1
|
Mühlenbrock P, Sari M, Steinem C. In vitro single vesicle fusion assays based on pore-spanning membranes: merits and drawbacks. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:239-252. [PMID: 33320298 PMCID: PMC8071798 DOI: 10.1007/s00249-020-01479-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022]
Abstract
Neuronal fusion mediated by soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) is a fundamental cellular process by which two initially distinct membranes merge resulting in one interconnected structure to release neurotransmitters into the presynaptic cleft. To get access to the different stages of the fusion process, several in vitro assays have been developed. In this review, we provide a short overview of the current in vitro single vesicle fusion assays. Among those assays, we developed a single vesicle assay based on pore-spanning membranes (PSMs) on micrometre-sized pores in silicon, which might overcome some of the drawbacks associated with the other membrane architectures used for investigating fusion processes. Prepared by spreading of giant unilamellar vesicles with reconstituted t-SNAREs, PSMs provide an alternative tool to supported lipid bilayers to measure single vesicle fusion events by means of fluorescence microscopy. Here, we discuss the diffusive behaviour of the reconstituted membrane components as well as that of the fusing synthetic vesicles with reconstituted synaptobrevin 2 (v-SNARE). We compare our results with those obtained if the synthetic vesicles are replaced by natural chromaffin granules under otherwise identical conditions. The fusion efficiency as well as the different fusion states observable in this assay by means of both lipid mixing and content release are illuminated.
Collapse
Affiliation(s)
- Peter Mühlenbrock
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany
| | - Merve Sari
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany
| | - Claudia Steinem
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany.
- Max-Planck-Institute for Dynamics and Self Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
3
|
Wang C, Tu J, Zhang S, Cai B, Liu Z, Hou S, Zhong Q, Hu X, Liu W, Li G, Liu Z, He L, Diao J, Zhu ZJ, Li D, Liu C. Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nat Commun 2020; 11:1531. [PMID: 32210233 PMCID: PMC7093461 DOI: 10.1038/s41467-020-15270-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
Vesicle associated membrane protein 2 (VAMP2/synaptobrevin2), a core SNARE protein residing on synaptic vesicles (SVs), forms helix bundles with syntaxin-1 and SNAP25 for the SNARE assembly. Prior to the SNARE assembly, the structure of VAMP2 is unclear. Here, by using in-cell NMR spectroscopy, we describe the dynamic membrane association of VAMP2 SNARE motif in mammalian cells, and the structural change of VAMP2 upon the change of intracellular lipid environment. We analyze the lipid compositions of the SV membrane by mass-spectrometry-based lipidomic profiling, and further reveal that VAMP2 forms distinctive conformations in different membrane regions. In contrast to the non-raft region, the membrane region of cholesterol-rich lipid raft markedly weakens the membrane association of VAMP2 SNARE motif, which releases the SNARE motif and facilitates the SNARE assembly. Our work reveals the regulation of different membrane regions on VAMP2 structure and sheds light on the spatial regulation of SNARE assembly.
Collapse
Affiliation(s)
- Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Tu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Bin Cai
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shouqiao Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinglu Zhong
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiao Hu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Wenbin Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| |
Collapse
|
4
|
Salpietro V, Lin W, Vedove AD, Storbeck M, Liu Y, Efthymiou S, Manole A, Wiethoff S, Ye Q, Saggar A, McElreavey K, Krishnakumar SS, Pitt M, Bello OD, Rothman JE, Basel‐Vanagaite L, Hubshman MW, Aharoni S, Manzur AY, Wirth B, Houlden H. Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Ann Neurol 2017; 81:597-603. [PMID: 28253535 PMCID: PMC5413866 DOI: 10.1002/ana.24905] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 11/07/2022]
Abstract
We report 2 families with undiagnosed recessive presynaptic congenital myasthenic syndrome (CMS). Whole exome or genome sequencing identified segregating homozygous variants in VAMP1: c.51_64delAGGTGGGGGTCCCC in a Kuwaiti family and c.146G>C in an Israeli family. VAMP1 is crucial for vesicle fusion at presynaptic neuromuscular junction (NMJ). Electrodiagnostic examination showed severely low compound muscle action potentials and presynaptic impairment. We assessed the effect of the nonsense mutation on mRNA levels and evaluated the NMJ transmission in VAMP1lew/lew mice, observing neurophysiological features of presynaptic impairment, similar to the patients. Taken together, our findings highlight VAMP1 homozygous mutations as a cause of presynaptic CMS. Ann Neurol 2017;81:597–603
Collapse
Affiliation(s)
- Vincenzo Salpietro
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Weichun Lin
- Department of NeuroscienceUniversity of Texas Southwestern Medical CenterDallasTX
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine CologneCologneGermany
- Institute for GeneticsUniversity of CologneCologneGermany
| | - Markus Storbeck
- Institute of Human Genetics, Center for Molecular Medicine CologneCologneGermany
- Institute for GeneticsUniversity of CologneCologneGermany
| | - Yun Liu
- Department of NeuroscienceUniversity of Texas Southwestern Medical CenterDallasTX
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Andreea Manole
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Sarah Wiethoff
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Qiaohong Ye
- Department of NeuroscienceUniversity of Texas Southwestern Medical CenterDallasTX
| | - Anand Saggar
- St George's Hospital, National Health Service Foundation TrustLondonUnited Kingdom
| | | | - Shyam S. Krishnakumar
- Department of Cell BiologyYale School of MedicineNew HavenCT
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | | | - Matthew Pitt
- Department of Clinical NeurophysiologyGreat Ormond Street Hospital for Children, National Health Service Foundation TrustLondonUnited Kingdom
| | - Oscar D. Bello
- Department of Cell BiologyYale School of MedicineNew HavenCT
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - James E. Rothman
- Department of Cell BiologyYale School of MedicineNew HavenCT
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUnited Kingdom
| | - Lina Basel‐Vanagaite
- Pediatric Genetics Unit, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
- Raphael Recanati Genetic Institute, Rabin Medical CenterPetach TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Monika Weisz Hubshman
- Pediatric Genetics Unit, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
- Raphael Recanati Genetic Institute, Rabin Medical CenterPetach TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Sharon Aharoni
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Institute of Child Neurology, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | - Adnan Y. Manzur
- Department of Pediatric NeurologyDubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children National Health Service Foundation TrustLondonUnited Kingdom
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine CologneCologneGermany
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College London Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
5
|
Carneiro M, Gutiérrez-Praena D, Osório H, Vasconcelos V, Carvalho AP, Campos A. Proteomic analysis of anatoxin-a acute toxicity in zebrafish reveals gender specific responses and additional mechanisms of cell stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:93-101. [PMID: 26046835 DOI: 10.1016/j.ecoenv.2015.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 05/23/2023]
Abstract
Anatoxin-a is a potent neurotoxin produced by several genera of cyanobacteria. Deaths of wild and domestic animals due to anatoxin-a exposure have been reported following a toxic response that is driven by the inhibition of the acetylcholine receptors at neuromuscular junctions. The consequent neuron depolarization results in an overstimulation of the muscle cells. In order to unravel further molecular events implicated in the toxicity of anatoxin-a, a proteomic investigation was conducted. Applying two-dimensional gel electrophoresis (2DE) and MALDI-TOF mass spectrometry, we report early proteome changes in brain and muscle of zebrafish (Danio rerio) caused by acute exposure to anatoxin-a. In this regard, the test group of male and female zebrafish received an intraperitoneal (i.p.) injection of an anatoxin-a dose of 0.8µgg(-1) of fish body weight (bw) in phosphate buffered saline solution (PBS), while the control received an i.p. injection of PBS only. Five minutes after i.p. injection, brain and muscle tissues were collected, processed and analyzed with 2DE. Qualitative and quantitative analyzes of protein abundance allowed the detection of differences in the proteome of control and exposed fish groups, and between male and female fish (gender specific responses). The altered proteins play functions in carbohydrate metabolism and energy production, ATP synthesis, cell structure maintenance, cellular transport, protein folding, stress response, detoxification and protease inhibition. These changes provide additional insights relative to the toxicity of anatoxin-a in fish. Taking into account the short time of response considered (5min of response to the toxin), the changes in the proteome observed in this work are more likely to derive from fast occurring reactions in the cells. These could occur by protein activity regulation through degradation (proteolysis) and/or post-translational modifications, than from a differential regulation of gene expression, which may require more time for proteins to be synthesized and to produce changes at the proteomic level.
Collapse
Affiliation(s)
- Mariana Carneiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, University of Seville, C/ Profesor García González, 2, 41012 Seville, Spain
| | - Hugo Osório
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Vítor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - António Paulo Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| |
Collapse
|
6
|
Abstract
Lung surfactant is crucial for reducing the surface tension of alveolar space, thus preventing the alveoli from collapse. Lung surfactant is synthesized in alveolar epithelial type II cells and stored in lamellar bodies before being released via the fusion of lamellar bodies with the apical plasma membrane. SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) play an essential role in membrane fusion. We have previously demonstrated the requirement of t-SNARE (target SNARE) proteins, syntaxin 2 and SNAP-23 (N-ethylmaleimide-sensitive factor-attachment protein 23), in regulated surfactant secretion. Here, we characterized the distribution of VAMPs (vesicle-associated membrane proteins) in rat lung and alveolar type II cells. VAMP-2, -3 and -8 are shown in type II cells at both mRNA and protein levels. VAMP-2 and -8 were enriched in LB (lamellar body) fraction. Immunochemistry studies indicated that VAMP-2 was co-localized with the LB marker protein, LB-180. Functionally, the cytoplasmic domain of VAMP-2, but not VAMP-8 inhibited surfactant secretion in type II cells. We suggest that VAMP-2 is the v-SNARE (vesicle SNARE) involved in regulated surfactant secretion.
Collapse
|
7
|
Ishigami T, Abe K, Aoki I, Minegishi S, Ryo A, Matsunaga S, Matsuoka K, Takeda H, Sawasaki T, Umemura S, Endo Y. Anti‐interleukin‐5 and multiple autoantibodies are associated with human atherosclerotic diseases and serum interleukin‐5 levels. FASEB J 2013; 27:3437-45. [DOI: 10.1096/fj.12-222653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tomoaki Ishigami
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kaito Abe
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Ichiro Aoki
- Department of Molecular PathologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Akihide Ryo
- Department of MicrobiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Satoko Matsunaga
- Department of MicrobiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kazuhiro Matsuoka
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Hiroyuki Takeda
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Tatsuya Sawasaki
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yaeta Endo
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| |
Collapse
|
8
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Interactions among the SNARE proteins and complexin analyzed by a yeast four-hybrid assay. Anal Biochem 2011; 416:107-11. [DOI: 10.1016/j.ab.2011.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/06/2011] [Indexed: 11/23/2022]
|
10
|
Jardin I, Ben Amor N, Hernández-Cruz JM, Salido GM, Rosado JA. Involvement of SNARE proteins in thrombin-induced platelet aggregation: Evidence for the relevance of Ca2+ entry. Arch Biochem Biophys 2007; 465:16-25. [PMID: 17543880 DOI: 10.1016/j.abb.2007.04.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 04/27/2007] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
Thrombin induces platelet activation through a variety of intracellular mechanisms, including Ca(2+) mobilization. The protein of the exocytotic machinery SNAP-25, but not VAMPs, is required for store-operated Ca(2+) entry, the main mechanism for Ca(2+) influx in platelets. Hence, we have investigated the role of the SNAP-25 and VAMPs in thrombin-induced platelet aggregation. Platelet stimulation with thrombin or selective activation of thrombin receptors PAR-1, PAR-4 or GPIb-IX-V results in platelet aggregation that, except for GPIb-IX-V receptor, requires Ca(2+) entry for full activation. Depletion of the intracellular Ca(2+) stores using pharmacological tools was unable to induce aggregation except when cytosolic Ca(2+) concentration reached a critical level (around 1.5 microM). Electrotransjection of cells with anti-SNAP-25 antibody reduced thrombin-evoked platelet aggregation, while electrotransjection of anti-VAMP-1, -2 and -3 antibody had no effect. These findings support a role for SNAP-25 but not VAMP-1, -2 and -3 in platelet aggregation, which is likely mediated by the regulation of Ca(2+) mobilization in human platelets.
Collapse
Affiliation(s)
- Isaac Jardin
- Department of Physiology, Cellular Physiology Research Group, University of Extremadura, Av. Universidad s/n, Cáceres 10071, Spain
| | | | | | | | | |
Collapse
|
11
|
Siddiqi SA, Siddiqi S, Mahan J, Peggs K, Gorelick FS, Mansbach CM. The identification of a novel endoplasmic reticulum to Golgi SNARE complex used by the prechylomicron transport vesicle. J Biol Chem 2006; 281:20974-20982. [PMID: 16735505 PMCID: PMC2833420 DOI: 10.1074/jbc.m601401200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dietary long chain fatty acids are absorbed in the intestine, esterified to triacylglycerol, and packaged in the unique lipoprotein of the intestine, the chylomicron. The rate-limiting step in the transit of chylomicrons through the enterocyte is the exit of chylomicrons from the endoplasmic reticulum in prechylomicron transport vesicles (PCTV) that transport chylomicrons to the cis-Golgi. Because chylomicrons are 250 nm in average diameter and lipid absorption is intermittent, we postulated that a unique SNARE pairing would be utilized to fuse PCTV with their target membrane, cis-Golgi. PCTV loaded with [(3)H]triacylglycerol were incubated with cis-Golgi and were separated from the Golgi by a sucrose step gradient. PCTV-chylomicrons acquire apolipoprotein-AI (apoAI) only after fusion with the Golgi. PCTV became isodense with Golgi upon incubation and were considered fused when their cargo chylomicrons acquired apoAI but docked when they did not. PCTV, docked with cis-Golgi, were solubilized in 2% Triton X-100, and proteins were immunoprecipitated using VAMP7 or rBet1 antibodies. In both cases, a 112-kDa complex was identified in nonboiled samples that dissociated upon boiling. The constituents of the complex were VAMP7, syntaxin 5, vti1a, and rBet1. Antibodies to each SNARE component significantly inhibited fusion of PCTV with cis-Golgi. Membrin, Sec22b, and Ykt6 were not found in the 112-kDa complex. We conclude that the PCTV-cis-Golgi SNARE complex is composed of VAMP7, syntaxin 5, Bet1, and vti1a.
Collapse
Affiliation(s)
- Shadab A Siddiqi
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Shahzad Siddiqi
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - James Mahan
- Veterans Affairs Medical Center, Memphis, Tennessee 38104
| | - Kiffany Peggs
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Fred S Gorelick
- Department of Medicine, Veterans Affairs Healthcare, New Haven, Connecticut 06516; Yale University School of Medicine, New Haven, Connecticut 06516
| | - Charles M Mansbach
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163; Veterans Affairs Medical Center, Memphis, Tennessee 38104.
| |
Collapse
|
12
|
Han X, Jackson MB. Structural transitions in the synaptic SNARE complex during Ca2+-triggered exocytosis. ACTA ACUST UNITED AC 2006; 172:281-93. [PMID: 16418536 PMCID: PMC2063557 DOI: 10.1083/jcb.200510012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synaptic SNARE complex is a highly stable four-helix bundle that links the vesicle and plasma membranes and plays an essential role in the Ca2+-triggered release of neurotransmitters and hormones. An understanding has yet to be achieved of how this complex assembles and undergoes structural transitions during exocytosis. To investigate this question, we have mutated residues within the hydrophobic core of the SNARE complex along the entire length of all four chains and examined the consequences using amperometry to measure fusion pore opening and dilation. Mutations throughout the SNARE complex reduced two distinct rate processes before fusion pore opening to different degrees. These results suggest that two distinct, fully assembled conformations of the SNARE complex drive transitions leading to open fusion pores. In contrast, a smaller number of mutations that were scattered through the SNARE complex but were somewhat concentrated in the membrane-distal half stabilized open fusion pores. These results suggest that a structural transition within a partially disassembled complex drives the dilation of open fusion pores. The dependence of these three rate processes on position within the SNARE complex does not support vectorial SNARE complex zipping during exocytosis.
Collapse
Affiliation(s)
- Xue Han
- Department of Physiology, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | |
Collapse
|
13
|
Kubista H, Edelbauer H, Boehm S. Evidence for structural and functional diversity among SDS-resistant SNARE complexes in neuroendocrine cells. J Cell Sci 2004; 117:955-66. [PMID: 14762114 DOI: 10.1242/jcs.00941] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The core complex, formed by the SNARE proteins synaptobrevin 2, syntaxin 1 and SNAP-25, is an important component of the synaptic fusion machinery and shows remarkable in vitro stability, as exemplified by its SDS-resistance. In western blots, antibodies against one of these SNARE proteins reveal the existence of not only an SDS-resistant ternary complex but also as many as five bands between 60 and >200 kDa. Structural conformation as well as possible functions of these various complexes remained elusive. In western blots of protein extracts from PC12 cell membranes, an antibody against SNAP-25 detected two heat-sensitive SDS-resistant bands with apparent molecular weights of 100 and 230 kDa. A syntaxin antibody recognized only the 230 kDa band and required heat-treatment of the blotting membrane to detect the 100 kDa band. Various antibodies against synaptobrevin failed to detect SNARE complexes in conventional western blots and detected either the 100 kDa band or the 230 kDa band on heat-treated blotting membranes. When PC12 cells were exposed to various extracellular K(+)-concentrations (to evoke depolarization-induced Ca(2+) influx) or permeabilized in the presence of basal or elevated free Ca(2+), levels of these SNARE complexes were altered differentially: moderate Ca(2+) rises (</=1 microM) caused an increase, whereas Ca(2+) elevations of more than 1 microM led to a decrease in the 230 kDa band. Under both conditions the 100 kDa band was either increased or remained unchanged. Our data show that various SDS-resistant complexes occur in living cells and indicate that they represent SNARE complexes with different structures and diverging functions. The distinct behavior of these complexes under release-promoting conditions indicates that these SNARE structures have different roles in exocytosis.
Collapse
Affiliation(s)
- Helmut Kubista
- Department of Pharmacology, University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | | | | |
Collapse
|
14
|
Zeng Q, Tran TTH, Tan HX, Hong W. The cytoplasmic domain of Vamp4 and Vamp5 is responsible for their correct subcellular targeting: the N-terminal extenSion of VAMP4 contains a dominant autonomous targeting signal for the trans-Golgi network. J Biol Chem 2003; 278:23046-54. [PMID: 12682051 DOI: 10.1074/jbc.m303214200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SNAREs represent a superfamily of proteins responsible for the last stage of docking and subsequent fusion in diverse intracellular membrane transport events. The Vamp subfamily of SNAREs contains 7 members (Vamp1, Vamp2, Vamp3/cellubrevin, Vamp4, Vamp5, Vamp7/Ti-Vamp, and Vamp8/endobrevin) that are distributed in various post-Golgi structures. Vamp4 and Vamp5 are distributed predominantly in the trans-Golgi network (TGN) and the plasma membrane, respectively. When C-terminally tagged with enhanced green fluorescent protein, the majority of Vamp4 and Vamp5 is correctly targeted to the TGN and plasma membrane, respectively. Swapping the N-terminal cytoplasmic region and the C-terminal membrane anchor domain between Vamp4 and Vamp5 demonstrates that the N-terminal cytoplasmic region of these two SNAREs contains the correct subcellular targeting information. As compared with Vamp5, Vamp4 contains an N-terminal extension of 51 residues. Appending this 51-residue N-terminal extension onto the N terminus of Vamp5 results in targeting of the chimeric protein to the TGN, suggesting that this N-terminal extension of Vamp4 contains a dominant and autonomous targeting signal for the TGN. Analysis of deletion mutants of this N-terminal region suggests that this TGN-targeting signal is encompassed within a smaller region consisting of a di-Leu motif followed by two acidic clusters. The essential role of the di-Leu motif and the second acidic cluster was then established by site-directed mutagenesis.
Collapse
Affiliation(s)
- Qi Zeng
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
15
|
Joglekar AP, Xu D, Rigotti DJ, Fairman R, Hay JC. The SNARE motif contributes to rbet1 intracellular targeting and dynamics independently of SNARE interactions. J Biol Chem 2003; 278:14121-33. [PMID: 12566453 DOI: 10.1074/jbc.m300659200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum/Golgi SNARE rbet1 cycles between the endoplasmic reticulum and Golgi and is essential for cargo transport in the secretory pathway. Although the quaternary SNARE complex containing rbet1 is known to function in membrane fusion, the structural role of rbet1 is unclear. Furthermore, the structural determinants for rbet1 targeting and its cyclical itinerary have not been investigated. We utilized protein interaction assays to demonstrate that the rbet1 SNARE motif plays a structural role similar to the carboxyl-terminal helix of SNAP-25 in the synaptic SNARE complex and demonstrated the importance to SNARE complex assembly of a conserved salt bridge between rbet1 and sec22b. We also examined the potential role of the rbet1 SNARE motif and SNARE interactions in rbet1 localization and dynamics. We found that, in contrast to what has been observed for syntaxin 5, the rbet1 SNARE motif was essential for proper targeting. To test whether SNARE interactions were important for the targeting function of the SNARE motif, we used charge repulsion mutations at the conserved salt bridge position that rendered rbet1 defective for binary, ternary, and quaternary SNARE interactions. We found that heteromeric SNARE interactions are not required at any step in rbet1 targeting or dynamics. Furthermore, the heteromeric state of the SNARE motif does not influence its interaction with the COPI coat or efficient recruitment onto transport vesicles. We conclude that protein targeting is a completely independent function of the rbet1 SNARE motif, which is capable of distinct classes of protein interactions.
Collapse
Affiliation(s)
- Ashwini P Joglekar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
16
|
Ganeshan R, Di A, Nelson DJ, Quick MW, Kirk KL. The interaction between syntaxin 1A and cystic fibrosis transmembrane conductance regulator Cl- channels is mechanistically distinct from syntaxin 1A-SNARE interactions. J Biol Chem 2003; 278:2876-85. [PMID: 12446681 DOI: 10.1074/jbc.m211790200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syntaxin 1A binds to and inhibits epithelial cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and synaptic Ca(2+) channels in addition to participating in SNARE complex assembly and membrane fusion. We exploited the isoform-specific nature of the interaction between syntaxin 1A and CFTR to identify residues in the H3 domain of this SNARE (SNARE motif) that influence CFTR binding and regulation. Mutating isoform-specific residues that map to the surface of syntaxin 1A in the SNARE complex led to the identification of two sets of hydrophilic residues that are important for binding to and regulating CFTR channels or for binding to the syntaxin regulatory protein Munc-18a. None of these mutations affected syntaxin 1A binding to other SNAREs or the assembly and stability of SNARE complexes in vitro. Conversely, the syntaxin 1A-CFTR interaction was unaffected by mutating hydrophobic residues in the H3 domain that influence SNARE complex stability and Ca(2+) channel regulation. Thus, CFTR channel regulation by syntaxin 1A involves hydrophilic interactions that are mechanistically distinct from the hydrophobic interactions that mediate SNARE complex formation and Ca(2+) channel regulation by this t-SNARE.
Collapse
Affiliation(s)
- Radhika Ganeshan
- Department of Physiology and Biophysics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
17
|
Fergestad T, Wu MN, Schulze KL, Lloyd TE, Bellen HJ, Broadie K. Targeted mutations in the syntaxin H3 domain specifically disrupt SNARE complex function in synaptic transmission. J Neurosci 2001; 21:9142-50. [PMID: 11717347 PMCID: PMC6763887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2001] [Revised: 09/14/2001] [Accepted: 09/17/2001] [Indexed: 02/22/2023] Open
Abstract
The cytoplasmic H3 helical domain of syntaxin is implicated in numerous protein-protein interactions required for the assembly and stability of the SNARE complex mediating vesicular fusion at the synapse. Two specific hydrophobic residues (Ala-240, Val-244) in H3 layers 4 and 5 of mammalian syntaxin1A have been suggested to be involved in SNARE complex stability and required for the inhibitory effects of syntaxin on N-type calcium channels. We have generated the equivalent double point mutations in Drosophila syntaxin1A (A243V, V247A; syx(4) mutant) to examine their significance in synaptic transmission in vivo. The syx(4) mutant animals are embryonic lethal and display severely impaired neuronal secretion, although non-neuronal secretion appears normal. Synaptic transmission is nearly abolished, with residual transmission delayed, highly variable, and nonsynchronous, strongly reminiscent of transmission in null synaptotagmin I mutants. However, the syx(4) mutants show no alterations in synaptic protein levels in vivo or syntaxin partner binding interactions in vitro. Rather, syx(4) mutant animals have severely impaired hypertonic saline response in vivo, an assay indicating loss of fusion-competent synaptic vesicles, and in vitro SNARE complexes containing Syx(4) protein have significantly compromised stability. These data suggest that the same residues required for syntaxin-mediated calcium channel inhibition are required for the generation of fusion-competent vesicles in a neuronal-specific mechanism acting at synapses.
Collapse
Affiliation(s)
- T Fergestad
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | | | | | | | | | | |
Collapse
|
18
|
Li Y, Chin LS, Weigel C, Li L. Spring, a novel RING finger protein that regulates synaptic vesicle exocytosis. J Biol Chem 2001; 276:40824-33. [PMID: 11524423 DOI: 10.1074/jbc.m106141200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synaptosome-associated protein of 25 kDa (SNAP-25) interacts with syntaxin 1 and vesicle-associated membrane protein 2 (VAMP2) to form a ternary soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex that is essential for synaptic vesicle exocytosis. We report a novel RING finger protein, Spring, that specifically interacts with SNAP-25. Spring is exclusively expressed in brain and is concentrated at synapses. The association of Spring with SNAP-25 abolishes the ability of SNAP-25 to interact with syntaxin 1 and VAMP2 and prevents the assembly of the SNARE complex. Overexpression of Spring or its SNAP-25-interacting domain reduces Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that Spring may act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP-25 for the SNARE complex formation.
Collapse
Affiliation(s)
- Y Li
- Department of Pharmacology and Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
19
|
Abstract
We have studied the localization of synaptogyrin family members in vivo. Both native and green fluorescent protein (GFP)-tagged Caenorhabditis elegans synaptogyrin (SNG-1) are expressed in neurons and synaptically localized. Deletion and mutational analysis with the use of GFP-tagged SNG-1 has defined a 38 amino acid sequence within the C terminus of SNG-1 and a single arginine in the cytoplasmic loop between transmembrane domain 2 and 3 that are required for SNG-1 localization. These domains may represent components of signals that target synaptogyrin for endocytosis from the plasma membrane and direct synaptogyrin to synaptic vesicles, respectively. In chimeric studies, these regions were sufficient to relocalize cellugyrin, a nonneuronal form of synaptogyrin, from nonsynaptic regions such as the sensory dendrites and the cell body to synaptic vesicles. Furthermore, GFP-tagged rat synaptogyrin is synaptically localized in neurons of C. elegans and in cultured hippocampal neurons. Similarly, the C-terminal domain of rat synaptogyrin is necessary for localization in hippocampal neurons. Our study suggests that the mechanisms for synaptogyrin localization are likely to be conserved from C. elegans to vertebrates.
Collapse
Affiliation(s)
- H Zhao
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
20
|
Braun JE, Madison DV. A novel SNAP25-caveolin complex correlates with the onset of persistent synaptic potentiation. J Neurosci 2000; 20:5997-6006. [PMID: 10934248 PMCID: PMC6772581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
We have identified synaptic protein complexes in intact rat hippocampal slices using the rapid chemical cross-linking reagent paraformaldehyde. Cellular proteins were rapidly cross-linked, solubilized, separated electrophoretically by SDS-PAGE, and then identified immunologically. Multiple complexes containing syntaxin, the synaptosomal-associated protein of 25 kDa (SNAP25), and vesicle-associated membrane protein (VAMP) were observed to coexist in a single hippocampal slice including a 100 kDa cross-linked protein complex that exhibited the same electrophoretic migration as a member of the previously identified SDS-resistant soluble N-ethylmaleimide-sensitive fusion attachment protein receptor "core" of the 20 S complex. A VAMP-synaptophysin complex, reported previously in vitro, was also observed in the hippocampal slices. This study links biochemical and physiological studies involving presynaptic proteins implicated in secretion and confirms that these proteins that have been studied extensively previously in the presence of detergent do form "bona fide" cellular complexes. Importantly, we have also detected additional novel protein complexes that do not correspond to complexes identified previously in vitro. After the induction of persistent synaptic potentiation, an abundant 40 kDa SNAP25-caveolin1 complex was observed. The SNAP25-caveolin1 complex was not abundant in control slices and, therefore, represents the first demonstration of a reorganization of protein complexes in intact hippocampal slices during the induction of synaptic potentiation. The interaction between caveolin1 and SNAP25 was confirmed biochemically by demonstration of the association of caveolin with recombinant-immobilized SNAP25 and by the coimmunoprecipitation of SNAP25 using caveolin-specific antisera. Caveolin1, like SNAP25, was observed to be abundant in isolated hippocampal nerve terminals (synaptosomes). Immunofluorescent studies demonstrated that both SNAP25 and caveolin1 are present in neurons and colocalize in axonal varicosities. These results suggest that a short-lasting SNAP25-caveolin interaction may be involved in the early phase of synaptic potentiation.
Collapse
Affiliation(s)
- J E Braun
- Department of Physiology and Biophysics, Neuroscience Research Group, The University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
21
|
Abstract
Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.
Collapse
Affiliation(s)
- R Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | |
Collapse
|
22
|
Laage R, Rohde J, Brosig B, Langosch D. A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins. J Biol Chem 2000; 275:17481-7. [PMID: 10764817 DOI: 10.1074/jbc.m910092199] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of the SNARE proteins synaptobrevin/VAMP, syntaxin, and SNAP-25 to binary and ternary complexes is important for docking and/or fusion of presynaptic vesicles to the neuronal plasma membrane prior to regulated neurotransmitter release. Despite the well characterized structure of their cytoplasmic assembly domains, little is known about the role of the transmembrane segments in SNARE protein assembly and function. Here, we identified conserved amino acid motifs within the transmembrane segments that are required for homodimerization of synaptobrevin II and syntaxin 1A. Minimal motifs of 6-8 residues grafted onto an otherwise monomeric oligoalanine host sequence were sufficient for self-interaction of both transmembrane segments in detergent solution or membranes. These motifs constitute contiguous areas of interfacial residues assuming alpha-helical secondary structures. Since the motifs are conserved, they also contributed to heterodimerization of synaptobrevin II and syntaxin 1A and therefore appear to constitute interaction domains independent of the cytoplasmic coiled coil regions. Interactions between the transmembrane segments may stabilize the SNARE complex, cause its multimerization to previously observed multimeric superstructures, and/or be required for the fusogenic activity of SNARE proteins.
Collapse
Affiliation(s)
- R Laage
- Department of Neurobiology, Universität Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
23
|
Humeau Y, Doussau F, Grant NJ, Poulain B. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 2000; 82:427-46. [PMID: 10865130 DOI: 10.1016/s0300-9084(00)00216-9] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Botulinum neurotoxins (BoNT, serotypes A-G) and tetanus neurotoxin (TeNT) are bacterial proteins that comprise a light chain (M(r) approximately 50) disulfide linked to a heavy chain (M(r) approximately 100). By inhibiting neurotransmitter release at distinct synapses, these toxins cause two severe neuroparalytic diseases, tetanus and botulism. The cellular and molecular modes of action of these toxins have almost been deciphered. After binding to specific membrane acceptors, BoNTs and TeNT are internalized via endocytosis into nerve terminals. Subsequently, their light chain (a zinc-dependent endopeptidase) is translocated into the cytosolic compartment where it cleaves one of three essential proteins involved in the exocytotic machinery: vesicle associated membrane protein (also termed synaptobrevin), syntaxin, and synaptosomal associated protein of 25 kDa. The aim of this review is to explain how the proteolytic attack at specific sites of the targets for BoNTs and TeNT induces perturbations of the fusogenic SNARE complex dynamics and how these alterations can account for the inhibition of spontaneous and evoked quantal neurotransmitter release by the neurotoxins.
Collapse
Affiliation(s)
- Y Humeau
- Laboratoire de Neurobiologie Cellulaire, UPR 9009 du CNRS, Centre de Neurochimie, 5, rue Blaise-Pascal, 67084 cedex, Strasbourg, France
| | | | | | | |
Collapse
|
24
|
Tsujimoto S, Bean AJ. Distinct protein domains are responsible for the interaction of Hrs-2 with SNAP-25. The role of Hrs-2 in 7 S complex formation. J Biol Chem 2000; 275:2938-42. [PMID: 10644763 DOI: 10.1074/jbc.275.4.2938] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated secretion of neurotransmitter at the synapse is likely to be mediated by dynamic protein interactions involving components of the vesicle (vesicle-associated membrane protein; VAMP) and plasma membrane (syntaxin and synaptosomal associated protein of 25 kDa (SNAP-25)) along with additional molecules that allow for the regulation of this process. Recombinant Hrs-2 interacts with SNAP-25 in a calcium-dependent manner (they dissociate at elevated calcium levels) and inhibits neurotransmitter release. Thus, Hrs-2 has been hypothesized to serve a negative regulatory role in secretion through its interaction with SNAP-25. In this report, we show that Hrs-2 and SNAP-25 interact directly through specific coiled-coil domains in each protein. The presence of syntaxin enhances the binding of Hrs-2 to SNAP-25. Moreover, while both Hrs-2 and VAMP can separately bind to SNAP-25, they cannot bind simultaneously. Additionally, the presence of Hrs-2 reduces the incorporation of VAMP into the syntaxin.SNAP-25.VAMP (7 S) complex. These findings suggest that Hrs-2 may modulate exocytosis by regulating the assembly of a protein complex implicated in membrane fusion.
Collapse
Affiliation(s)
- S Tsujimoto
- Department of Neurobiology, W.M. Keck Center for the Neurobiology of Learning and Memory, Houston, Texas 77030, USA
| | | |
Collapse
|
25
|
Leveque C, Boudier JA, Takahashi M, Seagar M. Calcium-dependent dissociation of synaptotagmin from synaptic SNARE complexes. J Neurochem 2000; 74:367-74. [PMID: 10617141 DOI: 10.1046/j.1471-4159.2000.0740367.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of synaptotagmin I with this complex potentially provides a means of conferring Ca2+-dependent regulation of exocytosis. However, the subcellular compartments in which interactions occur and their modulation by Ca2+ influx remain obscure. Sodium dodecyl sulfate (SDS)-resistant core complexes, associated with synaptotagmin I, were enriched in rat brain fractions containing plasma membranes and docked synaptic vesicles. Depolarization of synaptosomes triggered [3H]GABA release and Ca2+-dependent dissociation of synaptotagmin from the core complex. In perforated synaptosomes, synaptotagmin dissociation was induced by Ca2+ (30-300 microM) but not Sr2+ (1 mM); it apparently required intact membrane bilayers but did not result in disassembly of trimeric SNARE complexes. Synaptotagmin was not associated with unstable v-SNARE/t-SNARE complexes, present in fractions containing synaptic vesicles and cytoplasm. These complexes acquired SDS resistance when N-ethylmaleimide-sensitive fusion protein (NSF) was inhibited with N-ethylmaleimide or adenosine 5'-O-(3-thiotriphosphate), suggesting that constitutive SNARE complex disassembly occurs in undocked synaptic vesicles. Our findings are consistent with models in which the Ca2+ triggered release of synaptotagmin precedes vesicle fusion. NSF may then dissociate ternary core complexes captured by endocytosis and recycle/prime individual SNARE proteins.
Collapse
Affiliation(s)
- C Leveque
- Institut National de la Santé et de la Recherche Médicale, Unité 464, Institut Jean Roche, Faculté de Médecine Secteur Nord, Université de la Méditerranée, Marseille, France.
| | | | | | | |
Collapse
|
26
|
Abstract
Synaptic vesicles, which have been a paradigm for the fusion of a vesicle with its target membrane, also serve as a model for understanding the formation of a vesicle from its donor membrane. Synaptic vesicles, which are formed and recycled at the periphery of the neuron, contain a highly restricted set of neuronal proteins. Insight into the trafficking of synaptic vesicle proteins has come from studying not only neurons but also neuroendocrine cells, which form synaptic-like microvesicles (SLMVs). Formation and recycling of synaptic vesicles/SLMVs takes place from the early endosome and the plasma membrane. The cytoplasmic machinery of synaptic vesicle/SLMV formation and recycling has been studied by a variety of experimental approaches, in particular using cell-free systems. This has revealed distinct machineries for membrane budding and fission. Budding is mediated by clathrin and clathrin adaptors, whereas fission is mediated by dynamin and its interacting protein SH3p4, a lysophosphatidic acid acyl transferase.
Collapse
Affiliation(s)
- M J Hannah
- MRC Laboratory for Molecular Cell Biology, University College London, UK
| | | | | |
Collapse
|
27
|
Quiñones B, Riento K, Olkkonen VM, Hardy S, Bennett MK. Syntaxin 2 splice variants exhibit differential expression patterns, biochemical properties and subcellular localizations. J Cell Sci 1999; 112 ( Pt 23):4291-304. [PMID: 10564647 DOI: 10.1242/jcs.112.23.4291] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The syntaxins are a large protein family implicated in the targeting and fusion of intracellular transport vesicles. A subset of proteins of this family are the four syntaxin 2 splice variants, syntaxins 2A (2), 2B (2′), 2C (2″) and 2D. Each syntaxin 2 variant contains an identical, or nearly identical, amino-terminal cytoplasmic domain followed by a distinct hydrophobic (syntaxins 2A and 2B) or hydrophilic (syntaxins 2C and 2D) carboxyl-terminal domain. To investigate whether the difference among the syntaxin 2 variants is functionally important, we have examined comparatively their RNA transcript and protein expression patterns, membrane associations, protein-protein interactions and intracellular localizations. Analysis of the RNA transcript and protein expression patterns demonstrated that syntaxins 2A, 2B and 2C are broadly, but not uniformly, expressed while syntaxin 2D expression is restricted to the brain. Subcellular fractionation studies showed that syntaxins 2A and 2B behave as integral membrane proteins while syntaxin 2C is only partially associated with membranes. In vitro biochemical assays demonstrated that the syntaxin 2 variants exhibit similar yet distinct interactions with other proteins implicated in vesicular trafficking, including SNAP-25, SNAP-23, VAMP-2 and n-sec1. In a variety of nonpolarized cell types, syntaxins 2A and 2B localized to both the plasma membrane and endosomal membranes. However, in two polarized epithelial cell lines, MDCK and Caco-2, syntaxin 2A localized predominantly to the apical plasma membrane while syntaxin 2B was associated with both the apical and the basolateral membranes. These observations indicate that the distinct carboxyl-terminal domains of the syntaxin 2 variants influence their biochemical and localization properties and may therefore confer upon these variants different functional roles in the regulation of intracellular membrane trafficking.
Collapse
Affiliation(s)
- B Quiñones
- Department of Molecular Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
28
|
Risinger C, Bennett MK. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms. J Neurochem 1999; 72:614-24. [PMID: 9930733 DOI: 10.1046/j.1471-4159.1999.0720614.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N-ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (alpha-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1 A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+- and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or alpha-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.
Collapse
Affiliation(s)
- C Risinger
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
29
|
Flaumenhaft R, Croce K, Chen E, Furie B, Furie BC. Proteins of the exocytotic core complex mediate platelet alpha-granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syntaxin 4. J Biol Chem 1999; 274:2492-501. [PMID: 9891020 DOI: 10.1074/jbc.274.4.2492] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the molecular basis of granule release from platelets, we examined the role of vesicle-associated membrane protein, SNAP-23, and syntaxin 4 in alpha-granule secretion. A vesicle-associated membrane protein, SNAP-23, and syntaxin 4 were detected in platelet lysate. These proteins form a SDS-resistant complex that disassembles upon platelet activation. To determine whether these proteins are involved in alpha-granule secretion, we developed a streptolysin O-permeabilized platelet model of alpha-granule secretion. Streptolysin O-permeabilized platelets released alpha-granules, as measured by surface expression of P-selectin, in response to Ca2+ up to 120 min after permeabilization. Incubation of streptolysin O-permeabilized platelets with an antibody directed against vesicle-associated membrane protein completely inhibited Ca2+-induced alpha-granule release. Tetanus toxin cleaved platelet vesicle-associated membrane protein and inhibited Ca2+-induced alpha-granule secretion from streptolysin O-permeabilized platelets. An antibody to syntaxin 4 also inhibited Ca2+-induced alpha-granule release by approximately 75% in this system. These results show that vesicle-associated membrane protein, SNAP-23, and syntaxin 4 form a heterotrimeric complex in platelets that disassembles with activation and demonstrate that alpha-granule release is dependent on vesicle SNAP receptor-target SNAP receptor (vSNARE-tSNARE) interactions.
Collapse
Affiliation(s)
- R Flaumenhaft
- Center for Hemostasis and Thrombosis Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
30
|
Fasshauer D, Sutton RB, Brunger AT, Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 1998; 95:15781-6. [PMID: 9861047 PMCID: PMC28121 DOI: 10.1073/pnas.95.26.15781] [Citation(s) in RCA: 725] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1998] [Accepted: 10/27/1998] [Indexed: 11/18/2022] Open
Abstract
SNARE [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein receptor] proteins are essential for membrane fusion and are conserved from yeast to humans. Sequence alignments of the most conserved regions were mapped onto the recently solved crystal structure of the heterotrimeric synaptic fusion complex. The association of the four alpha-helices in the synaptic fusion complex structure produces highly conserved layers of interacting amino acid side chains in the center of the four-helix bundle. Mutations in these layers reduce complex stability and cause defects in membrane traffic even in distantly related SNAREs. When syntaxin-4 is modeled into the synaptic fusion complex as a replacement of syntaxin-1A, no major steric clashes arise and the most variable amino acids localize to the outer surface of the complex. We conclude that the main structural features of the neuronal complex are highly conserved during evolution. On the basis of these features we have reclassified SNARE proteins into Q-SNAREs and R-SNAREs, and we propose that fusion-competent SNARE complexes generally consist of four-helix bundles composed of three Q-SNAREs and one R-SNARE.
Collapse
Affiliation(s)
- D Fasshauer
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
31
|
Cánaves JM, Montal M. Assembly of a ternary complex by the predicted minimal coiled-coil-forming domains of syntaxin, SNAP-25, and synaptobrevin. A circular dichroism study. J Biol Chem 1998; 273:34214-21. [PMID: 9852083 DOI: 10.1074/jbc.273.51.34214] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of target (t-SNARE) and vesicle-associated SNAP receptor (v-SNARE) proteins is a critical step for the docking of synaptic vesicles to the plasma membrane. Syntaxin-1A, SNAP-25, and synaptobrevin-2 (also known as vesicle-associated membrane protein, or VAMP-2) bind to each other with high affinity, and their binding regions are predicted to form a trimeric coiled-coil. Here, we have designed three peptides, which correspond to sequences located in the syntaxin-1A H3 domain, the C-terminal domain of SNAP-25, and a conserved central domain of synaptobrevin-2, that exhibit a high propensity to form a minimal trimeric coiled-coil. The peptides were synthesized by solid phase methods, and their interactions were studied by CD spectroscopy. In aqueous solution, the peptides were unstructured and showed no interactions with each other. In contrast, upon the addition of moderate amounts of trifluoroethanol (30%), the peptides adopted an alpha-helical structure and displayed both homomeric and heteromeric interactions. The interactions observed in ternary mixtures induce a stabilization of peptide structure that is greater than that predicted from individual binary interactions, suggesting the formation of a higher order structure compatible with the assembly of a trimeric coiled-coil.
Collapse
Affiliation(s)
- J M Cánaves
- Department of Biology, University of California San Diego, La Jolla, California 92093-0366, USA
| | | |
Collapse
|
32
|
Hua SY, Raciborska DA, Trimble WS, Charlton MP. Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction. J Neurophysiol 1998; 80:3233-46. [PMID: 9862918 DOI: 10.1152/jn.1998.80.6.3233] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction. J. Neurophysiol. 80: 3233-3246, 1998. Although vesicle-associated membrane protein (VAMP/synaptobrevin) is essential for evoked neurotransmitter release, its role in spontaneous transmitter release remains uncertain. For instance, many studies show that tetanus toxin (TeNT), which cleaves VAMP, blocks evoked transmitter release but leaves some spontaneous transmitter release. We used recombinant tetanus and botulinum neurotoxin catalytic light chains (TeNT-LC, BoNT/B-LC, and BoNT/D-LC) to examine the role of VAMP in spontaneous transmitter release at neuromuscular junctions (nmj) of crayfish. Injection of TeNT-LC into presynaptic axons removed most of the VAMP immunoreactivity and blocked evoked transmitter release without affecting nerve action potentials or Ca2+ influx. The frequency of spontaneous transmitter release was little affected by the TeNT-LC when the evoked transmitter release had been blocked by >95%. The spontaneous transmitter release left after TeNT-LC treatment was insensitive to increases in intracellular Ca2+. BoNT/B-LC, which cleaves VAMP at the same site as TeNT-LC but uses a different binding site, also blocked evoked release but had minimal effect on spontaneous release. However, BoNT/D-LC, which cleaves VAMP at a different site from the other two toxins but binds to the same position on VAMP as TeNT, blocked both evoked and spontaneous transmitter release at similar rates. The data indicate that different VAMP complexes are employed for evoked and spontaneous transmitter release; the VAMP used in spontaneous release is not readily cleaved by TeNT or BoNT/B. Because the exocytosis that occurs after the action of TeNT cannot be increased by increased intracellular Ca2+, the final steps in neurotransmitter release are Ca2+ independent.
Collapse
Affiliation(s)
- S Y Hua
- Physiology Department, University of Toronto, Toronto, Ontario, M5S 1A8 Canada
| | | | | | | |
Collapse
|
33
|
Salem N, Faúndez V, Horng JT, Kelly RB. A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex. Nat Neurosci 1998; 1:551-6. [PMID: 10196561 DOI: 10.1038/2787] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reconstitution of synaptic vesicle formation in vitro has revealed a pathway of synaptic vesicle biogenesis from endosomes that requires the heterotetrameric adaptor complex AP3. Because synaptic vesicles have a distinct protein composition, the AP3 complex should selectively recognize some or all of the synaptic vesicle proteins. Here we show that one element of this recognition process is the v-SNARE, VAMP-2, because tetanus toxin, which cleaves VAMP-2, inhibited the formation of synaptic vesicles and their coating with AP3 in vitro. Mutant tetanus toxin and botulinum toxins, which cleave t-SNAREs, did not inhibit synaptic vesicle production. AP3-containing complexes isolated from coated vesicles could be immunoprecipitated by a VAMP-2 antibody. These data imply that AP3 recognizes a component of the fusion machinery, which may prevent the production of inert synaptic vesicles.
Collapse
Affiliation(s)
- N Salem
- Department of Biochemistry & Biophysics, University of California, San Francisco 94143-0534, USA
| | | | | | | |
Collapse
|
34
|
Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998; 395:347-53. [PMID: 9759724 DOI: 10.1038/26412] [Citation(s) in RCA: 1797] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolutionarily conserved SNARE proteins and their complexes are involved in the fusion of vesicles with their target membranes; however, the overall organization and structural details of these complexes are unknown. Here we report the X-ray crystal structure at 2.4 A resolution of a core synaptic fusion complex containing syntaxin-1 A, synaptobrevin-II and SNAP-25B. The structure reveals a highly twisted and parallel four-helix bundle that differs from the bundles described for the haemagglutinin and HIV/SIV gp41 membrane-fusion proteins. Conserved leucine-zipper-like layers are found at the centre of the synaptic fusion complex. Embedded within these leucine-zipper layers is an ionic layer consisting of an arginine and three glutamine residues contributed from each of the four alpha-helices. These residues are highly conserved across the entire SNARE family. The regions flanking the leucine-zipper-like layers contain a hydrophobic core similar to that of more general four-helix-bundle proteins. The surface of the synaptic fusion complex is highly grooved and possesses distinct hydrophilic, hydrophobic and charged regions. These characteristics may be important for membrane fusion and for the binding of regulatory factors affecting neurotransmission.
Collapse
Affiliation(s)
- R B Sutton
- The Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
35
|
Poirier MA, Xiao W, Macosko JC, Chan C, Shin YK, Bennett MK. The synaptic SNARE complex is a parallel four-stranded helical bundle. NATURE STRUCTURAL BIOLOGY 1998; 5:765-9. [PMID: 9731768 DOI: 10.1038/1799] [Citation(s) in RCA: 386] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The heterotrimeric synaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consisting of the synaptic vesicle-associated membrane protein 2 (VAMP2) and presynaptic plasma membrane proteins SNAP-25 (synaptosome-associated protein of 25,000 Mr) and syntaxin 1A, is a critical component of the exocytotic machinery. We have used spin labeling electron paramagnetic resonance spectroscopy to investigate the structural organization of this complex, particularly the two predicted helical domains contributed by SNAP-25. Our results indicate that the N- and C-terminal domains of SNAP-25 are parallel to each other and to the C-terminal domain of syntaxin 1A. Based on these findings, we propose a parallel four-stranded coiled coil model for the structure of the synaptic SNARE complex.
Collapse
Affiliation(s)
- M A Poirier
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
36
|
Raciborska DA, Trimble WS, Charlton MP. Presynaptic protein interactions in vivo: evidence from botulinum A, C, D and E action at frog neuromuscular junction. Eur J Neurosci 1998; 10:2617-28. [PMID: 9767392 DOI: 10.1046/j.1460-9568.1998.00270.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study examines the paralytic action of botulinum neurotoxins at their natural target, the neuromuscular junction. We asked whether syntaxin, synaptosome-associated protein of 25 kDa (SNAP-25) and vesicle-associated membrane protein (VAMP/synaptobrevin), the proteins proteolysed by botulinum, are susceptible to cleavage in frog nerve terminals, and whether they form complexes in vivo. In control terminals, the three SNAREs were distributed in broad bands at 1 micrometer intervals, at sites consistent with presynaptic Ca2+ channels. Within 3 h, botulinum A, C, D and E (BoNT/A/C/D/E) blocked nerve-evoked muscle contractions but their effects on substrate immunoreactivity varied. The effect of BoNT/A on either C-terminus or N-terminus immunoreactivity of SNAP-25 was undetectable after 3-h incubation, although C-terminus immunoreactivity was reduced after 24 h; N-terminus immunoreactivity was not affected even after 36 h. BoNT/E reduced C-terminus immunoreactivity of SNAP-25 1.5 h after toxin application when transmitter release was blocked, but required 24 h to reduce N-terminus immunoreactivity. BoNT/C reduced syntaxin immunoreactivity after 24-h incubation but did not affect SNAP-25. BoNT/D reduced VAMP immunoreactivity at 3 h while it increased SNAP-25 C-terminal staining fourfold. BoNT/A and BoNT/C applied together for 24 h reduced syntaxin immunoreactivity and that of both C- and N-terminus of SNAP-25, indicating that retention of SNAP-25 N-terminus after cleavage by BoNT/A depended on intact syntaxin. Therefore, we infer that SNAP-25 interacts with VAMP and with syntaxin in vivo. Neurotoxin action abolished only 40-60% of SNAP-25, VAMP or syntaxin immunoreactivity suggesting that distinct pools of these proteins, not immediately involved in triggered exocytosis, are resistant to proteolysis.
Collapse
Affiliation(s)
- D A Raciborska
- University of Toronto, Department of Physiology, Medical Sciences Building, Toronto, Ontario, Canada, M5S 1A8
| | | | | |
Collapse
|
37
|
Tan PK, Waites C, Liu Y, Krantz DE, Edwards RH. A leucine-based motif mediates the endocytosis of vesicular monoamine and acetylcholine transporters. J Biol Chem 1998; 273:17351-60. [PMID: 9651318 DOI: 10.1074/jbc.273.28.17351] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specific transport proteins mediate the packaging of neurotransmitters into secretory vesicles and consequently require targeting to the appropriate intracellular compartment. To identify residues in the neuron-specific vesicular monoamine transporter (VMAT2) responsible for endocytosis, we examined the effect of amino (NH2-) and carboxyl (COOH-)-terminal mutations on steady state distribution and internalization. Deletion of a critical COOH-terminal domain sequence (AKEEKMAIL) results in accumulation of VMAT2 at the plasma membrane and a 50% reduction in endocytosis. Site-directed mutagenesis shows that replacement of the isoleucine-leucine pair within this sequence by alanine-alanine alone reduces endocytosis by 50% relative to wild type VMAT2. Furthermore, the KEEKMAIL sequence functions as an internalization signal when transferred to the plasma membrane protein Tac, and the mutation of the isoleucine-leucine pair also abolishes internalization of this protein. The closely related vesicular acetylcholine transporter (VAChT) contains a similar di-leucine sequence within the cytoplasmic COOH-terminal domain that when mutated results in accumulation of VAChT at the plasma membrane. The VAChT di-leucine sequence also confers internalization when appended to two other proteins and in one of these chimeras, conversion of the di-leucine sequence to di-alanine reduces the internalization rate by 50%. Both VMAT2 and VAChT thus use leucine-based signals for efficient endocytosis and as such are the first synaptic vesicle proteins known to use this motif for trafficking.
Collapse
Affiliation(s)
- P K Tan
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, University of California School of Medicine, San Francisco, California 94143-0435, USA
| | | | | | | | | |
Collapse
|
38
|
Poirier MA, Hao JC, Malkus PN, Chan C, Moore MF, King DS, Bennett MK. Protease resistance of syntaxin.SNAP-25.VAMP complexes. Implications for assembly and structure. J Biol Chem 1998; 273:11370-7. [PMID: 9556632 DOI: 10.1074/jbc.273.18.11370] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A stable ternary complex formed with vesicle-associated membrane protein 2 (VAMP2) and plasma membrane proteins syntaxin 1A and synaptosome-associated protein of 25 kDa (SNAP-25) is proposed to function in synaptic vesicle exocytosis. To analyze the structural characteristics of this synaptic protein complex, recombinant binary (syntaxin 1A.SNAP-25), recombinant ternary, and native ternary complexes were subjected to limited trypsin proteolysis. The protected fragments, defined by amino-terminal sequencing and mass spectrometry, included a carboxyl-terminal region of syntaxin 1A, the cytoplasmic domain of VAMP2, and amino- and carboxyl-terminal regions of SNAP-25. Furthermore, separate amino- and carboxyl-terminal fragments of SNAP-25, when combined with VAMP2 and syntaxin 1A, were sufficient for stable complex assembly. Analysis of ternary complexes formed with full-length proteins revealed that the carboxyl-terminal transmembrane anchors of both syntaxin 1A and VAMP2 were protected from trypsin digestion. Moreover, the stability of ternary complexes was increased by inclusion of these transmembrane domains. These results suggest that the transmembrane domains of VAMP2 and syntaxin 1A contribute to complex assembly and stability and that amino- and carboxyl-terminal regions of SNAP-25 may function as independent domains.
Collapse
Affiliation(s)
- M A Poirier
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Nonet ML, Saifee O, Zhao H, Rand JB, Wei L. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 1998; 18:70-80. [PMID: 9412487 PMCID: PMC6793420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1997] [Revised: 10/01/1997] [Accepted: 10/14/1997] [Indexed: 02/05/2023] Open
Abstract
Synaptobrevins are vesicle-associated proteins implicated in neurotransmitter release by both biochemical studies and perturbation experiments that use botulinum toxins. To test these models in vivo, we have isolated and characterized the first synaptobrevin mutants in metazoans and show that neurotransmission is severely disrupted in mutant animals. Mutants lacking snb-1 die just after completing embryogenesis. The dying animals retain some capability for movement, although they are extremely uncoordinated and incapable of feeding. We also have isolated and characterized several hypomorphic snb-1 mutants. Although fully viable, these mutants exhibit a variety of behavioral abnormalities that are consistent with a general defect in the efficacy of synaptic transmission. The viable mutants are resistant to the acetylcholinesterase inhibitor aldicarb, indicating that cholinergic transmission is impaired. Extracellular recordings from pharyngeal muscle also demonstrate severe defects in synaptic transmission in the mutants. The molecular lesions in the hypomorphic alleles reside on the hydrophobic face of a proposed amphipathic-helical region implicated biochemically in interacting with the t-SNAREs syntaxin and SNAP-25. Finally, we demonstrate that double mutants lacking both the v-SNAREs synaptotagmin and snb-1 are phenotypically similar to snb-1 mutants and less severe than syntaxin mutants. Our work demonstrates that synaptobrevin is essential for viability and is required for functional synaptic transmission. However, our analysis also suggests that transmitter release is not completely eliminated by removal of either one or both v-SNAREs.
Collapse
Affiliation(s)
- M L Nonet
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Syntaxin, vesicle-associated membrane protein (VAMP), and synaptosome-associated protein of 25 kDa (SNAP-25) form a ternary "core complex" central to the process of synaptic vesicle docking and fusion. Several lines of evidence support the hypothesis that the proteins assemble in a coiled-coil structure, but the alignment of alpha helices in this coil and the overall conformation of the coil are unknown. We employ the technique of fluorescence resonance energy transfer (FRET) to investigate the alignment between syntaxin and VAMP. With the acceptor probe coupled to the amino-terminal end of the VAMP coiled-coil domain, the donor probe fluorescence is quenched to a greater extent when it is on the amino-terminal end of the syntaxin H3 domain than when it is on the carboxy-terminal end. The data indicate that syntaxin and VAMP bind primarily in a parallel arrangement and suggest a coiled-coil structure that is bent rather than fully extended. We propose a model in which binding of SNAP receptor (SNARE) protein coiled-coil domains helps drive vesicle fusion.
Collapse
Affiliation(s)
- R C Lin
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University Medical School, California 94305, USA
| | | |
Collapse
|
41
|
Fasshauer D, Otto H, Eliason WK, Jahn R, Brünger AT. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J Biol Chem 1997; 272:28036-41. [PMID: 9346956 DOI: 10.1074/jbc.272.44.28036] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SNAP-25, syntaxin, and synaptobrevin play a key role in the regulated exocytosis of synaptic vesicles, but their mechanism of action is not understood. In vitro, the proteins spontaneously assemble into a ternary complex that can be dissociated by the ATPase N-ethylmaleimide-sensitive fusion protein and the cofactors alpha-, beta-, and gamma-SNAP. Since the structural changes associated with these reactions probably form the basis of membrane fusion, we have embarked on biophysical studies aimed at elucidating such changes in vitro using recombinant proteins. All proteins were purified in a monomeric form. Syntaxin showed significant alpha-helicity, whereas SNAP-25 and synaptobrevin exhibited characteristics of largely unstructured proteins. Formation of the ternary complex induced dramatic increases in alpha-helicity and in thermal stability. This suggests that structure is induced in SNAP-25 and synaptobrevin upon complex formation. In addition, the stoichiometry changed from 2:1 in the syntaxin-SNAP-25 complex to 1:1:1 in the ternary complex. We propose that the transition from largely unstructured monomers to a tightly packed, energetically favored ternary complex connecting two membranes is a key step in overcoming energy barriers for membrane fusion.
Collapse
Affiliation(s)
- D Fasshauer
- Howard Hughes Medical Institute, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
42
|
Martincic I, Peralta ME, Ngsee JK. Isolation and characterization of a dual prenylated Rab and VAMP2 receptor. J Biol Chem 1997; 272:26991-8. [PMID: 9341137 DOI: 10.1074/jbc.272.43.26991] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rab GTPases have been implicated in intracellular vesicle trafficking. Using the yeast two-hybrid screen, we have isolated a rat clone that interacts with Rab3A as well as with Rab1. The gene encodes a 20.6-kDa protein with two extensive hydrophobic domains and is broadly expressed in all tissues. This protein binds to prenylated Rab GTPases but not to other small Ras-like GTPases such as the Rho/Rac family. This prenylated Rab acceptor (PRA1) also binds specifically to the synaptic vesicle protein VAMP2 (or synaptobrevin II) but shows no affinity for VAMP1 or cellubrevin in both the yeast two-hybrid system and in vitro binding assays. This specificity resides, in part, in the proline-rich domain of VAMP2 as a chimera containing this domain of VAMP2 fused to VAMP1 is able to bind to PRA1. The transmembrane domain of VAMP2 is also essential as its deletion abolished binding to PRA1. Replacement of the deleted VAMP2 transmembrane domain by a CAAX prenylation signal can not restore binding to PRA1. This interaction is therefore distinct from that required for VAMP2 binding to either syntaxin or both syntaxin and SNAP-25. Deletion analysis on PRA1 indicates that the critical Rab- and VAMP2-interacting residues reside in two regions: the amino-terminal residues 30-54 and the extreme carboxyl-terminal domain. This dual Rab and VAMP2 binding characteristic suggests that PRA1 may serve to link these two protein families in the control of vesicle docking and fusion.
Collapse
Affiliation(s)
- I Martincic
- Department of Medicine and Biochemistry, Loeb Research Institute, University of Ottawa, Ottawa, Ontario K1Y 4E9, Canada
| | | | | |
Collapse
|
43
|
Abstract
Exocytosis in neurons requires proteins known as SNAREs, membrane proteins that have now been implicated in many intracellular fusion events. SNAREs assemble into stable ternary complexes that are dissociated by the ATPase NSF (N-ethylmaleimide-sensitive factor), working together with SNAPs (soluble NSF attachment proteins). Recent results have shed new light on the mechanisms underlying SNARE (SNAP receptor) complex assembly and disassembly, and suggest changes in models that relate these reactions to vesicle docking and fusion.
Collapse
Affiliation(s)
- P I Hanson
- Department of Pharmacology, 295 Congress Avenue, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
44
|
Abstract
From the glossiphoniid leech Helobdella robusta, we have cloned and determined the complete coding sequence of Hro-nos, a gene homologous to the nanos gene from Drosophila melanogaster. Developmental northern blots show that Hro-nos, like nanos, is a maternal transcript that decays rapidly during early development. A polyclonal antiserum raised against the HRO-NOS protein was used in developmental western blots and for immunostaining leech embryos of different developmental stages. The HRO-NOS protein is first detectable in 2-cell embryos (4-6 hours of development) and exhibits a transient expression peaking during fourth cleavage (9-12 cells; 8–14 hours of development). The HRO-NOS protein exhibits a graded distribution along the primary embryonic axis and is partitioned unequally between the sister cells DNOPQ and DM, progeny of macromere D' at fourth cleavage: DNOPQ is the segmental ectoderm precursor cell and exhibits levels of HRO-NOS protein that are at least two-fold higher than in cell DM, the segmental mesoderm precursor cell. The observed expression pattern suggests that Hro-nos plays a role in the decision between ectodermal and mesodermal cell fates in leech.
Collapse
Affiliation(s)
- M Pilon
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA
| | | |
Collapse
|