1
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
2
|
Orobets KS, Karamyshev AL. Amyloid Precursor Protein and Alzheimer's Disease. Int J Mol Sci 2023; 24:14794. [PMID: 37834241 PMCID: PMC10573485 DOI: 10.3390/ijms241914794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders associated with age or inherited mutations. It is characterized by severe dementia in the late stages that affect memory, cognitive functions, and daily life overall. AD progression is linked to the accumulation of cytotoxic amyloid beta (Aβ) and hyperphosphorylated tau protein combined with other pathological features such as synaptic loss, defective energy metabolism, imbalances in protein, and metal homeostasis. Several treatment options for AD are under investigation, including antibody-based therapy and stem cell transplantation. Amyloid precursor protein (APP) is a membrane protein considered to play a main role in AD pathology. It is known that APP in physiological conditions follows a non-amyloidogenic pathway; however, it can proceed to an amyloidogenic scenario, which leads to the generation of extracellular deleterious Aβ plaques. Not all steps of APP biogenesis are clear so far, and these questions should be addressed in future studies. AD is a complex chronic disease with many factors that contribute to disease progression.
Collapse
Affiliation(s)
| | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
3
|
Biose IJ, Ismael S, Ouvrier B, White AL, Bix GJ. The Potential Role of Integrin Signaling in Memory and Cognitive Impairment. Biomolecules 2023; 13:biom13010108. [PMID: 36671492 PMCID: PMC9855855 DOI: 10.3390/biom13010108] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Dementia currently has no cure and, due to the increased prevalence and associated economic and personal burden of this condition, current research efforts for the development of potential therapies have intensified. Recently, targeting integrins as a strategy to ameliorate dementia and other forms of cognitive impairment has begun to gain traction. Integrins are major bidirectional signaling receptors in mammalian cells, mediating various physiological processes such as cell-cell interaction and cell adhesion, and are also known to bind to the extracellular matrix. In particular, integrins play a critical role in the synaptic transmission of signals, hence their potential contribution to memory formation and significance in cognitive impairment. In this review, we describe the physiological roles that integrins play in the blood-brain barrier (BBB) and in the formation of memories. We also provide a clear overview of how integrins are implicated in BBB disruption following cerebral pathology. Given that vascular contributions to cognitive impairment and dementia and Alzheimer's' disease are prominent forms of dementia that involve BBB disruption, as well as chronic inflammation, we present current approaches shown to improve dementia-like conditions with integrins as a central focus. We conclude that integrins are vital in memory formation and that their disruption could lead to various forms of cognitive impairment. While further research to understand the relationships between integrins and memory is needed, we propose that the translational relevance of research efforts in this area could be improved through the use of appropriately aged, comorbid, male and female animals.
Collapse
Affiliation(s)
- Ifechukwude Joachim Biose
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Saifudeen Ismael
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Blake Ouvrier
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Amanda Louise White
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Gregory Jaye Bix
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70122, USA
- Correspondence: ; Tel.: +1-504-988-3564
| |
Collapse
|
4
|
Huntingtin and Other Neurodegeneration-Associated Proteins in the Development of Intracellular Pathologies: Potential Target Search for Therapeutic Intervention. Int J Mol Sci 2022; 23:ijms232415533. [PMID: 36555175 PMCID: PMC9779313 DOI: 10.3390/ijms232415533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are currently incurable. Numerous experimental data accumulated over the past fifty years have brought us closer to understanding the molecular and cell mechanisms responsible for their development. However, these data are not enough for a complete understanding of the genesis of these diseases, nor to suggest treatment methods. It turns out that many cellular pathologies developing during neurodegeneration coincide from disease to disease. These observations give hope to finding a common intracellular target(s) and to offering a universal method of treatment. In this review, we attempt to analyze data on similar cellular disorders among neurodegenerative diseases in general, and polyglutamine neurodegenerative diseases in particular, focusing on the interaction of various proteins involved in the development of neurodegenerative diseases with various cellular organelles. The main purposes of this review are: (1) to outline the spectrum of common intracellular pathologies and to answer the question of whether it is possible to find potential universal target(s) for therapeutic intervention; (2) to identify specific intracellular pathologies and to speculate about a possible general approach for their treatment.
Collapse
|
5
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|
6
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
7
|
Ristori E, Cicaloni V, Salvini L, Tinti L, Tinti C, Simons M, Corti F, Donnini S, Ziche M. Amyloid-β Precursor Protein APP Down-Regulation Alters Actin Cytoskeleton-Interacting Proteins in Endothelial Cells. Cells 2020; 9:cells9112506. [PMID: 33228083 PMCID: PMC7699411 DOI: 10.3390/cells9112506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
The amyloid-β precursor protein (APP) is a ubiquitous membrane protein often associated with Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). Despite its role in the development of the pathogenesis, APP exerts several physiological roles that have been mainly investigated in neuronal tissue. To date, the role of APP in vasculature and endothelial cells has not been fully elucidated. In this study, we used molecular and proteomic approaches to identify and investigate major cellular targets of APP down-regulation in endothelial cells. We found that APP is necessary for endothelial cells proliferation, migration and adhesion. The loss of APP alters focal adhesion stability and cell-cell junctions' expression. Moreover, APP is necessary to mediate endothelial response to the VEGF-A growth factor. Finally, we document that APP propagates exogenous stimuli and mediates cellular response in endothelial cells by modulating the Scr/FAK signaling pathway. Thus, the intact expression and processing of APP is required for normal endothelial function. The identification of molecular mechanisms responsible for vasoprotective properties of endothelial APP may have an impact on clinical efforts to preserve and protect healthy vasculature in patients at risk of the development of cerebrovascular disease and dementia including AD and CAA.
Collapse
Affiliation(s)
- Emma Ristori
- Department of Life Science, University of Siena, 53100 Siena, Italy;
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Vittoria Cicaloni
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Laura Salvini
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Laura Tinti
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Cristina Tinti
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Michael Simons
- Yale Cardiovascular Research Center, 300 George Street, New Haven, CT 06511, USA; (M.S.); (F.C.)
- Departments of Medicine (Cardiology) and Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Federico Corti
- Yale Cardiovascular Research Center, 300 George Street, New Haven, CT 06511, USA; (M.S.); (F.C.)
| | - Sandra Donnini
- Department of Life Science, University of Siena, 53100 Siena, Italy;
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
- Correspondence: (S.D.); (M.Z.); Tel.: +39-0577-235382 (S.D.)
| | - Marina Ziche
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- Correspondence: (S.D.); (M.Z.); Tel.: +39-0577-235382 (S.D.)
| |
Collapse
|
8
|
cAMP, cGMP and Amyloid β: Three Ideal Partners for Memory Formation. Trends Neurosci 2018; 41:255-266. [PMID: 29501262 DOI: 10.1016/j.tins.2018.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 02/03/2023]
Abstract
cAMP and cGMP are well established second messengers required for long-term potentiation (LTP) and memory formation/consolidation. By contrast, amyloid β (Aβ), mostly known as one of the main culprits for Alzheimer's disease (AD), has received relatively little attention in the context of plasticity and memory. Of note, however, low physiological concentrations of Aβ seem necessary for LTP induction and for memory formation. This should come as no surprise, since hormesis emerged as a central dogma in biology. Additionally, recent evidence indicates that Aβ is one of the downstream effectors for cAMP and cGMP to trigger synaptic plasticity and memory. We argue that these emerging findings depict a new scenario that should change the general view on the amyloidogenic pathway, and that could have significant implications for the understanding of AD and its pharmacological treatment in the future.
Collapse
|
9
|
Ntsapi C, Lumkwana D, Swart C, du Toit A, Loos B. New Insights Into Autophagy Dysfunction Related to Amyloid Beta Toxicity and Neuropathology in Alzheimer's Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:321-361. [DOI: 10.1016/bs.ircmb.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Sosa LJ, Cáceres A, Dupraz S, Oksdath M, Quiroga S, Lorenzo A. The physiological role of the amyloid precursor protein as an adhesion molecule in the developing nervous system. J Neurochem 2017; 143:11-29. [PMID: 28677143 DOI: 10.1111/jnc.14122] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein better known for its participation in the physiopathology of Alzheimer disease as the source of the beta amyloid fragment. However, the physiological functions of the full length protein and its proteolytic fragments have remained elusive. APP was first described as a cell-surface receptor; nevertheless, increasing evidence highlighted APP as a cell adhesion molecule. In this review, we will focus on the current knowledge of the physiological role of APP as a cell adhesion molecule and its involvement in key events of neuronal development, such as migration, neurite outgrowth, growth cone pathfinding, and synaptogenesis. Finally, since APP is over-expressed in Down syndrome individuals because of the extra copy of chromosome 21, in the last section of the review, we discuss the potential contribution of APP to the neuronal and synaptic defects described in this genetic condition. Read the Editorial Highlight for this article on page 9. Cover Image for this issue: doi. 10.1111/jnc.13817.
Collapse
Affiliation(s)
- Lucas J Sosa
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Cáceres
- Laboratorio Neurobiología, Instituto Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - Sebastián Dupraz
- Axonal Growth and Regeneration, German Center for Neurodegenarative Diseases, Bonn, Germany
| | - Mariana Oksdath
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Santiago Quiroga
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Lorenzo
- Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
11
|
Wilkins HM, Swerdlow RH. Amyloid precursor protein processing and bioenergetics. Brain Res Bull 2016; 133:71-79. [PMID: 27545490 DOI: 10.1016/j.brainresbull.2016.08.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 02/08/2023]
Abstract
The processing of amyloid precursor protein (APP) to amyloid beta (Aβ) is of great interest to the Alzheimer's disease (AD) field. Decades of research define how APP is altered to form Aβ, and how Aβ generates oligomers, protofibrils, and fibrils. Numerous signaling pathways and changes in cell physiology are known to influence APP processing. Existing data additionally indicate a relationship exists between mitochondria, bioenergetics, and APP processing. Here, we review data that address whether mitochondrial function and bioenergetics modify APP processing and Aβ production.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS USA.
| |
Collapse
|
12
|
Affiliation(s)
- R Douglas Fields
- Laboratory of Developmental Neurobiology, National Institutes of Health, NICHD, Bethesda, Maryland
| |
Collapse
|
13
|
Wang L, Li H, Zhou Y, Qin Y, Wang Y, Liu B, Qian H. Molecular cloning and characterization of an ADP-ribosylation factor 6 gene (ptARF6) from Pisolithus tinctorius. Can J Microbiol 2016; 62:383-93. [PMID: 26928195 DOI: 10.1139/cjm-2015-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ADP-ribosylation factor 6 (ARF6) is an evolutionarily conserved molecule that has an essential function in intracellular trafficking and organelle structure. To better understand its role during presymbiosis between plant roots and compatible filamentous fungi, the full-length cDNA sequence of ARF6 from Pisolithus tinctorius was cloned and a variety of bioinformatics analyses performed. The full-length sequence was 849 bp long and contained a 549 bp open reading frame encoding a protein of 182 amino acids. A phylogenetic analysis showed that ptARF6 was the ortholog of the ADP ribosylation factor 6/GTPase SAR1 gene from the white-rot basidiomycete Trametes versicolor. A domain architecture analysis of the ARF6 protein revealed a repeat region, which is a common feature of ARF6 in other species. Recombinant ARF6 protein was expressed with an N-terminal 6×His tag and purified using Ni(2+)-NTA affinity chromatography. The molecular mass of the recombinant protein was estimated by SDS-PAGE to be 25 kDa. The recombinant ARF6 protein bound strongly to 18:1 and 18:2 phosphatidic acids. Thus, ARF6 may participate in the signaling pathways involved in membrane phospholipid composition. The intracellular distribution of ptADP6 in HEK239T cells also indicates that ptADP6 may function not only in plasma membrane events but also in endosomal membranes events. Real-time quantitative PCR revealed that the differential expression of ptARF6 was associated with the presymbiotic stage. ptARF6 may be induced by presymbiosis during the regulation of mycorrhizal formation.
Collapse
Affiliation(s)
- Liling Wang
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Haibo Li
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Yifeng Zhou
- b Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Yuchuan Qin
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Yanbin Wang
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Bentong Liu
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Hua Qian
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| |
Collapse
|
14
|
Arbor SC, LaFontaine M, Cumbay M. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:5-21. [PMID: 27505013 PMCID: PMC4797837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Amyloid beta (Aβ), the hallmark of Alzheimer's Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review.
Collapse
Affiliation(s)
- Sage C. Arbor
- Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, Indiana, 46222
| | - Mike LaFontaine
- Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, Indiana, 46222
| | - Medhane Cumbay
- Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, Indiana, 46222
| |
Collapse
|
15
|
Gonçalves R, Vasques J, Trindade P, Serfaty C, Campello-Costa P, Faria-Melibeu A. Nicotine-induced plasticity in the retinocollicular pathway: Evidence for involvement of amyloid precursor protein. Neuroscience 2016; 313:1-9. [DOI: 10.1016/j.neuroscience.2015.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
16
|
SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol 2016; 131:115-35. [PMID: 26589592 DOI: 10.1007/s00401-015-1506-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 11/27/2022]
Abstract
Diffuse axonal injury (DAI) is a common feature of severe traumatic brain injury (TBI) and may also be a predominant pathology in mild TBI or "concussion". The rapid deformation of white matter at the instant of trauma can lead to mechanical failure and calcium-dependent proteolysis of the axonal cytoskeleton in association with axonal transport interruption. Recently, a proteolytic fragment of alpha-II spectrin, "SNTF", was detected in serum acutely following mild TBI in patients and was prognostic for poor clinical outcome. However, direct evidence that this fragment is a marker of DAI has yet to be demonstrated in either humans following TBI or in models of mild TBI. Here, we used immunohistochemistry (IHC) to examine for SNTF in brain tissue following both severe and mild TBI. Human severe TBI cases (survival <7d; n = 18) were compared to age-matched controls (n = 16) from the Glasgow TBI archive. We also examined brains from an established model of mild TBI at 6, 48 and 72 h post-injury versus shams. IHC specific for SNTF was compared to that of amyloid precursor protein (APP), the current standard for DAI diagnosis, and other known markers of axonal pathology including non-phosphorylated neurofilament-H (SMI-32), neurofilament-68 (NF-68) and compacted neurofilament-medium (RMO-14) using double and triple immunofluorescent labeling. Supporting its use as a biomarker of DAI, SNTF immunoreactive axons were observed at all time points following both human severe TBI and in the model of mild TBI. Interestingly, SNTF revealed a subpopulation of degenerating axons, undetected by the gold-standard marker of transport interruption, APP. While there was greater axonal co-localization between SNTF and APP after severe TBI in humans, a subset of SNTF positive axons displayed no APP accumulation. Notably, some co-localization was observed between SNTF and the less abundant neurofilament subtype markers. Other SNTF positive axons, however, did not co-localize with any other markers. Similarly, RMO-14 and NF-68 positive axonal pathology existed independent of SNTF and APP. These data demonstrate that multiple pathological axonal phenotypes exist post-TBI and provide insight into a more comprehensive approach to the neuropathological assessment of DAI.
Collapse
|
17
|
Xu DE, Zhang WM, Yang ZZ, Zhu HM, Yan K, Li S, Bagnard D, Dawe GS, Ma QH, Xiao ZC. Amyloid precursor protein at node of Ranvier modulates nodal formation. Cell Adh Migr 2015; 8:396-403. [PMID: 25482638 DOI: 10.4161/cam.28802] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Amyloid precursor protein (APP), commonly associated with Alzheimer disease, is upregulated and distributes evenly along the injured axons, and therefore, also known as a marker of demyelinating axonal injury and axonal degeneration. However, the physiological distribution and function of APP along myelinated axons was unknown. We report that APP aggregates at nodes of Ranvier (NOR) in the myelinated central nervous system (CNS) axons but not in the peripheral nervous system (PNS). At CNS NORs, APP expression co-localizes with tenascin-R and is flanked by juxtaparanodal potassium channel expression demonstrating that APP localized to NOR. In APP-knockout (KO) mice, nodal length is significantly increased, while sodium channels are still clustered at NORs. Moreover, APP KO and APP-overexpressing transgenic (APP TG) mice exhibited a decreased and an increased thickness of myelin in spinal cords, respectively, although the changes are limited in comparison to their littermate WT mice. The thickness of myelin in APP KO sciatic nerve also increased in comparison to that in WT mice. Our observations indicate that APP acts as a novel component at CNS NORs, modulating nodal formation and has minor effects in promoting myelination.
Collapse
Affiliation(s)
- De-En Xu
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases ; Institute of Neuroscience; the Second Affiliated Hospital; Soochow University ; Suzhou , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kipkorir T, Colangelo CM, Manuelidis L. Proteomic analysis of host brain components that bind to infectious particles in Creutzfeldt-Jakob disease. Proteomics 2015; 15:2983-98. [PMID: 25930988 DOI: 10.1002/pmic.201500059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/26/2015] [Accepted: 04/29/2015] [Indexed: 11/07/2022]
Abstract
Transmissible encephalopathies (TSEs), such as Creutzfeldt-Jakob disease (CJD) and scrapie, are caused by infectious agents that provoke strain-specific patterns of disease. Misfolded host prion protein (PrP-res amyloid) is believed to be the causal infectious agent. However, particles that are stripped of PrP retain both high infectivity and viral proteins not detectable in uninfected mouse controls. We here detail host proteins bound with FU-CJD agent infectious brain particles by proteomic analysis. More than 98 proteins were differentially regulated, and 56 FU-CJD exclusive proteins were revealed after PrP, GFAP, C1q, ApoE, and other late pathologic response proteins were removed. Stripped FU-CJD particles revealed HSC70 (144× the uninfected control), cyclophilin B, an FU-CJD exclusive protein required by many viruses, and early endosome-membrane pathways known to facilitate viral processing, replication, and spread. Synaptosomal elements including synapsin-2 (at 33×) and AP180 (a major FU-CJD exclusive protein) paralleled the known ultrastructural location of 25 nm virus-like TSE particles and infectivity in synapses. Proteins without apparent viral or neurodegenerative links (copine-3), and others involved in viral-induced protein misfolding and aggregation, were also identified. Human sCJD brain particles contained 146 exclusive proteins, and heat shock, synaptic, and viral pathways were again prominent, in addition to Alzheimer, Parkinson, and Huntington aggregation proteins. Host proteins that bind TSE infectious particles can prevent host immune recognition and contribute to prolonged cross-species transmissions (the species barrier). Our infectious particle strategy, which reduces background sequences by >99%, emphasizes host targets for new therapeutic initiatives. Such therapies can simultaneously subvert common pathways of neurodegeneration.
Collapse
|
19
|
Ghosh AK, Osswald HL. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer's disease. Chem Soc Rev 2015; 43:6765-813. [PMID: 24691405 DOI: 10.1039/c3cs60460h] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACE1 (β-secretase, memapsin 2, Asp2) has emerged as a promising target for the treatment of Alzheimer's disease. BACE1 is an aspartic protease which functions in the first step of the pathway leading to the production and deposition of amyloid-β peptide (Aβ). Its gene deletion showed only mild phenotypes. BACE1 inhibition has direct implications in the Alzheimer's disease pathology without largely affecting viability. However, inhibiting BACE1 selectively in vivo has presented many challenges to medicinal chemists. Since its identification in 2000, inhibitors covering many different structural classes have been designed and developed. These inhibitors can be largely classified as either peptidomimetic or non-peptidic inhibitors. Progress in these fields resulted in inhibitors that contain many targeted drug-like characteristics. In this review, we describe structure-based design strategies and evolution of a wide range of BACE1 inhibitors including compounds that have been shown to reduce brain Aβ, rescue the cognitive decline in transgenic AD mice and inhibitor drug candidates that are currently in clinical trials.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
20
|
Venkatasubramaniam A, Drude A, Good T. Role of N-terminal residues in Aβ interactions with integrin receptor and cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2568-77. [DOI: 10.1016/j.bbamem.2014.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/26/2014] [Accepted: 06/13/2014] [Indexed: 01/12/2023]
|
21
|
Weyer SW, Zagrebelsky M, Herrmann U, Hick M, Ganss L, Gobbert J, Gruber M, Altmann C, Korte M, Deller T, Müller UC. Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPsα expression. Acta Neuropathol Commun 2014; 2:36. [PMID: 24684730 PMCID: PMC4023627 DOI: 10.1186/2051-5960-2-36] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 11/21/2022] Open
Abstract
Synaptic dysfunction and synapse loss are key features of Alzheimer's pathogenesis. Previously, we showed an essential function of APP and APLP2 for synaptic plasticity, learning and memory. Here, we used organotypic hippocampal cultures to investigate the specific role(s) of APP family members and their fragments for dendritic complexity and spine formation of principal neurons within the hippocampus. Whereas CA1 neurons from APLP1-KO or APLP2-KO mice showed normal neuronal morphology and spine density, APP-KO mice revealed a highly reduced dendritic complexity in mid-apical dendrites. Despite unaltered morphology of APLP2-KO neurons, combined APP/APLP2-DKO mutants showed an additional branching defect in proximal apical dendrites, indicating redundancy and a combined function of APP and APLP2 for dendritic architecture. Remarkably, APP-KO neurons showed a pronounced decrease in spine density and reductions in the number of mushroom spines. No further decrease in spine density, however, was detectable in APP/APLP2-DKO mice. Mechanistically, using APPsα-KI mice lacking transmembrane APP and expressing solely the secreted APPsα fragment we demonstrate that APPsα expression alone is sufficient to prevent the defects in spine density observed in APP-KO mice. Collectively, these studies reveal a combined role of APP and APLP2 for dendritic architecture and a unique function of secreted APPs for spine density.
Collapse
Affiliation(s)
- Sascha W Weyer
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| | - Marta Zagrebelsky
- TU Braunschweig, Zoological Institute, Cellular Neurobiology, Spielmannstr. 7, Braunschweig D-38106, Germany
| | - Ulrike Herrmann
- TU Braunschweig, Zoological Institute, Cellular Neurobiology, Spielmannstr. 7, Braunschweig D-38106, Germany
| | - Meike Hick
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| | - Lennard Ganss
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
- Present address: Department of Applied Tumor Biology, Ruprecht-Karls University Heidelberg, Institute of Pathology, University of Heidelberg, Heidelberg D-69120, Germany
| | - Julia Gobbert
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| | - Morna Gruber
- Goethe University Frankfurt, Institute of Clinical Neuroanatomy, Neuroscience Center, Theodor-Stern-Kai 7, Frankfurt am Main D-60596, Germany
| | - Christine Altmann
- Goethe University Frankfurt, Institute of Clinical Neuroanatomy, Neuroscience Center, Theodor-Stern-Kai 7, Frankfurt am Main D-60596, Germany
| | - Martin Korte
- TU Braunschweig, Zoological Institute, Cellular Neurobiology, Spielmannstr. 7, Braunschweig D-38106, Germany
| | - Thomas Deller
- Goethe University Frankfurt, Institute of Clinical Neuroanatomy, Neuroscience Center, Theodor-Stern-Kai 7, Frankfurt am Main D-60596, Germany
| | - Ulrike C Müller
- Department of Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany
| |
Collapse
|
22
|
Soldano A, Hassan BA. Beyond pathology: APP, brain development and Alzheimer's disease. Curr Opin Neurobiol 2014; 27:61-7. [PMID: 24632309 DOI: 10.1016/j.conb.2014.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/15/2014] [Accepted: 02/06/2014] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly. Research in the AD field has been mostly focused on the biology of the Aβ peptide but increasing evidence is shifting attention toward the physiological role of APP as key to understanding AD pathology. It is becoming apparent that APP plays a central role in the mechanisms that guarantee the accuracy and the robustness of brain wiring. In the present review we explore APP functions with focus on some of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Alessia Soldano
- VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, 3000 Leuven, Belgium
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, 3000 Leuven, Belgium.
| |
Collapse
|
23
|
Dawkins E, Small DH. Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer's disease. J Neurochem 2014; 129:756-69. [PMID: 24517464 PMCID: PMC4314671 DOI: 10.1111/jnc.12675] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
The β-amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post-translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms. This article reviews studies on the structure, expression and post-translational processing of β-amyloid precursor protein (APP), as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.
Collapse
Affiliation(s)
- Edgar Dawkins
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
24
|
Pianu B, Lefort R, Thuiliere L, Tabourier E, Bartolini F. The Aβ₁₋₄₂ peptide regulates microtubule stability independently of tau. J Cell Sci 2014; 127:1117-27. [PMID: 24424028 DOI: 10.1242/jcs.143750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interference with microtubule stability by beta-amyloid peptide (Aβ) has been shown to disrupt dendritic function and axonal trafficking, both early events in Alzheimer's disease. However, it is unclear whether Aβ regulation of microtubule dynamics can occur independently of its action on tau. RhoA has been implicated in neurotoxicity by Aβ but the mechanism by which this activation generates cytoskeletal changes is also unclear. We found that oligomeric Aβ1-42 induced the formation of stable detyrosinated microtubules in NIH3T3 cells and this function resulted from the activation of a RhoA-dependent microtubule stabilization pathway regulated by integrin signaling and the formin mDia1. Induction of microtubule stability by Aβ was also initiated by dimerization of APP and required caspase activity, two previously characterized regulators of neurotoxicity downstream of Aβ. Finally, we found that this function was conserved in primary neurons and abolished by Rho inactivation, reinforcing a link between induction of stable detyrosinated microtubules and neuropathogenesis by Aβ. Our study reveals a novel activity of Aβ on the microtubule cytoskeleton that is independent of tau and associated with pathways linked to microtubule stabilization and Aβ-mediated neurotoxicity.
Collapse
Affiliation(s)
- Barbara Pianu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | | | | | | | | |
Collapse
|
25
|
Cheung HNM, Dunbar C, Mórotz GM, Cheng WH, Chan HYE, Miller CCJ, Lau KF. FE65 interacts with ADP-ribosylation factor 6 to promote neurite outgrowth. FASEB J 2013; 28:337-49. [PMID: 24056087 DOI: 10.1096/fj.13-232694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
FE65 is an adaptor protein that binds to the amyloid precursor protein (APP). As such, FE65 has been implicated in the pathogenesis of Alzheimer's disease. In addition, evidence suggests that FE65 is involved in brain development. It is generally believed that FE65 participates in these processes by recruiting various interacting partners to form functional complexes. Here, we show that via its first phosphotyrosine binding (PTB) domain, FE65 binds to the small GTPase ADP-ribosylation factor 6 (ARF6). FE65 preferentially binds to ARF6-GDP, and they colocalize in neuronal growth cones. Interestingly, FE65 stimulates the activation of both ARF6 and its downstream GTPase Rac1, a regulator of actin dynamics, and functions in growth cones to stimulate neurite outgrowth. We show that transfection of FE65 and/or ARF6 promotes whereas small interfering RNA knockdown of FE65 or ARF6 inhibits neurite outgrowth in cultured neurons as compared to the mock-transfected control cells. Moreover, knockdown of ARF6 attenuates FE65 stimulation of neurite outgrowth and defective neurite outgrowth seen in FE65-deficient neurons is partially corrected by ARF6 overexpression. Notably, the stimulatory effect of FE65 and ARF6 on neurite outgrowth is abrogated either by dominant-negative Rac1 or knockdown of Rac1. Thus, we identify FE65 as a novel regulator of neurite outgrowth via controlling ARF6-Rac1 signaling.
Collapse
Affiliation(s)
- Hei Nga Maggie Cheung
- 1School of Life Sciences, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
The Alzheimer's β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 2013; 126:329-52. [PMID: 23820808 PMCID: PMC3753469 DOI: 10.1007/s00401-013-1152-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/20/2013] [Indexed: 01/18/2023]
Abstract
β-Site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) is the β-secretase that initiates Aβ production in Alzheimer’s disease (AD). BACE1 levels are increased in AD, which could contribute to pathogenesis, yet the mechanism of BACE1 elevation is unclear. Furthermore, the normal function of BACE1 is poorly understood. We localized BACE1 in the brain at both the light and electron microscopic levels to gain insight into normal and pathophysiologic roles of BACE1 in health and AD, respectively. Our findings provide the first ultrastructural evidence that BACE1 localizes to vesicles (likely endosomes) in normal hippocampal mossy fiber terminals of both non-transgenic and APP transgenic (5XFAD) mouse brains. In some instances, BACE1-positive vesicles were located near active zones, implying a function for BACE1 at the synapse. In addition, BACE1 accumulated in swollen dystrophic autophagosome-poor presynaptic terminals surrounding amyloid plaques in 5XFAD cortex and hippocampus. Importantly, accumulations of BACE1 and APP co-localized in presynaptic dystrophies, implying increased BACE1 processing of APP in peri-plaque regions. In primary cortical neuron cultures, treatment with the lysosomal protease inhibitor leupeptin caused BACE1 levels to increase; however, exposure of neurons to the autophagy inducer trehalose did not reduce BACE1 levels. This suggests that BACE1 is degraded by lysosomes but not by autophagy. Our results imply that BACE1 elevation in AD could be linked to decreased lysosomal degradation of BACE1 within dystrophic presynaptic terminals. Elevated BACE1 and APP levels in plaque-associated presynaptic dystrophies could increase local peri-plaque Aβ generation and accelerate amyloid plaque growth in AD.
Collapse
|
27
|
Amyloid β precursor protein as a molecular target for amyloid β--induced neuronal degeneration in Alzheimer's disease. Neurobiol Aging 2013; 34:2525-37. [PMID: 23714735 DOI: 10.1016/j.neurobiolaging.2013.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/20/2013] [Indexed: 11/23/2022]
Abstract
A role of amyloid β (Aβ) peptide aggregation and deposition in Alzheimer's disease (AD) pathogenesis is widely accepted. Significantly, abnormalities induced by aggregated Aβ have been linked to synaptic and neuritic degeneration, consistent with the "dying-back" pattern of degeneration that characterizes neurons affected in AD. However, molecular mechanisms underlying the toxic effect of aggregated Aβ remain elusive. In the last 2 decades, a variety of aggregated Aβ species have been identified and their toxic properties demonstrated in diverse experimental systems. Concurrently, specific Aβ assemblies have been shown to interact and misregulate a growing number of molecular effectors with diverse physiological functions. Such pleiotropic effects of aggregated Aβ posit a mayor challenge for the identification of the most cardinal Aβ effectors relevant to AD pathology. In this review, we discuss recent experimental evidence implicating amyloid β precursor protein (APP) as a molecular target for toxic Aβ assemblies. Based on a significant body of pathologic observations and experimental evidence, we propose a novel pathologic feed-forward mechanism linking Aβ aggregation to abnormalities in APP processing and function, which in turn would trigger the progressive loss of neuronal connectivity observed early in AD.
Collapse
|
28
|
Sosa LJ, Bergman J, Estrada-Bernal A, Glorioso TJ, Kittelson JM, Pfenninger KH. Amyloid precursor protein is an autonomous growth cone adhesion molecule engaged in contact guidance. PLoS One 2013; 8:e64521. [PMID: 23691241 PMCID: PMC3653867 DOI: 10.1371/journal.pone.0064521] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/15/2013] [Indexed: 12/22/2022] Open
Abstract
Amyloid precursor protein (APP), a transmembrane glycoprotein, is well known for its involvement in the pathogenesis of Alzheimer disease of the aging brain, but its normal function is unclear. APP is a prominent component of the adult as well as the developing brain. It is enriched in axonal growth cones (GCs) and has been implicated in cell adhesion and motility. We tested the hypothesis that APP is an extracellular matrix adhesion molecule in experiments that isolated the function of APP from that of well-established adhesion molecules. To this end we plated wild-type, APP-, or β1-integrin (Itgb1)- misexpressing mouse hippocampal neurons on matrices of either laminin, recombinant L1, or synthetic peptides binding specifically to Itgb1 s or APP. We measured GC adhesion, initial axonal outgrowth, and substrate preference on alternating matrix stripes and made the following observations: Substrates of APP-binding peptide alone sustain neurite outgrowth; APP dosage controls GC adhesion to laminin and APP-binding peptide as well as axonal outgrowth in Itgb1- independent manner; and APP directs GCs in contact guidance assays. It follows that APP is an independently operating cell adhesion molecule that affects the GC's phenotype on APP-binding matrices including laminin, and that it is likely to affect axon pathfinding in vivo.
Collapse
Affiliation(s)
- Lucas J. Sosa
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jared Bergman
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Adriana Estrada-Bernal
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Thomas J. Glorioso
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
| | - John M. Kittelson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
| | - Karl H. Pfenninger
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
29
|
Wu X, Reddy DS. Integrins as receptor targets for neurological disorders. Pharmacol Ther 2011; 134:68-81. [PMID: 22233753 DOI: 10.1016/j.pharmthera.2011.12.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022]
Abstract
This review focuses on the neurobiology of integrins, pathophysiological roles of integrins in neuroplasticity and nervous system disorders, and therapeutic implications of integrins as potential drug targets and possible delivery pathways. Neuroplasticity is a central phenomenon in many neurological conditions such as seizures, trauma, and traumatic brain injury. During the course of many brain diseases, in addition to intracellular compartment changes, alterations in non-cell compartments such as extracellular matrix (ECM) are recognized as an essential process in forming and reorganizing neural connections. Integrins are heterodimeric transmembrane receptors that mediate cell-ECM and cell-cell adhesion events. Although the mechanisms of neuroplasticity remain unclear, it has been suggested that integrins undergo plasticity including clustering through interactions with ECM proteins, modulating ion channels, intracellular Ca(2+) and protein kinase signaling, and reorganization of cytoskeletal filaments. As cell surface receptors, integrins are central to the pathophysiology of many brain diseases, such as epilepsy, and are potential targets for the development of new drugs for neurological disorders.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807, USA
| | | |
Collapse
|
30
|
The role of lipoprotein receptors on the physiological function of APP. Exp Brain Res 2011; 217:377-87. [PMID: 21947084 DOI: 10.1007/s00221-011-2876-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/09/2011] [Indexed: 12/26/2022]
Abstract
In this review, we will primarily focus on the role of members of the low-density lipoprotein receptor (LDL-R) family that are involved in trafficking and processing of the amyloid precursor protein (APP). We will discuss the role of the LDL-receptor family members, low-density lipoprotein receptor-related protein 1 (LRP1), LRP1b, apolipoprotein E receptor 2, sortilin-related receptor (SorLA/LR11) and megalin/LRP2 on the physiological function of APP and its cellular localization. Additionally, we will focus on adaptor proteins that have been shown to influence the physiological function of LDL-R family members in combination with APP processing. The results in this review emphasize that the physiological function of APP cannot be explained by the focus on the APP protein alone but rather in combination with various direct or indirect interaction partners within the cellular environment.
Collapse
|
31
|
Xue Y, Lee S, Wang Y, Ha Y. Crystal structure of the E2 domain of amyloid precursor protein-like protein 1 in complex with sucrose octasulfate. J Biol Chem 2011; 286:29748-57. [PMID: 21715329 DOI: 10.1074/jbc.m111.219659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Missense mutations in the amyloid precursor protein (APP) gene can cause familial Alzheimer disease. It is thought that APP and APP-like proteins (APLPs) may play a role in adhesion and signal transduction because their ectodomains interact with components of the extracellular matrix. Heparin binding induces dimerization of APP and APLPs. To help explain how these proteins interact with heparin, we have determined the crystal structure of the E2 domain of APLP1 in complex with sucrose octasulfate (SOS). A total of three SOS molecules are bound to the E2 dimer. Two SOSs are bound inside a narrow intersubdomain groove, and the third SOS is bound near the two-fold axis of the protein. Mutational analyses show that most residues interacting with SOS also contribute to heparin binding, although in varying degrees; a deep pocket, defined by His-376, Lys-422, and Arg-429, and an interfacial site between Lys-314 and its symmetry mate are most important in the binding of the negatively charged polysaccharide. Comparison with a lower resolution APP structure shows that all key heparin binding residues are conserved and identically positioned, suggesting that APLP1 and APP may bind heparin similarly. In transfected HEK-293 cells, mutating residues responsible for heparin binding causes little change in the proteolysis of APP by the secretases. However, mutating a pair of conserved basic residues (equivalent to Arg-414 and Arg-415 of APLP1) immediately adjacent to the heparin binding site affects both the maturation and the processing of APP.
Collapse
Affiliation(s)
- Yi Xue
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
32
|
Steuble M, Gerrits B, Ludwig A, Mateos JM, Diep TM, Tagaya M, Stephan A, Schätzle P, Kunz B, Streit P, Sonderegger P. Molecular characterization of a trafficking organelle: dissecting the axonal paths of calsyntenin-1 transport vesicles. Proteomics 2011; 10:3775-88. [PMID: 20925061 DOI: 10.1002/pmic.201000384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Kinesin motors play crucial roles in the delivery of membranous cargo to its destination and thus for the establishment and maintenance of cellular polarization. Recently, calsyntenin-1 was identified as a cargo-docking protein for Kinesin-1-mediated axonal transport of tubulovesicular organelles along axons of central nervous system neurons. To further define the function of calsyntenin-1, we immunoisolated calsyntenin-1 organelles from murine brain homogenates and determined their proteome by MS. We found that calsyntenin-1 organelles are endowed with components of the endosomal trafficking machinery and contained the β-amyloid precursor protein (APP). Detailed biochemical analyses of calsyntenin-1 immunoisolates in conjunction with immunocytochemical colocalization studies with cultured hippocampal neurons, using endosomal marker proteins for distinct subcompartments of the endosomal pathways, indicated that neuronal axons contain at least two distinct, nonoverlapping calsyntenin-1-containing transport packages: one characterized as early-endosomal, APP positive, the other as recycling-endosomal, APP negative. We postulate that calsyntenin-1 acts as a general mediator of anterograde axonal transportation of endosomal vesicles. In this role, calsyntenin-1 may actively contribute to axonal growth and pathfinding in the developing as well as to the maintenance of neuronal polarity in the adult nervous system; further, it may actively contribute to the stabilization of APP during its anterograde axonal trajectory.
Collapse
Affiliation(s)
- Martin Steuble
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Galimberti D, Scarpini E. Genetics and biology of Alzheimer's disease and frontotemporal lobar degeneration. Int J Clin Exp Med 2010; 3:129-143. [PMID: 20607039 PMCID: PMC2894648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 05/10/2010] [Indexed: 05/29/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, whereas frontotemporal lobar degeneration (FTLD) is the most frequent neurodegenerative disorder with a presenile onset. The two major neuropathologic hallmarks of AD are extracellular Amyloid beta (Abeta) plaques and intracellular neurofibrillary tangles (NFTs). Conversely, in FTLD the deposition of tau has been observed in a number of cases, but in several brains there is no deposition of tau but instead a positivity for ubiquitin. In some families these diseases are inherited in an auto-somal dominant fashion. Genes responsible for familial AD include the Amyloid Precursor Protein (APP), Presenilin 1 (PS1) and Presenilin 2 (PS2). The majority of mutations in these genes are often associated with a very early onset (40-50 years of age). Regarding FTLD, the first mutations described are located in the Microtubule Associated Protein Tau gene (MAPT). Tau is a component of microtubules, which represent the internal support structures for the transport of nutrients, vesicles, mitochondria and chromosomes within the cell. Mutations in MAPT are associated with an early onset of the disease (40-50 years), and the clinical phenotype is consistent with frontotemporal lobar degeneration (FTD). Recently, mutations in a second gene, named progranulin (GRN), have been identified in some families with FTLD. Progranulin is expressed in neurons and microglia and displays anti-inflammatory properties. Nevertheless, it can be cleaved into granulins which, conversely, show inflammatory properties. The pathology associated with these mutations is most frequently characterized by the immunostaining of TAR DNA Binding Protein 43 (TDP-43), which is a transcription factor. The clinical phenotype associated with GRN mutations is highly heterogeneous, including FTD, Progressive Aphasia, Corticobasal Syndrome, and AD. Age at disease onset is variable, ranging from 45 to 85 years of age. The majority of cases of AD and FTLD are however sporadic, and likely several genetic and environmental factors contribute to their development. Concerning AD, it is known that the presence of the e4 allele of the Apolipoprotein E gene is a susceptibility factor, increasing the risk of about 4 fold. A number of additional genetic factors, including cytokines, chemokines, Nitric Oxide Synthases, contribute to the susceptibility for the disease. Some of them also influence the risk to develop FTLD. In this review, current knowledge on molecular mechanisms at the basis of AD and FTLD, as well as the role of genetics, will be presented and discussed.
Collapse
Affiliation(s)
- Daniela Galimberti
- Department of Neurological Sciences, "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico Via F. Sforza 35, 20122, Milan, Italy
| | | |
Collapse
|
34
|
Hoopes JT, Liu X, Xu X, Demeler B, Folta-Stogniew E, Li C, Ha Y. Structural characterization of the E2 domain of APL-1, a Caenorhabditis elegans homolog of human amyloid precursor protein, and its heparin binding site. J Biol Chem 2010; 285:2165-73. [PMID: 19906646 PMCID: PMC2804372 DOI: 10.1074/jbc.m109.018432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 10/14/2009] [Indexed: 11/06/2022] Open
Abstract
The amyloid beta-peptide deposit found in the brain tissue of patients with Alzheimer disease is derived from a large heparin-binding protein precursor APP. The biological function of APP and its homologs is not precisely known. Here we report the x-ray structure of the E2 domain of APL-1, an APP homolog in Caenorhabditis elegans, and compare it to the human APP structure. We also describe the structure of APL-1 E2 in complex with sucrose octasulfate, a highly negatively charged disaccharide, which reveals an unexpected binding pocket between the two halves of E2. Based on the crystal structure, we are able to map, using site-directed mutagenesis, a surface groove on E2 to which heparin may bind. Our biochemical data also indicate that the affinity of E2 for heparin is influenced by pH: at pH 5, the binding appears to be much stronger than that at neutral pH. This property is likely caused by histidine residues in the vicinity of the mapped heparin binding site and could be important for the proposed adhesive function of APL-1.
Collapse
Affiliation(s)
| | | | - Xiaomeng Xu
- the Department of Biology, City College of the City University of New York, New York, New York 10031, and
| | - Borries Demeler
- the Center for Analytical Ultracentrifugation of Macromolecular Assemblies, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Ewa Folta-Stogniew
- W. M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, Connecticut 06520
| | - Chris Li
- the Department of Biology, City College of the City University of New York, New York, New York 10031, and
| | - Ya Ha
- From the Department of Pharmacology and
| |
Collapse
|
35
|
Xu YX, Wang HQ, Yan J, Sun XB, Guo JC, Zhu CQ. Antibody binding to cell surface amyloid precursor protein induces neuronal injury by deregulating the phosphorylation of focal adhesion signaling related proteins. Neurosci Lett 2009; 465:276-81. [PMID: 19766167 DOI: 10.1016/j.neulet.2009.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/05/2009] [Accepted: 09/14/2009] [Indexed: 02/01/2023]
Abstract
The biological function of full-length amyloid-beta protein precursor (APP), the precursor of Abeta, is not fully understood. Mounting studies reported that antibody binding to cell surface APP causes neuronal injury. However, the mechanism of cell surface APP mediating neuronal injury remains to be determined. Colocalization of APP with integrin on cell surface leads us to suppose that focal adhesion (FA) related mechanism is involved in surface APP-mediated neuronal injury. In the present study, results demonstrated that primary cultured neurons treated with antibody against APP-N-terminal not only caused neuronal injury and aberrant morphologic changes of neurite, but also induced reaction of FA proteins appearing an acute increase then decrease pattern. Moreover, the elevation of tyrosine phosphorylation of FA proteins including paxillin and focal adhesion kinase (FAK), and down-regulated expression of protein tyrosine phosphatase (PTP1B) induced by APP antibody were prevented by inhibitor of Src protein kinases 4-amino-5-(4-chlorophenyl)-7(t-butyl) pyrazol (3,4-D) pyramide (PP2) and G protein inhibitor pertussis toxin (PTX), implying that Src family kinase and G protein play roles in APP-induced FA signals. In addition, pretreatment with PTX and PP2 was able to suppress APP-antibody induced neuronal injury. Taken together, the results suggest a novel mechanism for APP mediating neuronal injury through deregulating FA signals.
Collapse
Affiliation(s)
- Yu-Xia Xu
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008; 283:29615-9. [PMID: 18650430 DOI: 10.1074/jbc.r800019200] [Citation(s) in RCA: 821] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular trafficking and proteolytic processing of amyloid precursor protein (APP) have been the focus of numerous investigations over the past two decades. APP is the precursor to the amyloid beta-protein (Abeta), the 38-43-amino acid residue peptide that is at the heart of the amyloid cascade hypothesis of Alzheimer disease (AD). Tremendous progress has been made since the initial identification of Abeta as the principal component of brain senile plaques of individuals with AD. Specifically, molecular characterization of the secretases involved in Abeta production has facilitated cell biological investigations on APP processing and advanced efforts to model AD pathogenesis in animal models. This minireview summarizes salient features of APP trafficking and amyloidogenic processing and discusses the putative biological functions of APP.
Collapse
Affiliation(s)
- Gopal Thinakaran
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
37
|
Abstract
The beta-amyloid precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, but its normal functions in the brain are poorly understood. A number of APP-interacting proteins have been identified: intracellularly, APP interacts with adaptor proteins through its conserved NPXY domain; extracellularly, APP interacts with a component of the extracellular matrix, F-spondin. Interestingly, many of these APP-interacting proteins also interact with the family of receptors for apolipoprotein E (apoE), the Alzheimer's disease risk factor. apoE receptors also share with APP the fact that they are cleaved by the same secretase activities. apoE receptors are shed from the cell surface, a cleavage that is regulated by receptor-ligand interactions, and C-terminal fragments of apoE receptors are cleaved by gamma-secretase. Functionally, both APP and apoE receptors affect neuronal migration and synapse formation in the brain. This review summarizes these numerous interactions between APP and apoE receptors, which provide clues about the normal functions of APP.
Collapse
Affiliation(s)
- Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University, Washington, District of Columbia 20007, USA
| | | |
Collapse
|
38
|
Thid D, Holm K, Eriksson PS, Ekeroth J, Kasemo B, Gold J. Supported phospholipid bilayers as a platform for neural progenitor cell culture. J Biomed Mater Res A 2008; 84:940-53. [PMID: 17647234 DOI: 10.1002/jbm.a.31358] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Supported phospholipid bilayers constitute a biomimetic platform for cell behavior studies and a new approach to the design of cell culture substrates. Phosphocholine bilayers are resistant to cell attachment, but can be functionalized with bioactive molecules to promote specific cell interactions. Here, we explore phosphocholine bilayers, functionalized with the laminin-derived IKVAV pentamer, as substrates for attachment, growth, and differentiation of neural progenitor cells (AHPs). By varying peptide concentration (0-10%), we discovered a strongly nonlinear relationship between cell attachment and IKVAV concentration, with a threshold of 1% IKVAV required for attachment, and saturation in cell binding at 3% IKVAV. This behavior, together with the 10-fold reduction in cell attachment when using a jumbled peptide sequence, gives evidence for a specific interaction between IKVAV and its AHP cell-surface receptor. After 8 days in culture, the peptide-functionalized bilayers promoted a high degree of cell cluster formation. This is in contrast to the predominant monolayer growth, observed for these cells on the standard laminin coated growth substrates. The peptide-functionalized bilayer did not induce differentiation levels over those observed for the laminin coated substrates. These results are promising in that peptide-functionalized bilayers can allow attachment and growth of stem cells without induction of differentiation.
Collapse
Affiliation(s)
- D Thid
- Department of Applied Physics, Chalmers University of Technology, Göteborg 412 96, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
Young-Pearse TL, Chen AC, Chang R, Marquez C, Selkoe DJ. Secreted APP regulates the function of full-length APP in neurite outgrowth through interaction with integrin beta1. Neural Dev 2008; 3:15. [PMID: 18573216 PMCID: PMC2442059 DOI: 10.1186/1749-8104-3-15] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/23/2008] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Beta-amyloid precursor protein (APP) has been reported to play a role in the outgrowth of neurites from cultured neurons. Both cell-surface APP and its soluble, ectodomain cleavage product (APPs-alpha) have been implicated in regulating the length and branching of neurites in a variety of assays, but the mechanism by which APP performs this function is not understood. RESULTS Here, we report that APP is required for proper neurite outgrowth in a cell autonomous manner, both in vitro and in vivo. Neurons that lack APP undergo elongation of their longest neurite. Deletion of APLP1 or APLP2, homologues of APP, likewise stimulates neurite lengthening. Intriguingly, wild-type neurons exposed to APPs-alpha, the principal cleavage product of APP, also undergo neurite elongation. However, APPs-alpha is unable to stimulate neurite elongation in the absence of cellular APP expression. The outgrowth-enhancing effects of both APPs-alpha and the deletion of APP are inhibited by blocking antibodies to Integrin beta1 (Itgbeta1). Moreover, full length APP interacts biochemically with Itgbeta1, and APPs-alpha can interfere with this binding. CONCLUSION Our findings indicate that APPs-alpha regulates the function of APP in neurite outgrowth via the novel mechanism of competing with the binding of APP to Itgbeta1.
Collapse
Affiliation(s)
- Tracy L Young-Pearse
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
40
|
Anderson AA, Ushakov DS, Ferenczi MA, Mori R, Martin P, Saffell JL. Morphoregulation by acetylcholinesterase in fibroblasts and astrocytes. J Cell Physiol 2008; 215:82-100. [PMID: 17948252 DOI: 10.1002/jcp.21288] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acetylcholinesterase (AChE) terminates neurotransmission at cholinergic synapses by hydrolysing acetylcholine, but also has non-enzymatic morphoregulatory effects on neurons such as stimulation of neurite outgrowth. It is widely expressed outside the nervous system, but its function in non-neuronal cells is unclear. Here we have investigated the distribution and function of AChE in fibroblasts and astrocytes. We show that these cells express high levels of AChE protein that co-migrates with recombinant AChE but contains little catalytic activity. Fibroblasts express transcripts encoding the synaptic AChE-T isoform and its membrane anchoring peptide PRiMA-I. AChE is strikingly distributed in arcs, rings and patches at the leading edge of spreading and migrating fibroblasts and astrocytes, close to the cell-substratum interface, and in neuronal growth cones. During in vivo healing of mouse skin, AChE becomes highly expressed in re-epithelialising epidermal keratinocytes 1 day after wounding. AChE appears to be functionally important for polarised cell migration, since an AChE antibody reduces substratum adhesion of fibroblasts, and slows wound healing in vitro as effectively as a beta1-integrin antibody. Moreover, elevation of AChE expression increases fibroblast wound healing independently of catalytic activity. Interestingly, AChE surface patches precisely co-localise with amyloid precursor protein and the extracellular matrix protein perlecan, but not focal adhesions or alpha-dystroglycan, and contain a high concentration of tyrosine phosphorylated proteins in spreading cells. These findings suggest that cell surface AChE, possibly in a novel signalling complex containing APP and perlecan, contributes to a generalised mechanism for polarised membrane protrusion and migration in all adherent cells.
Collapse
Affiliation(s)
- Alexandra A Anderson
- Division of Cell & Molecular Biology, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London, UK
| | | | | | | | | | | |
Collapse
|
41
|
Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V. Vesicular transmitter release from astrocytes. Glia 2006; 54:700-715. [PMID: 17006898 DOI: 10.1002/glia.20367] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Astrocytes can release a variety of transmitters, including glutamate and ATP, in response to stimuli that induce increases in intracellular Ca(2+) levels. This release occurs via a regulated, exocytotic pathway. As evidence of this, astrocytes express protein components of the vesicular secretory apparatus, including synaptobrevin 2, syntaxin, and SNAP-23. Additionally, astrocytes possess vesicular organelles, the essential morphological elements required for regulated Ca(2+)-dependent transmitter release. The location of specific exocytotic sites on these cells, however, remains to be unequivocally determined.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| | - Erik B Malarkey
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| | - Claudia Verderio
- Department of Medical Pharmacology, Consiglio Nazionalle delle Ricerche Institute of Neuroscience, University of Milano, Milano, Italy
| | - Michela Matteoli
- Department of Medical Pharmacology, Consiglio Nazionalle delle Ricerche Institute of Neuroscience, University of Milano, Milano, Italy
| | - Vladimir Parpura
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| |
Collapse
|
42
|
Meckler X, Bertandeau E, McNiven MA, Allinquant B, Hémar A. The cytosolic domain of APP induces the relocalization of dynamin 3 in hippocampal neurons. Eur J Neurosci 2006; 24:2439-43. [PMID: 17100832 DOI: 10.1111/j.1460-9568.2006.05141.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid precursor protein (APP) has been the subject of intense research to uncover its implication in Alzheimer's disease. Its physiological function is, however, still poorly understood. Herein, we investigated its possible influence on the development of cultured hippocampal neurons. A peptide corresponding to the APP intracellular domain linked to a cell-penetrating peptide was used to alter the interactions of APP with its cytosolic partners. This treatment promoted the concentration of the cytosolic GTPase dynamin 3 (Dyn3) in neurite segments when most untreated cells displayed a homogenous punctate distribution of Dyn3. The Dyn3-labelled segments were excluded from those revealed by APP staining after aldehyde fixation. Interestingly, after aldehyde fixation MAP2 also labelled segments excluded from APP-stained segments. Thus APP is also a marker for the spacing pattern of neurites demonstrated by Taylor & Fallon (2006)J. Neurosci., 26, 1154-4463.
Collapse
Affiliation(s)
- X Meckler
- Physiologie Cellulaire de la Synapse, UMR5091 CNRS, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
43
|
Tang N, He M, O’Riordan MA, Farkas C, Buck K, Lemmon V, Bearer CF. Ethanol inhibits L1 cell adhesion molecule activation of mitogen-activated protein kinases. J Neurochem 2006; 96:1480-90. [PMID: 16478533 PMCID: PMC4362514 DOI: 10.1111/j.1471-4159.2006.03649.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inhibition of the functions of L1 cell adhesion molecule (L1) by ethanol has been implicated in the pathogenesis of the neurodevelopmental aspects of the fetal alcohol syndrome (FAS). Ethanol at pharmacological concentrations has been shown to inhibit L1-mediated neurite outgrowth of rat post-natal day 6 cerebellar granule cells (CGN). Extracellular signal-related kinases (ERK) 1/2 activation occurs following L1 clustering. Reduction in phosphoERK1/2 by inhibition of mitogen-activated protein kinase kinase (MEK) reduces neurite outgrowth of cerebellar neurons. Here, we examine the effects of ethanol on L1 activation of ERK1/2, and whether this activation occurs via activation of fibroblast growth factor receptor 1 (FGFR1). Ethanol at 25 mm markedly inhibited ERK1/2 activation by both clustering L1 with cross-linked monoclonal antibodies, or by L1-Fc chimeric proteins. Clustering L1 with subsequent ERK1/2 activation did not result in tyrosine phosphorylation of the FGFR1. In addition, inhibition of FGFR1 tyrosine kinase blocked basic fibroblast growth factor (bFGF) activation of ERK1/2, but did not affect activation of ERK1/2 by clustered L1. We conclude that ethanol disrupts the signaling pathway between L1 clustering and ERK1/2 activation, and that this occurs independently of the FGFR1 pathway in cerebellar granule cells.
Collapse
Affiliation(s)
- Ningfeng Tang
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Min He
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mary Ann O’Riordan
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chloe Farkas
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kevin Buck
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vance Lemmon
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida, USA
| | - Cynthia F. Bearer
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
44
|
Abstract
In the absence of their cognate ligand, dependence receptors trigger programmed cell death. This function is the defining feature of dependence receptors, which include members of several different protein families. The integrins are a family of heterodimeric receptors for extracellular matrix (ECM) proteins, mediating cell anchorage and migration. Integrins share characteristics with dependence receptors, and integrin binding to substrate ECM ligands is essential for cell survival. Although integrins do not conform in all characteristics to the established definitions of dependence receptors, alterations in the expression of integrins and their ligands during physiological and pathological events, such as wound healing, angiogenesis and tumorigenesis, do regulate cell fate in a ligand-dependent manner. This biosensory function of integrins fits well with our current concept of dependence receptor action, and thus integrins may rightly be considered to comprise a distinct subclass of dependence receptor.
Collapse
Affiliation(s)
- D G Stupack
- Department of Pathology, UCSD School of Medicine & Moore's UCSD Comprehensive Cancer Center 3855 Health Sciences Drive MC 0803 La Jolla, CA 92093-0803, USA.
| |
Collapse
|
45
|
Swanson T, Knittel LM, Coate T, Farley S, Snyder M, Copenhaver P. The insect homologue of the amyloid precursor protein interacts with the heterotrimeric G protein Go alpha in an identified population of migratory neurons. Dev Biol 2005; 288:160-78. [PMID: 16229831 PMCID: PMC2862231 DOI: 10.1016/j.ydbio.2005.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 09/01/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
The amyloid precursor protein (APP) is the source of Abeta fragments implicated in the formation of senile plaques in Alzheimer's disease (AD). APP-related proteins are also expressed at high levels in the embryonic nervous system and may serve a variety of developmental functions, including the regulation of neuronal migration. To investigate this issue, we have cloned an orthologue of APP (msAPPL) from the moth, Manduca sexta, a preparation that permits in vivo manipulations of an identified set of migratory neurons (EP cells) within the developing enteric nervous system. Previously, we found that EP cell migration is regulated by the heterotrimeric G protein Goalpha: when activated by unknown receptors, Goalpha induces the onset of Ca2+ spiking in these neurons, which in turn down-regulates neuronal motility. We have now shown that msAPPL is first expressed by the EP cells shortly before the onset of migration and that this protein undergoes a sequence of trafficking, processing, and glycosylation events that correspond to discrete phases of neuronal migration and differentiation. We also show that msAPPL interacts with Goalpha in the EP cells, suggesting that msAPPL may serve as a novel G-protein-coupled receptor capable of modulating specific aspects of migration via Goalpha-dependent signal transduction.
Collapse
Affiliation(s)
| | | | | | | | | | - P.F. Copenhaver
- author for correspondence tel: (503)-494-4646, fax: (503)-494-4253,
| |
Collapse
|
46
|
Soba P, Eggert S, Wagner K, Zentgraf H, Siehl K, Kreger S, Löwer A, Langer A, Merdes G, Paro R, Masters CL, Müller U, Kins S, Beyreuther K. Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 2005; 24:3624-34. [PMID: 16193067 PMCID: PMC1276707 DOI: 10.1038/sj.emboj.7600824] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 09/01/2005] [Indexed: 02/07/2023] Open
Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease, but its physiological function and that of its mammalian paralogs, the amyloid precursor-like proteins 1 and 2 (APLPs), is still poorly understood. APP has been proposed to form dimers, a process that could promote cell adhesion via trans-dimerization. We investigated the dimerization and cell adhesion properties of APP/APLPs and provide evidence that all three paralogs are capable of forming homo- and heterocomplexes. Moreover, we show that trans-interaction of APP family proteins promotes cell-cell adhesion in a homo- and heterotypic fashion and that endogenous APLP2 is required for cell-cell adhesion in mouse embryonic fibroblasts. We further demonstrate interaction of all the three APP family members in mouse brain, genetic interdependence, and molecular interaction of APP and APLPs in synaptically enriched membrane compartments. Together, our results provide evidence that homo- and heterocomplexes of APP/APLPs promote trans-cellular adhesion in vivo.
Collapse
Affiliation(s)
- Peter Soba
- ZMBH, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vehmas A, Lieu J, Pardo CA, McArthur JC, Gartner S. Amyloid precursor protein expression in circulating monocytes and brain macrophages from patients with HIV-associated cognitive impairment. J Neuroimmunol 2005; 157:99-110. [PMID: 15579286 DOI: 10.1016/j.jneuroim.2004.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2004] [Indexed: 11/30/2022]
Abstract
We examined amyloid precursor protein (APP) surface expression on circulating leukocytes and in brain tissues from normal individuals and HIV+ subjects with cognitive impairment. Most monocytes, and a subset of B-lymphocytes, expressed APP, while T-lymphocytes, granulocytes, and natural killer (NK) cells did not. CD14bright/CD16+ monocytes expressed the highest levels, and CD14dim/CD16+ cells were negative, suggesting a relationship with activation. Higher APP+ monocyte levels correlated with increased numbers of CD16+ monocytes, but not with the degree of cognitive impairment. Treatment of monocytes with M-CSF, but not LPS, upregulated APP expression. In the brain, APP appeared as axonal immunoreactivity and diffuse plaques, and APP+ perivascular macrophages were seen in cases with severe dementia. APP may facilitate monocyte entry into the brain.
Collapse
Affiliation(s)
- Ari Vehmas
- Department of Neurology, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
48
|
Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, Kretzschmar H, Sisodia S, Müller U. Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. EMBO J 2004; 23:4106-15. [PMID: 15385965 PMCID: PMC524337 DOI: 10.1038/sj.emboj.7600390] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 08/09/2004] [Indexed: 11/09/2022] Open
Abstract
The Alzheimer's disease beta-amyloid precursor protein (APP) is a member of a larger gene family that includes the amyloid precursor-like proteins, termed APLP1 and APLP2. We previously documented that APLP2-/-APLP1-/- and APLP2-/-APP-/- mice die postnatally, while APLP1-/-APP-/- mice and single mutants were viable. We now report that mice lacking all three APP/APLP family members survive through embryonic development, and die shortly after birth. In contrast to double-mutant animals with perinatal lethality, 81% of triple mutants showed cranial abnormalities. In 68% of triple mutants, we observed cortical dysplasias characterized by focal ectopic neuroblasts that had migrated through the basal lamina and pial membrane, a phenotype that resembles human type II lissencephaly. Moreover, at E18.5 triple mutants showed a partial loss of cortical Cajal Retzius (CR) cells, suggesting that APP/APLPs play a crucial role in the survival of CR cells and neuronal adhesion. Collectively, our data reveal an essential role for APP family members in normal brain development and early postnatal survival.
Collapse
Affiliation(s)
- Jochen Herms
- Zentrum für Neuropathologie und Prionforschung, Universität München, München, Germany
| | - Brigitte Anliker
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | - Sabine Heber
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | - Sabine Ring
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | - Martin Fuhrmann
- Zentrum für Neuropathologie und Prionforschung, Universität München, München, Germany
| | - Hans Kretzschmar
- Zentrum für Neuropathologie und Prionforschung, Universität München, München, Germany
| | - Sangram Sisodia
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL, USA
| | - Ulrike Müller
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt, Germany
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstr. 46, 60528 Frankfurt, Germany. Tel.: +49 69 96769 317; Fax: +49 69 96769 441; E-mail:
| |
Collapse
|
49
|
Wang Y, Ha Y. The X-ray structure of an antiparallel dimer of the human amyloid precursor protein E2 domain. Mol Cell 2004; 15:343-53. [PMID: 15304215 DOI: 10.1016/j.molcel.2004.06.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/20/2004] [Accepted: 05/24/2004] [Indexed: 01/08/2023]
Abstract
Amyloid beta-peptide, which forms neuronal and vascular amyloid deposits in Alzheimer's disease, is derived from an integral membrane protein precursor. The biological function of the precursor is currently unclear. Here we describe the X-ray structure of E2, the largest of the three conserved domains of the precursor. The structure of E2 consists of two coiled-coil substructures connected through a continuous helix and bears an unexpected resemblance to the spectrin family of protein structures. E2 can reversibly dimerize in the solution, and the dimerization occurs along the longest dimension of the molecule in an antiparallel orientation, which enables the N-terminal substructure of one monomer to pack against the C-terminal substructure of a second monomer. Heparan sulfate proteoglycans, the putative ligand for the precursor present in extracellular matrix, bind to E2 at a conserved and positively charged site near the dimer interface.
Collapse
Affiliation(s)
- Yongcheng Wang
- Department of Pharmacology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
50
|
Heredia L, Lin R, Vigo FS, Kedikian G, Busciglio J, Lorenzo A. Deposition of amyloid fibrils promotes cell-surface accumulation of amyloid β precursor protein. Neurobiol Dis 2004; 16:617-29. [PMID: 15262274 DOI: 10.1016/j.nbd.2004.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 04/09/2004] [Accepted: 04/19/2004] [Indexed: 12/21/2022] Open
Abstract
Amyloid beta protein (Abeta) deposition and neuronal degeneration are characteristic pathological features of Alzheimer's disease (AD). In vitro, Abeta fibrils (fAbeta) induce neuronal degeneration reminiscent to AD, but the mechanism of neurotoxicity is unknown. Here we show that amyloid fibrils increase the level of cell-surface full-length amyloid beta precursor protein (h-AbetaPP) and secreted AbetaPP (s-AbetaPP). Pulse-chase analysis indicated that fAbeta selectively inhibited the turnover of cell-surface AbetaPP, without altering its intracellular levels. FAbeta-induced AbetaPP accumulation was not abrogated by cycloheximide, suggesting that increased protein synthesis is not critically required. Abeta fibrils sequester s-AbetaPP from the culture medium and promote its accumulation at the cell surface, indicating that binding of Abeta fibrils mediates AbetaPP accumulation. A time course analysis of Abeta treatment showed that AbetaPP level is elevated before significant cell death can be detected, while other toxic insults do not augment AbetaPP level, suggesting that AbetaPP may be specifically involved in early stages of Abeta-induced neurodegeneration. Finally, Abeta fibrils promote clustering of h-AbetaPP in abnormal focal adhesion-like (FA-like) structures that mediate neuronal dystrophy, increasing its association with the cytoskeleton. These results indicate that the interaction of Abeta fibrils with AbetaPP is an early event in the mechanism of Abeta-induced neurodegeneration that may play a significant role in AD pathogenesis.
Collapse
Affiliation(s)
- Lorena Heredia
- Laboratory of Experimental Neuropathology, Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC/CONICET, Córdoba, 5000 Argentina
| | | | | | | | | | | |
Collapse
|