1
|
Desmoulins LD, Molinas AJR, Dugas CM, Williams GL, Kamenetsky S, Davis RK, Derbenev AV, Zsombok A. A subset of neurons in the paraventricular nucleus of the hypothalamus directly project to liver-related premotor neurons in the ventrolateral medulla. Auton Neurosci 2025; 257:103222. [PMID: 39647176 DOI: 10.1016/j.autneu.2024.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Sympathetic circuits including pre-sympathetic neurons in the ventrolateral medulla (VLM) and in the paraventricular nucleus (PVN) of the hypothalamus play an important role in the regulation of hepatic glucose metabolism. Despite the importance of central regulatory pathways, specific information regarding the circuits of liver-related neurons is limited. Here, we tested the hypothesis that PVN neurons are directly connected to spinally-projecting liver-related neurons in the VLM of mice. Pseudorabies virus (PRV) was used to identify liver-related neurons and time-dependent analyses revealed the location and distribution of neurons in the PVN and ventral brainstem. Four days following PRV injection, most liver-related neurons were found in the VLM and consist of both catecholaminergic (CA) and non-CA neurons. Furthermore, in addition to PRV inoculation, a monosynaptic viral tracer was used to identify VLM-projecting PVN neurons to specifically dissect PVN-VLM connections within the liver pathway. Five days following PRV inoculation, our anatomical findings revealed that a small population of liver-related PVN neurons projected to the VLM. In addition, photo-stimulation of axonal projections from SIM1-expressing PVN neurons resulted in evoked excitatory postsynaptic currents in a subset of spinally projecting liver-related neurons in the VLM. In summary, our data demonstrate the existence of monosynaptic, glutamatergic connections between PVN neurons and pre-sympathetic liver-related neurons in the VLM. These new findings regarding the central circuits involved in the sympathetic regulation of the liver provide further information necessary for developing new strategies to improve glucose homeostasis via modulation of the autonomic nerves.
Collapse
Affiliation(s)
- Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Adrien J R Molinas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Courtney M Dugas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Gabrielle L Williams
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Sophie Kamenetsky
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Roslyn K Davis
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA; Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA; Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA.
| |
Collapse
|
2
|
Yang X, Qiu K, Jiang Y, Huang Y, Zhang Y, Liao Y. Metabolic Crosstalk between Liver and Brain: From Diseases to Mechanisms. Int J Mol Sci 2024; 25:7621. [PMID: 39062868 PMCID: PMC11277155 DOI: 10.3390/ijms25147621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple organs and tissues coordinate to respond to dietary and environmental challenges. It is interorgan crosstalk that contributes to systemic metabolic homeostasis. The liver and brain, as key metabolic organs, have their unique dialogue to transmit metabolic messages. The interconnected pathogenesis of liver and brain is implicated in numerous metabolic and neurodegenerative disorders. Recent insights have positioned the liver not only as a central metabolic hub but also as an endocrine organ, capable of secreting hepatokines that transmit metabolic signals throughout the body via the bloodstream. Metabolites from the liver or gut microbiota also facilitate a complex dialogue between liver and brain. In parallel to humoral factors, the neural pathways, particularly the hypothalamic nuclei and autonomic nervous system, are pivotal in modulating the bilateral metabolic interplay between the cerebral and hepatic compartments. The term "liver-brain axis" vividly portrays this interaction. At the end of this review, we summarize cutting-edge technical advancements that have enabled the observation and manipulation of these signals, including genetic engineering, molecular tracing, and delivery technologies. These innovations are paving the way for a deeper understanding of the liver-brain axis and its role in metabolic homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Zsombok A, Desmoulins LD, Derbenev AV. Sympathetic circuits regulating hepatic glucose metabolism: where we stand. Physiol Rev 2024; 104:85-101. [PMID: 37440208 PMCID: PMC11281813 DOI: 10.1152/physrev.00005.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
The prevalence of metabolic disorders, including type 2 diabetes mellitus, continues to increase worldwide. Although newer and more advanced therapies are available, current treatments are still inadequate and the search for solutions remains. The regulation of energy homeostasis, including glucose metabolism, involves an exchange of information between the nervous systems and peripheral organs and tissues; therefore, developing treatments to alter central and/or peripheral neural pathways could be an alternative solution to modulate whole body metabolism. Liver glucose production and storage are major mechanisms controlling glycemia, and the autonomic nervous system plays an important role in the regulation of hepatic functions. Autonomic nervous system imbalance contributes to excessive hepatic glucose production and thus to the development and progression of type 2 diabetes mellitus. At cellular levels, change in neuronal activity is one of the underlying mechanisms of autonomic imbalance; therefore, modulation of the excitability of neurons involved in autonomic outflow governance has the potential to improve glycemic status. Tissue-specific subsets of preautonomic neurons differentially control autonomic outflow; therefore, detailed information about neural circuits and properties of liver-related neurons is necessary for the development of strategies to regulate liver functions via the autonomic nerves. This review provides an overview of our current understanding of the hypothalamus-ventral brainstem-liver pathway involved in the sympathetic regulation of the liver, outlines strategies to identify organ-related neurons, and summarizes neuronal plasticity during diabetic conditions with a particular focus on liver-related neurons in the paraventricular nucleus.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
4
|
Javed S, Chang YT, Cho Y, Lee YJ, Chang HC, Haque M, Lin YC, Huang WH. Smith-Magenis syndrome protein RAI1 regulates body weight homeostasis through hypothalamic BDNF-producing neurons and neurotrophin downstream signalling. eLife 2023; 12:RP90333. [PMID: 37956053 PMCID: PMC10642964 DOI: 10.7554/elife.90333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Retinoic acid-induced 1 (RAI1) haploinsufficiency causes Smith-Magenis syndrome (SMS), a genetic disorder with symptoms including hyperphagia, hyperlipidemia, severe obesity, and autism phenotypes. RAI1 is a transcriptional regulator with a pan-neural expression pattern and hundreds of downstream targets. The mechanisms linking neural Rai1 to body weight regulation remain unclear. Here we find that hypothalamic brain-derived neurotrophic factor (BDNF) and its downstream signalling are disrupted in SMS (Rai1+/-) mice. Selective Rai1 loss from all BDNF-producing cells or from BDNF-producing neurons in the paraventricular nucleus of the hypothalamus (PVH) induced obesity in mice. Electrophysiological recordings revealed that Rai1 ablation decreased the intrinsic excitability of PVHBDNF neurons. Chronic treatment of SMS mice with LM22A-4 engages neurotrophin downstream signalling and delayed obesity onset. This treatment also partially rescued disrupted lipid profiles, insulin intolerance, and stereotypical repetitive behaviour in SMS mice. These data argue that RAI1 regulates body weight and metabolic function through hypothalamic BDNF-producing neurons and that targeting neurotrophin downstream signalling might improve associated SMS phenotypes.
Collapse
Affiliation(s)
- Sehrish Javed
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Ya-Ting Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yoobin Cho
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yu-Ju Lee
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Hao-Cheng Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Minza Haque
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yu Cheng Lin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Wei-Hsiang Huang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| |
Collapse
|
5
|
Haspula D, Cui Z. Neurochemical Basis of Inter-Organ Crosstalk in Health and Obesity: Focus on the Hypothalamus and the Brainstem. Cells 2023; 12:1801. [PMID: 37443835 PMCID: PMC10341274 DOI: 10.3390/cells12131801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Precise neural regulation is required for maintenance of energy homeostasis. Essential to this are the hypothalamic and brainstem nuclei which are located adjacent and supra-adjacent to the circumventricular organs. They comprise multiple distinct neuronal populations which receive inputs not only from other brain regions, but also from circulating signals such as hormones, nutrients, metabolites and postprandial signals. Hence, they are ideally placed to exert a multi-tier control over metabolism. The neuronal sub-populations present in these key metabolically relevant nuclei regulate various facets of energy balance which includes appetite/satiety control, substrate utilization by peripheral organs and glucose homeostasis. In situations of heightened energy demand or excess, they maintain energy homeostasis by restoring the balance between energy intake and expenditure. While research on the metabolic role of the central nervous system has progressed rapidly, the neural circuitry and molecular mechanisms involved in regulating distinct metabolic functions have only gained traction in the last few decades. The focus of this review is to provide an updated summary of the mechanisms by which the various neuronal subpopulations, mainly located in the hypothalamus and the brainstem, regulate key metabolic functions.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Zhenzhong Cui
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
6
|
Adori M, Bhat S, Gramignoli R, Valladolid-Acebes I, Bengtsson T, Uhlèn M, Adori C. Hepatic Innervations and Nonalcoholic Fatty Liver Disease. Semin Liver Dis 2023; 43:149-162. [PMID: 37156523 PMCID: PMC10348844 DOI: 10.1055/s-0043-57237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. Increased sympathetic (noradrenergic) nerve tone has a complex role in the etiopathomechanism of NAFLD, affecting the development/progression of steatosis, inflammation, fibrosis, and liver hemodynamical alterations. Also, lipid sensing by vagal afferent fibers is an important player in the development of hepatic steatosis. Moreover, disorganization and progressive degeneration of liver sympathetic nerves were recently described in human and experimental NAFLD. These structural alterations likely come along with impaired liver sympathetic nerve functionality and lack of adequate hepatic noradrenergic signaling. Here, we first overview the anatomy and physiology of liver nerves. Then, we discuss the nerve impairments in NAFLD and their pathophysiological consequences in hepatic metabolism, inflammation, fibrosis, and hemodynamics. We conclude that further studies considering the spatial-temporal dynamics of structural and functional changes in the hepatic nervous system may lead to more targeted pharmacotherapeutic advances in NAFLD.
Collapse
Affiliation(s)
- Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sadam Bhat
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ismael Valladolid-Acebes
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Mathias Uhlèn
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Csaba Adori
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Molinas AJR, Desmoulins LD, Davis RK, Gao H, Satou R, Derbenev AV, Zsombok A. High-Fat Diet Modulates the Excitability of Neurons within the Brain-Liver Pathway. Cells 2023; 12:1194. [PMID: 37190103 PMCID: PMC10137256 DOI: 10.3390/cells12081194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Stimulation of hepatic sympathetic nerves increases glucose production and glycogenolysis. Activity of pre-sympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus and in the ventrolateral and ventromedial medulla (VLM/VMM) largely influence the sympathetic output. Increased activity of the sympathetic nervous system (SNS) plays a role in the development and progression of metabolic diseases; however, despite the importance of the central circuits, the excitability of pre-sympathetic liver-related neurons remains to be determined. Here, we tested the hypothesis that the activity of liver-related neurons in the PVN and VLM/VMM is altered in diet-induced obese mice, as well as their response to insulin. Patch-clamp recordings were conducted from liver-related PVN neurons, VLM-projecting PVN neurons, and pre-sympathetic liver-related neurons in the ventral brainstem. Our data demonstrate that the excitability of liver-related PVN neurons increased in high-fat diet (HFD)-fed mice compared to mice fed with control diet. Insulin receptor expression was detected in a population of liver-related neurons, and insulin suppressed the firing activity of liver-related PVN and pre-sympathetic VLM/VMM neurons in HFD mice; however, it did not affect VLM-projecting liver-related PVN neurons. These findings further suggest that HFD alters the excitability of pre-autonomic neurons as well as their response to insulin.
Collapse
Affiliation(s)
- Adrien J. R. Molinas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
| | - Lucie D. Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
| | - Roslyn K. Davis
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
| | - Hong Gao
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
| | - Ryousuke Satou
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
| | - Andrei V. Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70130, USA
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70130, USA; (A.J.R.M.); (L.D.D.); (R.K.D.); (R.S.); (A.V.D.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70130, USA
| |
Collapse
|
8
|
Jiang Y, Rezai-Zadeh K, Desmoulins LD, Muenzberg H, Derbenev AV, Zsombok A. GABAergic leptin receptor-expressing neurons in the dorsomedial hypothalamus project to brown adipose tissue-related neurons in the paraventricular nucleus of mice. Auton Neurosci 2023; 245:103058. [PMID: 36538864 PMCID: PMC9899324 DOI: 10.1016/j.autneu.2022.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Brown adipose tissue (BAT) contributes to energy homeostasis via nonshivering thermogenesis. The BAT is densely innervated by the sympathetic nervous system (SNS) and activity of pre-autonomic neurons modulates the sympathetic outflow. Leptin, an adipocyte hormone, alters energy homeostasis and thermogenesis of BAT via several neuronal circuits; however, the cellular effects of leptin on interscapular BAT (iBAT)-related neurons in the hypothalamus remain to be determined. In this study, we used pseudorabies virus (PRV) to identify iBAT-related neurons in the paraventricular nucleus (PVN) of the hypothalamus and test the hypothesis that iBAT-related PVN neurons are modulated by leptin. Inoculation of iBAT with PRV in leptin receptor reporter mice (Lepr:EGFP) demonstrated that a population of iBAT-related PVN neurons expresses Lepr receptors. Our electrophysiological findings revealed that leptin application caused hyperpolarization in some of iBAT-related PVN neurons. Bath application of leptin also modulated excitatory and inhibitory neurotransmission to most of iBAT-related PVN neurons. Using channel rhodopsin assisted circuit mapping we found that GABAergic and glutamatergic Lepr-expressing neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA) project to PVN neurons; however, connected iBAT-related PVN neurons receive exclusively inhibitory signals from Lepr-expressing dDMH/DHA neurons.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America; Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Kavon Rezai-Zadeh
- Central Leptin Signaling, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America
| | - Heike Muenzberg
- Central Leptin Signaling, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America; Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States of America; Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America.
| |
Collapse
|
9
|
Kiryachkov YY, Bosenko SA, Muslimov BG, Petrova MV. Dysfunction of the Autonomic Nervous System and its Role in the Pathogenesis of Septic Critical Illness (Review). Sovrem Tekhnologii Med 2021; 12:106-116. [PMID: 34795998 PMCID: PMC8596275 DOI: 10.17691/stm2020.12.4.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
Dysfunction of the autonomic nervous system (ANS) of the brain in sepsis can cause severe systemic inflammation and even death. Numerous data confirmed the role of ANS dysfunction in the occurrence, course, and outcome of systemic sepsis. The parasympathetic part of the ANS modifies the inflammation through cholinergic receptors of internal organs, macrophages, and lymphocytes (the cholinergic anti-inflammatory pathway). The sympathetic part of ANS controls the activity of macrophages and lymphocytes by influencing β2-adrenergic receptors, causing the activation of intracellular genes encoding the synthesis of cytokines (anti-inflammatory beta2-adrenergic receptor interleukin-10 pathway, β2AR–IL-10). The interaction of ANS with infectious agents and the immune system ensures the maintenance of homeostasis or the appearance of a critical generalized infection. During inflammation, the ANS participates in the inflammatory response by releasing sympathetic or parasympathetic neurotransmitters and neuropeptides. It is extremely important to determine the functional state of the ANS in critical conditions, since both cholinergic and sympathomimetic agents can act as either anti- or pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Y Y Kiryachkov
- Head of the Department of Surgical and Resuscitation Technologies; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - S A Bosenko
- Anesthesiologist; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - B G Muslimov
- Deputy Chief Physician for Anesthesiology and Intensive Care; Konchalovsky Central City Hospital, 2, Bldg 1, Kashtanovaya Alley, Zelenograd, Moscow, 124489, Russia
| | - M V Petrova
- Professor, Deputy Director Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| |
Collapse
|
10
|
Torres H, Huesing C, Burk DH, Molinas AJR, Neuhuber WL, Berthoud HR, Münzberg H, Derbenev AV, Zsombok A. Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. Am J Physiol Regul Integr Comp Physiol 2021; 321:R328-R337. [PMID: 34231420 PMCID: PMC8530761 DOI: 10.1152/ajpregu.00079.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
The sympathetic nervous system (SNS) plays a crucial role in the regulation of renal and hepatic functions. Although sympathetic nerves to the kidney and liver have been identified in many species, specific details are lacking in the mouse. In the absence of detailed information of sympathetic prevertebral innervation of specific organs, selective manipulation of a specific function will remain challenging. Despite providing major postganglionic inputs to abdominal organs, limited data are available about the mouse celiac-superior mesenteric complex. We used tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DbH) reporter mice to visualize abdominal prevertebral ganglia. We found that both the TH and DbH reporter mice are useful models for identification of ganglia and nerve bundles. We further tested if the celiac-superior mesenteric complex provides differential inputs to the mouse kidney and liver. The retrograde viral tracer, pseudorabies virus (PRV)-152 was injected into the cortex of the left kidney or the main lobe of the liver to identify kidney-projecting and liver-projecting neurons in the celiac-superior mesenteric complex. iDISCO immunostaining and tissue clearing were used to visualize unprecedented anatomical detail of kidney-related and liver-related postganglionic neurons in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia compared with TH-positive neurons. Kidney-projecting neurons were restricted to the suprarenal and aorticorenal ganglia, whereas only sparse labeling was observed in the celiac-superior mesenteric complex. In contrast, liver-projecting postganglionic neurons were observed in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia, suggesting spatial separation between the sympathetic innervation of the mouse kidney and liver.
Collapse
Affiliation(s)
- Hayden Torres
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Clara Huesing
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - David H Burk
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Adrien J R Molinas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana
| | | | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana
- Brain Institute, Tulane University, New Orleans, Louisiana
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana
- Brain Institute, Tulane University, New Orleans, Louisiana
| |
Collapse
|
11
|
Garcia SM, Hirschberg PR, Sarkar P, Siegel DM, Teegala SB, Vail GM, Routh VH. Insulin actions on hypothalamic glucose-sensing neurones. J Neuroendocrinol 2021; 33:e12937. [PMID: 33507001 PMCID: PMC10561189 DOI: 10.1111/jne.12937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Subsequent to the discovery of insulin 100 years ago, great strides have been made in understanding its function, especially in the brain. It is now clear that insulin is a critical regulator of the neuronal circuitry controlling energy balance and glucose homeostasis. This review focuses on the effects of insulin and diabetes on the activity and glucose sensitivity of hypothalamic glucose-sensing neurones. We highlight the role of electrophysiological data in understanding how insulin regulates glucose-sensing neurones. A brief introduction describing the benefits and limitations of the major electrophysiological techniques used to investigate glucose-sensing neurones is provided. The mechanisms by which hypothalamic neurones sense glucose are discussed with an emphasis on those glucose-sensing neurones already shown to be modulated by insulin. Next, the literature pertaining to how insulin alters the activity and glucose sensitivity of these hypothalamic glucose-sensing neurones is described. In addition, the effects of impaired insulin signalling during diabetes and the ramifications of insulin-induced hypoglycaemia on hypothalamic glucose-sensing neurones are covered. To the extent that it is known, we present hypotheses concerning the mechanisms underlying the effects of these insulin-related pathologies. To conclude, electrophysiological data from the hippocampus are evaluated aiming to provide clues regarding how insulin might influence neuronal plasticity in glucose-sensing neurones. Although much has been accomplished subsequent to the discovery of insulin, the work described in our review suggests that the regulation of central glucose sensing by this hormone is both important and understudied.
Collapse
Affiliation(s)
- Stephanie M Garcia
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Dashiel M Siegel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Gwyndolin M Vail
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
12
|
Kalsbeek A, Buijs RM. Organization of the neuroendocrine and autonomic hypothalamic paraventricular nucleus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:45-63. [PMID: 34225948 DOI: 10.1016/b978-0-12-820107-7.00004-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A major function of the nervous system is to maintain a relatively constant internal environment. The distinction between our external environment (i.e., the environment that we live in and that is subject to major changes, such as temperature, humidity, and food availability) and our internal environment (i.e., the environment formed by the fluids surrounding our bodily tissues and that has a very stable composition) was pointed out in 1878 by Claude Bernard (1814-1878). Later on, it was indicated by Walter Cannon (1871-1945) that the internal environment is not really constant, but rather shows limited variability. Cannon named the mechanism maintaining this limited variability homeostasis. Claude Bernard envisioned that, for optimal health, all physiologic processes in the body needed to maintain homeostasis and should be in perfect harmony with each other. This is illustrated by the fact that, for instance, during the sleep-wake cycle important elements of our physiology such as body temperature, circulating glucose, and cortisol levels show important variations but are in perfect synchrony with each other. These variations are driven by the biologic clock in interaction with hypothalamic target areas, among which is the paraventricular nucleus of the hypothalamus (PVN), a core brain structure that controls the neuroendocrine and autonomic nervous systems and thus is key for integrating central and peripheral information and implementing homeostasis. This chapter focuses on the anatomic connections between the biologic clock and the PVN to modulate homeostasis according to the daily sleep-wake rhythm. Experimental studies have revealed a highly specialized organization of the connections between the clock neurons and neuroendocrine system as well as preautonomic neurons in the PVN. These complex connections ensure a logical coordination between behavioral, endocrine, and metabolic functions that helps the organism maintain homeostasis throughout the day.
Collapse
Affiliation(s)
- Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands; Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
13
|
Bruce KD, Dobrinskikh E, Wang H, Rudenko I, Gao H, Libby AE, Gorkhali S, Yu T, Zsombok A, Eckel RH. Neuronal Lipoprotein Lipase Deficiency Alters Neuronal Function and Hepatic Metabolism. Metabolites 2020; 10:metabo10100385. [PMID: 32998280 PMCID: PMC7600143 DOI: 10.3390/metabo10100385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
The autonomic regulation of hepatic metabolism offers a novel target for the treatment of non-alcoholic fatty liver disease (NAFLD). However, the molecular characteristics of neurons that regulate the brain-liver axis remain unclear. Since mice lacking neuronal lipoprotein lipase (LPL) develop perturbations in neuronal lipid-sensing and systemic energy balance, we reasoned that LPL might be a component of pre-autonomic neurons involved in the regulation of hepatic metabolism. Here, we show that, despite obesity, mice with reduced neuronal LPL (NEXCreLPLflox (LPL KD)) show improved glucose tolerance and reduced hepatic lipid accumulation with aging compared to wilt type (WT) controls (LPLflox). To determine the effect of LPL deficiency on neuronal physiology, liver-related neurons were identified in the paraventricular nucleus (PVN) of the hypothalamus using the transsynaptic retrograde tracer PRV-152. Patch-clamp studies revealed reduced inhibitory post-synaptic currents in liver-related neurons of LPL KD mice. Fluorescence lifetime imaging microscopy (FLIM) was used to visualize metabolic changes in LPL-depleted neurons. Quantification of free vs. bound nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) revealed increased glucose utilization and TCA cycle flux in LPL-depleted neurons compared to controls. Global metabolomics from hypothalamic cell lines either deficient in or over-expressing LPL recapitulated these findings. Our data suggest that LPL is a novel feature of liver-related preautonomic neurons in the PVN. Moreover, LPL loss is sufficient to cause changes in neuronal substrate utilization and function, which may precede changes in hepatic metabolism.
Collapse
Affiliation(s)
- Kimberley D. Bruce
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
- Correspondence:
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Hong Wang
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Ivan Rudenko
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Hong Gao
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (H.G.); (A.Z.)
| | - Andrew E. Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Sachi Gorkhali
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Tian Yu
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (H.G.); (A.Z.)
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| |
Collapse
|
14
|
Molinas AJR, Desmoulins LD, Hamling BV, Butcher SM, Anwar IJ, Miyata K, Enix CL, Dugas CM, Satou R, Derbenev AV, Zsombok A. Interaction between TRPV1-expressing neurons in the hypothalamus. J Neurophysiol 2019; 121:140-151. [PMID: 30461371 PMCID: PMC6383661 DOI: 10.1152/jn.00004.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel expressed in the peripheral and central nervous systems. TRPV1-dependent mechanisms take part in a wide range of physiological and pathophysiological pathways including the regulation of homeostatic functions. TRPV1 expression in the hypothalamus has been described as well as evidence that TRPV1-dependent excitatory inputs to hypothalamic preautonomic neurons are diminished in diabetic conditions. Here we aimed to determine the functional expression of TRPV1 in two hypothalamic nuclei known to be involved in the central control of metabolism and to test the hypothesis that TRPV1-expressing neurons receive TRPV1-expressing inputs. A mouse model (TRPV1Cre/tdTom) was generated to identify TRPV1-expressing cells and determine the cellular properties of TRPV1-expressing neurons in adult mice. Our study demonstrated the functional expression of TRPV1 in the dorsomedial hypothalamic nucleus and paraventricular nucleus in adult mice. Our findings revealed that a subset of TRPV1Cre/tdTom neurons receive TRPV1-expressing excitatory inputs, indicating direct interaction between TRPV1-expressing neurons. In addition, astrocytes likely play a role in the modulation of TRPV1-expressing neurons. In summary, this study identified specific hypothalamic regions where TRPV1 is expressed and functional in adult mice and the existence of direct connections between TRPV1Cre/tdTom neurons. NEW & NOTEWORTHY Transient receptor potential vanilloid type 1 (TRPV1) is expressed in the hypothalamus, and TRPV1-dependent regulation of preautonomic neurons is decreased in hyperglycemic conditions. Our study demonstrated functional expression of TRPV1 in two hypothalamic nuclei involved in the control of energy homeostasis. Our results also revealed that a subset of TRPV1-expressing neurons receive TRPV1-expressing excitatory inputs. These findings suggest direct interaction between TRPV1-expressing neurons.
Collapse
Affiliation(s)
- Adrien J R Molinas
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Brooke V Hamling
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Sierra M Butcher
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Imran J Anwar
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Kayoko Miyata
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Courtney L Enix
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Courtney M Dugas
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| |
Collapse
|
15
|
Feetham CH, O'Brien F, Barrett-Jolley R. Ion Channels in the Paraventricular Hypothalamic Nucleus (PVN); Emerging Diversity and Functional Roles. Front Physiol 2018; 9:760. [PMID: 30034342 PMCID: PMC6043726 DOI: 10.3389/fphys.2018.00760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is critical for the regulation of homeostatic function. Although also important for endocrine regulation, it has been referred to as the "autonomic master controller." The emerging consensus is that the PVN is a multifunctional nucleus, with autonomic roles including (but not limited to) coordination of cardiovascular, thermoregulatory, metabolic, circadian and stress responses. However, the cellular mechanisms underlying these multifunctional roles remain poorly understood. Neurones from the PVN project to and can alter the function of sympathetic control regions in the medulla and spinal cord. Dysfunction of sympathetic pre-autonomic neurones (typically hyperactivity) is linked to several diseases including hypertension and heart failure and targeting this region with specific pharmacological or biological agents is a promising area of medical research. However, to facilitate future medical exploitation of the PVN, more detailed models of its neuronal control are required; populated by a greater compliment of constituent ion channels. Whilst the cytoarchitecture, projections and neurotransmitters present in the PVN are reasonably well documented, there have been fewer studies on the expression and interplay of ion channels. In this review we bring together an up to date analysis of PVN ion channel studies and discuss how these channels may interact to control, in particular, the activity of the sympathetic system.
Collapse
Affiliation(s)
- Claire H Feetham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fiona O'Brien
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Navarro G, Allard C, Morford JJ, Xu W, Liu S, Molinas AJ, Butcher SM, Fine NH, Blandino-Rosano M, Sure VN, Yu S, Zhang R, Münzberg H, Jacobson DA, Katakam PV, Hodson DJ, Bernal-Mizrachi E, Zsombok A, Mauvais-Jarvis F. Androgen excess in pancreatic β cells and neurons predisposes female mice to type 2 diabetes. JCI Insight 2018; 3:98607. [PMID: 29925687 PMCID: PMC6124401 DOI: 10.1172/jci.insight.98607] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/10/2018] [Indexed: 11/17/2022] Open
Abstract
Androgen excess predisposes women to type 2 diabetes (T2D), but the mechanism of this is poorly understood. We report that female mice fed a Western diet and exposed to chronic androgen excess using dihydrotestosterone (DHT) exhibit hyperinsulinemia and insulin resistance associated with secondary pancreatic β cell failure, leading to hyperglycemia. These abnormalities are not observed in mice lacking the androgen receptor (AR) in β cells and partially in neurons of the mediobasal hypothalamus (MBH) as well as in mice lacking AR selectively in neurons. Accordingly, i.c.v. infusion of DHT produces hyperinsulinemia and insulin resistance in female WT mice. We observe that acute DHT produces insulin hypersecretion in response to glucose in cultured female mouse and human pancreatic islets in an AR-dependent manner via a cAMP- and mTOR-dependent pathway. Acute DHT exposure increases mitochondrial respiration and oxygen consumption in female cultured islets. As a result, chronic DHT exposure in vivo promotes islet oxidative damage and susceptibility to additional stress induced by streptozotocin via AR in β cells. This study suggests that excess androgen predisposes female mice to T2D following AR activation in neurons, producing peripheral insulin resistance, and in pancreatic β cells, promoting insulin hypersecretion, oxidative injury, and secondary β cell failure.
Collapse
Affiliation(s)
- Guadalupe Navarro
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Camille Allard
- Department of Medicine, Section of Endocrinology and Metabolism, and
| | - Jamie J. Morford
- Department of Medicine, Section of Endocrinology and Metabolism, and
| | - Weiwei Xu
- Department of Medicine, Section of Endocrinology and Metabolism, and
| | - Suhuan Liu
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adrien J.R. Molinas
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Sierra M. Butcher
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Nicholas H.F. Fine
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Venkata N. Sure
- Department of Pharmacology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Sangho Yu
- Department of Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Rui Zhang
- Department of Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Heike Münzberg
- Department of Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - David J. Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Andrea Zsombok
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, and
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
- Tulane Brain Institute and
- Southeast Louisiana Veterans Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
17
|
Lee SJ, Jokiaho AJ, Sanchez-Watts G, Watts AG. Catecholaminergic projections into an interconnected forebrain network control the sensitivity of male rats to diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2018; 314:R811-R823. [PMID: 29384699 DOI: 10.1152/ajpregu.00423.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hindbrain catecholamine neurons convey gut-derived metabolic signals to an interconnected neuronal network in the hypothalamus and adjacent forebrain. These neurons are critical for short-term glycemic control, glucocorticoid and glucoprivic feeding responses, and glucagon-like peptide 1 (GLP-1) signaling. Here we investigate whether these pathways also contribute to long-term energy homeostasis by controlling obesogenic sensitivity to a high-fat/high-sucrose choice (HFSC) diet. We ablated hindbrain-originating catecholaminergic projections by injecting anti-dopamine-β-hydroxylase-conjugated saporin (DSAP) into the paraventricular nucleus of the hypothalamus (PVH) of male rats fed a chow diet for up to 12 wk or a HFSC diet for 8 wk. We measured the effects of DSAP lesions on food choices; visceral adiposity; plasma glucose, insulin, and leptin; and indicators of long-term ACTH and corticosterone secretion. We also determined lesion effects on the number of carbohydrate or fat calories required to increase visceral fat. Finally, we examined corticotropin-releasing hormone levels in the PVH and arcuate nucleus expression of neuropeptide Y ( Npy), agouti-related peptide ( Agrp), and proopiomelanocortin ( Pomc). DSAP-injected chow-fed rats slowly increase visceral adiposity but quickly develop mild insulin resistance and elevated blood glucose. DSAP-injected HFSC-fed rats, however, dramatically increase food intake, body weight, and visceral adiposity beyond the level in control HFSC-fed rats. These changes are concomitant with 1) a reduction in the number of carbohydrate calories required to generate visceral fat, 2) abnormal Npy, Agrp, and Pomc expression, and 3) aberrant control of insulin secretion and glucocorticoid negative feedback. Long-term metabolic adaptations to high-carbohydrate diets, therefore, require intact forebrain catecholamine projections. Without them, animals cannot alter forebrain mechanisms to restrain increased visceral adiposity.
Collapse
Affiliation(s)
- Shin J Lee
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland
| | - Anne J Jokiaho
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California , Los Angeles, California
| | - Graciela Sanchez-Watts
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California , Los Angeles, California
| | - Alan G Watts
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland.,Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California , Los Angeles, California
| |
Collapse
|