1
|
Heimer-McGinn VR, Wise T, Halter ER, Martin D, Templer V. Attentional processing in the rat dorsal posterior parietal cortex. Neurobiol Learn Mem 2024:108004. [PMID: 39486611 DOI: 10.1016/j.nlm.2024.108004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The human posterior parietal cortex (PPC) is known to support sustained attention. Specifically, top-down attention is generally processed in dorsal regions while bottom-up regulation occurs more ventrally. In rodent models, however, it is still unclear whether the PPC is required for sustained attention, or whether there is a similar functional dissociation between anatomical regions. Consequently, the aim of this study was to investigate the contribution of the rodent dorsal PPC (dPPC) in sustained attention. We used the five-choice serial reaction time task (5CSRTT) and compared rats with neurotoxic dPPC lesions to sham operated rats. We found that rats with dPPC lesions were less accurate and took longer to make correct choices, indicating impaired attention and reduced processing speed. This effect, however, was limited to the first few days of post-operative testing. After an apparent recovery, omissions became elevated in the lesion group, which, in the absence of reduced motivation and mobility, can also be interpreted as impaired attention. In subsequent challenge probes, the lesion group displayed globally elevated latency to make a correct response, indicating reduced processing speed. No differences in premature responses or perseverative responses were observed at any time, demonstrating that dPPC lesions did not affect impulsivity and compulsivity. This pattern of behavior suggests that while intact dPPC supports goal-driven (top-down) modulation of attention, it likely does not play a central role in processing stimulus-driven (bottom-up) attention. Furthermore, compensatory mechanisms can support sustained attention in the absence of a fully functioning dPPC, although this occurs at the expense of processing speed. Our results inform the literature by confirming that rodent PPC is involved in regulating sustained attention and providing preliminary evidence for a functional dissociation between top-down and bottom-up attentional processing.
Collapse
Affiliation(s)
- Victoria R Heimer-McGinn
- Department of Psychology and Program in Neuroscience, Providence College, United States; Department of Psychology, Roger Williams University, United States
| | - Taylor Wise
- Department of Psychology and Program in Neuroscience, Providence College, United States; Department of Cognitive and Psychological Sciences, Brown University, United States
| | - Emma R Halter
- Department of Psychology and Program in Neuroscience, Providence College, United States
| | - Dominique Martin
- Department of Psychology and Program in Neuroscience, Providence College, United States
| | - Victoria Templer
- Department of Psychology and Program in Neuroscience, Providence College, United States.
| |
Collapse
|
2
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
3
|
Stępnik K, Kukula-Koch W, Boguszewska-Czubara A, Gawel K. Astragaloside IV as a Memory-Enhancing Agent: In Silico Studies with In Vivo Analysis and Post Mortem ADME-Tox Profiling in Mice. Int J Mol Sci 2024; 25:4021. [PMID: 38612831 PMCID: PMC11012721 DOI: 10.3390/ijms25074021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Many people around the world suffer from neurodegenerative diseases associated with cognitive impairment. As life expectancy increases, this number is steadily rising. Therefore, it is extremely important to search for new treatment strategies and to discover new substances with potential neuroprotective and/or cognition-enhancing effects. This study focuses on investigating the potential of astragaloside IV (AIV), a triterpenoid saponin with proven acetylcholinesterase (AChE)-inhibiting activity naturally occurring in the root of Astragalus mongholicus, to attenuate memory impairment. Scopolamine (SCOP), an antagonist of muscarinic cholinergic receptors, and lipopolysaccharide (LPS), a trigger of neuroinflammation, were used to impair memory processes in the passive avoidance (PA) test in mice. This memory impairment in SCOP-treated mice was attenuated by prior intraperitoneal (ip) administration of AIV at a dose of 25 mg/kg. The attenuation of memory impairment by LPS was not observed. It can therefore be assumed that AIV does not reverse memory impairment by anti-inflammatory mechanisms, although this needs to be further verified. All doses of AIV tested did not affect baseline locomotor activity in mice. In the post mortem analysis by mass spectrometry of the body tissue of the mice, the highest content of AIV was found in the kidneys, then in the spleen and liver, and the lowest in the brain.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie–Skłodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland;
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki St., 20-093 Lublin, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 8B Jaczewskiego St., 20-090 Lublin, Poland;
| |
Collapse
|
4
|
Doroszkiewicz J, Mroczko B. New Possibilities in the Therapeutic Approach to Alzheimer's Disease. Int J Mol Sci 2022; 23:8902. [PMID: 36012193 PMCID: PMC9409036 DOI: 10.3390/ijms23168902] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/17/2023] Open
Abstract
Despite the fact that Alzheimer's disease (AD) is the most common cause of dementia, after many years of research regarding this disease, there is no casual treatment. Regardless of the serious public health threat it poses, only five medical treatments for Alzheimer's disease have been authorized, and they only control symptoms rather than changing the course of the disease. Numerous clinical trials of single-agent therapy did not slow the development of disease or improve symptoms when compared to placebo. Evidence indicates that the pathological alterations linked to AD start many years earlier than a manifestation of the disease. In this pre-clinical period before the neurodegenerative process is established, pharmaceutical therapy might prove invaluable. Although recent findings from the testing of drugs such as aducanumab are encouraging, they should nevertheless be interpreted cautiously. Such medications may be able to delay the onset of dementia, significantly lowering the prevalence of the disease, but are still a long way from having a clinically effective disease-modifying therapy.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-269 Bialystok, Poland
| |
Collapse
|
5
|
Zou HY, Guo L, Zhang B, Chen S, Wu XR, Liu XD, Xu XY, Li BY, Chen S, Xu NJ, Sun S. Aberrant miR-339-5p/neuronatin signaling causes prodromal neuronal calcium dyshomeostasis in mutant presenilin mice. J Clin Invest 2022; 132:e149160. [PMID: 35426376 PMCID: PMC9012292 DOI: 10.1172/jci149160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
Mushroom spine loss and calcium dyshomeostasis are early hallmark events of age-related neurodegeneration, such as Alzheimer's disease (AD), that are connected with neuronal hyperactivity in early pathology of cognitive brain areas. However, it remains elusive how these key events are triggered at the molecular level for the neuronal abnormality that occurs at the initial stage of disease. Here, we identify downregulated miR-339-5p and its upregulated target protein, neuronatin (Nnat), in cortex neurons from the presenilin-1 M146V knockin (PSEN1-M146V KI) mouse model of familial AD (FAD). Inhibition of miR-339-5p or overexpression of Nnat recapitulates spine loss and endoplasmic reticulum calcium overload in cortical neurons with the PSEN1 mutation. Conversely, either overexpression of miR-339-5p or knockdown of Nnat restores spine morphogenesis and calcium homeostasis. We used fiber photometry recording during the object-cognitive process to further demonstrate that the PSEN1 mutant causes defective habituation in neuronal reaction in the retrosplenial cortex and that this can be rescued by restoring the miR-339-5p/Nnat pathway. Our findings thus reveal crucial roles of the miR-339-5p/Nnat pathway in FAD that may serve as potential diagnostic and therapeutic targets for early pathogenesis.
Collapse
Affiliation(s)
- Hao-Yu Zou
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| | - Lin Guo
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Department of Anatomy and Physiology, and
| | - Bei Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| | - Si Chen
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Department of Anatomy and Physiology, and
| | - Xin-Rong Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| | - Xian-Dong Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Department of Anatomy and Physiology, and
| | - Xin-Yu Xu
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Department of Anatomy and Physiology, and
| | - Bin-Yin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| | - Nan-Jie Xu
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Department of Anatomy and Physiology, and
- Shanghai Key Laboratory of Reproductive Medicine, and
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Ruijin Hospital
| |
Collapse
|
6
|
Alexander AS, Tung JC, Chapman GW, Conner AM, Shelley LE, Hasselmo ME, Nitz DA. Adaptive integration of self-motion and goals in posterior parietal cortex. Cell Rep 2022; 38:110504. [PMID: 35263604 PMCID: PMC9026715 DOI: 10.1016/j.celrep.2022.110504] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Rats readily switch between foraging and more complex navigational behaviors such as pursuit of other rats or prey. These tasks require vastly different tracking of multiple behaviorally significant variables including self-motion state. To explore whether navigational context modulates self-motion tracking, we examined self-motion tuning in posterior parietal cortex neurons during foraging versus visual target pursuit. Animals performing the pursuit task demonstrate predictive processing of target trajectories by anticipating and intercepting them. Relative to foraging, pursuit yields multiplicative gain modulation of self-motion tuning and enhances self-motion state decoding. Self-motion sensitivity in parietal cortex neurons is, on average, history dependent regardless of behavioral context, but the temporal window of self-motion integration extends during target pursuit. Finally, many self-motion-sensitive neurons conjunctively track the visual target position relative to the animal. Thus, posterior parietal cortex functions to integrate the location of navigationally relevant target stimuli into an ongoing representation of past, present, and future locomotor trajectories.
Collapse
Affiliation(s)
- Andrew S Alexander
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA; Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.
| | - Janet C Tung
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - G William Chapman
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| | - Allison M Conner
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura E Shelley
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Avram M, Grothe MJ, Meinhold L, Leucht C, Leucht S, Borgwardt S, Brandl F, Sorg C. Lower cholinergic basal forebrain volumes link with cognitive difficulties in schizophrenia. Neuropsychopharmacology 2021; 46:2320-2329. [PMID: 34188186 PMCID: PMC8580980 DOI: 10.1038/s41386-021-01070-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
A potential pathophysiological mechanism of cognitive difficulties in schizophrenia is a dysregulated cholinergic system. Particularly, the cholinergic basal forebrain nuclei (BFCN), the source of cortical cholinergic innervation, support multiple cognitive functions, ranging from attention to decision-making. We hypothesized that BFCN structural integrity is altered in schizophrenia and associated with patients' attentional deficits. We assessed gray matter (GM) integrity of cytoarchitectonically defined BFCN region-of-interest in 72 patients with schizophrenia and 73 healthy controls, matched for age and gender, from the COBRE open-source database, via structural magnetic resonance imaging (MRI)-based volumetry. MRI-derived measures of GM integrity (i.e., volumes) were linked with performance on a symbol coding task (SCT), a paper-pencil-based metric that assesses attention, by correlation and mediation analysis. To assess the replicability of findings, we repeated the analyses in an independent dataset comprising 26 patients with schizophrenia and 24 matched healthy controls. BFCN volumes were lower in patients (t(139)=2.51, p = 0.01) and significantly associated with impaired SCT performance (r = 0.31, p = 0.01). Furthermore, lower BFCN volumes mediated the group difference in SCT performance. When including global GM volumes, which were lower in patients, as covariates-of-no-interest, these findings disappeared, indicating that schizophrenia did not have a specific effect on BFCN relative to other regional volume changes. We replicated these findings in the independent cohort, e.g., BFCN volumes were lower in patients and mediated patients' impaired SCT performance. Results demonstrate lower BFCN volumes in schizophrenia, which link with patients' attentional deficits. Data suggest that a dysregulated cholinergic system might contribute to cognitive difficulties in schizophrenia via impaired BFCN.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, 23538, Germany.
| | - Michel J. Grothe
- grid.414816.e0000 0004 1773 7922Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Lena Meinhold
- grid.6936.a0000000123222966TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, 81675 Germany
| | - Claudia Leucht
- grid.6936.a0000000123222966Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, 81675 Germany
| | - Stefan Leucht
- grid.6936.a0000000123222966Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, 81675 Germany
| | - Stefan Borgwardt
- grid.4562.50000 0001 0057 2672Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, 23538 Germany
| | - Felix Brandl
- grid.6936.a0000000123222966TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, 81675 Germany ,grid.6936.a0000000123222966Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, 81675 Germany ,grid.6936.a0000000123222966Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, 81675 Germany
| | - Christian Sorg
- grid.6936.a0000000123222966TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, 81675 Germany ,grid.6936.a0000000123222966Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, 81675 Germany ,grid.6936.a0000000123222966Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, 81675 Germany
| |
Collapse
|
8
|
Yegla B, Joshi S, Strupp J, Parikh V. Dynamic interplay of frontoparietal cholinergic innervation and cortical reorganization in the regulation of attentional capacities in aging. Neurobiol Aging 2021; 105:186-198. [PMID: 34102380 PMCID: PMC8338743 DOI: 10.1016/j.neurobiolaging.2021.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023]
Abstract
Cortical remodeling is linked to age-related cognitive changes in humans; however, the mechanisms underlying cortical reorganization in aging remain unknown. Here we examined the consequences of mild cholinergic thinning of the prefrontal cortex (PFC) and parietal cortex (PC) on attention performance-associated changes in cortical activity in young and aged rats. Prefrontal manipulation produced attentional deficits in aged but not young rats regardless of cholinergic pruning. Stereological assessment of c-fos expression revealed age-related reductions in occipital activity and a corresponding increase in PC activity, but these patterns did not correlate with performance. PC cholinergic deafferentation produced opposite changes in PFC recruitment between young and aged rats. Cholinergic pruning reversed the effects of PFC/PC cholinergic manipulations on the activity of CaMKII- and GAD-positive neurons in aged rats. Our results indicate that cortical shifts depend on multiple factors including chronological age, cholinergic changes, and cortical insult, and that cortical reorganization is not necessarily compensatory. Moreover, the cholinergic system modulates excitation/inhibition homeostasis to improve the efficiency of reorganized cortical circuits and stabilize attentional performance.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Surbhi Joshi
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Jacob Strupp
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Allen TA, Furtak SC. Introduction to the special issue on extrahippocampal contributions to hippocampal-dependent memory. Hippocampus 2021; 31:634-639. [PMID: 34117810 DOI: 10.1002/hipo.23370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Timothy A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, Florida, USA
| | - Sharon C Furtak
- Department of Psychology, California State University Sacramento, Sacramento, California, USA
| |
Collapse
|
10
|
Yu CC, Du YJ, Wang SQ, Liu LB, Shen F, Wang L, Lin YF, Kong LH. Experimental Evidence of the Benefits of Acupuncture for Alzheimer's Disease: An Updated Review. Front Neurosci 2021; 14:549772. [PMID: 33408601 PMCID: PMC7779610 DOI: 10.3389/fnins.2020.549772] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
As the global population ages, the prevalence of Alzheimer's disease (AD), the most common form of dementia, is also increasing. At present, there are no widely recognized drugs able to ameliorate the cognitive dysfunction caused by AD. The failure of several promising clinical trials in recent years has highlighted the urgent need for novel strategies to both prevent and treat AD. Notably, a growing body of literature supports the efficacy of acupuncture for AD. In this review, we summarize the previously reported mechanisms of acupuncture's beneficial effects in AD, including the ability of acupuncture to modulate Aβ metabolism, tau phosphorylation, neurotransmitters, neurogenesis, synapse and neuron function, autophagy, neuronal apoptosis, neuroinflammation, cerebral glucose metabolism, and brain responses. Taken together, these findings suggest that acupuncture provides therapeutic effects for AD.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Shu-Qin Wang
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Le-Bin Liu
- Department of Rehabilitation Medicine, Hubei Rongjun Hospital, Wuhan, China
| | - Feng Shen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan-Fang Lin
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Li-Hong Kong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
11
|
Volobueva MN, Dobryakova YV, Manolova AO, Stepanichev MY, Kvichansky AA, Gulyaeva NV, Markevich VA, Bolshakov AP. Intracerebroventricular Administration of 192IgG-Saporin Alters the State of Microglia in the Neocortex. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ayabe T, Ohya R, Ano Y. β-lactolin, a whey-derived glycine-threonine-tryptophan-tyrosine lactotetrapeptide, improves prefrontal cortex-associated reversal learning in mice. Biosci Biotechnol Biochem 2020; 84:1039-1046. [PMID: 31928148 DOI: 10.1080/09168451.2020.1714424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dementia and cognitive decline have become worldwide public health problems. We have previously reported that a whey-derived glycine-threonine-tryptophan-tyrosine peptide, β-lactolin, improves hippocampus-dependent memory functions in mice. The supplementation with a whey digest rich in β-lactolin improves memory retrieval and executive function in a clinical trial, but the effect of β-lactolin on prefrontal cortex (PFC)-associated cognitive function was unclear. Here we examined the effect of β-lactolin and the whey digest on PFC-associated visual discrimination (VD) and reversal discrimination (RD) learning, using a rodent touch panel-based operant system. β-Lactolin and the whey digest significantly improved the RD learning, and the whey digest enhanced the response latency during the VD task, indicating that β-lactolin and the whey digest improve PFC-associated cognitive functions. Given the translational advantages of the touch panel operant system, consumption of β-lactolin in daily life could be beneficial for improving human PFC-associated cognitive function, helping to prevent dementia.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd, Yokohama-shi, Japan
| | - Rena Ohya
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd, Yokohama-shi, Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd, Yokohama-shi, Japan
| |
Collapse
|
13
|
Todd TP, Fournier DI, Bucci DJ. Retrosplenial cortex and its role in cue-specific learning and memory. Neurosci Biobehav Rev 2019; 107:713-728. [PMID: 31055014 PMCID: PMC6906080 DOI: 10.1016/j.neubiorev.2019.04.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
The retrosplenial cortex (RSC) contributes to spatial navigation, as well as contextual learning and memory. However, a growing body of research suggests that the RSC also contributes to learning and memory for discrete cues, such as auditory or visual stimuli. In this review, we summarize and assess the Pavlovian and instrumental conditioning experiments that have examined the role of the RSC in cue-specific learning and memory. We use the term cue-specific to refer to these putatively non-spatial conditioning paradigms that involve discrete cues. Although these paradigms emphasize behavior related to cue presentations, we note that cue-specific learning and memory always takes place against a background of contextual stimuli. We review multiple ways by which contexts can influence responding to discrete cues and suggest that RSC contributions to cue-specific learning and memory are intimately tied to contextual learning and memory. Indeed, although the RSC is involved in several forms of cue-specific learning and memory, we suggest that many of these can be linked to processing of contextual stimuli.
Collapse
Affiliation(s)
- Travis P Todd
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, NH, 03755, USA.
| | - Danielle I Fournier
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, NH, 03755, USA
| | - David J Bucci
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, NH, 03755, USA
| |
Collapse
|
14
|
Abstract
Psychological theories posit that affective experiences can be decomposed into component constituents, yet disagree on the level of representation of these components. Affective experiences have been previously described as emerging from core dimensions of valence and arousal. However, this view needs to be reconciled with accounts of valence processing in appetitive and aversive circuits from the neuroscience literature. Here we offer an account of affect that allows for both perspectives but compares across levels of analysis. At one level of analysis, valence and arousal are observed already in the properties of encountered stimuli and the appetitive and aversive neural circuits that engage accordingly. At another level of analysis, the explicit experiential aspect of affective processes are compressed and appraised in a manner that allows these experiences to be organized along valence and arousal axes. We review both the behavioral neuroscience evidence on appetitive and aversive circuits as well as the cognitive neuroscience literature on compression in information coding across multiple domains of processing. We argue that these processes are domain-general and adapt these principles to provide a perspective on how valence can be represented at multiple scales in the brain.
Collapse
Affiliation(s)
- Vincent Man
- Department of Psychology, University of Toronto , Toronto, ON, USA.,Divisions of Humanities and Social Sciences, California Institute of Technology , Pasadena, CA, USA
| | | |
Collapse
|
15
|
Ayabe T, Ohya R, Ano Y. Hop-Derived Iso-α-Acids in Beer Improve Visual Discrimination and Reversal Learning in Mice as Assessed by a Touch Panel Operant System. Front Behav Neurosci 2019; 13:67. [PMID: 31001094 PMCID: PMC6454052 DOI: 10.3389/fnbeh.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Dementia and cognitive decline have become worldwide health problems due to rapid growth of the aged population in many countries. We previously demonstrated that single or short-term administration of iso-α-acids, hop-derived bitter acids in beer, improves the spatial memory of scopolamine-induced amnesia model mice in the Y-maze and enhances novel object recognition in normal mice via activation of the vagus nerve and hippocampal dopaminergic system. However, these behavioral tests do not replicate the stimulus conditions or response requirements of human memory tests, and so may have poor translational validity. In this report, we investigated the effects of iso-α-acids on visual discrimination (VD) and reversal discrimination (RD) using a touch panel-based operant system similar to that used for human working memory tests. In the VD task, scopolamine treatment reduced correct response rate and prolonged response latency in mice, deficits reversed by prior oral administration of iso-α-acids. In the RD task, administration of iso-α-acids significantly increased correct response rate compared to vehicle administration. Previous studies have reported that dopamine signaling is involved in both VD and RD learning, suggesting that enhancement of dopamine release contributes to improved memory performance in mice treated with iso-α-acids. Taken together, iso-α-acids improve VD and RD learning, which are considered high-order cognitive functions. Given the translational advantages of the touch panel-based operant system, the present study suggests that iso-α-acids could be effective for improvement of working memory in human dementia patients.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| | - Rena Ohya
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| |
Collapse
|
16
|
Kim GH, Kim HG, Jeon CJ. Immunocytochemical Localization of Choline Acetyltransferase in the Microbat Visual Cortex. Acta Histochem Cytochem 2018; 51:153-165. [PMID: 30510329 PMCID: PMC6261840 DOI: 10.1267/ahc.18018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/17/2018] [Indexed: 12/23/2022] Open
Abstract
The purpose of the present study was to investigate the organization of choline acetyltransferase (ChAT)-immunoreactive (IR) fibers in the visual cortex of the microbat, using standard immunocytochemistry and confocal microscopy. ChAT-IR fibers were distributed throughout all layers of the visual cortex, with the highest density in layer III and the lowest density in layer I. However, no ChAT-IR cells were found in the microbat visual cortex. ChAT-IR fibers were classified into two types: small and large varicose fibers. Previously identified sources of cholinergic fibers in the mammalian visual cortex, the nucleus of the diagonal band, the substantia innominata, and the nucleus basalis magnocellularis, all contained strongly labeled ChAT-IR cells in the microbat. The average diameter of ChAT-IR cells in the nucleus of the diagonal band, the substantia innominata, and the nucleus basalis magnocellularis was 16.12 μm, 13.37 μm, and 13.90 μm, respectively. Our double-labeling study with ChAT and gamma-aminobutyric acid (GABA), and triple labeling with ChAT, GABA, and post synaptic density 95 (PSD-95), suggest that some ChAT-IR fibers make contact with GABAergic cells in the microbat visual cortex. Our results should provide a better understanding of the nocturnal bat visual system.
Collapse
Affiliation(s)
- Gil-Hyun Kim
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Hang-Gu Kim
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| |
Collapse
|
17
|
Galvin VC, Arnsten AFT, Wang M. Evolution in Neuromodulation-The Differential Roles of Acetylcholine in Higher Order Association vs. Primary Visual Cortices. Front Neural Circuits 2018; 12:67. [PMID: 30210306 PMCID: PMC6121028 DOI: 10.3389/fncir.2018.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022] Open
Abstract
This review contrasts the neuromodulatory influences of acetylcholine (ACh) on the relatively conserved primary visual cortex (V1), compared to the newly evolved dorsolateral prefrontal association cortex (dlPFC). ACh is critical both for proper circuit development and organization, and for optimal functioning of mature systems in both cortical regions. ACh acts through both nicotinic and muscarinic receptors, which show very different expression profiles in V1 vs. dlPFC, and differing effects on neuronal firing. Cholinergic effects mediate attentional influences in V1, enhancing representation of incoming sensory stimuli. In dlPFC ACh plays a permissive role for network communication. ACh receptor expression and ACh actions in higher visual areas have an intermediate profile between V1 and dlPFC. This changing role of ACh modulation across association cortices may help to illuminate the particular susceptibility of PFC in cognitive disorders, and provide therapeutic targets to strengthen cognition.
Collapse
Affiliation(s)
- Veronica C Galvin
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Min Wang
- Department of Neuroscience, Yale University, New Haven, CT, United States
| |
Collapse
|
18
|
Tingley D, Alexander AS, Quinn LK, Chiba AA, Nitz D. Multiplexed oscillations and phase rate coding in the basal forebrain. SCIENCE ADVANCES 2018; 4:eaar3230. [PMID: 30083600 PMCID: PMC6070333 DOI: 10.1126/sciadv.aar3230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/19/2018] [Indexed: 05/30/2023]
Abstract
Complex behaviors demand temporal coordination among functionally distinct brain regions. The basal forebrain's afferent and efferent structure suggests a capacity for mediating this coordination at a large scale. During performance of a spatial orientation task, synaptic activity in this region was dominated by four amplitude-independent oscillations temporally organized by the phase of the slowest, a theta-frequency rhythm. Oscillation amplitudes were also organized by task epoch and positively correlated to the task-related modulation of individual neuron firing rates. For many neurons, spiking was temporally organized through phase precession against theta band field potential oscillations. Theta phase precession advanced in parallel to task progression, rather than absolute spatial location or time. Together, the findings reveal a process by which associative brain regions can integrate independent oscillatory inputs and transform them into sequence-specific, rate-coded outputs that are adaptive to the pace with which organisms interact with their environment.
Collapse
Affiliation(s)
- David Tingley
- New York University (NYU) Neuroscience Institute, School of Medicine, NYU, New York, NY 10016, USA
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92093–0515, USA
| | - Andrew S. Alexander
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92093–0515, USA
- Department of Psychological and Brain Science, Boston University, Boston, MA 02215, USA
| | - Laleh K. Quinn
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92093–0515, USA
| | - Andrea A. Chiba
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92093–0515, USA
| | - Douglas Nitz
- Department of Cognitive Science, University of California, San Diego, San Diego, CA 92093–0515, USA
| |
Collapse
|
19
|
Gascoyne LE, Mullinger KJ, Robson SE, Kumar J, O'Neill GC, Palaniyappan L, Morris PG, Liddle EB, Brookes MJ, Liddle PF. Changes in electrophysiological markers of cognitive control after administration of galantamine. Neuroimage Clin 2018; 20:228-235. [PMID: 30090697 PMCID: PMC6078055 DOI: 10.1016/j.nicl.2018.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/12/2018] [Accepted: 07/21/2018] [Indexed: 02/01/2023]
Abstract
The healthy brain is able to maintain a stable balance between bottom-up sensory processing and top-down cognitive control. The neurotransmitter acetylcholine plays a substantial role in this. Disruption of this balance could contribute to symptoms occurring in psychosis, including subtle disruption of motor control and aberrant appropriation of salience to external stimuli; however the pathological mechanisms are poorly understood. On account of the role beta oscillations play in mediating cognitive control, investigation of beta oscillations is potentially informative about such mechanisms. Here, we used magnetoencephalography to investigate the effect of the acetylcholinesterase-inhibitor, galantamine, on beta oscillations within the sensorimotor region during both a sensorimotor task and a relevance-modulation task in healthy participants, employing a double blind randomized placebo controlled cross-over design. In the galantamine condition, we found a significant reduction in the post-movement beta rebound in the case of executed movements and also in a planned but not executed movement. In the latter case, the effect was significantly greater following task-relevant compared with irrelevant stimuli. The results suggest that the action of galantamine reduces the influence of top-down cognitive processing relative to bottom-up perceptual processing in a manner resembling changes previously reported in schizophrenia.
Collapse
Affiliation(s)
- Lauren E Gascoyne
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK.
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Siân E Robson
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Jyothika Kumar
- Institute of Mental Health, Jubilee Campus, University of Nottingham, Nottingham, UK
| | - George C O'Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Lena Palaniyappan
- Department of Psychiatry & Robarts Research Institute, University of Western Ontario & Lawson Health Research Institute, London, ON, Canada
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Elizabeth B Liddle
- Institute of Mental Health, Jubilee Campus, University of Nottingham, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Peter F Liddle
- Institute of Mental Health, Jubilee Campus, University of Nottingham, Nottingham, UK.
| |
Collapse
|
20
|
Moreno H, Hall G, Gallo M, de Brugada I. Dietary choline supplementation in adult rats improves performance on a test of recognition memory. Behav Brain Res 2018; 353:210-217. [PMID: 29694911 DOI: 10.1016/j.bbr.2018.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/27/2022]
Abstract
In two experiments adult rats (aged at least 6 months at the start of the procedure) received a diet enriched with added choline for a period of 10 weeks; control subjects were maintained on a standard diet during this time. All rats then underwent the spontaneous object recognition (SOR) procedure in which they were exposed to a pair of objects and then tested, after a retention interval, to a display with one object changed. Exploration of the changed object indicates retention and use of information acquired during the exposure phase. All subjects showed retention with a 24-h interval (Experiments 1 and 2) and when retested after a further 24 h (Experiment 1). But when tested for the first time after a 48-h interval (Experiment 2), control subjects showed no evidence of retention, exploring both objects equally, whereas those given the dietary supplement continued to show a preference for the changed object. This supports the conclusion that dietary choline supplementation can enhance performance on a task regarded as a test of declarative memory, and will do so even when the supplementations is given in adulthood.
Collapse
Affiliation(s)
- Hayarelis Moreno
- Department of Psychology of Education and Psychobiology, International University of La Rioja, Spain.
| | - Geoffrey Hall
- Department of Psychology, University of York, York, UK; School of Psychology, University of New South Wales, Sydney, Australia
| | - Milagros Gallo
- Department of Experimental Psychology, University of Granada, Spain; Institute of Neurosciences, Center for Biomedical Research, University of Granada, Spain
| | - Isabel de Brugada
- Department of Experimental Psychology, University of Granada, Spain; CIMCYC (University of Granada), Spain
| |
Collapse
|
21
|
Hinman JR, Dannenberg H, Alexander AS, Hasselmo ME. Neural mechanisms of navigation involving interactions of cortical and subcortical structures. J Neurophysiol 2018; 119:2007-2029. [PMID: 29442559 DOI: 10.1152/jn.00498.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals must perform spatial navigation for a range of different behaviors, including selection of trajectories toward goal locations and foraging for food sources. To serve this function, a number of different brain regions play a role in coding different dimensions of sensory input important for spatial behavior, including the entorhinal cortex, the retrosplenial cortex, the hippocampus, and the medial septum. This article will review data concerning the coding of the spatial aspects of animal behavior, including location of the animal within an environment, the speed of movement, the trajectory of movement, the direction of the head in the environment, and the position of barriers and objects both relative to the animal's head direction (egocentric) and relative to the layout of the environment (allocentric). The mechanisms for coding these important spatial representations are not yet fully understood but could involve mechanisms including integration of self-motion information or coding of location based on the angle of sensory features in the environment. We will review available data and theories about the mechanisms for coding of spatial representations. The computation of different aspects of spatial representation from available sensory input requires complex cortical processing mechanisms for transformation from egocentric to allocentric coordinates that will only be understood through a combination of neurophysiological studies and computational modeling.
Collapse
Affiliation(s)
- James R Hinman
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Holger Dannenberg
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Andrew S Alexander
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Boston University , Boston, Massachusetts
| |
Collapse
|
22
|
Coppola JJ, Disney AA. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems. Front Neural Circuits 2018; 12:8. [PMID: 29440996 PMCID: PMC5797555 DOI: 10.3389/fncir.2018.00008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.
Collapse
Affiliation(s)
- Jennifer J. Coppola
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Anita A. Disney
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
23
|
Avery MC, Krichmar JL. Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments. Front Neural Circuits 2017; 11:108. [PMID: 29311844 PMCID: PMC5744617 DOI: 10.3389/fncir.2017.00108] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Neuromodulatory systems, including the noradrenergic, serotonergic, dopaminergic, and cholinergic systems, track environmental signals, such as risks, rewards, novelty, effort, and social cooperation. These systems provide a foundation for cognitive function in higher organisms; attention, emotion, goal-directed behavior, and decision-making derive from the interaction between the neuromodulatory systems and brain areas, such as the amygdala, frontal cortex, hippocampus, and sensory cortices. Given their strong influence on behavior and cognition, these systems also play a key role in disease states and are the primary target of many current treatment strategies. The fact that these systems interact with each other either directly or indirectly, however, makes it difficult to understand how a failure in one or more systems can lead to a particular symptom or pathology. In this review, we explore experimental evidence, as well as focus on computational and theoretical models of neuromodulation. Better understanding of neuromodulatory systems may lead to the development of novel treatment strategies for a number of brain disorders.
Collapse
Affiliation(s)
- Michael C Avery
- SNL-R, Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jeffrey L Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States.,Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
24
|
Cybulska-Klosowicz A, Laczkowska M, Zakrzewska R, Kaliszewska A. Attentional deficits and altered neuronal activation in medial prefrontal and posterior parietal cortices in mice with reduced dopamine transporter levels. Mol Cell Neurosci 2017; 85:82-92. [PMID: 28923595 DOI: 10.1016/j.mcn.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/29/2017] [Accepted: 09/15/2017] [Indexed: 01/30/2023] Open
Abstract
The executive control function of attention is regulated by the dopaminergic (DA) system. Dopamine transporter (DAT) likely plays a role in controlling the influence of DA on cognitive processes. We examined the effects of DAT depletion on cognitive processes related to attention. Mice with the DAT gene genetically deleted (DAT+/- heterozygotes) were compared to wild type (WT) mice on the Attentional Set-Shifting Task (ASST). Changes in neuronal activity during the ASST were shown with early growth response genes 1 and 2 (egr-1 and egr-2) immunohistochemistry in the medial prefrontal cortex (mPFC) and in the posterior parietal cortex (PPC). Heterozygotes were impaired in tasks that tax reversal learning, attentional-set formation and set-shifting. Densities of egr-2 labeled cells in the mPFC were lower in mutant mice when compared with wild-types in intradimensional shift of attention (IDS), extradimensional shift of attention and extradimensional shift of attention-reversal phases of the ASST task, and in PPC in the IDS phase of the task. The results demonstrate impairments of the areas associated with attentional functions in DAT+/- mice and show that an imbalance of the dopaminergic system has an impact on the complex attention-related executive functions.
Collapse
Affiliation(s)
- Anita Cybulska-Klosowicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, PAS, 02-093 Warsaw, Poland.
| | | | - Renata Zakrzewska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, PAS, 02-093 Warsaw, Poland
| | - Aleksandra Kaliszewska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, PAS, 02-093 Warsaw, Poland
| |
Collapse
|
25
|
Yang FC, Jacobson TK, Burwell RD. Single neuron activity and theta modulation in the posterior parietal cortex in a visuospatial attention task. Hippocampus 2017; 27:263-273. [PMID: 27933672 PMCID: PMC5644026 DOI: 10.1002/hipo.22691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 11/06/2022]
Abstract
The posterior parietal cortex (PPC) is implicated in directing and maintaining visual attention to locations in space. We hypothesized that the PPC also engages other cognitive processes in the transformation of behaviorally relevant visual inputs into appropriate actions, for example, monitoring of multiple locations, selection of responses to locations in space, and monitoring the outcome of response selections. We recorded single cells and local field potentials in the rat PPC during performance on a novel visuospatial attention (VSA) task that requires visually monitoring locations in space in order to make appropriate stimulus-guided locomotor responses. In each trial, rats attended to four locations on the floor of a maze. A randomly chosen location was briefly illuminated. Approach to the correct target location was followed by food reward. We observed that PPC activity correlated with multiple phases of the VSA task, including monitoring for stimulus onset, detection of a target, spatial location of the target, and target choice. A substantial proportion of cells with behavioral correlates were also modulated by outcome of the trial. Our analyses of local field potentials revealed strong oscillatory rhythms in the theta frequency band, and more than a third of PPC neurons were phase locked to theta oscillations. As in other brain regions, theta power correlated with running speed. Peak theta power was higher in superficial layers than deep layers providing evidence against volume conduction from the hippocampus. In addition, theta power was sensitive to the outcome of a choice. Theta power was significantly higher following incorrect choices compared with correct choices, possibly providing a prediction error signal. Our study provides evidence that the rat PPC has multiple roles in the translation of visual information into appropriate behavioral actions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fang-Chi Yang
- Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, 02912
| | - Tara K Jacobson
- Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, 02912
| | - Rebecca D Burwell
- Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, 02912
- Department of Neuroscience, Brown University, Providence, Rhode Island, 02912
| |
Collapse
|
26
|
Marshall L, Mathys C, Ruge D, de Berker AO, Dayan P, Stephan KE, Bestmann S. Pharmacological Fingerprints of Contextual Uncertainty. PLoS Biol 2016; 14:e1002575. [PMID: 27846219 PMCID: PMC5113004 DOI: 10.1371/journal.pbio.1002575] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. Pharmacological interventions and hierarchical Bayesian modelling pinpoint the roles of noradrenaline, acetylcholine, and dopamine in computing different forms of uncertainty and in sensitizing actions to our beliefs about uncertainty. Interacting with dynamic and ever-changing environments requires frequent updating of our beliefs about the world. By learning the relationships that link events in the current environmental context, it is possible to prepare and execute fast, accurate responses to those events that are predictable. However, the world’s complex dynamics give rise to uncertainty about the relationships that exist between events and uncertainty about how these relationships might change over time. Several neuromodulators have been proposed to signal these different forms of uncertainty, but their relative contributions to updating beliefs and modulating responses have remained elusive. Here we combine a probabilistic reaction time task, pharmacological interventions, and a hierarchical Bayesian learning model to identify the roles of noradrenaline, acetylcholine, and dopamine in individual computations of uncertainty. We propose that noradrenaline modulates learning about the instability of the relationships that link environmental events. Acetylcholine balances the attribution of uncertainty to unexpected events occurring within an environmental context or to gross violations of our expectations following a context change. In contrast, dopamine sensitises our actions to our beliefs about uncertainty.
Collapse
Affiliation(s)
- Louise Marshall
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
- * E-mail:
| | - Christoph Mathys
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Diane Ruge
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Archy O. de Berker
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Klaas E. Stephan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
27
|
Schiffino FL, Holland PC. Consolidation of altered associability information by amygdala central nucleus. Neurobiol Learn Mem 2016; 133:204-213. [PMID: 27427328 PMCID: PMC4987260 DOI: 10.1016/j.nlm.2016.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 12/26/2022]
Abstract
The surprising omission of a reinforcer can enhance the associability of the stimuli that were present when the reward prediction error was induced, so that they more readily enter into new associations in the future. Previous research from this laboratory identified brain circuit elements critical to the enhancement of stimulus associability by the omission of an expected event and to the subsequent expression of that altered associability in more rapid learning. These elements include the amygdala, the midbrain substantia nigra, the basal forebrain substantia innominata, the dorsolateral striatum, the secondary visual cortex, and the posterior parietal cortex. Here, we found that consolidation of a surprise-enhanced associability memory in a serial prediction task depends on processing in the amygdala central nucleus (CeA) after completion of sessions that included the surprising omission of an expected event. Post-surprise infusions of anisomycin, lidocaine, or muscimol prevented subsequent display of surprise-enhanced associability. Because previous studies indicated that CeA function is unnecessary for the expression of associability enhancements that were induced previously when CeA function was intact (Holland & Gallagher, 2006), we interpreted these results as indicating that post-surprise activity of CeA ("surprise replay") is necessary for the consolidation of altered associability memories elsewhere in the brain, such as the posterior parietal cortex (Schiffino et al., 2014a).
Collapse
Affiliation(s)
- Felipe L Schiffino
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter C Holland
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
28
|
Cholinergic genetics of visual attention: Human and mouse choline transporter capacity variants influence distractibility. ACTA ACUST UNITED AC 2016; 110:10-18. [PMID: 27404793 DOI: 10.1016/j.jphysparis.2016.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/20/2022]
Abstract
The basal forebrain cholinergic projection system to the cortex mediates essential aspects of visual attention performance, including the detection of cues and the response to performance challenges (top-down control of attention). Higher levels of top-down control are mediated via elevated levels of cholinergic neuromodulation. The neuronal choline transporter (CHT) strongly influences the synthesis and release of acetylcholine (ACh). As the capacity of the CHT to import choline into the neuron is a major, presynaptic determinant of cholinergic neuromodulation, we hypothesize that genetically-imposed CHT capacity variation impacts the balance of bottom-up versus top-down control of visual attention. Following a brief review of the cognitive concepts relevant for this hypothesis, we describe the key results from our research in mice and humans that possess genetically-imposed changes in choline uptake capacity. CHT subcapacity is associated with poor top-down attentional control and attenuated (cholinergic) activation of right frontal regions. Conversely, mice overexpressing the CHT, and humans expressing a CHT variant hypothesized to enhance choline transporter function, are relatively resistant to challenges of visual attention performance. Genetic or environmental modulation of CHT expression and function may be associated with vulnerabilities for cognitive disorders.
Collapse
|
29
|
Schiffino FL, Holland PC. Secondary visual cortex is critical to the expression of surprise-induced enhancements in cue associability in rats. Eur J Neurosci 2016; 44:1870-7. [PMID: 27225533 DOI: 10.1111/ejn.13286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/29/2023]
Abstract
Considerable evidence indicates that reinforcement prediction error, the difference between the obtained and expected reinforcer values, modulates attention to potential cues for reinforcement. The surprising delivery or omission of a reinforcer enhances the associability of the stimuli that were present when the error was induced, so that they more readily enter into new associations in the future. Previous research from our laboratory identified brain circuit elements critical to the enhancement of stimulus associability by omission of an expected event and to the subsequent expression of that altered associability in more rapid learning. A key finding was that the rat posterior parietal cortex was essential during the encoding, consolidation and retrieval of associability memories that were altered by the surprising omission of an expected event in a serial prediction task. Here, we found that the function of adjacent secondary visual cortex was critical only to the expression of altered cue associability in that same task. This specialization of function is discussed in the context of broader cortical and subcortical networks for modulation of attention in associative learning, as well as recent anatomical investigations that suggest that the rodent posterior parietal cortex overlaps with and may subsume secondary visual cortex.
Collapse
Affiliation(s)
- Felipe L Schiffino
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Peter C Holland
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| |
Collapse
|
30
|
Holland PC, Schiffino FL. Mini-review: Prediction errors, attention and associative learning. Neurobiol Learn Mem 2016; 131:207-15. [PMID: 26948122 DOI: 10.1016/j.nlm.2016.02.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/12/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
Abstract
Most modern theories of associative learning emphasize a critical role for prediction error (PE, the difference between received and expected events). One class of theories, exemplified by the Rescorla-Wagner (1972) model, asserts that PE determines the effectiveness of the reinforcer or unconditioned stimulus (US): surprising reinforcers are more effective than expected ones. A second class, represented by the Pearce-Hall (1980) model, argues that PE determines the associability of conditioned stimuli (CSs), the rate at which they may enter into new learning: the surprising delivery or omission of a reinforcer enhances subsequent processing of the CSs that were present when PE was induced. In this mini-review we describe evidence, mostly from our laboratory, for PE-induced changes in the associability of both CSs and USs, and the brain systems involved in the coding, storage and retrieval of these altered associability values. This evidence favors a number of modifications to behavioral models of how PE influences event processing, and suggests the involvement of widespread brain systems in animals' responses to PE.
Collapse
|
31
|
Sarter M, Lustig C, Berry AS, Gritton H, Howe WM, Parikh V. What do phasic cholinergic signals do? Neurobiol Learn Mem 2016; 130:135-41. [PMID: 26911787 DOI: 10.1016/j.nlm.2016.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/16/2022]
Abstract
In addition to the neuromodulatory role of cholinergic systems, brief, temporally discrete cholinergic release events, or "transients", have been associated with the detection of cues in attention tasks. Here we review four main findings about cholinergic transients during cognitive processing. Cholinergic transients are: (1) associated with the detection of a cue and influenced by cognitive state; (2) not dependent on reward outcome, although the timing of the transient peak co-varies with the temporal relationship between detection and reward delivery; (3) correlated with the mobilization of the cue-evoked response; (4) causal mediators of shifts from monitoring to cue detection. We next discuss some of the key questions concerning the timing and occurrence of transients within the framework of available evidence including: (1) Why does the shift from monitoring to cue detection require a transient? (2) What determines whether a cholinergic transient will be generated? (3) How can cognitive state influence transient occurrence? (4) Why do cholinergic transients peak at around the time of reward delivery? (5) Is there evidence of cholinergic transients in humans? We conclude by outlining future research studies necessary to more fully understand the role of cholinergic transients in mediating cue detection.
Collapse
Affiliation(s)
- Martin Sarter
- University of Michigan, Dept. of Psychology and Neuroscience Program, Ann Arbor, MI, United States.
| | - Cindy Lustig
- University of Michigan, Dept. of Psychology and Neuroscience Program, Ann Arbor, MI, United States.
| | - Anne S Berry
- Lawrence Berkeley National Laboratory, UC Berkeley, Berkeley, CA, United States
| | - Howard Gritton
- Boston University, Dept. of Biomedical Engineering, Boston, MA, United States
| | - William M Howe
- Boston University, Dept. of Biomedical Engineering, Boston, MA, United States; Pfizer Neuroscience, Cambridge, MA, United States
| | - Vinay Parikh
- Temple University, Dept. of Psychology and Neuroscience Program, Philadelphia, PA, United States
| |
Collapse
|
32
|
Abstract
The cortical cholinergic input system has been described as a neuromodulator system that influences broadly defined behavioral and brain states. The discovery of phasic, trial-based increases in extracellular choline (transients), resulting from the hydrolysis of newly released acetylcholine (ACh), in the cortex of animals reporting the presence of cues suggests that ACh may have a more specialized role in cognitive processes. Here we expressed channelrhodopsin or halorhodopsin in basal forebrain cholinergic neurons of mice with optic fibers directed into this region and prefrontal cortex. Cholinergic transients, evoked in accordance with photostimulation parameters determined in vivo, were generated in mice performing a task necessitating the reporting of cue and noncue events. Generating cholinergic transients in conjunction with cues enhanced cue detection rates. Moreover, generating transients in noncued trials, where cholinergic transients normally are not observed, increased the number of invalid claims for cues. Enhancing hits and generating false alarms both scaled with stimulation intensity. Suppression of endogenous cholinergic activity during cued trials reduced hit rates. Cholinergic transients may be essential for synchronizing cortical neuronal output driven by salient cues and executing cue-guided responses.
Collapse
|
33
|
Asem JSA, Schiffino FL, Holland PC. Dorsolateral striatum is critical for the expression of surprise-induced enhancements in cue associability. Eur J Neurosci 2015; 42:2203-13. [PMID: 26108257 DOI: 10.1111/ejn.13001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/21/2015] [Accepted: 06/18/2015] [Indexed: 01/29/2023]
Abstract
The dorsolateral striatum (DLS) is frequently implicated in sensory-motor integration, including the performance of sensory orienting responses (ORs) and learned stimulus-response habits. Our laboratory previously identified a role for the DLS in rats' performance of conditioned ORs to Pavlovian cues for food delivery. Here, we considered whether DLS is also critical to another aspect of attention in associative learning, the surprise-induced enhancement of cue associability. A large behavioral literature shows that a cue present when an expected event is omitted enters into new associations more rapidly when that cue is subsequently paired with food. Research from our laboratory has shown that both cue associability enhancements and conditioned ORs depend on the function of a circuit that includes the amygdala central nucleus and the substantia nigra pars compacta. In three experiments, we explored the involvement of DLS in surprise-induced associability enhancements, using a three-stage serial prediction task that permitted separation of DLS function in registering surprise (prediction error) and enhancing cue associability, and in using that increased associability to learn more rapidly about that cue later. The results showed that DLS is critical to the expression, but not the establishment, of the enhanced cue associability normally produced by surprise in this task. They extend the role of DLS and the amygdalo-nigro-striatal circuit underlying learned orienting to more subtle aspects of attention in associative learning, but are consistent with the general notion that DLS is more important in the expression of previously acquired tendencies than in their acquisition.
Collapse
Affiliation(s)
- Judith S A Asem
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Felipe L Schiffino
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Holland
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
34
|
Burón E, Bulbena A, Bulbena-Cabré A. Olfactory functioning in panic disorder. J Affect Disord 2015; 175:292-8. [PMID: 25661394 DOI: 10.1016/j.jad.2015.01.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND The olfactory function in panic disorder (PD) has been scarcely approached in the literature. The purpose of this paper is to study this question by focusing on the olfactory sensitivity (i.e. detection threshold), the reactivity to odors, and the odor awareness in patients suffering from PD. METHODS 41 patients with PD and 41 healthy controls performed Sniffin׳ Sticks Test (threshold subtest) and completed the Affective Impact of Odors scale (AIO), the Relational Scale of Olfaction (EROL) and the Odor Awareness Scale (OAS). Clinical symptoms rating scales were concurrently obtained. RESULTS PD patients showed lower olfactory detection thresholds (i.e. higher sensitivity) along with an enhanced reactivity to odors as well as a greater olfactory awareness compared to the healthy controls. The severity of PD was significantly associated with the olfactory questionnaires ratings, but not with the detection ability. Olfactory measures were intercorrelated in most cases. LIMITATIONS i) The results of the olfactory sensitivity are limited to one odorant (phenyl ethyl alcohol) and thus may not be generalizable to other odorants. ii) As comorbid Axis II disorders were not screened, it is not possible to exclude the influence of personality traits in our results. iii) The involvement of the medications in some olfactory outcomes cannot be ruled out. CONCLUSION The current findings highlight the importance of the olfactory function in PD as patients appeared to be highly sensitive, reactive and aware of odors. These results are discussed in the light of the common neural substrates involved in the olfactory processing and in the pathophysiology of PD, and also related to the clinical features of this disorder.
Collapse
Affiliation(s)
- Emma Burón
- Autonomous University of Barcelona, Department of Psychiatry and Forensic Medicine (UAB), Bellaterra, Spain.
| | - Antonio Bulbena
- Autonomous University of Barcelona, Department of Psychiatry and Forensic Medicine (UAB), Bellaterra, Spain; Mar Health Park, Neuropsychiatry and Drug Addiction Institute (INAD), Barcelona, Spain
| | - Andrea Bulbena-Cabré
- Autonomous University of Barcelona, Department of Psychiatry and Forensic Medicine (UAB), Bellaterra, Spain; Department of Psychiatry, Metropolitan Hospital Center, New York Medical College, New York, USA
| |
Collapse
|
35
|
Abstract
Cholinergic mechanisms have long been considered a promising target for enhancing cognitive functions. Two distinct yet interacting components of cholinergic activity have been proposed to mediate specific cognitive functions. Transient spikes in cholinergic activity mediate the detection of cues in situations involving attentional mode shifts. More slowly changing cholinergic neuromodulation of cortical circuitry regulates task compliance specifically in response to performance challenges. Increases in cholinergic neuromodulation enhances the generation of cholinergic transients via stimulation of α4β2* nicotinic acetylcholine receptors. Stimulation of these receptors stabilizes attentional performance and increases cue detection rates. Adjunctive treatment with agonists or modulators at these receptors is predicted to benefit unstable attentional performance and low cue detection rates that are common to several brain disorders.
Collapse
|
36
|
Nicotine increases impulsivity and decreases willingness to exert cognitive effort despite improving attention in "slacker" rats: insights into cholinergic regulation of cost/benefit decision making. PLoS One 2014; 9:e111580. [PMID: 25353339 PMCID: PMC4213040 DOI: 10.1371/journal.pone.0111580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/06/2014] [Indexed: 12/30/2022] Open
Abstract
Successful decision making in our daily lives requires weighing an option’s costs against its associated benefits. The neuromodulator acetylcholine underlies both the etiology and treatment of a number of illnesses in which decision making is perturbed, including Alzheimer’s disease, attention-deficit/hyperactivity disorder, and schizophrenia. Nicotine acts on the cholinergic system and has been touted as a cognitive enhancer by both smokers and some researchers for its attention-boosting effects; however, it is unclear whether treatments that have a beneficial effect on attention would also have a beneficial effect on decision making. Here we utilize the rodent Cognitive Effort Task (rCET), wherein animals can choose to allocate greater visuospatial attention for a greater reward, to examine cholinergic contributions to both attentional performance and choice based on attentional demand. Following the establishment of baseline behavior, four drug challenges were administered: nicotine, mecamylamine, scopolamine, and oxotremorine (saline plus three doses for each). As per previous rCET studies, animals were divided by their baseline preferences, with “worker” rats choosing high-effort/high-reward options more than their “slacker” counterparts. Nicotine caused slackers to choose even fewer high-effort trials than at baseline, but had no effect on workers’ choice. Despite slackers’ decreased willingness to expend effort, nicotine improved their attentional performance on the task. Nicotine also increased measures of motor impulsivity in all animals. In contrast, scopolamine decreased animals’ choice of high-effort trials, especially for workers, while oxotremorine decreased motor impulsivity for all animals. In sum, the cholinergic system appears to contribute to decision making, and in part these contributions can be understood as a function of individual differences. While nicotine has been considered as a cognitive enhancer, these data suggest that its modest benefits to attention may be coupled with impulsiveness and decreased willingness to work hard, especially in individuals who are particularly sensitive to effort costs (i.e. slackers).
Collapse
|
37
|
Tingley D, Alexander AS, Kolbu S, de Sa VR, Chiba AA, Nitz DA. Task-phase-specific dynamics of basal forebrain neuronal ensembles. Front Syst Neurosci 2014; 8:174. [PMID: 25309352 PMCID: PMC4173808 DOI: 10.3389/fnsys.2014.00174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/01/2014] [Indexed: 02/01/2023] Open
Abstract
Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases.
Collapse
Affiliation(s)
- David Tingley
- Department of Cognitive Science, University of California, San Diego San Diego, CA, USA
| | - Andrew S Alexander
- Department of Cognitive Science, University of California, San Diego San Diego, CA, USA
| | - Sean Kolbu
- Department of Cognitive Science, University of California, San Diego San Diego, CA, USA
| | - Virginia R de Sa
- Department of Cognitive Science, University of California, San Diego San Diego, CA, USA
| | - Andrea A Chiba
- Department of Cognitive Science, University of California, San Diego San Diego, CA, USA
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego San Diego, CA, USA
| |
Collapse
|
38
|
Esber GR, Holland PC. The basolateral amygdala is necessary for negative prediction errors to enhance cue salience, but not to produce conditioned inhibition. Eur J Neurosci 2014; 40:3328-37. [PMID: 25135841 DOI: 10.1111/ejn.12695] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/28/2022]
Abstract
Behavioral evidence shows that prediction errors (PEs) not only drive associative learning, but also enhance the salience of predictive cues, making them better able to capture attention when they are next encountered. Research from our laboratory suggests that this latter consequence of PEs depends on a neural circuit that includes the amygdala. Lesions of the basolateral complex of the amygdala (BLA), for instance, selectively disrupt enhancements in cue processing that are normally induced by positive PEs without compromising simple excitatory learning. This result is consistent with electrophysiological evidence showing that BLA neurons track positive PEs. Interestingly, the same neurons also seem to track negative PEs, suggesting the possibility that the BLA might also use these errors to drive enhancements in cue processing. Here, we examined the role of the BLA in the processing (Experiment 1) and utilization (Experiment 2) of negative PEs in increasing cue salience in an unblocking procedure. Using FOS expression as an index of neural activity, Experiment 1 confirmed that BLA neurons track negative PEs with reinforcement downshifts. This tracking was evident both when these errors were generated by decreasing the concentration of a sucrose reinforcer (which encourages the development of conditioned inhibition) and when they were generated by decreasing the number of sucrose reinforcers (which encourages excitatory learning - unblocking - and allows the detection of enhancements in cue processing). Experiment 2 demonstrated that BLA lesions abolished enhancements in cue processing while sparing inhibitory learning. These results suggest a general role of the BLA in utilizing PEs, whatever their sign, for boosting cue processing.
Collapse
Affiliation(s)
- Guillem R Esber
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | | |
Collapse
|
39
|
Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Exp Neurol 2014; 257:120-9. [PMID: 24805070 DOI: 10.1016/j.expneurol.2014.04.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
Abstract
Falls are a major source of hospitalization, long-term institutionalization, and death in older adults and patients with Parkinson's disease (PD). Limited attentional resources are a major risk factor for falls. In this review, we specify cognitive-behavioral mechanisms that produce falls and map these mechanisms onto a model of multi-system degeneration. Results from PET studies in PD fallers and findings from a recently developed animal model support the hypothesis that falls result from interactions between loss of basal forebrain cholinergic projections to the cortex and striatal dopamine loss. Striatal dopamine loss produces inefficient, low-vigor gait, posture control, and movement. Cortical cholinergic deafferentation impairs a wide range of attentional processes, including monitoring of gait, posture and complex movements. Cholinergic cell loss reveals the full impact of striatal dopamine loss on motor performance, reflecting loss of compensatory attentional supervision of movement. Dysregulation of dorsomedial striatal circuitry is an essential, albeit not exclusive, mediator of falls in this dual-system model. Because cholinergic neuromodulatory activity influences cortical circuitry primarily via stimulation of α4β2* nicotinic acetylcholine receptors, and because agonists at these receptors are known to benefit attentional processes in animals and humans, treating PD fallers with such agonists, as an adjunct to dopaminergic treatment, is predicted to reduce falls. Falls are an informative behavioral endpoint to study attentional-motor integration by striatal circuitry.
Collapse
|
40
|
Long-term effects of maternal deprivation on cholinergic system in rat brain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:636574. [PMID: 24711997 PMCID: PMC3966323 DOI: 10.1155/2014/636574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 02/07/2023]
Abstract
Numerous clinical studies have demonstrated an association between early stressful life events and adult life psychiatric disorders including schizophrenia. In rodents, early life exposure to stressors such as maternal deprivation (MD) produces numerous hormonal, neurochemical, and behavioral changes and is accepted as one of the animal models of schizophrenia. The stress induces acetylcholine (Ach) release in the forebrain and the alterations in cholinergic neurotransmitter system are reported in schizophrenia. The aim of this study was to examine long-term effects of maternal separation on acetylcholinesterase (AChE) activity in different brain structures and the density of cholinergic fibers in hippocampus and retrosplenial (RS) cortex. Wistar rats were separated from their mothers on the postnatal day (P) 9 for 24 h and sacrificed on P60. Control group of rats was bred under the same conditions, but without MD. Brain regions were collected for AChE activity measurements and morphometric analysis. Obtained results showed significant decrease of the AChE activity in cortex and increase in the hippocampus of MD rats. Density of cholinergic fibers was significantly increased in CA1 region of hippocampus and decreased in RS cortex. Our results indicate that MD causes long-term structure specific changes in the cholinergic system.
Collapse
|
41
|
Schiffino FL, Zhou V, Holland PC. Posterior parietal cortex is critical for the encoding, consolidation, and retrieval of a memory that guides attention for learning. Eur J Neurosci 2014; 39:640-9. [PMID: 24236913 PMCID: PMC4018654 DOI: 10.1111/ejn.12417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 12/29/2022]
Abstract
Within most contemporary learning theories, reinforcement prediction error, the difference between the obtained and expected reinforcer value, critically influences associative learning. In some theories, this prediction error determines the momentary effectiveness of the reinforcer itself, such that the same physical event produces more learning when its presentation is surprising than when it is expected. In other theories, prediction error enhances attention to potential cues for that reinforcer by adjusting cue-specific associability parameters, biasing the processing of those stimuli so that they more readily enter into new associations in the future. A unique feature of these latter theories is that such alterations in stimulus associability must be represented in memory in an enduring fashion. Indeed, considerable data indicate that altered associability may be expressed days after its induction. Previous research from our laboratory identified brain circuit elements critical to the enhancement of stimulus associability by the omission of an expected event, and to the subsequent expression of that altered associability in more rapid learning. Here, for the first time, we identified a brain region, the posterior parietal cortex, as a potential site for a memorial representation of altered stimulus associability. In three experiments using rats and a serial prediction task, we found that intact posterior parietal cortex function was essential during the encoding, consolidation, and retrieval of an associability memory enhanced by surprising omissions. We discuss these new results in the context of our previous findings and additional plausible frontoparietal and subcortical networks.
Collapse
Affiliation(s)
- Felipe L Schiffino
- Department of Psychological and Brain Sciences, Johns Hopkins University, 232 Ames Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | | | | |
Collapse
|
42
|
Oros N, Chiba AA, Nitz DA, Krichmar JL. Learning to ignore: a modeling study of a decremental cholinergic pathway and its influence on attention and learning. Learn Mem 2014; 21:105-18. [PMID: 24443744 PMCID: PMC3895228 DOI: 10.1101/lm.032433.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate attention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus basalis region (SI/nBM) to the neocortex are necessary to increase attention to relevant stimuli and have been well studied. Lesser known are ACh projections from the medial septum/vertical limb of the diagonal band (MS/VDB) to the hippocampus and the cingulate that are necessary to reduce attention to irrelevant stimuli. We developed a neural simulation to provide insight into how ACh can decrement attention using this distinct pathway from the MS/VDB. We tested the model in behavioral paradigms that require decremental attention. The model exhibits behavioral effects such as associative learning, latent inhibition, and persisting behavior. Lesioning the MS/VDB disrupts latent inhibition, and drastically increases perseverative behavior. Taken together, the model demonstrates that the ACh decremental pathway is necessary for appropriate learning and attention under dynamic circumstances and suggests a canonical neural architecture for decrementing attention.
Collapse
Affiliation(s)
- Nicolas Oros
- Department of Cognitive Sciences, University of California-Irvine, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
43
|
Correlated activation of the thalamocortical network in a simple learning paradigm. Behav Brain Res 2013; 252:293-301. [PMID: 23791933 DOI: 10.1016/j.bbr.2013.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/14/2013] [Accepted: 06/16/2013] [Indexed: 11/27/2022]
Abstract
The thalamocortical loop is a key player in sensory processing. We examined the functional interactions among its elements, expressed as cross-correlations between metabolic activity of the barrel cortex, somatosensory thalamic nuclei and posterior parietal cortex, in classical conditioning. In the training stimulation of vibrissae in mice was paired with a tail shock. [14C]-2-Deoxyglucose brain mapping was performed during the first and the final sessions of conditioning (conditioned stimulus+unconditioned stimulus; CS+UCS), in groups that received only the stimulation of vibrissae (conditioned stimulus; CS-only) and in nonstimulated controls (NS). In the CS-only group, the CS evoked the correlated activity of the examined structures during the first session, but in the third session these structures did not act in a correlated manner. Conversely, in the CS+UCS condition correlations among the thalamocortical loop structures activities became stronger during the course of the training. Particularly, the posterior parietal cortex, which controls voluntary deployment of attention, together with the barrel cortex becomes involved in the network of structures with the correlated activity. The results suggest a predominant role for bottom-up processing in the somatosensory pathway at the beginning of conditioning followed by top-down processing. This is consistent with the idea that the thalamocortical loop plays a crucial role in attentional processes.
Collapse
|
44
|
Potter AS, Bucci DJ, Newhouse PA. Manipulation of nicotinic acetylcholine receptors differentially affects behavioral inhibition in human subjects with and without disordered baseline impulsivity. Psychopharmacology (Berl) 2012; 220:331-40. [PMID: 21969123 PMCID: PMC3288699 DOI: 10.1007/s00213-011-2476-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 08/31/2011] [Indexed: 11/30/2022]
Abstract
RATIONALE Evidence for a relationship between cigarette smoking and attention-deficit/hyperactivity disorder (ADHD) has prompted investigations into nicotinic treatments for this disorder. Impulsivity is a hallmark of ADHD and is measured in the laboratory as behavioral inhibition (BI) using the stop signal task (SST). Acute nicotine improves SST performance in adolescents and young adults who have both ADHD and impaired baseline SST performance, raising questions about the role of nicotinic acetylcholine receptor function in BI. The specificity of this effect to those with ADHD, the component processes of the SST affected by nicotine, and the effects of nicotinic antagonism are yet unknown. OBJECTIVES This study investigated the effects of both a nicotinic receptor agonist and antagonist on the SST and choice reaction time task (CRT) in highly impulsive (HI) and control (CTRL) subjects. METHODS This was a within-subjects, double-blind study of: 7 mg transdermal nicotine, 20 mg oral mecamylamine, and placebo. Subjects were recruited into HI (n = 11) and CTRL (n = 14) groups based on both SST and clinical criteria. RESULTS BI was significantly improved by nicotine compared with placebo in the HI group and impaired by mecamylamine in the CTRL group. Go signal reaction time on the SST was improved by nicotine compared with placebo in the CTRL group and was unchanged in both groups on the CRT. CONCLUSIONS These findings demonstrate nicotinic modulation of BI in subjects with both normal and disordered baseline performance. The effects on BI are consistent with cholinergic enhancement of signal detection processes and/or modulation of noradrenaline by nicotine.
Collapse
Affiliation(s)
- Alexandra S. Potter
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont, Burlington, VT
| | - David J. Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH
| | - Paul A. Newhouse
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont, Burlington, VT
| |
Collapse
|
45
|
Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging. Prog Neurobiol 2011; 94:360-88. [PMID: 21708219 PMCID: PMC3382716 DOI: 10.1016/j.pneurobio.2011.06.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 11/22/2022]
Abstract
Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications.
Collapse
|
46
|
CNS activation maps in awake rats exposed to thermal stimuli to the dorsum of the hindpaw. Neuroimage 2011; 54:1355-66. [DOI: 10.1016/j.neuroimage.2010.08.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/19/2010] [Accepted: 08/21/2010] [Indexed: 01/08/2023] Open
|
47
|
Calu DJ, Roesch MR, Haney RZ, Holland PC, Schoenbaum G. Neural correlates of variations in event processing during learning in central nucleus of amygdala. Neuron 2010; 68:991-1001. [PMID: 21145010 PMCID: PMC3033562 DOI: 10.1016/j.neuron.2010.11.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
Abstract
Attention or variations in event processing help drive learning. Lesion studies have implicated the central nucleus of the amygdala (CeA) in this process, particularly when expected rewards are omitted. However, lesion studies cannot specify how information processing in CeA supports such learning. To address these questions, we recorded CeA neurons in rats performing a task in which rewards were delivered or omitted unexpectedly. We found that activity in CeA neurons increased selectively at the time of omission and declined again with learning. Increased firing correlated with CeA-inactivation sensitive measures of attention. Notably CeA neurons did not fire to the cues or in response to unexpected rewards. These results indicate that CeA contributes to learning in response to reward omission due to a specific role in signaling actual omission rather than a more general involvement in signaling expectancies, errors, or reward value.
Collapse
Affiliation(s)
- Donna J Calu
- Program in Neuroscience, University of Maryland School of Medicine, 20 Penn St, HSF-2 S251, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
48
|
Klinkenberg I, Sambeth A, Blokland A. Acetylcholine and attention. Behav Brain Res 2010; 221:430-42. [PMID: 21108972 DOI: 10.1016/j.bbr.2010.11.033] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Historically, ACh has been implicated in learning and short-term memory functions. However, more recent studies have provided support for a role of cortical ACh in attentional effort, orienting and the detection of behavioral significant stimuli. The current review article summarizes studies in animals and humans which have investigated the role of ACh in attention and cognition. An attempt has been made to differentiate between brain regions involved in attentional processes versus those important for other cognitive functions. To this purpose, various experimental methods and interventions were used. Animal behavioral studies have injected the selective immunotoxin IgG-saporin to induce specific cholinergic lesions, employed electrochemical techniques such as microdialysis, or have administered cholinergic compounds into discrete parts of the brain. Human studies that give some indication on the link between central cholinergic signaling and cognition are obviously confined to less invasive, imaging methods such as fMRI. The brain areas that are deemed most important for intact attentional processing in both animals and humans appear to be the (pre)frontal, parietal and somatosensory (especially visual) regions, where ACh plays a vital role in the top-down control of attentional orienting and stimulus discrimination. In contrast, cholinergic signaling in the septohippocampal system is suggested to be involved in memory processes. Thus, it appears that the role of ACh in cognition is different per brain region and between nicotinic versus muscarinic receptor subtypes.
Collapse
Affiliation(s)
- Inge Klinkenberg
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, European Graduate School of Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
49
|
Corlett PR, Taylor JR, Wang XJ, Fletcher PC, Krystal JH. Toward a neurobiology of delusions. Prog Neurobiol 2010; 92:345-69. [PMID: 20558235 PMCID: PMC3676875 DOI: 10.1016/j.pneurobio.2010.06.007] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/06/2010] [Accepted: 06/08/2010] [Indexed: 12/21/2022]
Abstract
Delusions are the false and often incorrigible beliefs that can cause severe suffering in mental illness. We cannot yet explain them in terms of underlying neurobiological abnormalities. However, by drawing on recent advances in the biological, computational and psychological processes of reinforcement learning, memory, and perception it may be feasible to account for delusions in terms of cognition and brain function. The account focuses on a particular parameter, prediction error--the mismatch between expectation and experience--that provides a computational mechanism common to cortical hierarchies, fronto-striatal circuits and the amygdala as well as parietal cortices. We suggest that delusions result from aberrations in how brain circuits specify hierarchical predictions, and how they compute and respond to prediction errors. Defects in these fundamental brain mechanisms can vitiate perception, memory, bodily agency and social learning such that individuals with delusions experience an internal and external world that healthy individuals would find difficult to comprehend. The present model attempts to provide a framework through which we can build a mechanistic and translational understanding of these puzzling symptoms.
Collapse
Affiliation(s)
- P R Corlett
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Centre, Abraham Ribicoff Research Facility, 34 Park Street, New Haven, CT 06519, USA.
| | | | | | | | | |
Collapse
|
50
|
Quinn LK, Nitz DA, Chiba AA. Learning-dependent dynamics of beta-frequency oscillations in the basal forebrain of rats. Eur J Neurosci 2010; 32:1507-15. [PMID: 21039960 DOI: 10.1111/j.1460-9568.2010.07422.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholinergic, GABAergic and glutamatergic projection neurons of the basal forebrain (BF) innervate widespread regions of the neocortex and are thought to modulate learning and attentional processes. Although it is known that neuronal cell types in the BF exhibit oscillatory firing patterns, whether the BF as a whole shows oscillatory field potential activity, and whether such neuronal patterns relate to components of cognitive tasks, has yet to be determined. To this end, local field potentials (LFPs) were recorded from the BF of rats performing an associative learning task wherein neutral objects were paired with differently valued reinforcers (pellets). Over time, rats developed preferences for the different objects based on pellet-value, indicating that the pairings had been well learned. LFPs from all rats revealed robust, short-lived bursts of beta-frequency oscillations (∼25 Hz) around the time of object encounter. Beta-frequency LFP events were found to be learning-dependent, with beta-frequency peak amplitudes significantly greater on the first day of the task when object-reinforcement pairings were novel than on the last day when pairings were well learned. The findings indicate that oscillatory bursting field potential activity occurs in the BF in freely behaving animals. Furthermore, the temporal distribution of these bursts suggests that they are probably relevant to associative learning.
Collapse
Affiliation(s)
- Laleh K Quinn
- Department of Cognitive Science, University of California at San Diego.
| | | | | |
Collapse
|