1
|
Sampathkumar V, Koster KP, Carroll BJ, Sherman SM, Kasthuri N. Synaptic integration of somatosensory and motor cortical inputs onto spiny projection neurons of mice caudoputamen. Eur J Neurosci 2024; 60:6107-6122. [PMID: 39315531 PMCID: PMC11483202 DOI: 10.1111/ejn.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The basal ganglia play pivotal roles in motor control and cognitive functioning. These nuclei are embedded in an anatomical loop: cortex to basal ganglia to thalamus back to cortex. We focus here on an essential synapse for descending control, from cortical layer 5 (L5) onto the GABAergic spiny projection neurons (SPNs) of the caudoputamen (CP). We employed genetic labeling to distinguish L5 neurons from somatosensory (S1) and motor (M1) cortices in large volume serial electron microscopy and electrophysiology datasets to better detail these inputs. First, M1 and S1 synapses showed a strong preference to innervate the spines of SPNs and rarely contacted aspiny cells, which are likely to be interneurons. Second, L5 inputs commonly converge from both areas onto single SPNs. Third, compared to unlabeled terminals in CP, those labeled from M1 and S1 show ultrastructural hallmarks of strong driver synapses: They innervate larger spines that were more likely to contain a spine apparatus, more often had embedded mitochondria, and more often contacted multiple targets. Finally, these inputs also demonstrated driver-like functional properties: SPNs responded to optogenetic activation from S1 and M1 with large EPSP/Cs that depressed and were dependent on ionotropic but not metabotropic receptors. Together, our findings suggest that individual SPNs integrate driver input from multiple cortical areas with implications for how the basal ganglia relay cortical input to provide inhibitory innervation of motor thalamus.
Collapse
Affiliation(s)
- Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| | - Kevin P Koster
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Briana J Carroll
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| |
Collapse
|
2
|
Amato S, Averna M, Farsetti E, Guidolin D, Pedrazzi M, Gatta E, Candiani S, Maura G, Agnati LF, Cervetto C, Marcoli M. Control of Dopamine Signal in High-Order Receptor Complex on Striatal Astrocytes. Int J Mol Sci 2024; 25:8610. [PMID: 39201299 PMCID: PMC11354247 DOI: 10.3390/ijms25168610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The receptor-receptor interaction (RRI) of G protein-coupled receptors (GPCRs) leads to new functional entities that are conceptually distinct from the simple addition of signals mediated by the activation of the receptors that form the heteromers. Focusing on astrocytes, there is evidence for the existence of inhibitory and facilitatory RRIs, including the heteromers formed by the adenosine A2A and the dopamine D2 receptors, by A2A and the oxytocin receptor (OTR), and the D2-OTR heteromers. The possible involvement of these receptors in mosaicism has never been investigated in striatal astrocytes. By biophysical and functional approaches, we focused our attention on the existence of an A2A-D2-OTR high-order receptor complex and its role in modulating cytosolic calcium levels and endogenous glutamate release, when striatal astrocyte processes were stimulated with 4-aminopyridine. Functional data indicate a permissive role of OTR on dopamine signaling in the regulation of the glutamatergic transmission, and an inhibitory control mediated by A2A on both the D2-mediated signaling and on the OTR-facilitating effect on D2. Imaging biochemical and bioinformatic evidence confirmed the existence of the A2A-D2-OTR complex and its ternary structure in the membrane. In conclusion, the D2 receptor appears to be a hotspot in the control of the glutamate release from the astrocytic processes and may contribute to the regulation and integration of different neurotransmitter-mediated signaling in the striatum by the A2A-D2-OTR heterotrimers. Considering the possible selectivity of allosteric interventions on GPCRs organized as receptor mosaics, A2A-D2-OTR heterotrimers may offer selective pharmacological targets in neuropsychiatric disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elisa Farsetti
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Via Largo Benzi 10, 16132 Genova, Italy
| | - Guido Maura
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Luigi Francesco Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Via Largo Benzi 10, 16132 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Manuela Marcoli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
3
|
Nunes ACL, Carmo M, Behrenswerth A, Canas PM, Agostinho P, Cunha RA. Adenosine A 2A Receptor Blockade Provides More Effective Benefits at the Onset Rather than after Overt Neurodegeneration in a Rat Model of Parkinson's Disease. Int J Mol Sci 2024; 25:4903. [PMID: 38732120 PMCID: PMC11084368 DOI: 10.3390/ijms25094903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.
Collapse
Affiliation(s)
- Ana Carla L. Nunes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Marta Carmo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Andrea Behrenswerth
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Paula M. Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
4
|
Masilamoni GJ, Kelly H, Swain AJ, Pare JF, Villalba RM, Smith Y. Structural Plasticity of GABAergic Pallidothalamic Terminals in MPTP-Treated Parkinsonian Monkeys: A 3D Electron Microscopic Analysis. eNeuro 2024; 11:ENEURO.0241-23.2024. [PMID: 38514185 PMCID: PMC10957232 DOI: 10.1523/eneuro.0241-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The internal globus pallidus (GPi) is a major source of tonic GABAergic inhibition to the motor thalamus. In parkinsonism, the firing rate of GPi neurons is increased, and their pattern switches from a tonic to a burst mode, two pathophysiological changes associated with increased GABAergic pallidothalamic activity. In this study, we used high-resolution 3D electron microscopy to demonstrate that GPi terminals in the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM), the two main GPi-recipient motor thalamic nuclei in monkeys, undergo significant morphometric changes in parkinsonian monkeys including (1) increased terminal volume in both nuclei; (2) increased surface area of synapses in both nuclei; (3) increased number of synapses/GPi terminals in the CM, but not VApc; and (4) increased total volume, but not number, of mitochondria/terminals in both nuclei. In contrast to GPi terminals, the ultrastructure of putative GABAergic nonpallidal terminals was not affected. Our results also revealed striking morphological differences in terminal volume, number/area of synapses, and volume/number of mitochondria between GPi terminals in VApc and CM of control monkeys. In conclusion, GABAergic pallidothalamic terminals are endowed with a high level of structural plasticity that may contribute to the development and maintenance of the abnormal increase in pallidal GABAergic outflow to the thalamus in the parkinsonian state. Furthermore, the evidence for ultrastructural differences between GPi terminals in VApc and CM suggests that morphologically distinct pallidothalamic terminals from single pallidal neurons may underlie specific physiological properties of pallidal inputs to VApc and CM in normal and diseased states.
Collapse
Affiliation(s)
- G J Masilamoni
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - H Kelly
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - A J Swain
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - J F Pare
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - R M Villalba
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - Y Smith
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
- Department of Neurology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
5
|
Benítez-Castañeda A, Anaya-Martínez V, Espadas-Alvarez ADJ, Gutierrez-Váldez AL, Razgado-Hernández LF, Reyna-Velazquez PE, Quintero-Macias L, Martínez-Fong D, Florán-Garduño B, Aceves J. Transfection of the BDNF Gene in the Surviving Dopamine Neurons in Conjunction with Continuous Administration of Pramipexole Restores Normal Motor Behavior in a Bilateral Rat Model of Parkinson's Disease. PARKINSON'S DISEASE 2024; 2024:3885451. [PMID: 38419644 PMCID: PMC10901579 DOI: 10.1155/2024/3885451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
In Parkinson's disease (PD), progressive degeneration of nigrostriatal innervation leads to atrophy and loss of dendritic spines of striatal medium spiny neurons (MSNs). The loss disrupts corticostriatal transmission, impairs motor behavior, and produces nonmotor symptoms. Nigral neurons express brain-derived neurotropic factor (BDNF) and dopamine D3 receptors, both protecting the dopamine neurons and the spines of MSNs. To restore motor and nonmotor symptoms to normality, we assessed a combined therapy in a bilateral rat Parkinson's model, with only 30% of surviving neurons. The preferential D3 agonist pramipexole (PPX) was infused for four ½ months via mini-osmotic pumps and one month after PPX initiation; the BDNF-gene was transfected into the surviving nigral cells using the nonviral transfection NTS-polyplex vector. Overexpression of the BDNF-gene associated with continuous PPX infusion restored motor coordination, balance, normal gait, and working memory. Recovery was also related to the restoration of the average number of dendritic spines of the striatal projection neurons and the number of TH-positive neurons of the substantia nigra and ventral tegmental area. These positive results could pave the way for further clinical research into this promising therapy.
Collapse
Affiliation(s)
- Alina Benítez-Castañeda
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | | | | | | | | | | | - Liz Quintero-Macias
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Daniel Martínez-Fong
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Benjamín Florán-Garduño
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Jorge Aceves
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
6
|
Barcomb K, Ford CP. Alterations in neurotransmitter co-release in Parkinson's disease. Exp Neurol 2023; 370:114562. [PMID: 37802381 PMCID: PMC10842357 DOI: 10.1016/j.expneurol.2023.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Parkinson's disease is a neurological disorder characterized by degeneration of midbrain dopamine neurons, which results in numerous adaptations in basal ganglia circuits. Research over the past twenty-five years has identified that midbrain dopamine neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) co-release multiple other transmitters including glutamate and GABA, in addition to their canonical transmitter, dopamine. This review summarizes previous work characterizing neurotransmitter co-release from dopamine neurons, work examining potential changes in co-release dynamics that result in animal models of Parkinson's disease, and future opportunities for determining how dysfunction in co-release may contribute to circuit dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Kelsey Barcomb
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Collier TJ, Begg L, Stancati JA, Mercado NM, Sellnow RC, Sandoval IM, Sortwell CE, Steece-Collier K. Quinpirole inhibits levodopa-induced dyskinesias at structural and behavioral levels: Efficacy negated by co-administration of isradipine. Exp Neurol 2023; 369:114522. [PMID: 37640098 PMCID: PMC10591902 DOI: 10.1016/j.expneurol.2023.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Dopamine depletion associated with parkinsonism induces plastic changes in striatal medium spiny neurons (MSN) that are maladaptive and associated with the emergence of the negative side-effect of standard treatment: the abnormal involuntary movements termed levodopa-induced dyskinesia (LID). Prevention of MSN dendritic spine loss is hypothesized to diminish liability for LID in Parkinson's disease. Blockade of striatal CaV1.3 calcium channels can prevent spine loss and significantly diminish LID in parkinsonian rats. While pharmacological antagonism with FDA approved CaV1 L-type channel antagonist dihydropyridine (DHP) drugs (e.g, isradipine) are potentially antidyskinetic, pharmacologic limitations of current drugs may result in suboptimal efficacy. To provide optimal CaV1.3 antagonism, we investigated the ability of a dual pharmacological approach to more potently antagonize these channels. Specifically, quinpirole, a D2/D3-type dopamine receptor (D2/3R) agonist, has been demonstrated to significantly reduce calcium current activity at CaV1.3 channels in MSNs of rats by a mechanism distinct from DHPs. We hypothesized that dual inhibition of striatal CaV1.3 channels using the DHP drug isradipine combined with the D2/D3 dopamine receptor agonist quinpirole prior to, and in conjunction with, levodopa would be more effective at preventing structural modifications of dendritic spines and providing more stable LID prevention. For these proof-of-principle studies, rats with unilateral nigrostriatal lesions received daily administration of vehicle, isradipine, quinpirole, or isradipine + quinpirole prior to, and concurrent with, levodopa. Development of LID and morphological analysis of dendritic spines were assessed. Contrary to our hypothesis, quinpirole monotherapy was the most effective at reducing dyskinesia severity and preventing abnormal mushroom spine formation on MSNs, a structural phenomenon previously associated with LID. Notably, the antidyskinetic efficacy of quinpirole monotherapy was lost in the presence of isradipine co-treatment. These findings suggest that D2/D3 dopamine receptor agonists when given in combination with levodopa and initiated in early-stage Parkinson's disease may provide long-term protection against LID. The negative interaction of isradipine with quinpirole suggests a potential cautionary note for co-administration of these drugs in a clinical setting.
Collapse
Affiliation(s)
- Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA.
| | - Lauren Begg
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA
| | - Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA
| | - Rhyomi C Sellnow
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Ivette M Sandoval
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA.
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA
| |
Collapse
|
8
|
Matityahu L, Gilin N, Sarpong GA, Atamna Y, Tiroshi L, Tritsch NX, Wickens JR, Goldberg JA. Acetylcholine waves and dopamine release in the striatum. Nat Commun 2023; 14:6852. [PMID: 37891198 PMCID: PMC10611775 DOI: 10.1038/s41467-023-42311-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Striatal dopamine encodes reward, with recent work showing that dopamine release occurs in spatiotemporal waves. However, the mechanism of dopamine waves is unknown. Here we report that acetylcholine release in mouse striatum also exhibits wave activity, and that the spatial scale of striatal dopamine release is extended by nicotinic acetylcholine receptors. Based on these findings, and on our demonstration that single cholinergic interneurons can induce dopamine release, we hypothesized that the local reciprocal interaction between cholinergic interneurons and dopamine axons suffices to drive endogenous traveling waves. We show that the morphological and physiological properties of cholinergic interneuron - dopamine axon interactions can be modeled as a reaction-diffusion system that gives rise to traveling waves. Analytically-tractable versions of the model show that the structure and the nature of propagation of acetylcholine and dopamine traveling waves depend on their coupling, and that traveling waves can give rise to empirically observed correlations between these signals. Thus, our study provides evidence for striatal acetylcholine waves in vivo, and proposes a testable theoretical framework that predicts that the observed dopamine and acetylcholine waves are strongly coupled phenomena.
Collapse
Affiliation(s)
- Lior Matityahu
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Naomi Gilin
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Gideon A Sarpong
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yara Atamna
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Lior Tiroshi
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jeffery R Wickens
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Joshua A Goldberg
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel.
| |
Collapse
|
9
|
Mesías RE, Zaki Y, Guevara CA, Friedman LG, Hussein A, Therrien K, Magee AR, Tzavaras N, Del Valle P, Baxter MG, Huntley GW, Benson DL. Development and cadherin-mediated control of prefrontal corticostriatal projections in mice. iScience 2023; 26:108002. [PMID: 37854688 PMCID: PMC10579443 DOI: 10.1016/j.isci.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Action-outcome associations depend on prefrontal cortex (PFC) projections to the dorsal striatum. To assess how these projections form, we measured PFC axon patterning, synapse formation, and functional maturation in the postnatally developing mouse striatum. Using Hotspot analysis, we show that PFC axons form an adult-like pattern of clustered terminations in the first postnatal week that remains largely stable thereafter. PFC-striatal synaptic strength is adult-like by P21, while excitatory synapse density increases until adulthood. We then tested how the targeted deletion of a candidate adhesion/guidance protein, Cadherin-8 (Cdh8), from corticostriatal neurons regulates pathway development. Mutant mice showed diminished PFC axon targeting and reduced spontaneous glutamatergic synaptic activity in the dorsal striatum. They also exhibited impaired behavioral performance in action-outcome learning. The data show that PFC-striatal axons form striatal territories through an early, directed growth model and they highlight essential contributions of Cdh8 to the anatomical and functional features critical for the formation of action-outcome associations.
Collapse
Affiliation(s)
- Roxana E. Mesías
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yosif Zaki
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher A. Guevara
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lauren G. Friedman
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ayan Hussein
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen Therrien
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandra R. Magee
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos Tzavaras
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela Del Valle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark G. Baxter
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - George W. Huntley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Zhong M, Wang Y, Lin G, Liao FF, Zhou FM. Dopamine-independent development and maintenance of mouse striatal medium spiny neuron dendritic spines. Neurobiol Dis 2023; 181:106096. [PMID: 37001611 PMCID: PMC10864017 DOI: 10.1016/j.nbd.2023.106096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Striatal medium spiny neurons (MSNs) and striatal dopamine (DA) innervation are profoundly important for brain function such as motor control and cognition. A widely accepted theory posits that striatal DA loss causes (or leads to) MSN dendritic atrophy. However, examination of the literature indicates that the data from Parkinson's disease (PD) patients and animal PD models were contradictory among studies and hard to interpret. Here we have re-examined the potential effects of DA activity on MSN morphology or lack thereof. We found that in 15-day, 4- and 12-month old Pitx3 null mutant mice that have severe DA denervation in the dorsal striatum while having substantial residual DA innervation in the ventral striatum, MSN dendrites and spine numbers were similar in dorsal and ventral striatum, and also similar to those in normal mice. In 15-day, 4- and 12-month old tyrosine hydroxylase knockout mice that cannot synthesize L-dopa and thus have no endogenous DA in the entire brain, MSN dendrites and spine numbers were also indistinguishable from age-matched wild-type (WT) mice. Furthermore, in adult WT mice, unilateral 6-OHDA lesion at 12 months of age caused an almost complete striatal DA denervation in the lesioned side, but MSN dendrites and spine numbers were similar in the lesioned and control sides. Taken together, our data indicate that in mice, the development and maintenance of MSN dendrites and spines are DA-independent such that DA depletion does not trigger MSN dendritic atrophy; our data also suggest that the reported MSN dendritic atrophy in PD may be a component of neurodegeneration in PD rather than a consequence of DA denervation.
Collapse
Affiliation(s)
- Manli Zhong
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China; Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| | - Yuhan Wang
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Geng Lin
- Teaching Center for Basic Medical Experiments, China Medical University, Shenyang 110122, China; Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| |
Collapse
|
11
|
Mesías RE, Zaki Y, Guevara CA, Friedman LG, Hussein A, Therrien K, Magee AR, Tzavaras N, Valle PD, Baxter MG, Huntley GW, Benson DL. Development of prefrontal corticostriatal connectivity in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532475. [PMID: 36993639 PMCID: PMC10054964 DOI: 10.1101/2023.03.14.532475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rational decision making is grounded in learning to associate actions with outcomes, a process that depends on projections from prefrontal cortex to dorsomedial striatum. Symptoms associated with a variety of human pathological conditions ranging from schizophrenia and autism to Huntington's and Parkinson's disease point toward functional deficits in this projection, but its development is not well understood, making it difficult to investigate how perturbations in development of this circuitry could contribute to pathophysiology. We applied a novel strategy based on Hotspot Analysis to assess the developmental progression of anatomical positioning of prefrontal cortex to striatal projections. Corticostriatal axonal territories established at P7 expand in concert with striatal growth but remain largely unchanged in positioning through adulthood, indicating they are generated by directed, targeted growth and not modified extensively by postnatal experience. Consistent with these findings, corticostriatal synaptogenesis increased steadily from P7 to P56, with no evidence for widescale pruning. As corticostriatal synapse density increased over late postnatal ages, the strength of evoked PFC input onto dorsomedial striatal projection neurons also increased, but spontaneous glutamatergic synaptic activity was stable. Based on its pattern of expression, we asked whether the adhesion protein, Cdh8, influenced this progression. In mice lacking Cdh8 in PFC corticostriatal projection neurons, axon terminal fields in dorsal striatum shifted ventrally. Corticostriatal synaptogenesis was unimpeded, but spontaneous EPSC frequency declined and mice failed to learn to associate an action with an outcome. Collectively these findings show that corticostriatal axons grow to their target zone and are restrained from an early age, do not undergo postnatal synapse pruning as the most dominant models predict, and that a relatively modest shift in terminal arbor positioning and synapse function has an outsized, negative impact on corticostriatal-dependent behavior.
Collapse
|
12
|
Gonçalves FQ, Matheus FC, Silva HB, Real JI, Rial D, Rodrigues RJ, Oses JP, Silva AC, Gonçalves N, Prediger RD, Tomé ÂR, Cunha RA. Increased ATP Release and Higher Impact of Adenosine A 2A Receptors on Corticostriatal Plasticity in a Rat Model of Presymptomatic Parkinson's Disease. Mol Neurobiol 2023; 60:1659-1674. [PMID: 36547848 PMCID: PMC9899190 DOI: 10.1007/s12035-022-03162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Extracellular ATP can be a danger signal, but its role in striatal circuits afflicted in Parkinson's disease (PD) is unclear and was now investigated. ATP was particularly released at high stimulation intensities from purified striatal nerve terminals of mice, which were endowed with different ATP-P2 receptors (P2R), although P2R antagonists did not alter corticostriatal transmission or plasticity. Instead, ATP was extracellularly catabolized into adenosine through CD73 to activate adenosine A2A receptors (A2AR) modulating corticostriatal long-term potentiation (LTP) in mice. In the presymptomatic phase of a 6-hydroxydopamine rat model of PD, ATP release from striatal nerve terminals was increased and was responsible for a greater impact of CD73 and A2AR on corticostriatal LTP. These observations identify increased ATP release and ATP-derived formation of extracellular adenosine bolstering A2AR activation as a key pathway responsible for abnormal synaptic plasticity in circuits involved in the onset of PD motor symptoms. The translation of these findings to humans prompts extending the use of A2AR antagonists from only co-adjuvants of motor control in Parkinsonian patients to neuroprotective drugs delaying the onset of motor symptoms.
Collapse
Affiliation(s)
| | - Filipe C. Matheus
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC Brazil
| | - Henrique B. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Joana I. Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ricardo J. Rodrigues
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jean-Pierre Oses
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - António C. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui D. Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC Brazil
| | - Ângelo R. Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Martel AC, Galvan A. Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update. Neurobiol Dis 2022; 174:105878. [PMID: 36183947 PMCID: PMC9976706 DOI: 10.1016/j.nbd.2022.105878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/06/2023] Open
Abstract
The striatum receives abundant glutamatergic afferents from the cortex and thalamus. These inputs play a major role in the functions of the striatal neurons in normal conditions, and are significantly altered in pathological states, such as Parkinson's disease. This review summarizes the current knowledge of the connectivity of the corticostriatal and thalamostriatal pathways, with emphasis on the most recent advances in the field. We also discuss novel findings regarding structural changes in cortico- and thalamostriatal connections that occur in these connections as a consequence of striatal loss of dopamine in parkinsonism.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiol Dis 2022; 168:105697. [DOI: 10.1016/j.nbd.2022.105697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
|
15
|
Nosaka D, Wickens JR. Striatal Cholinergic Signaling in Time and Space. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041202. [PMID: 35208986 PMCID: PMC8878708 DOI: 10.3390/molecules27041202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The cholinergic interneurons of the striatum account for a small fraction of all striatal cell types but due to their extensive axonal arborization give the striatum the highest content of acetylcholine of almost any nucleus in the brain. The prevailing theory of striatal cholinergic interneuron signaling is that the numerous varicosities on the axon produce an extrasynaptic, volume-transmitted signal rather than mediating rapid point-to-point synaptic transmission. We review the evidence for this theory and use a mathematical model to integrate the measurements reported in the literature, from which we estimate the temporospatial distribution of acetylcholine after release from a synaptic vesicle and from multiple vesicles during tonic firing and pauses. Our calculations, together with recent data from genetically encoded sensors, indicate that the temporospatial distribution of acetylcholine is both short-range and short-lived, and dominated by diffusion. These considerations suggest that acetylcholine signaling by cholinergic interneurons is consistent with point-to-point transmission within a steep concentration gradient, marked by transient peaks of acetylcholine concentration adjacent to release sites, with potential for faithful transmission of spike timing, both bursts and pauses, to the postsynaptic cell. Release from multiple sites at greater distance contributes to the ambient concentration without interference with the short-range signaling. We indicate several missing pieces of evidence that are needed for a better understanding of the nature of synaptic transmission by the cholinergic interneurons of the striatum.
Collapse
|
16
|
McLaurin KA, Harris M, Madormo V, Harrod SB, Mactutus CF, Booze RM. HIV-Associated Apathy/Depression and Neurocognitive Impairments Reflect Persistent Dopamine Deficits. Cells 2021; 10:2158. [PMID: 34440928 PMCID: PMC8392364 DOI: 10.3390/cells10082158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals living with human immunodeficiency virus type 1 (HIV-1) are often plagued by debilitating neurocognitive impairments and affective alterations;the pathophysiology underlying these deficits likely includes dopaminergic system dysfunction. The present review utilized four interrelated aims to critically examine the evidence for dopaminergic alterations following HIV-1 viral protein exposure. First, basal dopamine (DA) values are dependent upon both brain region andexperimental approach (i.e., high-performance liquid chromatography, microdialysis or fast-scan cyclic voltammetry). Second, neurochemical measurements overwhelmingly support decreased DA concentrations following chronic HIV-1 viral protein exposure. Neurocognitive impairments, including alterations in pre-attentive processes and attention, as well as apathetic behaviors, provide an additional line of evidence for dopaminergic deficits in HIV-1. Third, to date, there is no compelling evidence that combination antiretroviral therapy (cART), the primary treatment regimen for HIV-1 seropositive individuals, has any direct pharmacological action on the dopaminergic system. Fourth, the infection of microglia by HIV-1 viral proteins may mechanistically underlie the dopamine deficit observed following chronic HIV-1 viral protein exposure. An inclusive and critical evaluation of the literature, therefore, supports the fundamental conclusion that long-term HIV-1 viral protein exposure leads to a decreased dopaminergic state, which continues to persist despite the advent of cART. Thus, effective treatment of HIV-1-associated apathy/depression and neurocognitive impairments must focus on strategies for rectifying decreases in dopamine function.
Collapse
Affiliation(s)
| | | | | | | | | | - Rosemarie M. Booze
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA; (K.A.M.); (M.H.); (V.M.); (S.B.H.); (C.F.M.)
| |
Collapse
|
17
|
Villalba RM, Behnke JA, Pare JF, Smith Y. Comparative Ultrastructural Analysis of Thalamocortical Innervation of the Primary Motor Cortex and Supplementary Motor Area in Control and MPTP-Treated Parkinsonian Monkeys. Cereb Cortex 2021; 31:3408-3425. [PMID: 33676368 PMCID: PMC8599722 DOI: 10.1093/cercor/bhab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
The synaptic organization of thalamic inputs to motor cortices remains poorly understood in primates. Thus, we compared the regional and synaptic connections of vGluT2-positive thalamocortical glutamatergic terminals in the supplementary motor area (SMA) and the primary motor cortex (M1) between control and MPTP-treated parkinsonian monkeys. In controls, vGluT2-containing fibers and terminal-like profiles invaded layer II-III and Vb of M1 and SMA. A significant reduction of vGluT2 labeling was found in layer Vb, but not in layer II-III, of parkinsonian animals, suggesting a potential thalamic denervation of deep cortical layers in parkinsonism. There was a significant difference in the pattern of synaptic connectivity in layers II-III, but not in layer Vb, between M1 and SMA of control monkeys. However, this difference was abolished in parkinsonian animals. No major difference was found in the proportion of perforated versus macular post-synaptic densities at thalamocortical synapses between control and parkinsonian monkeys in both cortical regions, except for a slight increase in the prevalence of perforated axo-dendritic synapses in the SMA of parkinsonian monkeys. Our findings suggest that disruption of the thalamic innervation of M1 and SMA may underlie pathophysiological changes of the motor thalamocortical loop in the state of parkinsonism.
Collapse
Affiliation(s)
- Rosa M Villalba
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
| | - Joseph A Behnke
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
| | - Jean-Francois Pare
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
| | - Yoland Smith
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
18
|
Arbuthnott GW. An Introspective Approach: A Lifetime of Parkinson's Disease Research and Not Much to Show for it Yet? Cells 2021; 10:cells10030513. [PMID: 33670933 PMCID: PMC7997292 DOI: 10.3390/cells10030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
I feel part of a massive effort to understand what is wrong with motor systems in the brain relating to Parkinson’s disease. Today, the symptoms of the disease can be modified slightly, but dopamine neurons still die; the disease progression continues inexorably. Maybe the next research phase will bring the power of modern genetics to bear on halting, or better, preventing cell death. The arrival of accessible human neuron assemblies in organoids perhaps will provide a better access to the processes underlying neuronal demise.
Collapse
Affiliation(s)
- Gordon W Arbuthnott
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
19
|
Regulation of TrkB cell surface expression-a mechanism for modulation of neuronal responsiveness to brain-derived neurotrophic factor. Cell Tissue Res 2020; 382:5-14. [PMID: 32556728 PMCID: PMC7529634 DOI: 10.1007/s00441-020-03224-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Neurotrophin signaling via receptor tyrosine kinases is essential for the development and function of the nervous system in vertebrates. TrkB activation and signaling show substantial differences to other receptor tyrosine kinases of the Trk family that mediate the responses to nerve growth factor and neurotrophin-3. Growing evidence suggests that TrkB cell surface expression is highly regulated and determines the sensitivity of neurons to brain-derived neurotrophic factor (BDNF). This translocation of TrkB depends on co-factors and modulators of cAMP levels, N-glycosylation, and receptor transactivation. This process can occur in very short time periods and the resulting rapid modulation of target cell sensitivity to BDNF could represent a mechanism for fine-tuning of synaptic plasticity and communication in complex neuronal networks. This review focuses on those modulatory mechanisms in neurons that regulate responsiveness to BDNF via control of TrkB surface expression.
Collapse
|
20
|
Diniz LP, Matias I, Araujo APB, Garcia MN, Barros-Aragão FGQ, Alves-Leon SV, de Souza JM, Foguel D, Figueiredo CP, Braga C, Romão L, Gomes FCA. α-synuclein oligomers enhance astrocyte-induced synapse formation through TGF-β1 signaling in a Parkinson's disease model. J Neurochem 2020; 150:138-157. [PMID: 31009074 DOI: 10.1111/jnc.14710] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is characterized by selective death of dopaminergic neurons in the substantia nigra, degeneration of the nigrostriatal pathway, increases in glutamatergic synapses in the striatum and aggregation of α-synuclein. Evidence suggests that oligomeric species of α-synuclein (αSO) are the genuine neurotoxins of PD. Although several studies have supported the direct neurotoxic effects of αSO on neurons, their effects on astrocytes have not been directly addressed. Astrocytes are essential to several steps of synapse formation and function, including secretion of synaptogenic factors, control of synaptic elimination and stabilization, secretion of neural/glial modulators, and modulation of extracellular ions, and neurotransmitter levels in the synaptic cleft. Here, we show that αSO induced the astrocyte reactivity and enhanced the synaptogenic capacity of human and murine astrocytes by increasing the levels of the known synaptogenic molecule transforming growth factor beta 1 (TGF-β1). Moreover, intracerebroventricular injection of αSO in mice increased the number of astrocytes, the density of excitatory synapses, and the levels of TGF-β1 in the striatum of injected animals. Inhibition of TGF-β1 signaling impaired the effect of the astrocyte-conditioned medium on glutamatergic synapse formation in vitro and on striatal synapse formation in vivo, whereas addition of TGF-β1 protected mesencephalic neurons against synapse loss triggered by αSO. Together, our data suggest that αSO have important effects on astrocytic functions and describe TGF-β1 as a new endogenous astrocyte-derived molecule involved in the increase in striatal glutamatergic synaptic density present in early stages of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14514.
Collapse
Affiliation(s)
- Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isadora Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Paula Bérgamo Araujo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Matheus Nunes Garcia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Jorge Marcondes de Souza
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Carolina Braga
- Núcleo Multidisciplinar de Pesquisa em Biologia - NUMPEX-BIO, Campus Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Luciana Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | |
Collapse
|
21
|
Sciaccaluga M, Mazzocchetti P, Bastioli G, Ghiglieri V, Cardinale A, Mosci P, Caccia C, Keywood C, Melloni E, Padoani G, Vailati S, Picconi B, Calabresi P, Tozzi A. Effects of safinamide on the glutamatergic striatal network in experimental Parkinson's disease. Neuropharmacology 2020; 170:108024. [PMID: 32142791 DOI: 10.1016/j.neuropharm.2020.108024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate electrophysiological effects of safinamide on the intrinsic and synaptic properties of striatal spiny projection neurons (SPNs) and to characterize the possible therapeutic antiparkinsonian effect of this drug in dopamine (DA) denervated rats before and during levodopa (l-DOPA) treatment. BACKGROUND Current therapeutic options in Parkinson's disease (PD) are primarily DA replacement strategies that usually cause progressive motor fluctuations and l-DOPA-induced dyskinesia (LIDs) as a consequence of SPNs glutamate-induced hyperactivity. As a reversible and use-dependent inhibitor of voltage-gated sodium channels, safinamide reduces the release of glutamate and possibly optimize the effect of l-DOPA therapy in PD. METHODS Electrophysiological effects of safinamide (1-100 μM) were investigated by patch-clamp recordings in striatal slices of naïve, 6-hydroxydopamine (6-OHDA)-lesioned DA-denervated rats and DA-denervated animals chronically treated with l-DOPA. LIDs were assessed in vivo with and without chronic safinamide treatment and measured by scoring the l-DOPA-induced abnormal involuntary movements (AIMs). Motor deficit was evaluated with the stepping test. RESULTS Safinamide reduced the SPNs firing rate and glutamatergic synaptic transmission in all groups, showing a dose-dependent effect with half maximal inhibitory concentration (IC50) values in the therapeutic range (3-5 μM). Chronic co-administration of safinamide plus l-DOPA in DA-denervated animals favored the recovery of corticostriatal long-term synaptic potentiation (LTP) and depotentiation of excitatory synaptic transmission also reducing motor deficits before the onset of LIDs. CONCLUSIONS Safinamide, at a clinically relevant dose, optimizes the effect of l-DOPA therapy in experimental PD reducing SPNs excitability and modulating synaptic transmission. Co-administration of safinamide and l-DOPA ameliorates motor deficits.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Petra Mazzocchetti
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Guendalina Bastioli
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Veronica Ghiglieri
- Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Piazza G. Ermini, 1, 06123, Perugia, Italy; Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Antonella Cardinale
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy; Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy
| | - Paolo Mosci
- Department of Veterinary, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy
| | - Carla Caccia
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Charlotte Keywood
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Elsa Melloni
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Gloria Padoani
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Silvia Vailati
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy; University San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 8, 00168, Roma, Italy
| | - Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, via Gambuli, 1, 06132, Perugia, Italy.
| |
Collapse
|
22
|
Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience 2019; 454:116-139. [PMID: 31887357 DOI: 10.1016/j.neuroscience.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023]
Abstract
The postsynaptic density (PSD) is a complex subcellular domain important for postsynaptic signaling, function, and plasticity. The PSD is present at excitatory synapses and specialized to allow for precise neuron-to-neuron transmission of information. The PSD is localized immediately underneath the postsynaptic membrane forming a major protein network that regulates postsynaptic signaling and synaptic plasticity. Glutamatergic synaptic dysfunction affecting PSD morphology and signaling events have been described in many neurodegenerative disorders, either sporadic or familial forms. Thus, in this review we describe the main protein players forming the PSD and their activity, as well as relevant modifications in key components of the postsynaptic architecture occurring in Huntington's, Parkinson's and Alzheimer's diseases.
Collapse
|
23
|
Swain AJ, Galvan A, Wichmann T, Smith Y. Structural plasticity of GABAergic and glutamatergic networks in the motor thalamus of parkinsonian monkeys. J Comp Neurol 2019; 528:1436-1456. [PMID: 31808567 DOI: 10.1002/cne.24834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
In the primate thalamus, the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM) receive GABAergic projections from the internal globus pallidus (GPi) and glutamatergic inputs from motor cortices. In this study, we used electron microscopy to assess potential structural changes in GABAergic and glutamatergic microcircuits in the VApc and CM of MPTP-treated parkinsonian monkeys. The intensity of immunostaining for GABAergic markers in VApc and CM did not differ between control and parkinsonian monkeys. In the electron microscope, three major types of terminals were identified in both nuclei: (a) vesicular glutamate transporter 1 (vGluT1)-positive terminals forming asymmetric synapses (type As), which originate from the cerebral cortex, (b) GABAergic terminals forming single symmetric synapses (type S1), which likely arise from the reticular nucleus and GABAergic interneurons, and (c) GABAergic terminals forming multiple symmetric synapses (type S2), which originate from GPi. The density of As terminals outnumbered that of S1 and S2 terminals in VApc and CM of control and parkinsonian animals. No significant change was found in the abundance and synaptic connectivity of S1 and S2 terminals in VApc or CM of MPTP-treated monkeys, while the prevalence of "As" terminals in VApc of parkinsonian monkeys was 51.4% lower than in controls. The cross-sectional area of vGluT1-positive boutons in both VApc and CM of parkinsonian monkeys was significantly larger than in controls, but their pattern of innervation of thalamic cells was not altered. Our findings suggest that the corticothalamic system undergoes significant synaptic remodeling in the parkinsonian state.
Collapse
Affiliation(s)
- Ashley J Swain
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Udall Center of Excellence for Parkinson's Disease Research, Atlanta, Georgia
| | - Adriana Galvan
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Udall Center of Excellence for Parkinson's Disease Research, Atlanta, Georgia.,Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| | - Thomas Wichmann
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Udall Center of Excellence for Parkinson's Disease Research, Atlanta, Georgia.,Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| | - Yoland Smith
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Udall Center of Excellence for Parkinson's Disease Research, Atlanta, Georgia.,Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
24
|
Krajeski RN, Macey-Dare A, van Heusden F, Ebrahimjee F, Ellender TJ. Dynamic postnatal development of the cellular and circuit properties of striatal D1 and D2 spiny projection neurons. J Physiol 2019; 597:5265-5293. [PMID: 31531863 PMCID: PMC6900874 DOI: 10.1113/jp278416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Imbalances in the activity of the D1-expressing direct pathway and D2-expressing indirect pathway striatal projection neurons (SPNs) are thought to contribute to many basal ganglia disorders, including early-onset neurodevelopmental disorders such as obsessive-compulsive disorder, attention deficit hyperactivity disorder and Tourette's syndrome. This study provides the first detailed quantitative investigation of development of D1 and D2 SPNs, including their cellular properties and connectivity within neural circuits, during the first postnatal weeks. This period is highly dynamic with many properties changing, but it is possible to make three main observations: many aspects of D1 and D2 SPNs progressively mature in parallel; there are notable exceptions when they diverge; and many of the defining properties of mature striatal SPNs and circuits are already established by the first and second postnatal weeks, suggesting guidance through intrinsic developmental programmes. These findings provide an experimental framework for future studies of striatal development in both health and disease. ABSTRACT Many basal ganglia neurodevelopmental disorders are thought to result from imbalances in the activity of the D1-expressing direct pathway and D2-expressing indirect pathway striatal projection neurons (SPNs). Insight into these disorders is reliant on our understanding of normal D1 and D2 SPN development. Here we provide the first detailed study and quantification of the striatal cellular and circuit changes occurring for both D1 and D2 SPNs in the first postnatal weeks using in vitro whole-cell patch-clamp electrophysiology. Characterization of their intrinsic electrophysiological and morphological properties, the excitatory long-range inputs coming from cortex and thalamus, as well their local gap junction and inhibitory synaptic connections reveals this period to be highly dynamic with numerous properties changing. However it is possible to make three main observations. Firstly, many aspects of SPNs mature in parallel, including intrinsic membrane properties, increases in dendritic arbours and spine densities, general synaptic inputs and expression of specific glutamate receptors. Secondly, there are notable exceptions, including a transient stronger thalamic innervation of D2 SPNs and stronger cortical NMDA receptor-mediated inputs to D1 SPNs, both in the second postnatal week. Thirdly, many of the defining properties of mature D1 and D2 SPNs and striatal circuits are already established by the first and second postnatal weeks, including different electrophysiological properties as well as biased local inhibitory connections between SPNs, suggesting this is guided through intrinsic developmental programmes. Together these findings provide an experimental framework for future studies of D1 and D2 SPN development in health and disease.
Collapse
Affiliation(s)
- Rohan N Krajeski
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Anežka Macey-Dare
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Fran van Heusden
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Farid Ebrahimjee
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Tommas J Ellender
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| |
Collapse
|
25
|
Khakh BS. Astrocyte-Neuron Interactions in the Striatum: Insights on Identity, Form, and Function. Trends Neurosci 2019; 42:617-630. [PMID: 31351745 PMCID: PMC6741427 DOI: 10.1016/j.tins.2019.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 01/09/2023]
Abstract
The physiological functions of astrocytes within neural circuits remain incompletely understood. There has been progress in this regard from recent work on striatal astrocytes, where detailed studies are emerging. In this review, findings on striatal astrocyte identity, form, and function, are summarized with a focus on how astrocytes regulate striatal neurons, circuits, and behavior. Specific features of striatal astrocytes are highlighted to illustrate how they may be specialized to regulate medium spiny neurons (MSNs) by responding to, and altering, excitation and inhibition. Further experiments should reveal additional mechanisms for astrocyte-neuron interactions in the striatum and potentially reveal insights into the functions of astrocytes in neural circuits more generally.
Collapse
Affiliation(s)
- Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
26
|
Wichmann T. Changing views of the pathophysiology of Parkinsonism. Mov Disord 2019; 34:1130-1143. [PMID: 31216379 DOI: 10.1002/mds.27741] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Studies of the pathophysiology of parkinsonism (specifically akinesia and bradykinesia) have a long history and primarily model the consequences of dopamine loss in the basal ganglia on the function of the basal ganglia/thalamocortical circuit(s). Changes of firing rates of individual nodes within these circuits were originally considered central to parkinsonism. However, this view has now given way to the belief that changes in firing patterns within the basal ganglia and related nuclei are more important, including the emergence of burst discharges, greater synchrony of firing between neighboring neurons, oscillatory activity patterns, and the excessive coupling of oscillatory activities at different frequencies. Primarily focusing on studies obtained in nonhuman primates and human patients with Parkinson's disease, this review summarizes the current state of this field and highlights several emerging areas of research, including studies of the impact of the heterogeneity of external pallidal neurons on parkinsonism, the importance of extrastriatal dopamine loss, parkinsonism-associated synaptic and morphologic plasticity, and the potential role(s) of the cerebellum and brainstem in the motor dysfunction of Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology/School of Medicine and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
28
|
Steece‐Collier K, Stancati JA, Collier NJ, Sandoval IM, Mercado NM, Sortwell CE, Collier TJ, Manfredsson FP. Genetic silencing of striatal CaV1.3 prevents and ameliorates levodopa dyskinesia. Mov Disord 2019; 34:697-707. [PMID: 31002755 PMCID: PMC6563183 DOI: 10.1002/mds.27695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Levodopa-induced dyskinesias are an often debilitating side effect of levodopa therapy in Parkinson's disease. Although up to 90% of individuals with PD develop this side effect, uniformly effective and well-tolerated antidyskinetic treatment remains a significant unmet need. The pathognomonic loss of striatal dopamine in PD results in dysregulation and disinhibition of striatal CaV1.3 calcium channels, leading to synaptopathology that appears to be involved in levodopa-induced dyskinesias. Although there are clinically available drugs that can inhibit CaV1.3 channels, they are not adequately potent and have only partial and transient impact on levodopa-induced dyskinesias. METHODS To provide unequivocal target validation, free of pharmacological limitations, we developed a CaV1.3 shRNA to provide high-potency, target-selective, mRNA-level silencing of striatal CaV1.3 channels and examined its ability to impact levodopa-induced dyskinesias in severely parkinsonian rats. RESULTS We demonstrate that vector-mediated silencing of striatal CaV1.3 expression in severely parkinsonian rats prior to the introduction of levodopa can uniformly and completely prevent induction of levodopa-induced dyskinesias, and this antidyskinetic benefit persists long term and with high-dose levodopa. In addition, this approach is capable of ameliorating preexisting severe levodopa-induced dyskinesias. Importantly, motoric responses to low-dose levodopa remained intact in the presence of striatal CaV1.3 silencing, indicating preservation of levodopa benefit without dyskinesia liability. DISCUSSION The current data provide some of the most profound antidyskinetic benefit reported to date and suggest that genetic silencing of striatal CaV1.3 channels has the potential to transform treatment of individuals with PD by allowing maintenance of motor benefit of levodopa in the absence of the debilitating levodopa-induced dyskinesia side effect. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kathy Steece‐Collier
- Department of Translational Science & Molecular MedicineCollege of Human Medicine, Michigan State UniversityGrand RapidsMIUSA
- Hauenstein Neuroscience CenterMercy Health Saint Mary's, Grand RapidsMichiganUSA
| | - Jennifer A. Stancati
- Department of Translational Science & Molecular MedicineCollege of Human Medicine, Michigan State UniversityGrand RapidsMIUSA
| | - Nicholas J. Collier
- Department of Translational Science & Molecular MedicineCollege of Human Medicine, Michigan State UniversityGrand RapidsMIUSA
| | - Ivette M. Sandoval
- Department of Translational Science & Molecular MedicineCollege of Human Medicine, Michigan State UniversityGrand RapidsMIUSA
- Hauenstein Neuroscience CenterMercy Health Saint Mary's, Grand RapidsMichiganUSA
| | - Natosha M. Mercado
- Department of Translational Science & Molecular MedicineCollege of Human Medicine, Michigan State UniversityGrand RapidsMIUSA
| | - Caryl E. Sortwell
- Department of Translational Science & Molecular MedicineCollege of Human Medicine, Michigan State UniversityGrand RapidsMIUSA
- Hauenstein Neuroscience CenterMercy Health Saint Mary's, Grand RapidsMichiganUSA
| | - Timothy J. Collier
- Department of Translational Science & Molecular MedicineCollege of Human Medicine, Michigan State UniversityGrand RapidsMIUSA
- Hauenstein Neuroscience CenterMercy Health Saint Mary's, Grand RapidsMichiganUSA
| | - Fredric P. Manfredsson
- Department of Translational Science & Molecular MedicineCollege of Human Medicine, Michigan State UniversityGrand RapidsMIUSA
- Hauenstein Neuroscience CenterMercy Health Saint Mary's, Grand RapidsMichiganUSA
| |
Collapse
|
29
|
Zheng X, Huang Z, Zhu Y, Liu B, Chen Z, Chen T, Jia L, Li Y, Lei W. Increase in Glutamatergic Terminals in the Striatum Following Dopamine Depletion in a Rat Model of Parkinson's Disease. Neurochem Res 2019; 44:1079-1089. [PMID: 30715657 DOI: 10.1007/s11064-019-02739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Dopaminergic neuron degeneration is known to give rise to dendrite injury and spine loss of striatal neurons, however, changes of intrastriatal glutamatergic terminals and their synapses after 6-hydroxydopamine (6OHDA)-induced dopamine (DA)-depletion remains controversial. To confirm the effect of striatal DA-depletion on the morphology and protein levels of corticostriatal and thalamostriatal glutamatergic terminals and synapses, immunohistochemistry, immuno-electron microscope (EM), western blotting techniques were performed on Parkinson's disease rat models in this study. The experimental results of this study showed that: (1) 6OHDA-induced DA-depletion resulted in a remarkable increase of Vesicular glutamate transporter 1 (VGlut1) + and Vesicular glutamate transporter 2 (VGlut2)+ terminal densities at both the light microscope (LM) and EM levels, and VGlut1+ and VGlut2+ terminal sizes were shown to be enlarged by immuno-EM; (2) Striatal DA-depletion resulted in a decrease in both the total and axospinous terminal fractions of VGlut1+ terminals, but the axodendritic terminal fraction was not significantly different from the control group. However, total, axospinous and axodendritic terminal fractions for VGlut2+ terminals declined significantly after striatal DA-depletion. (3) Western blotting data showed that striatal DA-depletion up-regulated the expression levels of the VGlut1 and VGlut2 proteins. These results suggest that 6OHDA-induced DA-depletion affects corticostriatal and thalamostriatal glutamatergic synaptic inputs, which are involved in the pathological process of striatal neuron injury induced by DA-depletion.
Collapse
Affiliation(s)
- Xuefeng Zheng
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ziyun Huang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaofeng Zhu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Medicine, College of Medicine, Jishou University, Jishou, China
| | - Bingbing Liu
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhi Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linju Jia
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanmei Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Morató X, Gonçalves FQ, Lopes JP, Jauregui O, Soler C, Fernández-Dueñas V, Cunha RA, Ciruela F. Chronic adenosine A 2A receptor blockade induces locomotor sensitization and potentiates striatal LTD IN GPR37-deficient mice. J Neurochem 2019; 148:796-809. [PMID: 30578680 DOI: 10.1111/jnc.14653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
Adenosine A2A receptors (A2A R) play a key role in modulating dopamine-dependent locomotor activity, as heralded by the sensitization of locomotor activity upon chronic A2A R blockade, which is associated with elevated dopamine levels and altered corticostriatal synaptic plasticity. Since the orphan receptor GPR37 has been shown to modulate A2A R function in vivo, we aimed to test whether the A2A R-mediated sensitization of locomotor activity is GPR37-dependent and involves adaptations of synaptic plasticity. To this end, we administered a selective A2A R antagonist, SCH58261 (1 mg/kg, i.p.), daily for 14 days, and the locomotor sensitization, striatum-dependent cued learning, and corticostriatal synaptic plasticity (i.e., long-term depression) were compared in wild-type and GPR37-/- mice. Notably, GPR37 deletion promoted A2A R-associated locomotor sensitization but not striatum-dependent cued learning revealed upon chronic SCH58261 treatment of mice. Furthermore, chronic A2A R blockade potentiated striatal long-term depression in corticostriatal synapses of GPR37-/- but not of wild-type mice, thus correlating well with neurochemical alterations of the adenosinergic system. Overall, these results revealed the importance of GPR37 regulating A2A R-dependent locomotor sensitization and synaptic plasticity in the basal ganglia circuitry. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Xavier Morató
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Francisco Q Gonçalves
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João P Lopes
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Olga Jauregui
- Scientific and Technological Centers of University of Barcelona (CCiTUB), Barcelona, Spain
| | - Concepció Soler
- Unitat d'Immunologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Vidyadhara DJ, Sasidharan A, Kutty BM, Raju TR, Alladi PA. Admixing MPTP-resistant and MPTP-vulnerable mice enhances striatal field potentials and calbindin-D28K expression to avert motor behaviour deficits. Behav Brain Res 2018; 360:216-227. [PMID: 30529402 DOI: 10.1016/j.bbr.2018.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
Asian-Indians are less vulnerable to Parkinson's disease (PD) than the Caucasians. Their admixed populace has even lesser risk. Studying this phenomenon using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-susceptible C57BL/6J, MPTP-resistant CD-1 and their resistant crossbred mice revealed differences in the nigrostriatal cyto-molecular features. Here, we investigated the electrophysiological and behavioural correlates for differential MPTP-susceptibility and their outcome upon admixing. We recorded local field potentials (LFPs) from dorsal striatum and assessed motor co-ordination using rotarod and grip strength measures. Nigral calbindin-D28K expression, a regulator of striatal activity through nigrostriatal projections was evaluated using immunohistochemistry. The crossbreds had significantly higher baseline striatal LFPs. MPTP significantly increased the neuronal activity in delta (0.5-4 Hz) and low beta (12-16 Hz) ranges in C57BL/6J; significant increase across frequency bands till high beta (0.5-30 Hz) in CD-1, and caused no alterations in crossbreds. MPTP further depleted the already low nigral calbindin-D28K expression in C57BL/6J. While in crossbreds, it was further up-regulated. MPTP affected the rotarod and grip strength performance of the C57BL/6J, while the injected CD-1 and crossbreds performed well. The increased striatal β-oscillations are comparable to that in PD patients. Higher power in CD-1 may be compensatory in nature, which were also reported in pre-symptomatic monkeys. Concurrent up-regulation of nigral calbindin-D28K may assist maintenance of striatal activity by buffering calcium overload in nigra. Thus, preserved motor behaviour in PD reminiscent conditions in CD-1 and crossbreds complement compensated/unaffected striatal LFPs. Similar electrophysiological correlates and cytomorphological features are envisaged in human phenomenon of differential PD prevalence, which are modulated upon admixing.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Arun Sasidharan
- Axxonet Brain Research Laboratory (ABRL), Axxonet System Technologies Pvt. Ltd., Bengaluru, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
32
|
Zheng X, Wu J, Zhu Y, Chen S, Chen Z, Chen T, Huang Z, Wei J, Li Y, Lei W. A Comparative study for striatal-direct and -indirect pathway neurons to DA depletion-induced lesion in a PD rat model. Neurochem Int 2018; 118:14-22. [PMID: 29674121 DOI: 10.1016/j.neuint.2018.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 12/17/2022]
Abstract
Striatal-direct and -indirect Pathway Neurons showed different vulnerability in basal ganglia disorders. Therefore, present study aimed to examine and compare characteristic changes of densities, protein and mRNA levels of soma, dendrites, and spines between striatal-direct and -indirect pathway neurons after DA depletion by using immunohistochemistry, Western blotting, real-time PCR and immunoelectron microscopy techniques. Experimental results showed that: 1) 6OHDA-induced DA depletion decreased the soma density of striatal-direct pathway neurons (SP+), but no significant changes for striatal-indirect pathway neurons (ENK+). 2) DA depletion resulted in a decline of dendrite density for both striatal-direct (D1+) and -indirect (D2+) pathway neurons, and D2+ dendritic density declined more obviously. At the ultrastructure level, the densities of D1+ and D2+ dendritic spines reduced in the 6OHDA groups compared with their control groups, but the density of D2+ dendritic spines reduced more significant than that of D1. 3) Striatal DA depletion down-regulated protein and mRNA expression levels of SP and D1, on the contrary, ENK and D2 protein and mRNA levels of indirect pathway neurons were up-regulated significantly. Present results suggested that indirect pathway neurons be more sensitive to 6OHDA-induced DA depletion.
Collapse
Affiliation(s)
- Xuefeng Zheng
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiajia Wu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Periodical Center of the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yaofeng Zhu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Institute of Medicine, College of Medicine, Jishou University, Jishou 416000, China
| | - Si Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziyun Huang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiayou Wei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanmei Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
33
|
Picconi B, De Leonibus E, Calabresi P. Synaptic plasticity and levodopa-induced dyskinesia: electrophysiological and structural abnormalities. J Neural Transm (Vienna) 2018; 125:1263-1271. [PMID: 29492662 DOI: 10.1007/s00702-018-1864-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons located in the midbrain. The gold-standard therapy for PD is the restoration of dopamine (DA) levels through the chronic administration of the DA precursor levodopa (L-DOPA). Although levodopa therapy is the main therapeutic approach for PD, its use is limited by the development of very disabling dyskinetic movements, mainly due to the fluctuation of DA cerebral content. Experimental animal models of PD identified in DA D1/ERK-signaling pathway aberrant activation, occurring in striatal projection neurons, coupled with structural spines abnormalities, the molecular and neuronal basis of L-DOPA-induced dyskinesia (LIDs) occurrence. Different electrophysiological approaches allowed the identification of the alteration of homeostatic structural and synaptic changes, the neuronal bases of LIDs either in vivo in parkinsonian patients or in vitro in experimental animals. Here, we report the most recent studies showing electrophysiological and morphological evidence of aberrant synaptic plasticity in parkinsonian patients during LIDs in different basal ganglia nuclei and also in cortical transmission, accounting for the complexity of the synaptic changes during dyskinesias. All together, these studies suggest that LIDs are associated with a loss of homeostatic synaptic mechanisms.
Collapse
Affiliation(s)
- Barbara Picconi
- Laboratory of Neurophysiology, IRCCS Fondazione Santa Lucia c/o CERC, via del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Elvira De Leonibus
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli, Italy
| | - Paolo Calabresi
- Laboratory of Neurophysiology, IRCCS Fondazione Santa Lucia c/o CERC, via del Fosso di Fiorano 64, 00143, Rome, Italy
- Clinica Neurologica, Università degli studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06156, Perugia, Italy
| |
Collapse
|
34
|
Singh A, Jenkins MA, Burke KJ, Beck G, Jenkins A, Scimemi A, Traynelis SF, Papa SM. Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates. Cell Rep 2018; 22:941-952. [PMID: 29386136 PMCID: PMC5798888 DOI: 10.1016/j.celrep.2017.12.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/09/2017] [Accepted: 12/26/2017] [Indexed: 12/25/2022] Open
Abstract
Dopamine (DA) loss in Parkinson's disease (PD) alters the function of striatal projection neurons (SPNs) and causes motor deficits, but DA replacement can induce further abnormalities. A key pathological change in animal models and patients is SPN hyperactivity; however, the role of glutamate in altered DA responses remains elusive. We tested the effect of locally applied AMPAR or NMDAR antagonists on glutamatergic signaling in SPNs of parkinsonian primates. Following a reduction in basal hyperactivity by antagonists at either receptor, DA inputs induced SPN firing changes that were stable during the entire motor response, in clear contrast with the typically unstable effects. The SPN activity reduction over an extended putamenal area controlled the release of involuntary movements in the "on" state and therefore improved motor responses to DA replacement. These results demonstrate the pathophysiological role of upregulated SPN activity and support strategies to reduce striatal glutamate signaling for PD therapy.
Collapse
Affiliation(s)
- Arun Singh
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Meagan A Jenkins
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenneth J Burke
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Goichi Beck
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Andrew Jenkins
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Annalisa Scimemi
- Department of Biology, State University of New York, Albany, NY 12222, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA.
| |
Collapse
|
35
|
Hou L, Chen W, Liu X, Qiao D, Zhou FM. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease. Front Aging Neurosci 2017; 9:358. [PMID: 29163139 PMCID: PMC5675869 DOI: 10.3389/fnagi.2017.00358] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients.
Collapse
Affiliation(s)
- Lijuan Hou
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Wei Chen
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China.,Department of Exercise and Rehabilitation, Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Xiaoli Liu
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Decai Qiao
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
36
|
Zhang X, Liu S, Zhan F, Wang J, Jiang X. The Effects of Medium Spiny Neuron Morphologcial Changes on Basal Ganglia Network under External Electric Field: A Computational Modeling Study. Front Comput Neurosci 2017; 11:91. [PMID: 29123477 PMCID: PMC5662631 DOI: 10.3389/fncom.2017.00091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022] Open
Abstract
The damage of dopaminergic neurons that innervate the striatum has been considered to be the proximate cause of Parkinson's disease (PD). In the dopamine-denervated state, the loss of dendritic spines and the decrease of dendritic length may prevent medium spiny neuron (MSN) from receiving too much excitatory stimuli from the cortex, thereby reducing the symptom of Parkinson's disease. However, the reduction in dendritic spine density obtained by different experiments is significantly different. We developed a biological-based network computational model to quantify the effect of dendritic spine loss and dendrites tree degeneration on basal ganglia (BG) signal regulation. Through the introduction of error index (EI), which was used to measure the attenuation of the signal, we explored the amount of dendritic spine loss and dendritic trees degradation required to restore the normal regulatory function of the network, and found that there were two ranges of dendritic spine loss that could reduce EI to normal levels in the case of dopamine at a certain level, this was also true for dendritic trees. However, although these effects were the same, the mechanisms of these two cases were significant difference. Using the method of phase diagram analysis, we gained insight into the mechanism of signal degradation. Furthermore, we explored the role of cortex in MSN morphology changes dopamine depletion-induced and found that proper adjustments to cortical activity do stop the loss in dendritic spines induced by dopamine depleted. These results suggested that modifying cortical drive onto MSN might provide a new idea on clinical therapeutic strategies for Parkinson's disease.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Mathematics, South China University of Technology, Guangzhou, China
| | - Shenquan Liu
- Department of Mathematics, South China University of Technology, Guangzhou, China
| | - Feibiao Zhan
- Department of Mathematics, South China University of Technology, Guangzhou, China
| | - Jing Wang
- Department of Mathematics, South China University of Technology, Guangzhou, China
| | - Xiaofang Jiang
- Department of Mathematics and Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
37
|
Mercado NM, Collier TJ, Sortwell CE, Steece-Collier K. BDNF in the Aged Brain: Translational Implications for Parkinson's Disease. AUSTIN NEUROLOGY & NEUROSCIENCES 2017; 2:1021. [PMID: 29726549 PMCID: PMC5929154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a member of the neurotrophin family of secreted growth factors. BDNF signaling is known to exert both chronic, pro-survival effects related to gene expression and protein synthesis ("canonical signaling"), and acute effects as a modulator of neurotransmission ("non-canonical signaling"). BDNF has received a great deal of attention for its role in neurodegenerative diseases including Huntington's Disease (HD), Alzheimer's Disease (AD), and Parkinson's Disease (PD) and has been extensively reviewed elsewhere in this regard (e.g., [1-6]). However aging-related changes in BDNF function and expression have been studied only rarely, with the majority of studies characterizing changes in structures such as the hippocampus and neocortex. In this review, we attempt to briefly summarize the extent of the existing literature on age-related BDNF changes, and discuss the relevance of these changes as a factor potentially impacting therapeutics in aged parkinsonian subjects.
Collapse
Affiliation(s)
- N M Mercado
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, USA
| | - T J Collier
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, USA
| | - C E Sortwell
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, USA
| | - K Steece-Collier
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, USA
| |
Collapse
|
38
|
Nishijima H, Ueno T, Funamizu Y, Ueno S, Tomiyama M. Levodopa treatment and dendritic spine pathology. Mov Disord 2017; 33:877-888. [PMID: 28880414 PMCID: PMC6667906 DOI: 10.1002/mds.27172] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with the progressive loss of nigrostriatal dopaminergic neurons. Levodopa is the most effective treatment for the motor symptoms of PD. However, chronic oral levodopa treatment can lead to various motor and nonmotor complications because of nonphysiological pulsatile dopaminergic stimulation in the brain. Examinations of autopsy cases with PD have revealed a decreased number of dendritic spines of striatal neurons. Animal models of PD have revealed altered density and morphology of dendritic spines of neurons in various brain regions after dopaminergic denervation or dopaminergic denervation plus levodopa treatment, indicating altered synaptic transmission. Recent studies using rodent models have reported dendritic spine head enlargement in the caudate‐putamen, nucleus accumbens, primary motor cortex, and prefrontal cortex in cases where chronic levodopa treatment following dopaminergic denervation induced dyskinesia‐like abnormal involuntary movement. Hypertrophy of spines results from insertion of alpha‐amino‐2,3‐dihydro‐5‐methyl‐3‐oxo‐4‐isoxazolepropanoic acid receptors into the postsynaptic membrane. Such spine enlargement indicates hypersensitivity of the synapse to excitatory inputs and is compatible with a lack of depotentiation, which is an electrophysiological hallmark of levodopa‐induced dyskinesia found in the corticostriatal synapses of dyskinetic animals and the motor cortex of dyskinetic PD patients. This synaptic plasticity may be one of the mechanisms underlying the priming of levodopa‐induced complications such as levodopa‐induced dyskinesia and dopamine dysregulation syndrome. Drugs that could potentially prevent spine enlargement, such as calcium channel blockers, N‐methyl‐D‐aspartate receptor antagonists, alpha‐amino‐2,3‐dihydro‐5‐methyl‐3‐oxo‐4‐isoxazolepropanoic acid receptor antagonists, and metabotropic glutamate receptor antagonists, are candidates for treatment of levodopa‐induced complications in PD. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tatsuya Ueno
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yukihisa Funamizu
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
39
|
Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, Cohn W, Rajendran PS, Vondriska TM, Whitelegge JP, Coppola G, Khakh BS. Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence. Neuron 2017; 95:531-549.e9. [PMID: 28712653 PMCID: PMC5811312 DOI: 10.1016/j.neuron.2017.06.029] [Citation(s) in RCA: 507] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/14/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Astrocytes are ubiquitous in the brain and are widely held to be largely identical. However, this view has not been fully tested, and the possibility that astrocytes are neural circuit specialized remains largely unexplored. Here, we used multiple integrated approaches, including RNA sequencing (RNA-seq), mass spectrometry, electrophysiology, immunohistochemistry, serial block-face-scanning electron microscopy, morphological reconstructions, pharmacogenetics, and diffusible dye, calcium, and glutamate imaging, to directly compare adult striatal and hippocampal astrocytes under identical conditions. We found significant differences in electrophysiological properties, Ca2+ signaling, morphology, and astrocyte-synapse proximity between striatal and hippocampal astrocytes. Unbiased evaluation of actively translated RNA and proteomic data confirmed significant astrocyte diversity between hippocampal and striatal circuits. We thus report core astrocyte properties, reveal evidence for specialized astrocytes within neural circuits, and provide new, integrated database resources and approaches to explore astrocyte diversity and function throughout the adult brain. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hua Chai
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Blanca Diaz-Castro
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Eiji Shigetomi
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Emma Monte
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - J Christopher Octeau
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Xinzhu Yu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Pradeep S Rajendran
- UCLA Cardiac Arrhythmia Center, Neurocardiology Research Center for Excellence, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Thomas M Vondriska
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
40
|
Abstract
The loss of nigrostriatal dopamine (DA) is the primary cause of motor dysfunction in Parkinson's disease (PD), but the underlying striatal mechanisms remain unclear. In spite of abundant literature portraying structural, biochemical and plasticity changes of striatal projection neurons (SPNs), in the past there has been a data vacuum from the natural human disease and its close model in non-human primates. Recently, single-cell recordings in advanced parkinsonian primates have generated new insights into the altered function of SPNs. Currently, there are also human data that provide direct evidence of profoundly dysregulated SPN activity in PD. Here, we review primate recordings that are impacting our understanding of the striatal dysfunction after DA loss, particularly through the analysis of physiologic correlates of parkinsonian motor behaviors. In contrast to recordings in rodents, data obtained in primates and patients demonstrate similar major abnormalities of the spontaneous SPN firing in the alert parkinsonian state. Furthermore, these studies also show altered SPN responses to DA replacement in the advanced parkinsonian state. Clearly, there is yet much to learn about the striatal discharges in PD, but studies using primate models are contributing unique information to advance our understanding of pathophysiologic mechanisms.
Collapse
|
41
|
Villalba RM, Smith Y. Loss and remodeling of striatal dendritic spines in Parkinson's disease: from homeostasis to maladaptive plasticity? J Neural Transm (Vienna) 2017; 125:431-447. [PMID: 28540422 DOI: 10.1007/s00702-017-1735-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
In Parkinson's disease (PD) patients and animal models of PD, the progressive degeneration of the nigrostriatal dopamine (DA) projection leads to two major changes in the morphology of striatal projection neurons (SPNs), i.e., a profound loss of dendritic spines and the remodeling of axospinous glutamatergic synapses. Striatal spine loss is an early event tightly associated with the extent of striatal DA denervation, but not the severity of parkinsonian motor symptoms, suggesting that striatal spine pruning might be a form of homeostatic plasticity that compensates for the loss of striatal DA innervation and the resulting dysregulation of corticostriatal glutamatergic transmission. On the other hand, the remodeling of axospinous corticostriatal and thalamostriatal glutamatergic synapses might represent a form of late maladaptive plasticity that underlies changes in the strength and plastic properties of these afferents and the resulting increased firing and bursting activity of striatal SPNs in the parkinsonian state. There is also evidence that these abnormal synaptic connections might contribute to the pathophysiology of L-DOPA-induced dyskinesia. Despite the significant advances made in this field over the last thirty years, many controversial issues remain about the striatal SPN subtypes affected, the role of spine changes in the altered activity of SPNs in the parkinsonisn state, and the importance of striatal spine plasticity in the pathophysiology of L-DOPA-induced dyskinesia. In this review, we will examine the current state of knowledge of these issues, discuss the limitations of the animal models used to address some of these questions, and assess the relevance of data from animal models to the human-diseased condition.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA. .,UDALL Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.,UDALL Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, USA.,Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
42
|
Neurosteroid allopregnanolone attenuates motor disability and prevents the changes of neurexin 1 and postsynaptic density protein 95 expression in the striatum of 6-OHDA-induced rats’ model of Parkinson’s disease. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.01.159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
43
|
Bentea E, Moore C, Deneyer L, Verbruggen L, Churchill MJ, Hood RL, Meshul CK, Massie A. Plastic changes at corticostriatal synapses predict improved motor function in a partial lesion model of Parkinson’s disease. Brain Res Bull 2017; 130:257-267. [DOI: 10.1016/j.brainresbull.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
|
44
|
Wu JJ, Chen S, Ouyang LS, Jia Y, Liu BB, Mu SH, Ma YX, Wang WP, Wei JY, Li YL, Chen Z, Lei WL. Cortical regulation of striatal projection neurons and interneurons in a Parkinson's disease rat model. Neural Regen Res 2017; 11:1969-1975. [PMID: 28197194 PMCID: PMC5270436 DOI: 10.4103/1673-5374.197140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 kDa, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jia-Jia Wu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Periodical Center, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li-Si Ouyang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yu Jia
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bing-Bing Liu
- Department of Anesthesiology, Guangdong No. 2 Provincial People's Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, Guangdong Province, China
| | - Shu-Hua Mu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Yu-Xin Ma
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wei-Ping Wang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jia-You Wei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - You-Lan Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wan-Long Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
45
|
Arbuthnott GW, Garcia-Munoz M. Are the Symptoms of Parkinsonism Cortical in Origin? Comput Struct Biotechnol J 2016; 15:21-25. [PMID: 28694933 PMCID: PMC5484763 DOI: 10.1016/j.csbj.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
We present three reasons to suspect that the major deleterious consequence of dopamine loss from the striatum is a cortical malfunction. We suggest that it is cortex, rather than striatum, that should be considered as the source of the debilitating symptoms of Parkinson's disease (PD) since:Cortical synapses onto striatal dendritic spines are lost in PD. All known treatments of the symptoms of PD disrupt beta oscillations. Oscillations that are also disrupted following antidromic activation of cortical neurons. The final output of basal ganglia directly modulates thalamic connections to layer I of frontal cortical areas, regions intimately associated with motor behaviour.
These three reasons combined with evidence that the current summary diagram of the basal ganglia involvement in PD is imprecise at best, suggest that a re-orientation of the treatment strategies towards cortical, rather than striatal malfunction, is overdue. Suggested experimental contributions support the proposal of a cortical participation in PD. DBS produces antidromic activation of motor cortex and desynchronizes beta oscillations. Loss of dopamine decreases dendritic spines in the striatal D2 projection neurons. Motor thalamus distributes terminals into frontal cortex layer I. Thalamocortical-layer I activity increases with locomotion.
Collapse
Affiliation(s)
- Gordon W Arbuthnott
- OIST Graduate University, Brain Mechanisms for Behaviour Unit, Okinawa, Japan
| | | |
Collapse
|
46
|
Human striatal recordings reveal abnormal discharge of projection neurons in Parkinson's disease. Proc Natl Acad Sci U S A 2016; 113:9629-34. [PMID: 27503874 DOI: 10.1073/pnas.1606792113] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circuitry models of Parkinson's disease (PD) are based on striatal dopamine loss and aberrant striatal inputs into the basal ganglia network. However, extrastriatal mechanisms have increasingly been the focus of attention, whereas the status of striatal discharges in the parkinsonian human brain remains conjectural. We now report the activity pattern of striatal projection neurons (SPNs) in patients with PD undergoing deep brain stimulation surgery, compared with patients with essential tremor (ET) and isolated dystonia (ID). The SPN activity in ET was very low (2.1 ± 0.1 Hz) and reminiscent of that found in normal animals. In contrast, SPNs in PD fired at much higher frequency (30.2 ± 1.2 Hz) and with abundant spike bursts. The difference between PD and ET was reproduced between 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated and normal nonhuman primates. The SPN activity was also increased in ID, but to a lower level compared with the hyperactivity observed in PD. These results provide direct evidence that the striatum contributes significantly altered signals to the network in patients with PD.
Collapse
|
47
|
Kubota Y, Karube F, Nomura M, Kawaguchi Y. The Diversity of Cortical Inhibitory Synapses. Front Neural Circuits 2016; 10:27. [PMID: 27199670 PMCID: PMC4842771 DOI: 10.3389/fncir.2016.00027] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/29/2016] [Indexed: 12/03/2022] Open
Abstract
The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their inhibitory postsynaptic potential (IPSP) size is not uniform. Thus, cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.
Collapse
Affiliation(s)
- Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological SciencesOkazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI)Okazaki, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University Kyoto, Japan
| | - Masaki Nomura
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan; Department of Mathematics, Kyoto UniversityKyoto, Japan
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological SciencesOkazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI)Okazaki, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| |
Collapse
|
48
|
Wichmann T, DeLong MR. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality? Neurotherapeutics 2016; 13:264-83. [PMID: 26956115 PMCID: PMC4824026 DOI: 10.1007/s13311-016-0426-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Mahlon R DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
49
|
Rylander Ottosson D, Lane E. Striatal Plasticity in L-DOPA- and Graft-Induced Dyskinesia; The Common Link? Front Cell Neurosci 2016; 10:16. [PMID: 26903804 PMCID: PMC4744851 DOI: 10.3389/fncel.2016.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/15/2016] [Indexed: 12/31/2022] Open
Abstract
One of the major symptoms of the neurodegenerative condition Parkinson's disease (PD) is a slowness or loss of voluntary movement, yet frustratingly therapeutic strategies designed to restore movement can result in the development of excessive abnormal movements known as dyskinesia. These dyskinesias commonly develop as a result of pharmacotherapy in the form of L-DOPA administration, but have also been identified following deep brain stimulation (DBS) and intrastriatal cell transplantation. In the case of L-DOPA these movements can be treatment limiting, and whilst they are not long lasting or troubling following DBS, recognition of their development had a near devastating effect on the field of cell transplantation for PD.Understanding the relationship between these therapeutic approaches and the development of dyskinesia may improve our ability to restore function without disabling side effects. Interestingly, despite the fact that dopaminergic cell transplantation repairs many of the changes induced by the disease process and through L-DOPA treatment, there appears to be a relationship between the two. In rodent models of the disease, the severity of dyskinesia induced by L-DOPA prior to the transplantation procedure correlated with post-transplantation, graft-induced dyskinesia. A review of clinical data also suggested that the worse preoperational dyskinesia causes worsened graft-induced dyskinesia (GID). Understanding how these aberrant behaviors come about has been of keen interest to open up these therapeutic options more widely and one major underlying theory is the effects of these approaches on the plasticity of synapses within the basal ganglia. This review uniquely brings together developments in understanding the role of striatal synaptic plasticity in both L-DOPA and GID to guide and stimulate further investigations on the important striatal plasticity.
Collapse
Affiliation(s)
- Daniella Rylander Ottosson
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund UniversityLund, Sweden
| | - Emma Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff UniversityCardiff, UK
| |
Collapse
|
50
|
Blumenfeld Z, Brontë-Stewart H. High Frequency Deep Brain Stimulation and Neural Rhythms in Parkinson's Disease. Neuropsychol Rev 2015; 25:384-97. [PMID: 26608605 DOI: 10.1007/s11065-015-9308-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023]
Abstract
High frequency (HF) deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease (PD). It effectively treats the cardinal motor signs of PD, including tremor, bradykinesia, and rigidity. The most common neural target is the subthalamic nucleus, located within the basal ganglia, the region most acutely affected by PD pathology. Using chronically-implanted DBS electrodes, researchers have been able to record underlying neural rhythms from several nodes in the PD network as well as perturb it using DBS to measure the ensuing neural and behavioral effects, both acutely and over time. In this review, we provide an overview of the PD neural network, focusing on the pathophysiological signals that have been recorded from PD patients as well as the mechanisms underlying the therapeutic benefits of HF DBS. We then discuss evidence for the relationship between specific neural oscillations and symptoms of PD, including the aberrant relationships potentially underlying functional connectivity in PD as well as the use of different frequencies of stimulation to more specifically target certain symptoms. Finally, we briefly describe several current areas of investigation and how the ability to record neural data in ecologically-valid settings may allow researchers to explore the relationship between brain and behavior in an unprecedented manner, culminating in the future automation of neurostimulation therapy for the treatment of a variety of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Zack Blumenfeld
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Helen Brontë-Stewart
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.
- Stanford University School of Medicine, Rm A343, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|