1
|
Ma L, Katyare N, Johnston K, Everling S. Effects of Ketamine on Frontoparietal Interactions in a Rule-Based Antisaccade Task in Macaque Monkeys. J Neurosci 2024; 44:e1018232024. [PMID: 39472063 PMCID: PMC11638814 DOI: 10.1523/jneurosci.1018-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Cognitive control is engaged by working memory processes and high-demand situations like antisaccade, where one must suppress a prepotent response. While it is known to be supported by the frontoparietal control network, how intra- and interareal dynamics contribute to cognitive control processes remains unclear. N-Methyl-d-aspartate glutamate receptors (NMDARs) play a key role in prefrontal dynamics that support cognitive control. NMDAR antagonists, such as ketamine, are known to alter task-related prefrontal activities and impair cognitive performance. However, the role of NMDAR in cognitive control-related frontoparietal dynamics remains underexplored. Here, we simultaneously recorded local field potentials and single-unit activities from the lateral prefrontal (lPFC) and posterior parietal cortices (PPC) in two male macaque monkeys during a rule-based antisaccade task, with both rule-visible (RV) and rule-memorized (RM) conditions. In addition to altering the E/I balance in both areas, ketamine had a negative impact on rule coding in true oscillatory activities. It also reduced frontoparietal coherence in a frequency- and rule-dependent manner. Granger prediction analysis revealed that ketamine induced an overall reduction in bidirectional connectivity. Among antisaccade trials, a greater reduction in lPFC-PPC connectivity during the delay period preceded a greater delay in saccadic onset under the RM condition and a greater deficit in performance under the RV condition. Lastly, ketamine compromised rule coding in lPFC neurons in both RV and RM conditions and in PPC neurons only in the RV condition. Our findings demonstrate the utility of acute NMDAR antagonists in understanding the mechanisms through which frontoparietal dynamics support cognitive control processes.
Collapse
Affiliation(s)
- Liya Ma
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Biophysics, Donders Centre for Neuroscience, Radboud University
| | - Nupur Katyare
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | - Stefan Everling
- Department of Physiology and Pharmacology
- Brain and Mind Institute, 6525 AJ Nijmegen, The Netherlands
- Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
2
|
Bottemanne H. Bayesian brain theory: Computational neuroscience of belief. Neuroscience 2024:S0306-4522(24)00704-8. [PMID: 39643232 DOI: 10.1016/j.neuroscience.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Bayesian brain theory, a computational framework derived from the principles of Predictive Processing (PP), proposes a mechanistic formulation of belief generation and updating. This theory assumes that the brain encodes a generative model of its environment, made up of probabilistic beliefs organized in networks, from which it generates predictions about future sensory inputs. The difference between predictions and sensory signals produces prediction errors, which are used to update belief networks. In this article, we introduce the fundamental principles of the computational neuroscience of belief and show how this dynamic of prediction and updating offers a comprehensive account of the phenomenology of belief in psychiatry.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Institut du Cerveau - Paris Brain Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche, 7225 Paris, France; Department of Psychiatry, Bicêtre Hospital, Mood Center Paris Saclay, DMU Neurosciences, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris (AP-HP), Kremlin-Bicêtre, France; MOODS Team, INSERM 1018, CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Université Paris-Saclay, Faculté de Médecine Paris-Saclay, Kremlin Bicêtre, France.
| |
Collapse
|
3
|
Ruggiero A, Heim LR, Susman L, Hreaky D, Shapira I, Katsenelson M, Rosenblum K, Slutsky I. NMDA receptors regulate the firing rate set point of hippocampal circuits without altering single-cell dynamics. Neuron 2024:S0896-6273(24)00735-9. [PMID: 39515323 DOI: 10.1016/j.neuron.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/05/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Understanding how neuronal circuits stabilize their activity is a fundamental yet poorly understood aspect of neuroscience. Here, we show that hippocampal network properties, such as firing rate distribution and dimensionality, are actively regulated, despite perturbations and single-cell drift. Continuous inhibition of N-methyl-D-aspartate receptors (NMDARs) ex vivo lowers the excitation/inhibition ratio and network firing rates while preserving resilience to perturbations. This establishes a new network firing rate set point via NMDAR-eEF2K signaling pathway. NMDARs' capacity to modulate and stabilize network firing is mediated by excitatory synapses and the intrinsic excitability of parvalbumin-positive neurons, respectively. In behaving mice, continuous NMDAR blockade in CA1 reduces network firing without altering single-neuron drift or triggering a compensatory response. These findings expand NMDAR function beyond their canonical role in synaptic plasticity and raise the possibility that some NMDAR-dependent behavioral effects are mediated by their unique regulation of population activity set points.
Collapse
Affiliation(s)
- Antonella Ruggiero
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Lee Susman
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
| | - Dema Hreaky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maxim Katsenelson
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel; Sieratzki Institute for Advances in Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
4
|
Bharmauria V, Ramezanpour H, Ouelhazi A, Yahia Belkacemi Y, Flouty O, Molotchnikoff S. KETAMINE: Neural- and network-level changes. Neuroscience 2024; 559:188-198. [PMID: 39245312 DOI: 10.1016/j.neuroscience.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Ketamine is a widely used clinical drug that has several functional and clinical applications, including its use as an anaesthetic, analgesic, anti-depressive, anti-suicidal agent, among others. Among its diverse behavioral effects, it influences short-term memory and induces psychedelic effects. At the neural level across different brain areas, it modulates neural firing rates, neural tuning, brain oscillations, and modularity, while promoting hypersynchrony and random connectivity between neurons. In our recent studies we demonstrated that topical application of ketamine on the visual cortex alters neural tuning and promotes vigorous connectivity between neurons by decreasing their firing variability. Here, we begin with a brief review of the literature, followed by results from our lab, where we synthesize a dendritic model of neural tuning and network changes following ketamine application. This model has potential implications for focused modulation of cortical networks in clinical settings. Finally, we identify current gaps in research and suggest directions for future studies, particularly emphasizing the need for more animal experiments to establish a platform for effective translation and synergistic therapies combining ketamine with other protocols such as training and adaptation. In summary, investigating ketamine's broader systemic effects, not only provides deeper insight into cognitive functions and consciousness but also paves the way to advance therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vishal Bharmauria
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA; Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | - Hamidreza Ramezanpour
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Afef Ouelhazi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Yassine Yahia Belkacemi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Oliver Flouty
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA
| | - Stéphane Molotchnikoff
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
5
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
6
|
Li S, Rosen MC, Chang S, David S, Freedman DJ. Alterations of neural activity in the prefrontal cortex associated with deficits in working memory performance. Front Behav Neurosci 2023; 17:1213435. [PMID: 37915531 PMCID: PMC10616307 DOI: 10.3389/fnbeh.2023.1213435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
Working memory (WM), a core cognitive function, enables the temporary holding and manipulation of information in mind to support ongoing behavior. Neurophysiological recordings conducted in nonhuman primates have revealed neural correlates of this process in a network of higher-order cortical regions, particularly the prefrontal cortex (PFC). Here, we review the circuit mechanisms and functional importance of WM-related activity in these areas. Recent neurophysiological data indicates that the absence of these neural correlates at different stages of WM is accompanied by distinct behavioral deficits, which are characteristic of various disease states/normal aging and which we review here. Finally, we discuss emerging evidence of electrical stimulation ameliorating these WM deficits in both humans and non-human primates. These results are important for a basic understanding of the neural mechanisms supporting WM, as well as for translational efforts to developing therapies capable of enhancing healthy WM ability or restoring WM from dysfunction.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Matthew C. Rosen
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Suha Chang
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Samuel David
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - David J. Freedman
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
- Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Munch AS, Amat-Foraster M, Agerskov C, Bastlund JF, Herrik KF, Richter U. Sub-anesthetic doses of ketamine increase single cell entrainment in the rat auditory cortex during auditory steady-state response. J Psychopharmacol 2023; 37:822-835. [PMID: 37165655 DOI: 10.1177/02698811231164231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Understanding the effects of the N-methyl-D-aspartate receptor (NMDA-R) antagonist ketamine on brain function is of considerable interest due to the discovery of its fast-acting antidepressant properties. It is well known that gamma oscillations are increased when ketamine is administered to rodents and humans, and increases in the auditory steady-state response (ASSR) have also been observed. AIMS To elucidate the cellular substrate of the increase in network activity and synchrony observed by sub-anesthetic doses of ketamine, the aim was to investigate spike timing and regularity and determine how this is affected by the animal's motor state. METHODS Single unit activity and local field potentials from the auditory cortex of awake, freely moving rats were recorded with microelectrode arrays during an ASSR paradigm. RESULTS Ketamine administration yielded a significant increase in ASSR power and phase locking, both significantly modulated by motor activity. Before drug administration, putative fast-spiking interneurons (FSIs) were significantly more entrained to the stimulus than putative pyramidal neurons (PYRs). The degree of entrainment significantly increased at lower doses of ketamine (3 and 10 mg/kg for FSIs, 10 mg/kg for PYRs). At the highest dose (30 mg/kg), a strong increase in tonic firing of PYRs was observed. CONCLUSIONS These findings suggest an involvement of FSIs in the increased network synchrony and provide a possible cellular explanation for the well-documented effects of ketamine-induced increase in power and synchronicity during ASSR. The results support the importance to evaluate different motor states separately for more translational preclinical research.
Collapse
Affiliation(s)
- Anders Sonne Munch
- Brain Circuit and Function, Lundbeck & University of Copenhagen, Kobenhavn, Denmark
| | | | - Claus Agerskov
- Pathology, Circuits and Symptoms, Lundbeck, Valby, Denmark
| | | | | | - Ulrike Richter
- Pathology, Circuits and Symptoms, Lundbeck, Valby, Denmark
| |
Collapse
|
8
|
Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia. Curr Top Behav Neurosci 2023; 63:315-362. [PMID: 36607528 DOI: 10.1007/7854_2022_407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter, I review studies in nonhuman primates that emulate the circuit failure in prefrontal cortex responsible for working memory and cognitive control deficits in schizophrenia. These studies have characterized how synaptic malfunction, typically induced by blockade of NMDAR, disrupts neural function and computation in prefrontal networks to explain errors in cognitive tasks that are seen in schizophrenia. This work is finding causal relationships between pathogenic events of relevance to schizophrenia at vastly different levels of scale, from synapses, to neurons, local, circuits, distributed networks, computation, and behavior. Pharmacological manipulation, the dominant approach in primate models, has limited construct validity for schizophrenia pathogenesis, as the disease results from a complex interplay between environmental, developmental, and genetic factors. Genetic manipulation replicating schizophrenia risk is more advanced in rodent models. Nonetheless, gene manipulation in nonhuman primates is rapidly advancing, and primate developmental models have been established. Integration of large scale neural recording, genetic manipulation, and computational modeling in nonhuman primates holds considerable potential to provide a crucial schizophrenia model moving forward. Data generated by this approach is likely to fill several crucial gaps in our understanding of the causal sequence leading to schizophrenia in humans. This causal chain presents a vexing problem largely because it requires understanding how events at very different levels of scale relate to one another, from genes to circuits to cognition to social interactions. Nonhuman primate models excel here. They optimally enable discovery of causal relationships across levels of scale in the brain that are relevant to cognitive deficits in schizophrenia. The mechanistic understanding of prefrontal circuit failure they promise to provide may point the way to more effective therapeutic interventions to restore function to prefrontal networks in the disease.
Collapse
|
9
|
Almeida VN. The neural hierarchy of consciousness. Neuropsychologia 2022; 169:108202. [PMID: 35271856 DOI: 10.1016/j.neuropsychologia.2022.108202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023]
Abstract
The chief undertaking in the studies of consciousness is that of unravelling "the minimal set of neural processes that are together sufficient for the conscious experience of a particular content - the neural correlates of consciousness". To this day, this crusade remains at an impasse, with a clash of two main theories: consciousness may arise either in a graded and cortically-localised fashion, or in an all-or-none and widespread one. In spite of the long-lasting theoretical debates, neurophysiological theories of consciousness have been mostly dissociated from them. Herein, a theoretical review will be put forth with the aim to change that. In its first half, we will cover the hard available evidence on the neurophysiology of consciousness, whereas in its second half we will weave a series of considerations on both theories and substantiate a novel take on conscious awareness: the levels of processing approach, partitioning the conscious architecture into lower- and higher-order, graded and nonlinear.
Collapse
Affiliation(s)
- Victor N Almeida
- Faculdade de Letras, Universidade Federal de Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
10
|
Zick JL, Crowe DA, Blackman RK, Schultz K, Bergstrand DW, DeNicola AL, Carter RE, Ebner TJ, Lanier LM, Netoff TI, Chafee MV. Disparate insults relevant to schizophrenia converge on impaired spike synchrony and weaker synaptic interactions in prefrontal local circuits. Curr Biol 2022; 32:14-25.e4. [PMID: 34678162 PMCID: PMC10038008 DOI: 10.1016/j.cub.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/25/2021] [Accepted: 10/05/2021] [Indexed: 01/29/2023]
Abstract
Schizophrenia results from hundreds of known causes, including genetic, environmental, and developmental insults that cooperatively increase risk of developing the disease. In spite of the diversity of causal factors, schizophrenia presents with a core set of symptoms and brain abnormalities (both structural and functional) that particularly impact the prefrontal cortex. This suggests that many different causal factors leading to schizophrenia may cause prefrontal neurons and circuits to fail in fundamentally similar ways. The nature of convergent malfunctions in prefrontal circuits at the cell and synaptic levels leading to schizophrenia are not known. Here, we apply convergence-guided search to identify core pathological changes in the functional properties of prefrontal circuits that lie downstream of mechanistically distinct insults relevant to the disease. We compare the impacts of blocking NMDA receptors in monkeys and deleting a schizophrenia risk gene in mice on activity timing and effective communication in prefrontal local circuits. Although these manipulations operate through distinct molecular pathways and biological mechanisms, we found they produced convergent pathophysiological effects on prefrontal local circuits. Both manipulations reduced the frequency of synchronous (0-lag) spiking between prefrontal neurons and weakened functional interactions between prefrontal neurons at monosynaptic lags as measured by information transfer between the neurons. The two observations may be related, as reduction in synchronous spiking between prefrontal neurons would be expected to weaken synaptic connections between them via spike-timing-dependent synaptic plasticity. These data suggest that the link between spike timing and synaptic connectivity could comprise the functional vulnerability that multiple risk factors exploit to produce disease.
Collapse
Affiliation(s)
- Jennifer L Zick
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Crowe
- Department of Biology, Augsburg University, Minneapolis, MN 55454, USA
| | - Rachael K Blackman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey Schultz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Adele L DeNicola
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lorene M Lanier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Brain Sciences Center, VA Medical Center, Minneapolis, MN 55417, USA.
| |
Collapse
|
11
|
Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry 2022; 27:731-743. [PMID: 34163013 PMCID: PMC8695640 DOI: 10.1038/s41380-021-01196-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.
Collapse
|
12
|
Predictive Feedback, Early Sensory Representations, and Fast Responses to Predicted Stimuli Depend on NMDA Receptors. J Neurosci 2021; 41:10130-10147. [PMID: 34732525 DOI: 10.1523/jneurosci.1311-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 01/03/2023] Open
Abstract
Learned associations between stimuli allow us to model the world and make predictions, crucial for efficient behavior (e.g., hearing a siren, we expect to see an ambulance and quickly make way). While there are theoretical and computational frameworks for prediction, the circuit and receptor-level mechanisms are unclear. Using high-density EEG, Bayesian modeling, and machine learning, we show that inferred "causal" relationships between stimuli and frontal alpha activity account for reaction times (a proxy for predictions) on a trial-by-trial basis in an audiovisual delayed match-to-sample task which elicited predictions. Predictive β feedback activated sensory representations in advance of predicted stimuli. Low-dose ketamine, an NMDAR blocker, but not the control drug dexmedetomidine, perturbed behavioral indices of predictions, their representation in higher-order cortex, feedback to posterior cortex, and pre-activation of sensory templates in higher-order sensory cortex. This study suggests that predictions depend on alpha activity in higher-order cortex, β feedback, and NMDARs, and ketamine blocks access to learned predictive information.SIGNIFICANCE STATEMENT We learn the statistical regularities around us, creating associations between sensory stimuli. These associations can be exploited by generating predictions, which enable fast and efficient behavior. When predictions are perturbed, it can negatively influence perception and even contribute to psychiatric disorders, such as schizophrenia. Here we show that the frontal lobe generates predictions and sends them to posterior brain areas, to activate representations of predicted sensory stimuli before their appearance. Oscillations in neural activity (α and β waves) are vital for these predictive mechanisms. The drug ketamine blocks predictions and the underlying mechanisms. This suggests that the generation of predictions in the frontal lobe, and the feedback pre-activating sensory representations in advance of stimuli, depend on NMDARs.
Collapse
|
13
|
Stein H, Barbosa J, Compte A. Towards biologically constrained attractor models of schizophrenia. Curr Opin Neurobiol 2021; 70:171-181. [PMID: 34839146 DOI: 10.1016/j.conb.2021.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/31/2022]
Abstract
Alterations in neuromodulation or synaptic transmission in biophysical attractor network models, as proposed by the dominant dopaminergic and glutamatergic theories of schizophrenia, successfully mimic working memory (WM) deficits in people with schizophrenia (PSZ). Yet, multiple, often opposing alterations in memory circuits can lead to the same behavioral patterns in these network models. Here, we critically revise the computational and experimental literature that links NMDAR hypofunction to WM precision loss in PSZ. We show in network simulations that currently available experimental evidence cannot set apart competing biophysical accounts. Critical points to resolve are the effects of increases vs. decreases in E/I ratio (e.g. through NMDAR blockade) on firing rate tuning and shared noise modulations and possible concomitant deficits in short-term plasticity. We argue that these concerted experimental and computational efforts will lead to a better understanding of the neurobiology underlying cognitive deficits in PSZ.
Collapse
Affiliation(s)
- Heike Stein
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Études Cognitives, École Normale Supérieure, INSERM U960, PSL University, Paris, France
| | - Joao Barbosa
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Études Cognitives, École Normale Supérieure, INSERM U960, PSL University, Paris, France
| | - Albert Compte
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
14
|
Ketamine disrupts naturalistic coding of working memory in primate lateral prefrontal cortex networks. Mol Psychiatry 2021; 26:6688-6703. [PMID: 33981008 PMCID: PMC8760073 DOI: 10.1038/s41380-021-01082-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 01/23/2023]
Abstract
Ketamine is a dissociative anesthetic drug, which has more recently emerged as a rapid-acting antidepressant. When acutely administered at subanesthetic doses, ketamine causes cognitive deficits like those observed in patients with schizophrenia, including impaired working memory. Although these effects have been linked to ketamine's action as an N-methyl-D-aspartate receptor antagonist, it is unclear how synaptic alterations translate into changes in brain microcircuit function that ultimately influence cognition. Here, we administered ketamine to rhesus monkeys during a spatial working memory task set in a naturalistic virtual environment. Ketamine induced transient working memory deficits while sparing perceptual and motor skills. Working memory deficits were accompanied by decreased responses of fast spiking inhibitory interneurons and increased responses of broad spiking excitatory neurons in the lateral prefrontal cortex. This translated into a decrease in neuronal tuning and information encoded by neuronal populations about remembered locations. Our results demonstrate that ketamine differentially affects neuronal types in the neocortex; thus, it perturbs the excitation inhibition balance within prefrontal microcircuits and ultimately leads to selective working memory deficits.
Collapse
|
15
|
Cavanagh SE, Lam NH, Murray JD, Hunt LT, Kennerley SW. A circuit mechanism for decision-making biases and NMDA receptor hypofunction. eLife 2020; 9:e53664. [PMID: 32988455 PMCID: PMC7524553 DOI: 10.7554/elife.53664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Decision-making biases can be features of normal behaviour, or deficits underlying neuropsychiatric symptoms. We used behavioural psychophysics, spiking-circuit modelling and pharmacological manipulations to explore decision-making biases during evidence integration. Monkeys showed a pro-variance bias (PVB): a preference to choose options with more variable evidence. The PVB was also present in a spiking circuit model, revealing a potential neural mechanism for this behaviour. To model possible effects of NMDA receptor (NMDA-R) antagonism on this behaviour, we simulated the effects of NMDA-R hypofunction onto either excitatory or inhibitory neurons in the model. These were then tested experimentally using the NMDA-R antagonist ketamine, a pharmacological model of schizophrenia. Ketamine yielded an increase in subjects' PVB, consistent with lowered cortical excitation/inhibition balance from NMDA-R hypofunction predominantly onto excitatory neurons. These results provide a circuit-level mechanism that bridges across explanatory scales, from the synaptic to the behavioural, in neuropsychiatric disorders where decision-making biases are prominent.
Collapse
Affiliation(s)
- Sean Edward Cavanagh
- Department of Clinical and Movement Neurosciences, University College LondonLondonUnited Kingdom
| | - Norman H Lam
- Department of Physics, Yale UniversityNew HavenUnited States
| | - John D Murray
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Laurence Tudor Hunt
- Department of Clinical and Movement Neurosciences, University College LondonLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
- Max Planck-UCL Centre for Computational Psychiatry and Aging, University College LondonLondonUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
| | - Steven Wayne Kennerley
- Department of Clinical and Movement Neurosciences, University College LondonLondonUnited Kingdom
| |
Collapse
|
16
|
Deng D, Masri S, Yao L, Ma X, Cao X, Yang S, Bao S, Zhou Q. Increasing endogenous activity of NMDARs on GABAergic neurons increases inhibition, alters sensory processing and prevents noise-induced tinnitus. Sci Rep 2020; 10:11969. [PMID: 32686710 PMCID: PMC7371882 DOI: 10.1038/s41598-020-68652-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
Selective enhancement of GABAergic inhibition is thought to impact many vital brain functions and interferes with the genesis and/or progression of numerous brain disorders. Here, we show that selectively increasing NMDA receptor activity in inhibitory neurons using an NMDAR positive allosteric modulator (PAM) elevates spiking activity of inhibitory neurons in vitro and in vivo. In vivo infusion of PAM increases spontaneous and sound-evoked spiking in inhibitory and decreases spiking in excitatory neurons, and increases signal-to-noise ratio in the primary auditory cortex. In addition, PAM infusion prior to noise trauma prevents the occurrence of tinnitus and reduction in GABAergic inhibition. These results reveal that selectively enhancing endogenous NMDAR activity on the GABAergic neurons can effectively enhance inhibitory activity and alter excitatory-inhibitory balance, and may be useful for preventing diseases that involve reduced inhibition as the major cause.
Collapse
Affiliation(s)
- Di Deng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Samer Masri
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Lulu Yao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Ma
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xuebing Cao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sungchil Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
17
|
Kummerfeld E, Ma S, Blackman RK, DeNicola AL, Redish AD, Vinogradov S, Crowe DA, Chafee MV. Cognitive Control Errors in Nonhuman Primates Resembling Those in Schizophrenia Reflect Opposing Effects of NMDA Receptor Blockade on Causal Interactions Between Cells and Circuits in Prefrontal and Parietal Cortices. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:705-714. [PMID: 32513554 DOI: 10.1016/j.bpsc.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The causal biology underlying schizophrenia is not well understood, but it is likely to involve a malfunction in how neurons adjust synaptic connections in response to patterns of activity in networks. We examined statistical dependencies between neural signals at the cell, local circuit, and distributed network levels in prefrontal and parietal cortices of monkeys performing a variant of the AX continuous performance task paradigm. We then quantified changes in the pattern of neural interactions across levels of scale following NMDA receptor (NMDAR) blockade and related these changes to a pattern of cognitive control errors closely matching the performance of patients with schizophrenia. METHODS We recorded the spiking activity of 1762 neurons along with local field potentials at multiple electrode sites in prefrontal and parietal cortices concurrently, and we generated binary time series indicating the presence or absence of spikes in single neurons or local field potential power above or below a threshold. We then applied causal discovery analysis to the time series to detect statistical dependencies between the signals (causal interactions) and compared the pattern of these interactions before and after NMDAR blockade. RESULTS Global blockade of NMDAR produced distinctive and frequently opposite changes in neural interactions at the cell, local circuit, and network levels in prefrontal and parietal cortices. Cognitive control errors were associated with decreased interactions at the cell level and with opposite changes at the network level in prefrontal and parietal cortices. CONCLUSIONS NMDAR synaptic deficits change causal interactions between neural signals at different levels of scale that correlate with schizophrenia-like deficits in cognitive control.
Collapse
Affiliation(s)
- Erich Kummerfeld
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Rachael K Blackman
- Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Brain Sciences Center, Veterans Administration Medical Center, Minneapolis, Minnesota
| | - Adele L DeNicola
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Brain Sciences Center, Veterans Administration Medical Center, Minneapolis, Minnesota
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Sophia Vinogradov
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - David A Crowe
- Department of Biology, Augsburg University, Minneapolis, Minnesota
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Brain Sciences Center, Veterans Administration Medical Center, Minneapolis, Minnesota.
| |
Collapse
|
18
|
Datta D, Yang ST, Galvin VC, Solder J, Luo F, Morozov YM, Arellano J, Duque A, Rakic P, Arnsten AFT, Wang M. Noradrenergic α1-Adrenoceptor Actions in the Primate Dorsolateral Prefrontal Cortex. J Neurosci 2019; 39:2722-2734. [PMID: 30755491 PMCID: PMC6445993 DOI: 10.1523/jneurosci.2472-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/14/2023] Open
Abstract
Noradrenergic (NE) α1-adrenoceptors (α1-ARs) contribute to arousal mechanisms and play an important role in therapeutic medications such as those for the treatment of posttraumatic stress disorder (PTSD). However, little is known about how α1-AR stimulation influences neuronal firing in the dorsolateral prefrontal cortex (dlPFC), a newly evolved region that is dysfunctional in PTSD and other mental illnesses. The current study examined the effects of α1-AR manipulation on neuronal firing in dlPFC of rhesus monkeys performing a visuospatial working memory task, focusing on the "delay cells" that maintain spatially tuned information across the delay period. Iontophoresis of the α1-AR antagonist HEAT (2-{[β-(4-hydroxyphenyl)ethyl]aminomethyl}-1-tetralone) had mixed effects, reducing firing in a majority of neurons but having nonsignificant excitatory effects or no effect in remaining delay cells. These data suggest that endogenous NE has excitatory effects in some delay cells under basal conditions. In contrast, the α1-AR agonists phenylephrine and cirazoline suppressed delay cell firing and this was blocked by coadministration of HEAT. These results indicate an inverted-U dose response for α1-AR actions, with mixed excitatory actions under basal conditions and suppressed firing with high levels of α1-AR stimulation such as with stress exposure. Immunoelectron microscopy revealed α1-AR expression presynaptically in axons and axon terminals and postsynaptically in spines, dendrites, and astrocytes. It is possible that α1-AR excitatory effects arise from presynaptic excitation of glutamate release, whereas postsynaptic actions suppress firing through calcium-protein kinase C opening of potassium channels on spines. The latter may predominate under stressful conditions, leading to loss of dlPFC regulation during uncontrollable stress.SIGNIFICANCE STATEMENT Noradrenergic stimulation of α1-adrenoceptors (α1-ARs) is implicated in posttraumatic stress disorder (PTSD) and other mental disorders that involve dysfunction of the prefrontal cortex, a brain region that provides top-down control. However, the location and contribution of α1-ARs to prefrontal cortical physiology in primates has received little attention. This study found that α1-ARs are located near prefrontal synapses and that α1-AR stimulation has mixed effects under basal conditions. However, high levels of α1-AR stimulation, as occur with stress, suppress neuronal firing. These findings help to explain why we lose top-down control under conditions of uncontrollable stress when there are high levels of noradrenergic release in brain and why blocking α1-AR, such as with prazosin, may be helpful in the treatment of PTSD.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Sheng-Tao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Veronica C Galvin
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - John Solder
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Fei Luo
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Jon Arellano
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Alvaro Duque
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, and
| |
Collapse
|
19
|
Effects of ketamine on brain function during response inhibition. Psychopharmacology (Berl) 2018; 235:3559-3571. [PMID: 30357437 DOI: 10.1007/s00213-018-5081-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The uncompetitive N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist ketamine has been proposed to model symptoms of psychosis. Inhibitory deficits in the schizophrenia spectrum have been reliably reported using the antisaccade task. Interestingly, although similar antisaccade deficits have been reported following ketamine in non-human primates, ketamine-induced deficits have not been observed in healthy human volunteers. METHODS To investigate the effects of ketamine on brain function during an antisaccade task, we conducted a double-blind, placebo-controlled, within-subjects study on n = 15 healthy males. We measured the blood oxygen level dependent (BOLD) response and eye movements during a mixed antisaccade/prosaccade task while participants received a subanesthetic dose of intravenous ketamine (target plasma level 100 ng/ml) on one occasion and placebo on the other occasion. RESULTS While ketamine significantly increased self-ratings of psychosis-like experiences, it did not induce antisaccade or prosaccade performance deficits. At the level of BOLD, we observed an interaction between treatment and task condition in somatosensory cortex, suggesting recruitment of additional neural resources in the antisaccade condition under NMDAR blockage. DISCUSSION Given the robust evidence of antisaccade deficits in schizophrenia spectrum populations, the current findings suggest that ketamine may not mimic all features of psychosis at the dose used in this study. Our findings underline the importance of a more detailed research to further understand and define effects of NMDAR hypofunction on human brain function and behavior, with a view to applying ketamine administration as a model system of psychosis. Future studies with varying doses will be of importance in this context.
Collapse
|
20
|
Zick JL, Blackman RK, Crowe DA, Amirikian B, DeNicola AL, Netoff TI, Chafee MV. Blocking NMDAR Disrupts Spike Timing and Decouples Monkey Prefrontal Circuits: Implications for Activity-Dependent Disconnection in Schizophrenia. Neuron 2018; 98:1243-1255.e5. [PMID: 29861281 DOI: 10.1016/j.neuron.2018.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/06/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023]
Abstract
We employed multi-electrode array recording to evaluate the influence of NMDA receptors (NMDAR) on spike-timing dynamics in prefrontal networks of monkeys as they performed a cognitive control task measuring specific deficits in schizophrenia. Systemic, periodic administration of an NMDAR antagonist (phencyclidine) reduced the prevalence and strength of synchronous (0-lag) spike correlation in simultaneously recorded neuron pairs. We employed transfer entropy analysis to measure effective connectivity between prefrontal neurons at lags consistent with monosynaptic interactions and found that effective connectivity was persistently reduced following exposure to the NMDAR antagonist. These results suggest that a disruption of spike timing and effective connectivity might be interrelated factors in pathogenesis, supporting an activity-dependent disconnection theory of schizophrenia. In this theory, disruption of NMDAR synaptic function leads to dysregulated timing of action potentials in prefrontal networks, accelerating synaptic disconnection through a spike-timing-dependent mechanism.
Collapse
Affiliation(s)
- Jennifer L Zick
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachael K Blackman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Crowe
- Department of Biology, Augsburg University, Minneapolis, MN 55454, USA
| | - Bagrat Amirikian
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Brain Sciences Center, VA Medical Center, Minneapolis, MN 55417, USA
| | - Adele L DeNicola
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Brain Sciences Center, VA Medical Center, Minneapolis, MN 55417, USA
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Brain Sciences Center, VA Medical Center, Minneapolis, MN 55417, USA.
| |
Collapse
|
21
|
Ketamine Alters Lateral Prefrontal Oscillations in a Rule-Based Working Memory Task. J Neurosci 2018; 38:2482-2494. [PMID: 29437929 DOI: 10.1523/jneurosci.2659-17.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 11/21/2022] Open
Abstract
Acute administration of N-methyl-D-aspartate receptor (NMDAR) antagonists in healthy humans and animals produces working memory deficits similar to those observed in schizophrenia. However, it is unclear whether they also lead to altered low-frequency (≤60 Hz) neural oscillatory activities similar to those associated with schizophrenia during working memory processes. Here, we recorded local field potentials (LFPs) and single-unit activity from the lateral prefrontal cortex (LPFC) of three male rhesus macaque monkeys while they performed a rule-based prosaccade and antisaccade working memory task both before and after systemic injections of a subanesthetic dose (≤0.7 mg/kg) of ketamine. Accompanying working-memory impairment, ketamine enhanced the low-gamma-band (30-60 Hz) and dampened the beta-band (13-30 Hz) oscillatory activities in the LPFC during both delay periods and intertrial intervals. It also increased task-related alpha-band activities, likely reflecting compromised attention. Beta-band oscillations may be especially relevant to working memory processes because stronger beta power weakly but significantly predicted shorter saccadic reaction time. Also in beta band, ketamine reduced the performance-related oscillation as well as the rule information encoded in the spectral power. Ketamine also reduced rule information in the spike field phase consistency in almost all frequencies up to 60 Hz. Our findings support NMDAR antagonists in nonhuman primates as a meaningful model for altered neural oscillations and synchrony, which reflect a disorganized network underlying the working memory deficits in schizophrenia.SIGNIFICANCE STATEMENT Low doses of ketamine, an NMDAR blocker, produce working memory deficits similar to those observed in schizophrenia. In the lateral prefrontal cortex, a key brain region for working memory, we found that ketamine altered neural oscillatory activities in similar ways that differentiate schizophrenic patients and healthy subjects during both task and nontask periods. Ketamine induced stronger gamma (30-60 Hz) and weaker beta (13-30 Hz) oscillations, reflecting local hyperactivity and reduced long-range communications. Furthermore, ketamine reduced performance-related oscillatory activities, as well as the rule information encoded in the oscillations and in the synchrony between single-cell activities and oscillations. The ketamine model helps link the molecular and cellular basis of neural oscillatory changes to the working memory deficit in schizophrenia.
Collapse
|
22
|
Fluid network dynamics in the prefrontal cortex during multiple strategy switching. Nat Commun 2018; 9:309. [PMID: 29358717 PMCID: PMC5778086 DOI: 10.1038/s41467-017-02764-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/26/2017] [Indexed: 01/08/2023] Open
Abstract
Coordinated shifts of neuronal activity in the prefrontal cortex are associated with strategy adaptations in behavioural tasks, when animals switch from following one rule to another. However, network dynamics related to multiple-rule changes are scarcely known. We show how firing rates of individual neurons in the prelimbic and cingulate cortex correlate with the performance of rats trained to change their navigation multiple times according to allocentric and egocentric strategies. The concerted population activity exhibits a stable firing during the performance of one rule but shifted to another neuronal firing state when a new rule is learnt. Interestingly, when the same rule is presented a second time within the same session, neuronal firing does not revert back to the original neuronal firing state, but a new activity-state is formed. Our data indicate that neuronal firing of prefrontal cortical neurons represents changes in strategy and task-performance rather than specific strategies or rules. Population activity of neurons in the prefrontal cortex has been shown to represent cognitive strategy and rules. Here the authors report that when the same rule is repeated on multiple occasions in the task, it is accompanied each time by a new prefrontal firing rate state.
Collapse
|
23
|
Cholinergic Overstimulation Attenuates Rule Selectivity in Macaque Prefrontal Cortex. J Neurosci 2017; 38:1137-1150. [PMID: 29255006 DOI: 10.1523/jneurosci.3198-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine is released in the prefrontal cortex (PFC) and is a key modulator of cognitive performance in primates. Cholinergic stimulation has been shown to have beneficial effects on performance of cognitive tasks, and cholinergic receptors are being actively explored as promising targets for ameliorating cognitive deficits in Alzheimer's disease. We hypothesized that cholinergic stimulation of PFC during performance of a cognitive task would augment neuronal activity and neuronal coding of task attributes. We iontophoretically applied the general cholinergic receptor agonist carbachol onto neurons in dorsolateral PFC (DLPFC) of male rhesus macaques performing rule-guided prosaccades and antisaccades, a well established oculomotor task for testing cognitive control. Carbachol application had heterogeneous effects on neuronal excitability, with both excitation and suppression observed in significant proportions. Contrary to our prediction, neurons with rule-selective activity exhibited a reduction in selectivity during carbachol application. Cholinergic stimulation disrupted rule selectivity regardless of whether it had suppressive or excitatory effects on these neurons. In addition, cholinergic stimulation excited putative pyramidal neurons, whereas the activity of putative interneurons remained unchanged. Moreover, cholinergic stimulation attenuated saccade direction selectivity in putative pyramidal neurons due to nonspecific increases in activity. Our results suggest excessive cholinergic stimulation has detrimental effects on DLPFC representations of task attributes. These findings delineate the complexity and heterogeneity of neuromodulation of cerebral cortex by cholinergic stimulation, an area of active exploration with respect to the development of cognitive enhancers.SIGNIFICANCE STATEMENT The neurotransmitter acetylcholine is known to be important for cognitive processes in the prefrontal cortex. Removal of acetylcholine from prefrontal cortex can disrupt short-term memory performance and is reminiscent of Alzheimer's disease, which is characterized by degeneration of acetylcholine-producing neurons. Stimulation of cholinergic receptors is being explored to create cognitive enhancers for the treatment of Alzheimer's disease and other psychiatric diseases. Here, we stimulated cholinergic receptors in prefrontal cortex and examined its effects on neurons that are engaged in cognitive behavior. Surprisingly, cholinergic stimulation decreased neurons' ability to discriminate between rules. This work suggests that overstimulation of acetylcholine receptors could disrupt neuronal processing during cognition and is relevant to the design of cognitive enhancers based on stimulating the cholinergic system.
Collapse
|
24
|
Noda Y, Barr MS, Zomorrodi R, Cash RFH, Farzan F, Rajji TK, Chen R, Daskalakis ZJ, Blumberger DM. Evaluation of short interval cortical inhibition and intracortical facilitation from the dorsolateral prefrontal cortex in patients with schizophrenia. Sci Rep 2017; 7:17106. [PMID: 29213090 PMCID: PMC5719013 DOI: 10.1038/s41598-017-17052-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/21/2017] [Indexed: 02/05/2023] Open
Abstract
GABAergic and glutamatergic dysfunction in the dorsolateral prefrontal cortex (DLPFC) are thought to be the core pathophysiological mechanisms of schizophrenia. Recently, we have established a method to index these functions from the DLPFC using the paired transcranial magnetic stimulation (TMS) paradigms of short interval intracortical inhibition (SICI) and facilitation (ICF) combined with electroencephalography (EEG). In this study, we aimed to evaluate neurophysiological indicators related to GABAA and glutamate receptor-mediated functions respectively from the DLPFC in patients with schizophrenia using these paradigms, compared to healthy controls. Given that these activities contribute to cognitive functions, the relationship between the TMS-evoked potential (TEP) modulations by SICI/ICF and cognitive/clinical measures were explored. Compared to controls, patients showed reduced inhibition in P60 (t22 = −4.961, p < 0.0001) by SICI and reduced facilitation in P60 (t22 = 5.174, p < 0.0001) and N100 (t22 = 3.273, p = 0.003) by ICF. In patients, the modulation of P60 by SICI was correlated with the longest span of the Letter-Number Span Test (r = −0.775, p = 0.003), while the modulation of N100 by ICF was correlated with the total score of the Positive and Negative. Syndrome Scale (r = 0.817, p = 0.002). These findings may represent the pathophysiology, which may be associated with prefrontal GABAA and glutamatergic dysfunctions, in the expression of symptoms of schizophrenia.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Mera S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada
| | - Robin F H Cash
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, M5T 2S8, Ontario, Canada
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, M5T 2S8, Ontario, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada. .,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
25
|
Using model systems to understand errant plasticity mechanisms in psychiatric disorders. Nat Neurosci 2016; 19:1418-1425. [PMID: 27786180 DOI: 10.1038/nn.4413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
Abstract
In vivo model systems are a critical tool for gaining insight into the pathology underlying psychiatric disorders. Although modern functional imaging tools allow study of brain correlates of behavior in clinical groups and genome-wide association studies are beginning to uncover the complex genetic architecture of psychiatric disorders, there is less understanding of pathology at intervening levels of organization. Several psychiatric disorders derive from pathological neural plasticity, and studying the mechanisms that underlie these processes, including reinforcement learning and spike-timing-dependent plasticity, requires the use of animals. It will be particularly important to understand how individual differences in plasticity mechanisms at a cellular level confer resilience on some but lead to disease in others.
Collapse
|
26
|
MacDonald III AW, Zick JL, Chafee MV, Netoff TI. Integrating Insults: Using Fault Tree Analysis to Guide Schizophrenia Research across Levels of Analysis. Front Hum Neurosci 2016; 9:698. [PMID: 26779007 PMCID: PMC4702292 DOI: 10.3389/fnhum.2015.00698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022] Open
Abstract
The grand challenges of schizophrenia research are linking the causes of the disorder to its symptoms and finding ways to overcome those symptoms. We argue that the field will be unable to address these challenges within psychiatry's standard neo-Kraepelinian (DSM) perspective. At the same time the current corrective, based in molecular genetics and cognitive neuroscience, is also likely to flounder due to its neglect for psychiatry's syndromal structure. We suggest adopting a new approach long used in reliability engineering, which also serves as a synthesis of these approaches. This approach, known as fault tree analysis, can be combined with extant neuroscientific data collection and computational modeling efforts to uncover the causal structures underlying the cognitive and affective failures in people with schizophrenia as well as other complex psychiatric phenomena. By making explicit how causes combine from basic faults to downstream failures, this approach makes affordances for: (1) causes that are neither necessary nor sufficient in and of themselves; (2) within-diagnosis heterogeneity; and (3) between diagnosis co-morbidity.
Collapse
Affiliation(s)
- Angus W. MacDonald III
- Department of Psychology, Translational Research in Cognitive and Affective Mechanisms, University of MinnesotaMinneapolis, MN, USA
| | - Jennifer L. Zick
- Department of Neuroscience, University of Minnesota School of MedicineMinneapolis, MN, USA
| | - Matthew V. Chafee
- Department of Neuroscience, University of Minnesota School of MedicineMinneapolis, MN, USA
- Veterans Affairs Medical CenterMinneapolis, MN, USA
| | - Theoden I. Netoff
- Department of Biomedical Engineering, University of MinnesotaMinneapolis, MN, USA
| |
Collapse
|
27
|
Zorumski CF, Nagele P, Mennerick S, Conway CR. Treatment-Resistant Major Depression: Rationale for NMDA Receptors as Targets and Nitrous Oxide as Therapy. Front Psychiatry 2015; 6:172. [PMID: 26696909 PMCID: PMC4673867 DOI: 10.3389/fpsyt.2015.00172] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) remains a huge personal and societal encumbrance. Particularly burdensome is a virulent subtype of MDD, treatment resistant major depression (TMRD), which afflicts 15-30% of MDD patients. There has been recent interest in N-methyl-d-aspartate receptors (NMDARs) as targets for treatment of MDD and perhaps TMRD. To date, most pre-clinical and clinical studies have focused on ketamine, although psychotomimetic and other side effects may limit ketamine's utility. These considerations prompted a recent promising pilot clinical trial of nitrous oxide, an NMDAR antagonist that acts through a mechanism distinct from that of ketamine, in patients with severe TRMD. In this paper, we review the clinical picture of TRMD as a subtype of MDD, the evolution of ketamine as a fast-acting antidepressant, and clinical and basic science studies supporting the possible use of nitrous oxide as a rapid antidepressant.
Collapse
Affiliation(s)
- Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine , St. Louis, MO , USA ; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine , St. Louis, MO , USA
| | - Peter Nagele
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine , St. Louis, MO , USA ; Department of Anesthesiology, Washington University School of Medicine , St. Louis, MO , USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine , St. Louis, MO , USA ; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine , St. Louis, MO , USA
| | - Charles R Conway
- Department of Psychiatry, Washington University School of Medicine , St. Louis, MO , USA ; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|