024; 11:100154. [PMID: 38680653 PMCID: PMC11044849 DOI: 10.1016/j.addicn.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In humans experiencing substance use disorder (SUD), abstinence from drug use is often motivated by a desire to avoid some undesirable consequence of further use: health effects, legal ramifications, etc. This process can be experimentally modeled in rodents by training and subsequently punishing an operant response in a context-induced reinstatement procedure. Understanding the biobehavioral mechanisms underlying punishment learning is critical to understanding both abstinence and relapse in individuals with SUD. To date, most investigations into the neural mechanisms of context-induced reinstatement following punishment have utilized discrete loss-of-function manipulations that do not capture ongoing changes in neural circuitry related to punishment-induced behavior change. Here, we describe a two-pronged approach to analyzing the biobehavioral mechanisms of punishment learning using miniature fluorescence microscopes and deep learning algorithms. We review recent advancements in both techniques and consider a target neural circuit.
Collapse
Affiliation(s)
- Matthew C. Broomer
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Nicholas J. Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Michael W. Wang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Qin Y, Sun Q, Wang L, Hu F, Zhang Q, Wang W, Li W, Wang Y. DRD2 TaqIA polymorphism-related functional connectivity between anterior insula and dorsolateral prefrontal cortex predicts the retention time in heroin-dependent individuals under methadone maintenance treatment. Eur Arch Psychiatry Clin Neurosci 2024; 274:433-443. [PMID: 37400684 DOI: 10.1007/s00406-023-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Dopamine receptor D2 (DRD2) TaqIA polymorphism has an influence on addiction treatment response and prognosis by mediating brain dopaminergic system efficacy. Insula is crucial for conscious urges to take drugs and maintain drug use. However, it remains unclear about the contribution of DRD2 TaqIA polymorphism to the regulation of insular on addiction behavioral and its relation with the therapeutic effect of methadone maintenance treatment (MMT). METHODS 57 male former heroin dependents receiving stable MMT and 49 matched male healthy controls (HC) were enrolled. Salivary genotyping for DRD2 TaqA1 and A2 alleles, brain resting-state functional MRI scan and a 24-month follow-up for collecting illegal-drug-use information was conducted and followed by clustering of functional connectivity (FC) patterns of HC insula, insula subregion parcellation of MMT patients, comparing the whole brain FC maps between the A1 carriers and non-carriers and analyzing the correlation between the genotype-related FC of insula sub-regions with the retention time in MMT patients by Cox regression. RESULTS Two insula subregions were identified: the anterior insula (AI) and the posterior insula (PI) subregion. The A1 carriers had a reduced FC between the left AI and the right dorsolateral prefrontal cortex (dlPFC) relative to no carriers. And this reduced FC was a poor prognostic factor for the retention time in MMT patients. CONCLUSION DRD2 TaqIA polymorphism affects the retention time in heroin-dependent individuals under MMT by mediating the functional connectivity strength between left AI and right dlPFC, and the two brain regions are promising therapeutic targets for individualized treatment.
Collapse
Affiliation(s)
- Yue Qin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, People's Republic of China
| | - Qinli Sun
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
| | - Lei Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, People's Republic of China
| | - Feng Hu
- Department of Radiology, Hospital of Shaannxi Provincial Geology and Mineral Resources Bureau, Xi'an, People's Republic of China
| | - Qiuli Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi'an, 710038, People's Republic of China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi'an, 710038, People's Republic of China.
| | - Yarong Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
7
|
Agoitia A, Cruz-Sanchez A, Balderas I, Bermúdez-Rattoni F. The anterior insula and its projection to amygdala nuclei modulate the abstinence-exacerbated expression of conditioned place preference. Psychopharmacology (Berl) 2024; 241:445-459. [PMID: 38010515 PMCID: PMC10884150 DOI: 10.1007/s00213-023-06499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
RATIONALE Relapse into substance use is often triggered by exposure to drug-related environmental cues. The magnitude of drug seeking depends on the duration of abstinence, a phenomenon known as the incubation of drug craving. Clinical and preclinical research shows that the insular cortex is involved in substance use disorders and cue-induced drug seeking. However, the role of the insula on memory retrieval and motivational integration for cue-elicited drug seeking remains to be determined. OBJECTIVES We investigated the role of the anterior insular cortex (aIC) and its glutamatergic projection to amygdala nuclei (aIC-AMY) on the expression of conditioned place preference (CPP) during early and late abstinence. METHODS Male adult C57BL/6J mice underwent amphetamine-induced CPP, and their preference was tested following 1 or 14 days of abstinence. aIC and aIC-AMY functional role in CPP expression was assessed at both abstinence periods by employing optogenetic silencing and behavioral pharmacology. RESULTS Compared to a single day, an exacerbated preference for the amphetamine-paired context was observed after 14 days of abstinence. Photoinhibition of either aIC or aIC-AMY projection reduced CPP expression following late but not early abstinence. Similarly, the antagonism of aIC NMDA receptors reduced CPP expression after 14 days of abstinence but not 1 day. CONCLUSIONS These results suggest that aIC and its glutamatergic output to amygdala nuclei constitute critical neurobiological substrates mediating enhanced motivational cue reactivity during the incubation of amphetamine craving rather than contextual memory recall. Moreover, cortical NMDA receptor signaling may become sensitized during abstinence, ultimately modulating disproportioned drug seeking.
Collapse
Affiliation(s)
- Andrés Agoitia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Apolinar Cruz-Sanchez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Israela Balderas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Starski P, Morningstar MD, Katner SN, Frasier RM, De Oliveira Sergio T, Wean S, Lapish CC, Hopf FW. Neural Activity in the Anterior Insula at Drinking Onset and Licking Relates to Compulsion-Like Alcohol Consumption. J Neurosci 2024; 44:e1490232023. [PMID: 38242696 PMCID: PMC10904088 DOI: 10.1523/jneurosci.1490-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/20/2023] [Accepted: 12/10/2023] [Indexed: 01/21/2024] Open
Abstract
Much remains unknown about the etiology of compulsion-like alcohol drinking, where consumption persists despite adverse consequences. The role of the anterior insula (AIC) in emotion, motivation, and interoception makes this brain region a likely candidate to drive challenge-resistant behavior, including compulsive drinking. Indeed, subcortical projections from the AIC promote compulsion-like intake in rats and are recruited in heavy-drinking humans during compulsion for alcohol, highlighting the importance of and need for more information about AIC activity patterns that support aversion-resistant responding. Single-unit activity was recorded in the AIC from 15 male rats during alcohol-only and compulsion-like consumption. We found three sustained firing phenotypes, sustained-increase, sustained-decrease, and drinking-onset cells, as well as several firing patterns synchronized with licking. While many AIC neurons had session-long activity changes, only neurons with firing increases at drinking onset had greater activity under compulsion-like conditions. Further, only cells with persistent firing increases maintained activity during pauses in licking, suggesting roles in maintaining drive for alcohol during breaks. AIC firing was not elevated during saccharin drinking, similar to lack of effect of AIC inhibition on sweet fluid intake in many studies. In addition, we observed subsecond changes in AIC neural activity tightly entrained to licking. One lick-synched firing pattern (determined for all licks in a session) predicted compulsion-like drinking, while a separate lick-associated pattern correlated with greater consumption across alcohol intake conditions. Collectively, these data provide a more integrated model for the role of AIC firing in compulsion-like drinking, with important relevance for how the AIC promotes sustained motivated responding more generally.
Collapse
Affiliation(s)
- Phillip Starski
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis 46202, Indiana
| | - Mitch D Morningstar
- Department of Psychology, IU-Purdue University Indianapolis, Indianapolis 46202, Indiana
| | - Simon N Katner
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis 46202, Indiana
| | - Raizel M Frasier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis 46202, Indiana
| | | | - Sarah Wean
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis 46202, Indiana
| | - Christopher C Lapish
- Department of Anatomy, Cell Biology, and Physiology, IU School of Medicine, Indianapolis 46202, Indiana
- Stark Neurosciences Research Institute, Indianapolis 46202, Indiana
| | - F Woodward Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis 46202, Indiana
- Stark Neurosciences Research Institute, Indianapolis 46202, Indiana
| |
Collapse
|
9
|
Taylor A, Adank DN, Young PA, Quan Y, Nabit BP, Winder DG. Forced Abstinence from Volitional Ethanol Intake Drives a Vulnerable Period of Hyperexcitability in BNST-Projecting Insular Cortex Neurons. J Neurosci 2024; 44:e1121232023. [PMID: 38050120 PMCID: PMC10860622 DOI: 10.1523/jneurosci.1121-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
The insular cortex (IC) integrates sensory and interoceptive cues to inform downstream circuitry executing adaptive behavioral responses. The IC communicates with areas involved canonically in stress and motivation. IC projections govern stress and ethanol recruitment of bed nucleus of the stria terminalis (BNST) activity necessary for the emergence of negative affective behaviors during alcohol abstinence. Here, we assess the impact of the chronic drinking forced abstinence (CDFA) volitional home cage ethanol intake paradigm on synaptic and excitable properties of IC neurons that project to the BNST (IC→BNST). Using whole-cell patch-clamp electrophysiology, we investigated IC→BNST circuitry 24 h or 2 weeks following forced abstinence (FA) in female C57BL6/J mice. We find that IC→BNST cells are transiently more excitable following acute ethanol withdrawal. In contrast, in vivo ethanol exposure via intraperitoneal injection, ex vivo via ethanol wash, and acute FA from a natural reward (sucrose) all failed to alter excitability. In situ hybridization studies revealed that at 24 h post FA BK channel mRNA expression is reduced in IC. Further, pharmacological inhibition of BK channels mimicked the 24 h FA phenotype, while BK activation was able to decrease AP firing in control and 24 h FA subjects. All together these data suggest a novel mechanism of homeostatic plasticity that occurs in the IC→BNST circuitry following chronic drinking.
Collapse
Affiliation(s)
- Anne Taylor
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37235
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37235
| | - Danielle N Adank
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37235
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37235
| | - Phoebe A Young
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37235
| | - Yizhen Quan
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37235
| | - Brett P Nabit
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37235
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37235
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37235
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37235
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
10
|
G Anversa R, Campbell EJ, Walker LC, S Ch'ng S, Muthmainah M, S Kremer F, M Guimarães A, O'Shea MJ, He S, Dayas CV, Andrews ZB, Lawrence AJ, Brown RM. A paraventricular thalamus to insular cortex glutamatergic projection gates "emotional" stress-induced binge eating in females. Neuropsychopharmacology 2023; 48:1931-1940. [PMID: 37474763 PMCID: PMC10584903 DOI: 10.1038/s41386-023-01665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
It is well-established that stress and negative affect trigger eating disorder symptoms and that the brains of men and women respond to stress in different ways. Indeed, women suffer disproportionately from emotional or stress-related eating, as well as associated eating disorders such as binge eating disorder. Nevertheless, our understanding of the precise neural circuits driving this maladaptive eating behavior, particularly in women, remains limited. We recently established a clinically relevant model of 'emotional' stress-induced binge eating whereby only female mice display binge eating in response to an acute "emotional" stressor. Here, we combined neuroanatomic, transgenic, immunohistochemical and pathway-specific chemogenetic approaches to investigate whole brain functional architecture associated with stress-induced binge eating in females, focusing on the role of Vglut2 projections from the paraventricular thalamus (PVTVglut2+) to the medial insular cortex in this behavior. Whole brain activation mapping and hierarchical clustering of Euclidean distances revealed distinct patterns of coactivation unique to stress-induced binge eating. At a pathway-specific level, PVTVglut2+ cells projecting to the medial insular cortex were specifically activated in response to stress-induced binge eating. Subsequent chemogenetic inhibition of this pathway suppressed stress-induced binge eating. We have identified a distinct PVTVglut2+ to insular cortex projection as a key driver of "emotional" stress-induced binge eating in female mice, highlighting a novel circuit underpinning this sex-specific behavior.
Collapse
Affiliation(s)
- Roberta G Anversa
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
- School of Biochemical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Sarah S Ch'ng
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Muthmainah Muthmainah
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Frederico S Kremer
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Federal University of Pelotas, Pelotas, Brazil
| | - Amanda M Guimarães
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Federal University of Pelotas, Pelotas, Brazil
| | - Mia J O'Shea
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Suheng He
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Christopher V Dayas
- School of Biochemical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Zane B Andrews
- Biomedicine Discovery Institute and department of Physiology, Monash University, Clayton, Australia
| | - Andrew J Lawrence
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia.
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia.
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
11
|
McGregor MS, LaLumiere RT. Still a "hidden island"? The rodent insular cortex in drug seeking, reward, and risk. Neurosci Biobehav Rev 2023; 153:105334. [PMID: 37524140 PMCID: PMC10592220 DOI: 10.1016/j.neubiorev.2023.105334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The insular cortex (IC) is implicated in risky decision making and drug-seeking behaviors, in a manner dissociable from natural reward seeking. However, evidence from rodent studies of motivated behaviors suggests that the role of the IC is not always consistent across procedures. Moreover, there is evidence of dissociation of function between posterior (pIC) and anterior (aIC) subregions in these behaviors. Under which circumstances, and by which mechanisms, these IC subregions are recruited to regulate motivated behaviors remains unclear. Here, we discuss evidence of rodent pIC and aIC function across drug-related behaviors, natural reward seeking, and decision making under risk and highlight procedural differences that may account for seemingly conflicting findings. Although gaps in the literature persist, we hypothesize that IC activity is broadly important for selection of appropriate behaviors based on learned action-outcome contingencies and that associated risk is sufficient, but not necessary, to recruit the aIC in reward seeking without involving the pIC.
Collapse
Affiliation(s)
- Matthew S McGregor
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States.
| | - Ryan T LaLumiere
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
12
|
Müller UJ, Schmalenbach LJ, Dobrowolny H, Guest PC, Schlaaff K, Mawrin C, Truebner K, Bogerts B, Gos T, Bernstein HG, Steiner J. Reduced anterior insular cortex volume in male heroin addicts: a postmortem study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1233-1241. [PMID: 36719479 PMCID: PMC9888352 DOI: 10.1007/s00406-023-01553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
We and others have observed reduced volumes of brain regions, including the nucleus accumbens, globus pallidus, hypothalamus, and habenula in opioid addiction. Notably, the insular cortex has been under increasing study in addiction, and a smaller anterior insula has been found in alcohol-addicted cases. Here, we have investigated whether similar effects occur in heroin addicts compared to healthy controls. Volumes of the anterior and posterior insula in heroin addicts (n = 14) and controls (n = 13) were assessed by morphometry of Nissl-myelin-stained serial whole-brain coronal sections. The mean relative volume of the anterior insular cortex was smaller than in non-addicted controls (3010 ± 614 *10-6 versus 3970 ± 1306 *10-6; p = 0.021). However, no significant differences in neuronal cell counts were observed. Therefore, the observed volume reduction appears to be a consequence of damaged connecting structures such as neuropil and glial cells. The findings were not confounded by age or duration of autolysis. Our results provide further evidence of structural deficits in key hubs of the addiction circuitry in heroin-dependent individuals and warrant further research in this area.
Collapse
Affiliation(s)
- Ulf J Müller
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Forensic Psychiatric State Hospital of Saxony-Anhalt, Stendal-Uchtspringe, Germany
| | - Lucas J Schmalenbach
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Konstantin Schlaaff
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- German Center for Mental Health (DZP), Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Christian Mawrin
- Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Kurt Truebner
- Institute of Legal Medicine, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Salus Institute, Magdeburg, Germany
| | - Tomasz Gos
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany.
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Mental Health (DZP), Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
- Center for Health Und Medical Prevention (CHaMP), Magdeburg, Germany.
| |
Collapse
|
13
|
Starski PA, De Oliveira Sergio T, Hopf FW. Using lickometry to infer differential contributions of salience network regions during compulsion-like alcohol drinking. ADDICTION NEUROSCIENCE 2023; 7:100102. [PMID: 38736902 PMCID: PMC11086682 DOI: 10.1016/j.addicn.2023.100102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Alcohol use disorder extracts substantial personal, social and clinical costs, and continued intake despite negative consequences (compulsion-like consumption) can contribute strongly. Here we discuss lickometry, a simple method where lick times are determined across a session, while analysis across many aspects of licking can offer important insights into underlying psychological and action strategies, including their brain mechanisms. We first describe studies implicating anterior insula (AIC) and dorsal medial prefrontal cortex (dMPF) in compulsion-like responding for alcohol, then review work suggesting that AIC/ventral frontal cortex versus dMPF regulate different aspects of behavior (oral control and overall response strategy, versus moment-to-moment action organization). We then detail our lickometer work comparing alcohol-only drinking (AOD) and compulsion-like drinking under moderate- or higher-challenge (ModChD or HiChD, using quinine-alcohol). Many studies have suggested utilization of one of two main strategies, with higher motivation indicated by more bouts, and greater palatability suggested by longer, faster bouts. Instead, ModChD shows decreased variability in many lick measures, which is unexpected but consistent with the suggested importance of automaticity for addiction. Also surprising is that HiChD retains several behavior changes seen with ModChD, reduced tongue variability and earlier bout start, even though intake is otherwise disrupted. Since AIC-related measures are retained under both moderate- and higher-challenge, we propose a novel hypothesis that AIC sustains overall commitment regardless of challenge level, while disordered licking during HiChD mirrors the effects of dMPF inhibition. Thus, while AIC provides overall drive despite challenge, the ability to act is ultimately determined within the dMPF.
Collapse
Affiliation(s)
- Phillip A. Starski
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis IN, USA
| | | | - Frederic W. Hopf
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis IN, USA
- Stark Neurosciences Research Institute, Indianapolis IN, USA
| |
Collapse
|
14
|
Mukherjee A, Gilles-Thomas EA, McSain SL, Paladino MS, Sontate KV, Ezenwa KB, Honeycutt SC, Loney GC. Nicotine limits avoidance conditioning with opioids without interfering with the ability to discriminate an opioid-interoceptive state. Pharmacol Biochem Behav 2023; 229:173604. [PMID: 37487952 DOI: 10.1016/j.pbb.2023.173604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Approximately 90 % of individuals undergoing treatment for opioid use disorder (OUD) report comorbid use of nicotine. As such, further investigation into underlying mechanisms contributing to the extreme comorbidity between nicotine and opioid use are warranted. Nicotine administration significantly escalates self-administration of opioids and this increase in motivational efficacy persists despite contingent punishment of opioid consumption. Additionally, both systemic and intra-insular administration of nicotine produces a rightward shift in the dose-response function in both morphine-induced conditioned place preference and taste avoidance paradigms, particularly at higher doses (5-20 mg/kg). Two possible interpretations arise from these outcomes. One is that nicotine may specifically affect learning about the malaise-inducing effects of morphine thus facilitating acceptance of higher doses of morphine. Another interpretation is that it more generally reduces sensitivity to the interoceptive effects of morphine such that higher doses are needed to produce comparable effects in nicotine-treated, relative to control, rats. To further address these possibilities, we asked whether nicotine administration interfered with the ability to discriminate the morphine interoceptive state, irrespective of its hedonic evaluation, at a dose that is impacted by nicotine in avoidance conditioning paradigms. First, we demonstrated that systemic nicotine pretreatment significantly attenuates taste avoidance induced by a low dose of morphine (3 mg/kg). Next, we used an occasion setting paradigm with this same dose of morphine to test whether systemic nicotine pretreatment interferes with the ability to discriminate between saline- and morphine-induced interoceptive states. Within this task, nicotine had no effect on the ability to effectively discriminate between the interoceptive effects of morphine and saline. Collectively, these data suggest that nicotine may be specifically altering the overall hedonic assessment of morphine perhaps by interfering with learning about its deleterious consequences.
Collapse
Affiliation(s)
- A Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, United States of America
| | - E A Gilles-Thomas
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, United States of America
| | - S L McSain
- Program in Biological Sciences, Department of Biology, State University of New York, University at Buffalo, United States of America
| | - M S Paladino
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, Texas A&M University, United States of America
| | - K V Sontate
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, United States of America
| | - K B Ezenwa
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, United States of America
| | - S C Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, United States of America
| | - G C Loney
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, United States of America.
| |
Collapse
|
15
|
McNally GP, Jean-Richard-Dit-Bressel P, Millan EZ, Lawrence AJ. Pathways to the persistence of drug use despite its adverse consequences. Mol Psychiatry 2023; 28:2228-2237. [PMID: 36997610 PMCID: PMC10611585 DOI: 10.1038/s41380-023-02040-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
The persistence of drug taking despite its adverse consequences plays a central role in the presentation, diagnosis, and impacts of addiction. Eventual recognition and appraisal of these adverse consequences is central to decisions to reduce or cease use. However, the most appropriate ways of conceptualizing persistence in the face of adverse consequences remain unclear. Here we review evidence that there are at least three pathways to persistent use despite the negative consequences of that use. A cognitive pathway for recognition of adverse consequences, a motivational pathway for valuation of these consequences, and a behavioral pathway for responding to these adverse consequences. These pathways are dynamic, not linear, with multiple possible trajectories between them, and each is sufficient to produce persistence. We describe these pathways, their characteristics, brain cellular and circuit substrates, and we highlight their relevance to different pathways to self- and treatment-guided behavior change.
Collapse
Affiliation(s)
- Gavan P McNally
- School of Psychology, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | | | - E Zayra Millan
- School of Psychology, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
16
|
Mukherjee A, Paladino MS, McSain SL, Gilles-Thomas EA, Lichte DD, Camadine RD, Willock S, Sontate KV, Honeycutt SC, Loney GC. Escalation of alcohol intake is associated with regionally decreased insular cortex activity but not changes in taste quality. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:868-881. [PMID: 36941800 PMCID: PMC10289132 DOI: 10.1111/acer.15060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Intermittent access to ethanol drives persistent escalation of intake and rapid transition from moderate to compulsive-like drinking. Intermittent ethanol drinking may facilitate escalation of intake in part by altering aversion-sensitive neural substrates, such as the insular cortex (IC), thus driving greater approach toward stimuli previously treated as aversive. METHODS We conducted a series of experiments in rats to examine behavioral and neural responses associated with escalation of ethanol intake. First, taste reactivity analyses quantified the degree to which intermittent brief-access ethanol exposure (BAEE) alters sensitivity to the aversive properties of ethanol. Next, we determined whether pharmacological IC inhibition facilitated ethanol escalation. Finally, given that the IC is primary gustatory cortex, we employed psychophysical paradigms to assess whether escalation of ethanol intake induced changes in ethanol taste. These paradigms measured changes in sensitivity to the intensity of ethanol taste and whether escalation in intake shifts the salient taste quality of ethanol by measuring the degree to which the taste of ethanol generalized to a sucrose-like ("sweet") or quinine-like ("bitter") percept. RESULTS We found a near-complete loss of aversive oromotor responses in ethanol-exposed relative to ethanol-naïve rats. Additionally, we observed significantly lower expression of ethanol-induced c-Fos expression in the posterior IC in exposed rats relative to naïve rats. Inhibition of the IC resulted in a modest, but statistically reliable increase in the acceptance of higher ethanol concentrations in naïve rats. Finally, we found no evidence of changes in the psychophysical assessment of the taste of ethanol in exposed, relative to naïve, rats. CONCLUSIONS Our results demonstrate that neural activity within the IC adapts following repeated presentations of ethanol in a manner that correlates with reduced sensitivity to the aversive hedonic properties of ethanol. These data help to establish that alterations in IC activity may be driving exposure-induced escalations in ethanol intake.
Collapse
Affiliation(s)
- Ashmita Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Morgan S Paladino
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Shannon L McSain
- Program in Biological Sciences, Department of Biology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Elizabeth A Gilles-Thomas
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - David D Lichte
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Rece D Camadine
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Saidah Willock
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Kajol V Sontate
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Sarah C Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Gregory C Loney
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
17
|
Claypool SM, Reiner DJ, Behdin S, Orihuel J, Batista A, Caldwell KE, Chow JJ, Bossert JM, Rubio FJ, Hope BT, Shaham Y. Role of Piriform Cortex and Its Afferent Projections in Relapse to Fentanyl Seeking after Food Choice-Induced Voluntary Abstinence. J Neurosci 2023; 43:2597-2614. [PMID: 36898838 PMCID: PMC10082459 DOI: 10.1523/jneurosci.0034-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
We previously demonstrated a role of piriform cortex (Pir) in relapse to fentanyl seeking after food choice-induced voluntary abstinence. Here, we used this model to further study the role of Pir and its afferent projections in fentanyl relapse. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/day) and fentanyl (2.5 µg/kg/infusion, i.v.) for 12 d (6 h/day). We assessed relapse to fentanyl seeking after 12 voluntary abstinence sessions, achieved through a discrete choice procedure between fentanyl and palatable food (20 trials/session). We determined projection-specific activation of Pir afferents during fentanyl relapse with Fos plus the retrograde tracer cholera toxin B (injected into Pir). Fentanyl relapse was associated with increased Fos expression in anterior insular cortex (AI) and prelimbic cortex (PL) neurons projecting to Pir. We next used an anatomical disconnection procedure to determine the causal role of these two projections (AI→Pir and PL→Pir) in fentanyl relapse. Contralateral but not ipsilateral disconnection of AI→Pir projections decreased fentanyl relapse but not reacquisition of fentanyl self-administration. In contrast, contralateral but not ipsilateral disconnection of PL→Pir projections modestly decreased reacquisition but not relapse. Fluorescence-activated cell sorting and quantitative PCR data showed molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse. Finally, we found minimal or no sex differences in fentanyl self-administration, fentanyl versus food choice, and fentanyl relapse. Our results indicate that AI→Pir and PL→Pir projections play dissociable roles in nonreinforced relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after food choice-induced voluntary abstinence.SIGNIFICANCE STATEMENT We previously showed a role of Pir in fentanyl relapse after food choice-induced voluntary abstinence in rats, a procedure mimicking human abstinence or a significant reduction in drug self-administration because of the availability of alternative nondrug rewards. Here, we aimed to further characterize the role of Pir in fentanyl relapse by investigating the role of Pir afferent projections and analyzing molecular changes in relapse-activated Pir neurons. We identified dissociable roles of two Pir afferent projections (AI→Pir and PL→Pir) in relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after voluntary abstinence. We also characterized molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse.
Collapse
Affiliation(s)
- Sarah M Claypool
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - David J Reiner
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Sana Behdin
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Javier Orihuel
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Ashley Batista
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Kiera E Caldwell
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Jonathan J Chow
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Jennifer M Bossert
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - F Javier Rubio
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Bruce T Hope
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
18
|
Peters J, Trabace L, Di Giovanni G. Editorial: The role of alcohol in modifying behavior. Front Behav Neurosci 2023; 17:1175405. [PMID: 37064303 PMCID: PMC10098358 DOI: 10.3389/fnbeh.2023.1175405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Affiliation(s)
- Jamie Peters
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Jamie Peters
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
19
|
De Oliveira Sergio T, Frasier RM, Hopf FW. Animal models of compulsion alcohol drinking: Why we love quinine-resistant intake and what we learned from it. Front Psychiatry 2023; 14:1116901. [PMID: 37032937 PMCID: PMC10080007 DOI: 10.3389/fpsyt.2023.1116901] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Alcohol Use Disorder (AUD) ranks among the most prevalent mental disorders, extracting ~$250 billion/year in the US alone and producing myriad medical and social harms. Also, the number of deaths related to problem drinking has been increasing dramatically. Compulsive alcohol drinking, characterized by intake that persists despite negative consequences, can be particularly important and a major obstacle to treatment. With the number of people suffering from AUD increasing during the past years, there is a critical need to understand the neurobiology related to compulsive drives for alcohol, as well as the development of novel AUD pharmacological therapies. Here we discuss rodent compulsion-like alcohol drinking (CLAD) models, focusing on the two most widely used adverse stimuli to model rodent compulsion-like responding, quinine adulteration of alcohol and footshook-resistant alcohol intake. For both cases, the goal is to uncover behavior patterns and brain circuits that underlie drive for alcohol even in the face of negative consequences. We discuss caveats, benefits, and potential brain mechanisms, of models for consequence-resistant responding for alcohol more generally, and especially highlight some advantages of quinine-resistance over footshook-resistance. Further, since this review contributes to a Special issue focused on Molecular Aspects of Compulsive Drug Use, we discuss our new findings showing how the noradrenergic system is related to CLAD responding. In particular, we comment on the importance of α1 and β adrenergic receptors (ARs) as potential targets for treating AUD.
Collapse
|
20
|
Valyear MD, LeCocq MR, Brown A, Villaruel FR, Segal D, Chaudhri N. Learning processes in relapse to alcohol use: lessons from animal models. Psychopharmacology (Berl) 2023; 240:393-416. [PMID: 36264342 DOI: 10.1007/s00213-022-06254-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Alcohol use is reliably preceded by discrete and contextual stimuli which, through diverse learning processes, acquire the capacity to promote alcohol use and relapse to alcohol use. OBJECTIVE We review contemporary extinction, renewal, reinstatement, occasion setting, and sex differences research within a conditioning framework of relapse to alcohol use to inform the development of behavioural and pharmacological therapies. KEY FINDINGS Diverse learning processes and corresponding neurobiological substrates contribute to relapse to alcohol use. Results from animal models indicate that cortical, thalamic, accumbal, hypothalamic, mesolimbic, glutamatergic, opioidergic, and dopaminergic circuitries contribute to alcohol relapse through separable learning processes. Behavioural therapies could be improved by increasing the endurance and generalizability of extinction learning and should incorporate whether discrete cues and contexts influence behaviour through direct excitatory conditioning or occasion setting mechanisms. The types of learning processes that most effectively influence responding for alcohol differ in female and male rats. CONCLUSION Sophisticated conditioning experiments suggest that diverse learning processes are mediated by distinct neural circuits and contribute to relapse to alcohol use. These experiments also suggest that gender-specific behavioural and pharmacological interventions are a way towards efficacious therapies to prevent relapse to alcohol use.
Collapse
Affiliation(s)
- Milan D Valyear
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada. .,Department of Psychology, McGill University, 1205 Ave. Dr. Penfield, Room N8/5, Montréal, QC, H3A 1B1, Canada.
| | - Mandy R LeCocq
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Alexa Brown
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Franz R Villaruel
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Diana Segal
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| |
Collapse
|
21
|
Starski P, Maulucci D, Mead H, Hopf F. Adaptation of the 5-choice serial reaction time task to measure engagement and motivation for alcohol in mice. Front Behav Neurosci 2022; 16:968359. [PMID: 36187376 PMCID: PMC9522902 DOI: 10.3389/fnbeh.2022.968359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder (AUD) is related to excessive binge alcohol consumption, and there is considerable interest in associated factors that promote intake. AUD has many behavioral facets that enhance inflexibility toward alcohol consumption, including impulsivity, motivation, and attention. Thus, it is important to understand how these factors might promote responding for alcohol and can change after protracted alcohol intake. Previous studies have explored such behavioral factors using responding for sugar in the 5-Choice Serial Reaction Time Task (5-CSRTT), which allows careful separation of impulsivity, attention, and motivation. Importantly, our studies uniquely focus on using alcohol as the reward throughout training and testing sessions, which is critical for beginning to answer central questions relating to behavioral engagement for alcohol. Alcohol preference and consumption in male C57BL/6 mice were determined from the first 9 sessions of 2-h alcohol drinking which were interspersed among 5-CSRTT training. Interestingly, alcohol preference but not consumption level significantly predicted 5-CSRTT responding for alcohol. In contrast, responding for strawberry milk was not related to alcohol preference. Moreover, high-preference (HP) mice made more correct alcohol-directed responses than low-preference (LP) during the first half of each session and had more longer reward latencies in the second half, with no differences when performing for strawberry milk, suggesting that HP motivation for alcohol may reflect “front-loading.” Mice were then exposed to an Intermittent Access to alcohol paradigm and retested in 5-CSRTT. While both HP and LP mice increased 5-CSRTT responding for alcohol, but not strawberry milk, LP performance rose to HP levels, with a greater change in correct and premature responding in LP versus HP. Overall, this study provides three significant findings: (1) alcohol was a suitable reward in the 5-CSRTT, allowing dissection of impulsivity, attention, and motivation in relation to alcohol drinking, (2) alcohol preference was a more sensitive indicator of mouse 5-CSRTT performance than consumption, and (3) intermittent alcohol drinking promoted behavioral engagement with alcohol, especially for individuals with less initial engagement.
Collapse
Affiliation(s)
- Phillip Starski
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Danielle Maulucci
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hunter Mead
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, United States
| | - Frederic Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Frederic Hopf,
| |
Collapse
|
22
|
Degiorgis L, Arefin TM, Ben-Hamida S, Noblet V, Antal C, Bienert T, Reisert M, von Elverfeldt D, Kieffer BL, Harsan LA. Translational Structural and Functional Signatures of Chronic Alcohol Effects in Mice. Biol Psychiatry 2022; 91:1039-1050. [PMID: 35654559 DOI: 10.1016/j.biopsych.2022.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alcohol acts as an addictive substance that may lead to alcohol use disorder. In humans, magnetic resonance imaging showed diverse structural and functional brain alterations associated with this complex pathology. Single magnetic resonance imaging modalities are used mostly but are insufficient to portray and understand the broad neuroadaptations to alcohol. Here, we combined structural and functional magnetic resonance imaging and connectome mapping in mice to establish brain-wide fingerprints of alcohol effects with translatable potential. METHODS Mice underwent a chronic intermittent alcohol drinking protocol for 6 weeks before being imaged under medetomidine anesthesia. We performed open-ended multivariate analysis of structural data and functional connectivity mapping on the same subjects. RESULTS Structural analysis showed alcohol effects for the prefrontal cortex/anterior insula, hippocampus, and somatosensory cortex. Integration with microglia histology revealed distinct alcohol signatures, suggestive of advanced (prefrontal cortex/anterior insula, somatosensory cortex) and early (hippocampus) inflammation. Functional analysis showed major alterations of insula, ventral tegmental area, and retrosplenial cortex connectivity, impacting communication patterns for salience (insula), reward (ventral tegmental area), and default mode (retrosplenial cortex) networks. The insula appeared as a most sensitive brain center across structural and functional analyses. CONCLUSIONS This study demonstrates alcohol effects in mice, which possibly underlie lower top-down control and impaired hedonic balance documented at the behavioral level, and aligns with neuroimaging findings in humans despite the potential limitation induced by medetomidine sedation. This study paves the way to identify further biomarkers and to probe neurobiological mechanisms of alcohol effects using genetic and pharmacological manipulations in mouse models of alcohol drinking and dependence.
Collapse
Affiliation(s)
- Laetitia Degiorgis
- Integrative Multimodal Imaging in Healthcare team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Tanzil Mahmud Arefin
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York
| | - Sami Ben-Hamida
- INSERM U1114, University Hospital of Strasbourg, Strasbourg, France; INSERM U1247, research group on alcohol and pharmacodependance (GRAP), University of Picardie Jules-Verne, Amiens, France
| | - Vincent Noblet
- Images, Learning, Geometry and Statistics team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Cristina Antal
- Integrative Multimodal Imaging in Healthcare team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France; Faculty of Medicine, Histology Institute and Unité Fonctionnelle de Foetopathologie, University Hospital of Strasbourg, Strasbourg, France
| | - Thomas Bienert
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | | | - Laura-Adela Harsan
- Integrative Multimodal Imaging in Healthcare team, UMR 7357, Laboratory of Engineering, Informatics and Imaging (ICube); Department of Psychiatry, University of Strasbourg, Strasbourg, France; Department of Biophysics and Nuclear Medicine, University Hospital of Strasbourg, Strasbourg, France.
| |
Collapse
|
23
|
Ghareh H, Alonso-Lozares I, Schetters D, Herman RJ, Heistek TS, Van Mourik Y, Jean-Richard-dit-Bressel P, Zernig G, Mansvelder HD, De Vries TJ, Marchant NJ. Role of anterior insula cortex in context-induced relapse of nicotine-seeking. eLife 2022; 11:e75609. [PMID: 35536612 PMCID: PMC9119676 DOI: 10.7554/elife.75609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Tobacco use is the leading cause of preventable death worldwide, and relapse during abstinence remains the critical barrier to successful treatment of tobacco addiction. During abstinence, environmental contexts associated with nicotine use can induce craving and contribute to relapse. The insular cortex (IC) is thought to be a critical substrate of nicotine addiction and relapse. However, its specific role in context-induced relapse of nicotine-seeking is not fully known. In this study, we report a novel rodent model of context-induced relapse to nicotine-seeking after punishment-imposed abstinence, which models self-imposed abstinence through increasing negative consequences of excessive drug use. Using the neuronal activity marker Fos we find that the anterior (aIC), but not the middle or posterior IC, shows increased activity during context-induced relapse. Combining Fos with retrograde labeling of aIC inputs, we show projections to aIC from contralateral aIC and basolateral amygdala exhibit increased activity during context-induced relapse. Next, we used fiber photometry in aIC and observed phasic increases in aIC activity around nicotine-seeking responses during self-administration, punishment, and the context-induced relapse tests. Next, we used chemogenetic inhibition in both male and female rats to determine whether activity in aIC is necessary for context-induced relapse. We found that chemogenetic inhibition of aIC decreased context-induced nicotine-seeking after either punishment- or extinction-imposed abstinence. These findings highlight the critical role nicotine-associated contexts play in promoting relapse, and they show that aIC activity is critical for this context-induced relapse following both punishment and extinction-imposed abstinence.
Collapse
Affiliation(s)
- Hussein Ghareh
- Department of Pharmacology, Medical University of InnsbruckInnsbruckAustria
| | - Isis Alonso-Lozares
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy & NeurosciencesAmsterdamNetherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and AttentionAmsterdamNetherlands
| | - Dustin Schetters
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy & NeurosciencesAmsterdamNetherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and AttentionAmsterdamNetherlands
| | - Rae J Herman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy & NeurosciencesAmsterdamNetherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and AttentionAmsterdamNetherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije UniversiteitAmsterdamNetherlands
| | - Yvar Van Mourik
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy & NeurosciencesAmsterdamNetherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and AttentionAmsterdamNetherlands
| | | | - Gerald Zernig
- Department of Pharmacology, Medical University of InnsbruckInnsbruckAustria
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije UniversiteitAmsterdamNetherlands
| | - Taco J De Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy & NeurosciencesAmsterdamNetherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and AttentionAmsterdamNetherlands
| | - Nathan J Marchant
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy & NeurosciencesAmsterdamNetherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and AttentionAmsterdamNetherlands
| |
Collapse
|
24
|
Jin M, Nguyen JD, Weber SJ, Mejias-Aponte CA, Madangopal R, Golden SA. SMART: An Open-Source Extension of WholeBrain for Intact Mouse Brain Registration and Segmentation. eNeuro 2022; 9:ENEURO.0482-21.2022. [PMID: 35396258 PMCID: PMC9070730 DOI: 10.1523/eneuro.0482-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Mapping immediate early gene (IEG) expression across intact mouse brains allows for unbiased identification of brain-wide activity patterns underlying complex behaviors. Accurate registration of sample brains to a common anatomic reference is critical for precise assignment of IEG-positive ("active") neurons to known brain regions of interest (ROIs). While existing automated voxel-based registration methods provide a high-throughput solution, they require substantial computing power, can be difficult to implement and fail when brains are damaged or only partially imaged. Additionally, it is challenging to cross-validate these approaches or compare them to any preexisting literature based on serial coronal sectioning. Here, we present the open-source R package SMART (Semi-Manual Alignment to Reference Templates) that extends the WholeBrain R package framework to automated segmentation and semi-automated registration of intact mouse brain light-sheet fluorescence microscopy (LSFM) datasets. The SMART package was created for novice programmers and introduces a streamlined pipeline for aligning, registering, and segmenting LSFM volumetric datasets across the anterior-posterior (AP) axis, using a simple "choice game" and interactive menus. SMART provides the flexibility to register whole brains, partial brains or discrete user-chosen images, and is fully compatible with traditional sectioned coronal slice-based analyses. We demonstrate SMART's core functions using example datasets and provide step-by-step video tutorials for installation and implementation of the package. We also present a modified iDISCO+ tissue clearing procedure for uniform immunohistochemical labeling of the activity marker Fos across intact mouse brains. The SMART pipeline, in conjunction with the modified iDISCO+ Fos procedure, is ideally suited for examination and orthogonal cross-validation of brain-wide neuronal activation datasets.
Collapse
Affiliation(s)
- Michelle Jin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Joseph D Nguyen
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Sophia J Weber
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Carlos A Mejias-Aponte
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Rajtarun Madangopal
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle 98195, WA
| |
Collapse
|
25
|
Honeycutt SC, Paladino MS, Camadine RD, Mukherjee A, Loney GC. Acute nicotine treatment enhances compulsive-like remifentanil self-administration that persists despite contextual punishment. Addict Biol 2022; 27:e13170. [PMID: 35470562 PMCID: PMC9175303 DOI: 10.1111/adb.13170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
Abstract
Opioid use disorder (OUD) and opioid-related deaths remain a significant public health crisis having reached epidemic status globally. OUDs are defined as chronic, relapsing conditions often characterized by compulsive drug seeking despite the deleterious consequences of drug taking. The use of nicotine-containing products has been linked to increased likelihood of prescription opioid misuse, and there exists a significant comorbidity between habitual nicotine use and opioid dependence. In rodent models, nicotine administration nearly doubles the amount of opioids taken in intravenous self-administration paradigms. Here, we examined the effect of acute systemic nicotine administration in male rats on responding for the synthetic opioid remifentanil (RMF) in a contextual punishment paradigm using either an exteroceptive punisher (foot-shock) or an interoceptive punisher (histamine). Nicotine administration, relative to saline, increased RMF intake in both unpunished and punished contexts, regardless of form of punishment, and resulted in significantly higher motivation to obtain RMF in the previously punished context, as measured by progressive ratio breakpoint. Additionally, regardless of context, nicotine-treated rats were slower to extinguish RMF responding following drug removal and displayed higher levels of cue-induced reinstatement than saline-treated controls. Furthermore, these data support that, compared with histamine adulteration, contingent foot-shock is a more potent form of punishment, as histamine punishment failed to support contextual discrimination between the unpunished and punished contexts. In contrast to RMF administration, augmentation of responding for an audiovisual cue by nicotine pretreatment was lost following contextual punishment. In conclusion, acute nicotine administration in adult male rats significantly enhances compulsive-like responding for RMF that persists despite contingent punishment of drug-directed responding.
Collapse
Affiliation(s)
- Sarah C. Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology State University of New York, University at Buffalo Buffalo New York USA
| | - Morgan S. Paladino
- Program in Behavioral Neuroscience, Department of Psychology State University of New York, University at Buffalo Buffalo New York USA
| | - Rece D. Camadine
- Program in Behavioral Neuroscience, Department of Psychology State University of New York, University at Buffalo Buffalo New York USA
| | - Ashmita Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology State University of New York, University at Buffalo Buffalo New York USA
| | - Gregory C. Loney
- Program in Behavioral Neuroscience, Department of Psychology State University of New York, University at Buffalo Buffalo New York USA
| |
Collapse
|
26
|
Sommer WH, Canals S, Bifone A, Heilig M, Hyytiä P. From a systems view to spotting a hidden island: A narrative review implicating insula function in alcoholism. Neuropharmacology 2022; 209:108989. [PMID: 35217032 DOI: 10.1016/j.neuropharm.2022.108989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
Abstract
Excessive use of alcohol promotes the development of alcohol addiction, but the understanding of how alcohol-induced brain alterations lead to addiction remains limited. To further this understanding, we adopted an unbiased discovery strategy based on the principles of systems medicine. We used functional magnetic resonance imaging data from patients and animal models of alcohol addiction-like behaviors, and developed mathematical models of the 'relapse-prone' network states to identify brain sites and functional networks that can be selectively targeted by therapeutic interventions. Our systems level, non-local, and largely unbiased analyses converged on a few well-defined brain regions, with the insula emerging as one of the most consistent finding across studies. In proof-of-concept experiments we were able to demonstrate that it is possible to guide network dynamics towards increased resilience in animals but an initial translation into a clinical trial targeting the insula failed. Here, in a narrative review, we summarize the key experiments, methodological developments and knowledge gained from this completed round of a discovery cycle moving from identification of 'relapse-prone' network states in humans and animals to target validation and intervention trial. Future concerted efforts are necessary to gain a deeper understanding of insula function a in a state-dependent, circuit-specific and cell population perspective, and to develop the means for insula-directed interventions, before therapeutic targeting of this structure may become possible.
Collapse
Affiliation(s)
- Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Bethania Hospital for Psychiatry, Psychosomatics, and Psychotherapy, Greifswald, Germany.
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Spain
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Torino, Italy
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University and Dept. of Psychiatry, Linköping Univ. Hospital, S-581 85, Linköping, Sweden
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
27
|
Conti AA, Baldacchino AM. Chronic tobacco smoking, impaired reward-based decision-making, and role of insular cortex: A comparison between early-onset smokers and late-onset smokers. Front Psychiatry 2022; 13:939707. [PMID: 36090372 PMCID: PMC9459116 DOI: 10.3389/fpsyt.2022.939707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The literature suggests that tobacco smoking may have a neurotoxic effect on the developing adolescent brain. Particularly, it may impair the decision-making process of early-onset smokers (<16 years), by rendering them more prone to impulsive and risky choices toward rewards, and therefore more prone to smoking relapses, in comparison to late-onset smokers (≥16 years). However, no study has ever investigated reward-based decision-making and structural brain differences between early-onset smokers and late-onset smokers. METHODS Computerized measures of reward-based decision-making [Cambridge Gambling Task (CGT); 5-trials adjusting delay discounting task (ADT-5)] were administered to 11 early-onset smokers (mean age at regular smoking initiation = 13.2 years), 17 late-onset smokers (mean age at regular smoking initiation = 18.0 years), and 24 non-smoker controls. Voxel-based morphometry (VBM) was utilized to investigate the gray matter (GM) and white matter (WM) volume differences in fronto-cortical and striatal brain regions between early-onset smokers, late-onset smokers, and non-smokers. RESULTS Early-onset smokers displayed a riskier decision-making behavior in comparison to non-smokers as assessed by the CGT (p < 0.01, Cohen's f = 0.48). However, no significant differences (p > 0.05) in reward-based decision-making were detected between early-onset smokers and late-onset smokers. VBM results revealed early-onset smokers to present lower GM volume in the bilateral anterior insular cortex (AI) in comparison to late-onset smokers and lower WM volume in the right AI in comparison to late-onset smokers. CONCLUSION Impairments in reward-based decision-making may not be affected by tobacco smoking initiation during early adolescence. Instead, lower GM and WM volume in the AI of early-onset smokers may underline a vulnerability to develop compulsive tobacco seeking and smoking behavior during adulthood.
Collapse
Affiliation(s)
- Aldo Alberto Conti
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Alexander Mario Baldacchino
- Division of Population and Behavioral Science, University of St Andrews School of Medicine, St Andrews, United Kingdom
| |
Collapse
|
28
|
Reiner DJ, Shaham Y. Recent findings on the role of sensory and interoceptive-related circuits in relapse to drug seeking. Neuropsychopharmacology 2022; 47:373-374. [PMID: 34211105 PMCID: PMC8617027 DOI: 10.1038/s41386-021-01081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- David J. Reiner
- grid.280785.00000 0004 0533 7286Postdoctoral Research Associate Training Fellow, NIGMS, Bethesda, MD USA ,grid.420090.f0000 0004 0533 7147Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD USA
| | - Yavin Shaham
- grid.420090.f0000 0004 0533 7147Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD USA
| |
Collapse
|
29
|
Walker LC, Campbell EJ, Huckstep KL, Chen NA, Langmead CJ, Lawrence AJ. M 1 muscarinic receptor activation decreases alcohol consumption via a reduction in consummatory behavior. Pharmacol Res Perspect 2021; 10:e00907. [PMID: 34962108 PMCID: PMC8929368 DOI: 10.1002/prp2.907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/21/2021] [Indexed: 11/07/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) have been shown to mediate alcohol consumption and seeking. Both M4 and M5 mAChRs have been highlighted as potential novel treatment targets for alcohol use disorders (AUD). Similarly, M1 mAChRs are expressed throughout reward circuitry, and their signaling has been implicated in cocaine consumption. However, whether the same effects are seen for alcohol consumption, or whether natural reward intake is inadvertently impacted is still unknown. To determine the role of M1 mAChRs in alcohol consumption, we tested operant self-administration of alcohol under both fixed ratio (FR3) and progressive ratio (PR3-4) schedules. Enhancing M1 mAChR signaling (via the M1 PAM-Agonist PF-06767832, 1 mg/kg, i.p.) reduced operant alcohol consumption on a fixed schedule but had no effect on motivation to acquire alcohol. To determine whether these actions were specific to alcohol, we examined the effects of M1 enhancement on natural reward (sucrose) self-administration. Systemic administration of PF-06767832 (1 mg/kg, i.p.) also reduced operant sucrose self-administration, suggesting the actions of the M1 receptor may be non-selective across drug and natural rewards. Finally, to understand whether this reduction extended to natural consummatory behaviors, we assessed home cage standard chow and water consumption. M1 enhancement via systemic PF-06767832 administration reduced food and water consumption. Together our results suggest the M1 PAM-agonist, PF-06767832, non-specifically reduces consummatory behaviors that are not associated with motivational strength for the reward. These data highlight the need to further characterize M1 agonists, PAMs, and PAM-agonists, which may have varying degrees of utility in the treatment of neuropsychiatric disorders including AUD.
Collapse
Affiliation(s)
- Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Erin J. Campbell
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Kate L. Huckstep
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Nicola A. Chen
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Christopher J. Langmead
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| |
Collapse
|
30
|
Wiśniewski P, Maurage P, Jakubczyk A, Trucco EM, Suszek H, Kopera M. Alcohol use and interoception - A narrative review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110397. [PMID: 34224795 PMCID: PMC8380667 DOI: 10.1016/j.pnpbp.2021.110397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 01/29/2023]
Abstract
Interoception, defined as the ability to perceive and interpret body signals, may play an important role in alcohol use disorder (AUD). Earlier studies suggested an association between interoception impairment and known risk factors for AUD (e.g., alexithymia, emotion dysregulation, impulsivity, pain). Neurobiological studies show that the neurotoxicity of alcohol affects various elements of the interoceptive system (especially the insula) at structural and functional levels, with differential short/long term impacts. Conversely, primary interoceptive impairments may promote alcohol consumption and foster the evolution towards addiction. Despite convincing evidence demonstrating that interoception impairment may be an important contributor to the development and course of AUD, only a few studies directly evaluated interoceptive abilities in AUD. The research shows that interoceptive accuracy, the objective component of interoception, is lower in AUD individuals, and is correlated with craving and emotion dysregulation. Interoceptive sensibility is in turn higher in AUD individuals compared to healthy controls. Moreover, there is evidence that therapy focused on improving the ability to sense signals from the body in addiction treatment is effective. However, important methodological limitations in interoceptive measures persist, and it is therefore necessary to further investigate the associations between interoception and AUD.
Collapse
Affiliation(s)
- Paweł Wiśniewski
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland.
| | - Pierre Maurage
- Louvain Experimental Psychopathology research group (LEP), Psychological Sciences Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Andrzej Jakubczyk
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Elisa M Trucco
- Department of Psychology, Center for Children and Families, Florida International University, Miami, FL, USA; Department of Psychiatry, Addiction Center, University of Michigan, Ann Arbor, MI, USA
| | - Hubert Suszek
- Department of Psychology, University of Warsaw, Warsaw, Poland
| | - Maciej Kopera
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
31
|
Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology 2021; 198:108765. [PMID: 34461066 DOI: 10.1016/j.neuropharm.2021.108765] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Insula function is considered critical for many motivated behaviors, with proposed functions ranging from attention, behavioral control, emotional regulation, goal-directed and aversion-resistant responding. Further, the insula is implicated in many neuropsychiatric conditions including substance abuse. More recently, multiple insula subregions have been distinguished based on anatomy, connectivity, and functional contributions. Generally, posterior insula is thought to encode more somatosensory inputs, which integrate with limbic/emotional information in middle insula, that in turn integrate with cognitive processes in anterior insula. Together, these regions provide rapid interoceptive information about the current or predicted situation, facilitating autonomic recruitment and quick, flexible action. Here, we seek to create a robust foundation from which to understand potential subregion differences, and provide direction for future studies. We address subregion differences across humans and rodents, so that the latter's mechanistic interventions can best mesh with clinical relevance of human conditions. We first consider the insula's suggested roles in humans, then compare subregional studies, and finally describe rodent work. One primary goal is to encourage precision in describing insula subregions, since imprecision (e.g. including both posterior and anterior studies when describing insula work) does a disservice to a larger understanding of insula contributions. Additionally, we note that specific task details can greatly impact recruitment of various subregions, requiring care and nuance in design and interpretation of studies. Nonetheless, the central ethological importance of the insula makes continued research to uncover mechanistic, mood, and behavioral contributions of paramount importance and interest. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
32
|
De Oliveira Sergio T, Lei K, Kwok C, Ghotra S, Wegner SA, Walsh M, Waal J, Darevsky D, Hopf FW. The role of anterior insula-brainstem projections and alpha-1 noradrenergic receptors for compulsion-like and alcohol-only drinking. Neuropsychopharmacology 2021; 46:1918-1926. [PMID: 34168279 PMCID: PMC8429444 DOI: 10.1038/s41386-021-01071-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
Compulsion-like alcohol drinking (CLAD), where consumption continues despite negative consequences, is a major obstacle to treating alcohol use disorder. The locus coeruleus area in the brainstem and norepinephrine receptor (NER) signaling in forebrain cortical regions have been implicated in adaptive responding under stress, which is conceptually similar to compulsion-like responding (adaptive responding despite the presence of stress or conflict). Thus, we examined whether anterior insula (aINS)-to-brainstem connections and alpha-1 NERs regulated compulsion-like intake and alcohol-only drinking (AOD). Halorhodopsin inhibition of aINS-brainstem significantly reduced CLAD, with no effect on alcohol-only or saccharin intake, suggesting a specific aINS-brainstem role in aversion-resistant drinking. In contrast, prazosin inhibition of alpha-1 NERs systemically reduced both CLAD and AOD. Similar to systemic inhibition, intra-aINS alpha-1-NER antagonism reduced both CLAD and AOD. Global aINS inhibition with GABAR agonists also strongly reduced both CLAD and AOD, without impacting saccharin intake or locomotion, while aINS inhibition of calcium-permeable AMPARs (with NASPM) reduced CLAD without impacting AOD. Finally, prazosin inhibition of CLAD and AOD was not correlated with each other, systemically or within aINS, suggesting the possibility that different aINS pathways regulate CLAD versus AOD, which will require further study to definitively address. Together, our results provide important new information showing that some aINS pathways (aINS-brainstem and NASPM-sensitive) specifically regulate compulsion-like alcohol consumption, while aINS more generally may contain parallel pathways promoting CLAD versus AOD. These findings also support the importance of the adaptive stress response system for multiple forms of alcohol drinking.
Collapse
Affiliation(s)
- Thatiane De Oliveira Sergio
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Kelly Lei
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Claudina Kwok
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Shahbaj Ghotra
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Scott A Wegner
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Margaret Walsh
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Jaclyn Waal
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - David Darevsky
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Frederic W Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
33
|
McCool BA. Ethanol modulation of cortico-basolateral amygdala circuits: Neurophysiology and behavior. Neuropharmacology 2021; 197:108750. [PMID: 34371080 DOI: 10.1016/j.neuropharm.2021.108750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
This review highlights literature relating the anatomy, physiology, and behavioral contributions by projections between rodent prefrontal cortical areas and the basolateral amygdala. These projections are robustly modulated by both environmental experience and exposure to drugs of abuse including ethanol. Recent literature relating optogenetic and chemogenetic dissection of these circuits within behavior both compliments and occasionally challenges roles defined by more traditional pharmacological or lesion-based approaches. In particular, cortico-amygdala circuits help control both aversive and reward-seeking. Exposure to pathology-producing environments or abused drugs dysregulates the relative 'balance' of these outcomes. Modern circuit-based approaches have also shown that overlapping populations of neurons within a given brain region frequently govern both aversion and reward-seeking. In addition, these circuits often dramatically influence 'local' cortical or basolateral amygdala excitatory or inhibitory circuits. Our understanding of these neurobiological processes, particularly in relation to ethanol research, has just begun and represents a significant opportunity.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
34
|
Fredriksson I, Venniro M, Reiner DJ, Chow JJ, Bossert JM, Shaham Y. Animal Models of Drug Relapse and Craving after Voluntary Abstinence: A Review. Pharmacol Rev 2021; 73:1050-1083. [PMID: 34257149 PMCID: PMC11060480 DOI: 10.1124/pharmrev.120.000191] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Relapse to drug use during abstinence is a defining feature of addiction. During the last several decades, this clinical scenario has been studied at the preclinical level using classic relapse/reinstatement models in which drug seeking is assessed after experimenter-imposed home-cage forced abstinence or extinction of the drug-reinforced responding in the self-administration chambers. To date, however, results from studies using rat relapse/reinstatement models have yet to result in Food and Drug Administration-approved medications for relapse prevention. The reasons for this state of affairs are complex and multifaceted, but one potential reason is that, in humans, abstinence is often self-imposed or voluntary and occurs either because the negative consequences of drug use outweigh the drug's rewarding effects or because of the availability of nondrug alternative rewards that are chosen over the drug. Based on these considerations, we and others have recently developed rat models of relapse after voluntary abstinence, achieved either by introducing adverse consequences to drug taking (punishment) or seeking (electric barrier) or by providing mutually exclusive choices between the self-administered drug and nondrug rewards (palatable food or social interaction). In this review, we provide an overview of these translationally relevant relapse models and discuss recent neuropharmacological findings from studies using these models. We also discuss sex as a biological variable, future directions, and clinical implications of results from relapse studies using voluntary abstinence models. Our main conclusion is that the neuropharmacological mechanisms controlling relapse to drug seeking after voluntary abstinence are often different from the mechanisms controlling relapse after home-cage forced abstinence or reinstatement after extinction. SIGNIFICANCE STATEMENT: This review describes recently developed rat models of relapse after voluntary abstinence, achieved either by introducing adverse consequences to drug taking or seeking or by providing mutually exclusive choices between the self-administered drug and nondrug rewards. This review discusses recent neuropharmacological findings from studies using these models and discusses future directions and clinical implications.
Collapse
Affiliation(s)
- Ida Fredriksson
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Marco Venniro
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - David J Reiner
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Jonathan J Chow
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Jennifer M Bossert
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Baltimore, Maryland (I.F., M.V., D.J.R., J.J.C., J.M.B., Y.S.), and Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| |
Collapse
|
35
|
Walker LC, Huckstep KL, Chen NA, Hand LJ, Lindsley CW, Langmead CJ, Lawrence AJ. Muscarinic M 4 and M 5 receptors in the ventral subiculum differentially modulate alcohol seeking versus consumption in male alcohol-preferring rats. Br J Pharmacol 2021; 178:3730-3746. [PMID: 33942300 DOI: 10.1111/bph.15513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Muscarinic acetylcholine receptors mediate alcohol consumption and seeking in rats. While M4 and M5 receptors have recently been implicated to mediate these behaviours in the striatum, their role in other brain regions remain unknown. The ventral tegmental area (VTA) and ventral subiculum (vSub) both densely express M4 and M5 receptors and modulate alcohol-seeking, via their projections to the nucleus accumbens shell (AcbSh). EXPERIMENTAL APPROACH In Indiana alcohol-preferring (iP) male rats, we examined Chrm4 (M4 ) and Chrm5 (M5 ) expression in the VTA and vSub following long-term alcohol consumption and abstinence using RT-qPCR. Using a combination of retrograde tracing and RNAscope, we examined the localisation of Chrm4 and Chrm5 on vSub cells that project to the AcbSh. Using selective allosteric modulators, we examined the functional role of M4 and M5 receptors within the vSub in alcohol consumption, context-induced alcohol-seeking, locomotor activity, and food/water consumption. KEY RESULTS Long-term alcohol and abstinence dysregulated the expression of genes for muscarinic receptors in the vSub, not in the VTA. Chrm4 was down-regulated following long-term alcohol and abstinence, while Chrm5 was up-regulated following long-term alcohol consumption. Consistent with these data, a positive allosteric modulator (VU0467154) of intra-vSub M4 receptors reduced context-induced alcohol-seeking, but not motivation for alcohol self-administration, while M5 receptor negative allosteric modulator (ML375) reduced initial motivation for alcohol self-administration, but not context-induced alcohol-seeking. CONCLUSION AND IMPLICATIONS Collectively, our data highlight alcohol-induced cholinergic dysregulation in the vSub and distinct roles for M4 and M5 receptor allosteric modulators to reduce alcohol consumption or seeking.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Kate L Huckstep
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Nicola A Chen
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Lexi J Hand
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Nall RW, Heinsbroek JA, Nentwig TB, Kalivas PW, Bobadilla AC. Circuit selectivity in drug versus natural reward seeking behaviors. J Neurochem 2021; 157:1450-1472. [PMID: 33420731 PMCID: PMC8178159 DOI: 10.1111/jnc.15297] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/23/2022]
Abstract
Substance use disorder (SUD) is characterized, in part by behavior biased toward drug use and away from natural sources of reward (e.g., social interaction, food, sex). The neurobiological underpinnings of SUDs reveal distinct brain regions where neuronal activity is necessary for the manifestation of SUD-characteristic behaviors. Studies that specifically examine how these regions are involved in behaviors motivated by drug versus natural reward allow determinations of which regions are necessary for regulating seeking of both reward types, and appraisals of novel SUD therapies for off-target effects on behaviors motivated by natural reward. Here, we evaluate studies directly comparing regulatory roles for specific brain regions in drug versus natural reward. While it is clear that many regions drive behaviors motivated by all reward types, based on the literature reviewed we propose a set of interconnected regions that become necessary for behaviors motivated by drug, but not natural rewards. The circuitry is selectively necessary for drug seeking includes an Action/Reward subcircuit, comprising nucleus accumbens, ventral pallidum, and ventral tegmental area, a Prefrontal subcircuit comprising prelimbic, infralimbic, and insular cortices, a Stress subcircuit comprising the central nucleus of the amygdala and the bed nucleus of the stria terminalis, and a Diencephalon circuit including lateral hypothalamus. Evidence was mixed for nucleus accumbens shell, insular cortex, and ventral pallidum. Studies for all other brain nuclei reviewed supported a necessary role in regulating both drug and natural reward seeking. Finally, we discuss emerging strategies to further disambiguate the necessity of brain regions in drug- versus natural reward-associated behaviors.
Collapse
Affiliation(s)
- Rusty W. Nall
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Todd B. Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- These authors share senior authorship
| | - Ana-Clara Bobadilla
- School of Pharmacy, University of Wyoming, Laramie, WY, USA
- These authors share senior authorship
| |
Collapse
|
37
|
Pribut HJ, Vázquez D, Brockett AT, Wei AD, Tennyson SS, Roesch MR. Prior Cocaine Exposure Increases Firing to Immediate Reward While Attenuating Cue and Context Signals Related to Reward Value in the Insula. J Neurosci 2021; 41:4667-4677. [PMID: 33849944 PMCID: PMC8260251 DOI: 10.1523/jneurosci.3025-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/20/2023] Open
Abstract
The insula contributes to behavioral control and is disrupted by substance abuse, yet we know little about the neural signals underlying these functions or how they are disrupted after chronic drug self-administration. Here, male and female rats self-administered either cocaine (experimental group) or sucrose (control) for 12 consecutive days. After a 1 month withdrawal period, we recorded from insula while rats performed a previously learned reward-guided decision-making task. Cocaine-exposed rats were more sensitive to value manipulations and were faster to respond. These behavioral changes were accompanied by elevated counts of neurons in the insula that increased firing to reward. These neurons also fired more strongly at the start of long-delay trials, when a more immediate reward would be expected, and fired less strongly in anticipation of the actual delivery of delayed rewards. Although reward-related firing to immediate reward was enhanced after cocaine self-administration, reward-predicting cue and context signals were attenuated. In addition to revealing novel firing patterns unique to insula, our data suggest changes in such neural activity likely contribute to impaired decision making observed after drug use.SIGNIFICANCE STATEMENT The insula plays a clear role in drug addiction and drug-induced impairments of decision making, yet there is little understanding of its underlying neural signals. We found that chronic cocaine self-administration reduces cue and context encoding in insula while enhancing signals related to immediate reward. These changes in neural activity likely contribute to impaired decision making and impulsivity observed after drug use.
Collapse
Affiliation(s)
- Heather J Pribut
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Adam T Brockett
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Alice D Wei
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Stephen S Tennyson
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
38
|
Sutton GM, Nist AN, Nall RW, Browning KO, Shahan TA. Resurgence of alcohol seeking following abstinence induced by punishment in male and female rats. Behav Brain Res 2021; 410:113345. [PMID: 33964355 DOI: 10.1016/j.bbr.2021.113345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 01/06/2023]
Abstract
To better approximate the human condition, animal models of relapse to drug and alcohol seeking have increasingly employed negative consequences to generate abstinence. Here we report the first demonstration of relapse to punishment-suppressed alcohol seeking induced by loss of non-drug reward (i.e., resurgence). We also report the first examination of potential sex differences in any form of relapse to alcohol seeking following suppression by punishment. Male and female rats first pressed a lever for 20 % oral alcohol. Next, lever pressing for one group continued to produce alcohol, but also produced occasional footshock. For another group, lever pressing similarly produced alcohol and occasional footshock, and a nose-poke response produced alternative non-drug reward (i.e., food). Males showed similar suppression of alcohol seeking by punishment alone and punishment + alternative non-drug reward, whereas females showed less suppression by punishment alone. Finally, when alternative reinforcement and punishment were suspended, resurgence occurred for both sexes in the group that previously had access to non-drug reward. Exposure to and then removal of punishment alone did not produce relapse for males, but it did for females. These results suggest that loss of alternative non-drug reward can generate relapse to alcohol seeking following abstinence induced by negative consequences. Future research should further examine the role of potential sex differences in sensitivity to punishment and how such differences may contribute to relapse more broadly.
Collapse
|
39
|
Altshuler RD, Yang ES, Garcia KT, Davis IR, Olaniran A, Haile M, Razavi S, Li X. Role of orbitofrontal cortex in incubation of oxycodone craving in male rats. Addict Biol 2021; 26:e12927. [PMID: 32570285 DOI: 10.1111/adb.12927] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022]
Abstract
One of the main challenges in treating opioid-use disorders is relapse during abstinence, triggered by re-exposure to drug-associated cues. Previous studies have demonstrated that drug-seeking in rats progressively increases over time during withdrawal (incubation of drug craving). Here, we used male rats and examined neural mechanisms underlying incubation of craving to oxycodone, a commonly abused prescription opioid, and we focused on orbitofrontal cortex (OFC), a brain region previously implicated in incubation of heroin craving. We first used neuronal activity marker Fos and measured neuronal activation in OFC (ventral and lateral OFC) associated with day-1 and day-15 relapse tests. Next, we determined the effect of pharmacological reversible inactivation of OFC on incubated oxycodone seeking on withdrawal day 15. Finally, we determined the effect of reversible inactivation of OFC on nonincubated oxycodone seeking on withdrawal day 1. We found that lever presses during relapse tests were higher on withdrawal day 15 than on withdrawal day 1 (incubation of oxycodone craving). Incubation of oxycodone craving is accompanied with a time-dependent increase of Fos protein expression in both ventral and lateral OFC. Lastly, OFC inactivation decreased oxycodone seeking on withdrawal day 15 but had no effect on withdrawal day 1. Together with the previous heroin study, results here show that OFC plays a critical role in incubation of opioid craving.
Collapse
Affiliation(s)
- Rachel D. Altshuler
- Department of Psychology University of Maryland College Park College Park MD USA
| | - Eddy S. Yang
- Department of Psychology University of Maryland College Park College Park MD USA
| | - Kristine T. Garcia
- Department of Psychology University of Maryland College Park College Park MD USA
| | - Ian R. Davis
- Department of Psychology University of Maryland College Park College Park MD USA
| | - Adedayo Olaniran
- Department of Psychology University of Maryland College Park College Park MD USA
| | - Meron Haile
- Department of Psychology University of Maryland College Park College Park MD USA
| | - Syrus Razavi
- Department of Psychology University of Maryland College Park College Park MD USA
| | - Xuan Li
- Department of Psychology University of Maryland College Park College Park MD USA
| |
Collapse
|
40
|
Flook EA, Luchsinger JR, Silveri MM, Winder DG, Benningfield MM, Blackford JU. Anxiety during abstinence from alcohol: A systematic review of rodent and human evidence for the anterior insula's role in the abstinence network. Addict Biol 2021; 26:e12861. [PMID: 31991531 PMCID: PMC7384950 DOI: 10.1111/adb.12861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/13/2019] [Accepted: 11/23/2019] [Indexed: 12/30/2022]
Abstract
Alcohol Use Disorder (AUD) is a chronic, relapsing disease that impacts almost a third of Americans. Despite effective treatments for attaining sobriety, the majority of patients relapse within a year, making relapse a substantial barrier to long-term treatment success. A major factor contributing to relapse is heightened negative affect that results from the combination of abstinence-related increases in stress-reactivity and decreases in reward sensitivity. Substantial research has contributed to the understanding of reward-related changes in AUD. However, less is known about anxiety during abstinence, a critical component of understanding addiction as anxiety during abstinence can trigger relapse. Most of what we know about abstinence-related negative affect comes from rodent studies which have identified key brain regions responsible for abstinence-related behaviors. This abstinence network is composed of brain regions that make up the extended amygdala: the nucleus accumbens (NAcc), the central nucleus of the amygdala (CeA), and the bed nucleus of the stria terminalis (BNST). More recently, emerging evidence from rodent and human studies suggests a fourth brain region, the anterior insula, might be part of the abstinence network. Here, we review current rodent and human literature on the extended amygdala's role in alcohol abstinence and anxiety, present evidence for the anterior insula's role in the abstinence network, and provide future directions for research to further elucidate the neural underpinnings of abstinence in humans. A better understanding of the abstinence network is critical toward understanding and possibly preventing relapse in AUD.
Collapse
Affiliation(s)
- Elizabeth A. Flook
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph R. Luchsinger
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human
Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marisa M. Silveri
- Neurodevelopmental Laboratory on Addictions and Mental
Health, Brain Imaging Center, McLean Hospital
- Department of Psychiatry, Harvard Medical School
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human
Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M. Benningfield
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human
Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Research Health Scientist, Research and Development,
Department of Veterans Affairs Medical Center, Nashville, TN
| |
Collapse
|
41
|
Campbell EJ, Lawrence AJ. It's more than just interoception: The insular cortex involvement in alcohol use disorder. J Neurochem 2021; 157:1644-1651. [PMID: 33486788 DOI: 10.1111/jnc.15310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
Understanding brain structures and circuits impacted by alcohol use disorder is critical for improving our future prevention techniques and treatment options. A brain region that has recently gained traction for its involvement in substance use disorder is the insular cortex. This brain region is multi-functional and spatially complex, resulting in a relative lack of understanding of the involvement of the insular cortex in alcohol use disorder. Here we discuss the role of the insular cortex in alcohol use disorder, particularly during periods of abstinence and in response to alcohol and alcohol-related cues and contexts. We also discuss a broader role of the insular in alcohol-associated risky decision making and impulse control. Finally, we canvas potential challenges associated with targeting the insular cortex to treat individuals with alcohol use disorder.
Collapse
Affiliation(s)
- Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Vic, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
42
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Walker LC, Berizzi AE, Chen NA, Rueda P, Perreau VM, Huckstep K, Srisontiyakul J, Govitrapong P, Xiaojian J, Lindsley CW, Jones CK, Riddy DM, Christopoulos A, Langmead CJ, Lawrence AJ. Acetylcholine Muscarinic M 4 Receptors as a Therapeutic Target for Alcohol Use Disorder: Converging Evidence From Humans and Rodents. Biol Psychiatry 2020; 88:898-909. [PMID: 32331824 PMCID: PMC11390032 DOI: 10.1016/j.biopsych.2020.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/03/2020] [Accepted: 02/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a major socioeconomic burden on society, and current pharmacotherapeutic treatment options are inadequate. Aberrant alcohol use and seeking alters frontostriatal function. METHODS We performed genome-wide RNA sequencing and subsequent quantitative polymerase chain reaction and receptor binding validation in the caudate-putamen of human AUD samples to identify potential therapeutic targets. We then back-translated our top candidate targets into a rodent model of long-term alcohol consumption to assess concordance of molecular adaptations in the rat striatum. Finally, we adopted rat behavioral models of alcohol intake and seeking to validate a potential therapeutic target. RESULTS We found that G protein-coupled receptors were the top canonical pathway differentially regulated in individuals with AUD. The M4 muscarinic acetylcholine receptor (mAChR) was downregulated at the gene and protein levels in the putamen, but not in the caudate, of AUD samples. We found concordant downregulation of the M4 mAChR, specifically on dopamine D1 receptor-expressing medium spiny neurons in the rat dorsolateral striatum. Systemic administration of the selective M4 mAChR positive allosteric modulator, VU0467154, reduced home cage and operant alcohol self-administration, motivation to obtain alcohol, and cue-induced reinstatement of alcohol seeking in rats. Local microinjections of VU0467154 in the rat dorsolateral striatum reduced alcohol self-administration and cue-induced reinstatement of alcohol seeking. CONCLUSIONS Collectively, these results identify the M4 mAChR as a potential therapeutic target for the treatment of AUD and the D1 receptor-positive medium spiny neurons in the dorsolateral striatum as a key site mediating the actions of M4 mAChR in relation to alcohol consumption and seeking.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Alice E Berizzi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Nicola A Chen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Patricia Rueda
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Victoria M Perreau
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Katherine Huckstep
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jirawoot Srisontiyakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Jia Xiaojian
- Shenzhen Kangning Hospital, Shenzhen University Health Science Center, Shenzhen, China; Shenzhen Mental Health Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt Center for Neuroscience and Drug Discovery, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt Center for Neuroscience and Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt Center for Neuroscience and Drug Discovery, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt Center for Neuroscience and Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
44
|
Haaranen M, Schäfer A, Järvi V, Hyytiä P. Chemogenetic Stimulation and Silencing of the Insula, Amygdala, Nucleus Accumbens, and Their Connections Differentially Modulate Alcohol Drinking in Rats. Front Behav Neurosci 2020; 14:580849. [PMID: 33328918 PMCID: PMC7671963 DOI: 10.3389/fnbeh.2020.580849] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
The anterior insular cortex is hypothesized to represent interoceptive effects of drug reward in the service of goal-directed behavior. The insula is richly connected, but the insula circuitry in addiction remains poorly characterized. We examined the involvement of the anterior insula, amygdala, and nucleus accumbens, as well as the projections of the anterior insula to the central amygdala, basolateral amygdala (BLA), and nucleus accumbens core in voluntary alcohol drinking. We trained alcohol-preferring Alko Alcohol (AA) rats to drink alcohol during intermittent 2-h sessions. We then expressed excitatory or inhibitory designer receptors [designer receptors exclusively activated by designer drugs (DREADDs)] in the anterior insula, nucleus accumbens, or amygdala by means of adenovirus-mediated gene transfer and activated the DREADDs with clozapine-N-oxide (CNO) prior to the drinking sessions. Next, to examine the role of specific insula projections, we expressed FLEX-DREADDs in the efferent insula → nucleus accumbens core, insula → central amygdala, and insula → BLA projections by means of a retrograde AAV-Cre vector injected into the insula projection areas. In the anterior insula and amygdala, excitatory Gq-DREADDs significantly attenuated alcohol consumption. In contrast, in the nucleus accumbens, the Gq-DREADD stimulation increased alcohol drinking, and the inhibitory Gi-DREADDs suppressed it. The Gq-DREADDs expressed in the insula → nucleus accumbens core and insula → central amygdala projections increased alcohol intake, whereas inhibition of these projections had no effect. These data demonstrate that the anterior insula, along with the amygdala and nucleus accumbens, has a key role in controlling alcohol drinking by providing excitatory input to the central amygdala and nucleus accumbens to enhance alcohol reward.
Collapse
Affiliation(s)
- Mia Haaranen
- Department of Pharmacology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Annika Schäfer
- Department of Pharmacology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Vilja Järvi
- Department of Pharmacology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Campbell EJ, Hill MK, Maddern XJ, Jin S, Pang TY, Lawrence AJ. Orexin-1 receptor signaling within the lateral hypothalamus, but not bed nucleus of the stria terminalis, mediates context-induced relapse to alcohol seeking. J Psychopharmacol 2020; 34:1261-1270. [PMID: 33063594 DOI: 10.1177/0269881120959638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The lateral hypothalamic orexin (hypocretin) system has a well-established role in the motivation for reward. This has particular relevance to substance use disorders since orexin-1 receptors play a critical role in alcohol-seeking behavior, acting at multiple nodes in relapse-associated networks. AIMS This study aimed to further our understanding of the role of orexin-1 receptor signaling within the lateral hypothalamus and bed nucleus of the stria terminalis, specifically in context-induced relapse to alcohol-seeking following punishment-imposed abstinence. METHODS We trained inbred male alcohol-preferring rats to self-administer alcohol in one environment or context (Context A) and subsequently punished their alcohol-reinforced lever presses in a different environment (Context B) using contingent foot shock punishment. Finally, we tested rats for relapse-like behavior in either context following systemic, intra-lateral hypothalamus or intra-bed nucleus of the stria terminalis orexin-1 receptor antagonism with SB-334867. RESULTS/OUTCOMES We found that systemic orexin-1 receptor antagonism significantly reduced alcohol-seeking in both contexts. Intra-lateral hypothalamus orexin-1 receptor antagonism significantly reduced alcohol-seeking in Context A whereas intra-bed nucleus of the stria terminalis orexin-1 receptor antagonism had no effect on alcohol-seeking behavior. CONCLUSIONS/INTERPRETATION Our results suggest a role for the orexin-1 receptor system in context-induced relapse to alcohol-seeking. Specifically, intra-lateral hypothalamus orexin microcircuits contribute to alcohol-seeking.
Collapse
Affiliation(s)
- Erin J Campbell
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Mitchell Kri Hill
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Shubo Jin
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Terence Y Pang
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia
| |
Collapse
|
46
|
Chen H, Lasek AW. Perineuronal nets in the insula regulate aversion-resistant alcohol drinking. Addict Biol 2020; 25:e12821. [PMID: 31433552 DOI: 10.1111/adb.12821] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/13/2019] [Accepted: 07/17/2019] [Indexed: 01/14/2023]
Abstract
One of the most pernicious characteristics of alcohol use disorder is the compulsion to drink despite negative consequences. The insular cortex controls decision making under conditions of risk or conflict. Cortical activity is tightly controlled by inhibitory interneurons that are often enclosed by specialized extracellular matrix structures known as perineuronal nets (PNNs), which regulate neuronal excitability and plasticity. The density of PNNs in the insula increases after repeated bouts of binge drinking, suggesting that they may play a role in the transition from social to compulsive, or aversion-resistant, drinking. Here, we investigated whether insular PNNs play a role in aversion-resistant alcohol drinking using a mouse model in which ethanol was adulterated with the bitter tastant quinine. Disrupting PNNs in the insula rendered mice more sensitive to quinine-adulterated ethanol but not ethanol alone. Activation of the insula, as measured by c-fos expression, occurred during aversion-resistant drinking and was further enhanced by elimination of PNNs. These results demonstrate that PNNs control the activation of the insula during aversion-resistant drinking and suggest that proper excitatory/inhibitory balance is important for decision making under conditions of conflict. Disrupting PNNs in the insula or optimizing insula activation may be a novel strategy to reduce aversion-resistant drinking.
Collapse
Affiliation(s)
- Hu Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| | - Amy W. Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
47
|
A Piriform-Orbitofrontal Cortex Pathway Drives Relapse to Fentanyl-Seeking after Voluntary Abstinence. J Neurosci 2020; 40:8208-8210. [PMID: 33087458 DOI: 10.1523/jneurosci.1295-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/21/2022] Open
|
48
|
Abstract
Sex differences may play a critical role in modulating how chronic or heavy alcohol use impacts the brain to cause the development of alcohol use disorder (AUD). AUD is a multifaceted and complex disorder driven by changes in key neurobiological structures that regulate executive function, memory, and stress. A three-stage framework of addiction (binge/intoxication; withdrawal/negative affect; preoccupation/anticipation) has been useful for conceptualizing the complexities of AUD and other addictions. Initially, alcohol drinking causes short-term effects that involve signaling mediated by several neurotransmitter systems such as dopamine, corticotropin releasing factor, and glutamate. With continued intoxication, alcohol leads to dysfunctional behaviors that are thought to be due in part to alterations of these and other neurotransmitter systems, along with alterations in neural pathways connecting prefrontal and limbic structures. Using the three-stage framework, this review highlights examples of research examining sex differences in drinking and differential modulation of neural systems contributing to the development of AUD. New insights addressing the role of sex differences in AUD are advancing the field forward by uncovering the complex interactions that mediate vulnerability.
Collapse
Affiliation(s)
| | - Heather N Richardson
- Department of Psychological and Brain Sciences at the University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
49
|
Improving translation of animal models of addiction and relapse by reverse translation. Nat Rev Neurosci 2020; 21:625-643. [PMID: 33024318 DOI: 10.1038/s41583-020-0378-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Critical features of human addiction are increasingly being incorporated into complementary animal models, including escalation of drug intake, punished drug seeking and taking, intermittent drug access, choice between drug and non-drug rewards, and assessment of individual differences based on criteria in the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Combined with new technologies, these models advanced our understanding of brain mechanisms of drug self-administration and relapse, but these mechanistic gains have not led to improvements in addiction treatment. This problem is not unique to addiction neuroscience, but it is an increasing source of disappointment and calls to regroup. Here we first summarize behavioural and neurobiological results from the animal models mentioned above. We then propose a reverse translational approach, whose goal is to develop models that mimic successful treatments: opioid agonist maintenance, contingency management and the community-reinforcement approach. These reverse-translated 'treatments' may provide an ecologically relevant platform from which to discover new circuits, test new medications and improve translation.
Collapse
|
50
|
Hernandez JS, Binette AN, Rahman T, Tarantino JD, Moorman DE. Chemogenetic Inactivation of Orbitofrontal Cortex Decreases Cue-induced Reinstatement of Ethanol and Sucrose Seeking in Male and Female Wistar Rats. Alcohol Clin Exp Res 2020; 44:1769-1782. [PMID: 32628778 DOI: 10.1111/acer.14407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The orbitofrontal cortex (OFC) encodes internal representations of outcomes and subjective value to facilitate flexible reward seeking. OFC activation is associated with drug seeking in both human subjects and animal models. OFC plays a role in alcohol use, but studies in animal models have produced conflicting results with some showing decreased seeking after OFC inactivation but others showing increased seeking or no changes. In part, this may be due to the different measures of alcohol seeking used (e.g., homecage drinking vs. operant seeking). METHODS We characterized the impact of transient inactivation of OFC (primarily lateral and, to a lesser extent, ventral subregions) using inhibitory hM4Di designer receptors exclusively activated by designer drugs (DREADDs). OFC neurons were transiently inhibited during 10% and 20% alcohol (ethanol, EtOH) and sucrose homecage consumption, fixed ratio (FR1) operant self-administration, and cue-induced reinstatement of either 10% EtOH or sucrose in male and female rats. RESULTS OFC inactivation did not affect sucrose or EtOH consumption in the homecage, nor did it influence seeking or consumption under FR1 operant conditions. In contrast, OFC inactivation suppressed cued-induced reinstatement for both EtOH and sucrose in both male and female rats. CONCLUSIONS Our results are aligned with previous work indicating a selective suppressive effect of OFC inactivation on reinstatement for alcohol and other drugs of abuse. They extend these findings to demonstrate no effect on homecage consumption or FR1 seeking as well as showing an impact of sucrose reinstatement. These data indicate that OFC plays a uniquely important role when reward seeking is driven by associations between external stimuli and internal representations of reward value, both for natural and drug rewards. They further implicate the OFC as a key structure driving relapse-associated seeking and potentially contributing to alcohol use disorder and other diseases of compulsive reward seeking.
Collapse
Affiliation(s)
- John S Hernandez
- From the, Neuroscience and Behavior Graduate Program (JSH, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Annalise N Binette
- Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Taryn Rahman
- Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jeffrey D Tarantino
- Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - David E Moorman
- From the, Neuroscience and Behavior Graduate Program (JSH, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA.,Department of Psychological and Brain Sciences (ANB, TR, JDT, DEM), University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|