1
|
Tavalin SJ. Familial Alzheimer's disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors. J Biol Chem 2024:108147. [PMID: 39732167 DOI: 10.1016/j.jbc.2024.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca2+ entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations. This region bears similarity to a binding motif for calcineurin (CaN), a Ca2+/calmodulin-dependent phosphatase. Interaction assays confirm that APP associates with CaN in native tissue as well as in a heterologous expression system. This capacity to bind CaN extends to APP family members amyloid precursor-like protein 1 and amyloid precursor-like protein 2 (APLP1 and APLP2, respectively). Electrophysiological analysis demonstrates that APP and its family members limit NMDAR activity, in a manner consistent with CaN-dependent regulation of NMDAR desensitization. FAD mutations, in this region of APP, impair this regulation and consequently enhance NMDAR activity. Thus, by altering the landscape for CaN regulation of NMDA receptors, FAD mutations in APP may contribute to faulty information processing by modifying the dynamic range and temporal window of a critical signal for synaptic plasticity.
Collapse
Affiliation(s)
- Steven J Tavalin
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163.
| |
Collapse
|
2
|
Ng LLH, Chow J, Lau KF. The AICD interactome: implications in neurodevelopment and neurodegeneration. Biochem Soc Trans 2024; 52:2539-2556. [PMID: 39670668 DOI: 10.1042/bst20241510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
The pathophysiological mechanism involving the proteolytic processing of amyloid precursor protein (APP) and the generation of amyloid plaques is of significant interest in research on Alzheimer's disease (AD). The increasing significance of the downstream AD-related pathophysiological mechanisms has sparked research interest in other products of the APP processing cascades, including the APP intracellular domain (AICD). The potential importance of AICD in various cellular processes in the central nervous system has been established through the identification of its interactors. The interaction between AICD and its physiological binding partners is implicated in cellular events including regulation of transcriptional activity, cytoskeletal dynamics, neuronal growth, APP processing and cellular apoptosis. On the contrary, AICD is also implicated in neurodegeneration, which is a potential outcome of the functional fluctuation of AICD-mediated neuronal processes within the neuronal network. In this review, we summarize the neuronal functions and pathological manifestations of the dynamic AICD interaction network.
Collapse
Affiliation(s)
- Laura Lok-Haang Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
August A, Hartmann S, Schilling S, Müller-Renno C, Begic T, Pierik AJ, Ziegler C, Kins S. Zinc and copper effect mechanical cell adhesion properties of the amyloid precursor protein. Biol Chem 2024; 405:701-710. [PMID: 39425975 DOI: 10.1515/hsz-2024-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The amyloid precursor protein (APP) can be modulated by the binding of copper and zinc ions. Both ions bind with low nanomolar affinities to both subdomains (E1 and E2) in the extracellular domain of APP. However, the impact of ion binding on structural and mechanical trans-dimerization properties is yet unclear. Using a bead aggregation assay (BAA), we found that zinc ions increase the dimerization of both subdomains, while copper promotes only dimerization of the E1 domain. In line with this, scanning force spectroscopy (SFS) analysis revealed an increase in APP adhesion force up to three-fold for copper and zinc. Interestingly, however, copper did not alter the separation length of APP dimers, whereas high zinc concentrations caused alterations in the structural features and a decrease of separation length. Together, our data provide clear differences in copper and zinc mediated APP trans-dimerization and indicate that zinc binding might favor a less flexible APP structure. This fact is of significant interest since changes in zinc and copper ion homeostasis are observed in Alzheimer's disease (AD) and were reported to affect synaptic plasticity. Thus, modulation of APP trans-dimerization by copper and zinc could contribute to early synaptic instability in AD.
Collapse
Affiliation(s)
- Alexander August
- Department of Human Biology and Human Genetics, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Sabrina Hartmann
- Department of Physics, Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | - Sandra Schilling
- Department of Human Biology and Human Genetics, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Christine Müller-Renno
- Department of Physics, Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | - Tarik Begic
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, D-67663 Kaiserslautern, Germany
| | - Antonio J Pierik
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, D-67663 Kaiserslautern, Germany
| | - Christiane Ziegler
- Department of Physics, Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
4
|
Cho K, Kim GW. Neurexin1 level in Huntington's Disease and decreased Neurexin1 in disease progression. Neurosci Res 2024:S0168-0102(24)00133-0. [PMID: 39481547 DOI: 10.1016/j.neures.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by the presence of abnormally expanded polyglutamine tracts in huntingtin protein (HTT). Mutant HTT disrupts synaptic transmission and plasticity, particularly in the striatum and cortex, leading to early dysfunctions, such as altered neurotransmitter release, impaired synaptic vesicle recycling, and disrupted postsynaptic receptor function. Synaptic loss precedes neuronal degeneration and contributes to disease progression. Neurexin1 (NRXN1), a synaptic cell adhesion molecule primarily located in the presynaptic membrane, plays a crucial role in maintaining synaptic integrity. The present study investigated the role of NRXN1 in HD. This study researched whether the changed level has been related to expanded polyQ stretch and disease progression. Here, we report a reduction in NRXN1 levels in post-symptomatic HD mice and in neuronal cells expressing abnormally expanded polyQ tracts. Mutant HTT was found to decrease NRXN1 levels while increasing LAMP2A levels, which promotes lysosomal degradation of NRXN1. In HD cells expressing Q111, downregulated LAMP2A restored NRXN1 levels and maintained cell proliferation compared with cells expressing Q7. These findings suggest that NRXN1 is regulated by LAMP2A-mediated way and that decreased NRXN1 levels are associated with symptomatic progression and neuronal cell loss in HD.
Collapse
Affiliation(s)
- Kyoungjoo Cho
- Department of Life Science, Kyonggi University, Suwon, South Korea
| | - Gyung Whan Kim
- Department of Neurology, College of Medicine, Yonsei University, Seoul, South Korea.
| |
Collapse
|
5
|
Wurtz LI, Knyazhanskaya E, Sohaei D, Prassas I, Pittock S, Willrich MAV, Saadeh R, Gupta R, Atkinson HJ, Grill D, Stengelin M, Thebault S, Freedman MS, Diamandis EP, Scarisbrick IA. Identification of brain-enriched proteins in CSF as biomarkers of relapsing remitting multiple sclerosis. Clin Proteomics 2024; 21:42. [PMID: 38880880 PMCID: PMC11181608 DOI: 10.1186/s12014-024-09494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a clinically and biologically heterogenous disease with currently unpredictable progression and relapse. After the development and success of neurofilament as a cerebrospinal fluid (CSF) biomarker, there is reinvigorated interest in identifying other markers of or contributors to disease. The objective of this study is to probe the predictive potential of a panel of brain-enriched proteins on MS disease progression and subtype. METHODS This study includes 40 individuals with MS and 14 headache controls. The MS cohort consists of 20 relapsing remitting (RR) and 20 primary progressive (PP) patients. The CSF of all individuals was analyzed for 63 brain enriched proteins using a method of liquid-chromatography tandem mass spectrometry. Wilcoxon rank sum test, Kruskal-Wallis one-way ANOVA, logistic regression, and Pearson correlation were used to refine the list of candidates by comparing relative protein concentrations as well as relation to known imaging and molecular biomarkers. RESULTS We report 30 proteins with some relevance to disease, clinical subtype, or severity. Strikingly, we observed widespread protein depletion in the disease CSF as compared to control. We identified numerous markers of relapsing disease, including KLK6 (kallikrein 6, OR = 0.367, p < 0.05), which may be driven by active disease as defined by MRI enhancing lesions. Other oligodendrocyte-enriched proteins also appeared at reduced levels in relapsing disease, namely CNDP1 (carnosine dipeptidase 1), LINGO1 (leucine rich repeat and Immunoglobin-like domain-containing protein 1), MAG (myelin associated glycoprotein), and MOG (myelin oligodendrocyte glycoprotein). Finally, we identified three proteins-CNDP1, APLP1 (amyloid beta precursor like protein 1), and OLFM1 (olfactomedin 1)-that were statistically different in relapsing vs. progressive disease raising the potential for use as an early biomarker to discriminate clinical subtype. CONCLUSIONS We illustrate the utility of targeted mass spectrometry in generating potential targets for future biomarker studies and highlight reductions in brain-enriched proteins as markers of the relapsing remitting disease stage.
Collapse
Affiliation(s)
- Lincoln I Wurtz
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ioannis Prassas
- Mount Sinai Hospital, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Sean Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Ruba Saadeh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ruchi Gupta
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Hunter J Atkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Diane Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Simon Thebault
- Department of Medicine and The Ottawa Research Institute, Ottawa, Canada
- Division of Multiple Sclerosis, Department of Neurology, The University of Pennsylvania, Philadelphia, USA
| | - Mark S Freedman
- Department of Medicine and The Ottawa Research Institute, Ottawa, Canada
| | | | - Isobel A Scarisbrick
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Mao X, Gu H, Kim D, Kimura Y, Wang N, Xu E, Kumbhar R, Ming X, Wang H, Chen C, Zhang S, Jia C, Liu Y, Bian H, Karuppagounder SS, Akkentli F, Chen Q, Jia L, Hwang H, Lee SH, Ke X, Chang M, Li A, Yang J, Rastegar C, Sriparna M, Ge P, Brahmachari S, Kim S, Zhang S, Shimoda Y, Saar M, Liu H, Kweon SH, Ying M, Workman CJ, Vignali DAA, Muller UC, Liu C, Ko HS, Dawson VL, Dawson TM. Aplp1 interacts with Lag3 to facilitate transmission of pathologic α-synuclein. Nat Commun 2024; 15:4663. [PMID: 38821932 PMCID: PMC11143359 DOI: 10.1038/s41467-024-49016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid β precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.
Collapse
Affiliation(s)
- Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
| | - Hao Gu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Nanjing Brain Hospital, Nanjing, Jiangsu, 210029, PR China
- Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, PR China
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology, College of Medicine, Dong-A University, 32 Daesin Gongwwon-ro, Seo-gu, Busan, 49201, Republic of Korea
| | - Yasuyoshi Kimura
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ning Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Enquan Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Xiaotian Ming
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Haibo Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chan Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Anesthesiology, West China Hospital, Sichuan University. The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
| | - Chunyu Jia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yuqing Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hetao Bian
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fatih Akkentli
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Qi Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Longgang Jia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Heehong Hwang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Su Hyun Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiyu Ke
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michael Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amanda Li
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cyrus Rastegar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Manjari Sriparna
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA
- Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, MA, 02115, USA
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biological Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Shu Zhang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata, 940-2188, Japan
| | - Martina Saar
- Institute for Pharmacy and Molecular Biotechnology IPMB, Department of Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Haiqing Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, School of Basic Medical Sciences (Institute of Basic Medical Sciences), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Sin Ho Kweon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD, 21205, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Ulrike C Muller
- Institute for Pharmacy and Molecular Biotechnology IPMB, Department of Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai, 201210, China
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Watkins EA, Vassar R. BACE Inhibitor Clinical Trials for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S41-S52. [PMID: 39422943 DOI: 10.3233/jad-231258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The amyloid hypothesis posits that the amyloid-β aggregates in the brain initiate a cascade of events that eventually lead to neuron loss and Alzheimer's disease. Recent clinical trials of passive immunotherapy with anti-amyloid-β antibodies support this hypothesis, because clearing plaques led to better cognitive outcomes. Orally available small molecule BACE1 inhibitors are another approach to slowing the buildup of plaques and thereby cognitive worsening by preventing the cleavage of amyloid-β protein precursor (AβPP) into amyloid-β peptide, the major component of plaques. This approach is particularly attractive because of their ease of use, low cost, and advanced clinical stage. However, although effective in preventing amyloid-β production in late-stage clinical trials, BACE inhibitors have been associated with early, non-progressive, likely reversible, cognitive decline. The clinical trials tested high levels of BACE inhibition, greater than 50%, whereas genetics suggest that even a 30% inhibition may be sufficient to protect from Alzheimer's disease. Aside from AβPP, BACE1 cleaves many other substrates in the brain that may be contributing to the cognitive worsening. It is important to know what the cause of cognitive worsening is, and if a lower level of inhibition would sufficiently slow the progress of pathology while preventing these unwanted side effects. Should these side effects be mitigated, BACE inhibitors could rapidly move forward in clinical trials either as a primary prevention strategy in individuals that are at risk or biomarker positive, or as a maintenance therapy following amyloid clearance with an anti-amyloid antibody.
Collapse
Affiliation(s)
- Elyse A Watkins
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robert Vassar
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Shoob S, Buchbinder N, Shinikamin O, Gold O, Baeloha H, Langberg T, Zarhin D, Shapira I, Braun G, Habib N, Slutsky I. Deep brain stimulation of thalamic nucleus reuniens promotes neuronal and cognitive resilience in an Alzheimer's disease mouse model. Nat Commun 2023; 14:7002. [PMID: 37919286 PMCID: PMC10622498 DOI: 10.1038/s41467-023-42721-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
The mechanisms that confer cognitive resilience to Alzheimer's Disease (AD) are not fully understood. Here, we describe a neural circuit mechanism underlying this resilience in a familial AD mouse model. In the prodromal disease stage, interictal epileptiform spikes (IESs) emerge during anesthesia in the CA1 and mPFC regions, leading to working memory disruptions. These IESs are driven by inputs from the thalamic nucleus reuniens (nRE). Indeed, tonic deep brain stimulation of the nRE (tDBS-nRE) effectively suppresses IESs and restores firing rate homeostasis under anesthesia, preventing further impairments in nRE-CA1 synaptic facilitation and working memory. Notably, applying tDBS-nRE during the prodromal phase in young APP/PS1 mice mitigates age-dependent memory decline. The IES rate during anesthesia in young APP/PS1 mice correlates with later working memory impairments. These findings highlight the nRE as a central hub of functional resilience and underscore the clinical promise of DBS in conferring resilience to AD pathology by restoring circuit-level homeostasis.
Collapse
Affiliation(s)
- Shiri Shoob
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Nadav Buchbinder
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ortal Shinikamin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Or Gold
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Halit Baeloha
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Tomer Langberg
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Daniel Zarhin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Gabriella Braun
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
9
|
Merrill NJ, Davidson WS, He Y, Díaz Ludovico I, Sarkar S, Berger MR, McDermott JE, Van Eldik LJ, Wilcock DM, Monroe ME, Kyle JE, Bruce KD, Heinecke JW, Vaisar T, Raber J, Quinn JF, Melchior JT. Human cerebrospinal fluid contains diverse lipoprotein subspecies enriched in proteins implicated in central nervous system health. SCIENCE ADVANCES 2023; 9:eadi5571. [PMID: 37647397 PMCID: PMC10468133 DOI: 10.1126/sciadv.adi5571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Lipoproteins in cerebrospinal fluid (CSF) of the central nervous system (CNS) resemble plasma high-density lipoproteins (HDLs), which are a compositionally and structurally diverse spectrum of nanoparticles with pleiotropic functionality. Whether CSF lipoproteins (CSF-Lps) exhibit similar heterogeneity is poorly understood because they are present at 100-fold lower concentrations than plasma HDL. To investigate the diversity of CSF-Lps, we developed a sensitive fluorescent technology to characterize lipoprotein subspecies in small volumes of human CSF. We identified 10 distinctly sized populations of CSF-Lps, most of which were larger than plasma HDL. Mass spectrometric analysis identified 303 proteins across the populations, over half of which have not been reported in plasma HDL. Computational analysis revealed that CSF-Lps are enriched in proteins important for wound healing, inflammation, immune response, and both neuron generation and development. Network analysis indicated that different subpopulations of CSF-Lps contain unique combinations of these proteins. Our study demonstrates that CSF-Lp subspecies likely exist that contain compositional signatures related to CNS health.
Collapse
Affiliation(s)
- Nathaniel J. Merrill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - W. Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Yi He
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ivo Díaz Ludovico
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Snigdha Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Madelyn R. Berger
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jason E. McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jennifer E. Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jay W. Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jacob Raber
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, Department of Behavioral Neuroscience and Radiation Medicine, ONPRC, Oregon Health and Science University, Portland, OR 97239, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland OR 97239, USA
| | - John T. Melchior
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
10
|
Schilling S, August A, Meleux M, Conradt C, Tremmel LM, Teigler S, Adam V, Müller UC, Koo EH, Kins S, Eggert S. APP family member dimeric complexes are formed predominantly in synaptic compartments. Cell Biosci 2023; 13:141. [PMID: 37533067 PMCID: PMC10398996 DOI: 10.1186/s13578-023-01092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The amyloid precursor protein (APP), a key player in Alzheimer's disease (AD), is part of a larger gene family, including the APP like proteins APLP1 and APLP2. They share similar structures, form homo- and heterotypic dimers and exhibit overlapping functions. RESULTS We investigated complex formation of the APP family members via two inducible dimerization systems, the FKBP-rapamycin based dimerization as well as cysteine induced dimerization, combined with co-immunoprecipitations and Blue Native (BN) gel analyses. Within the APP family, APLP1 shows the highest degree of dimerization and high molecular weight (HMW) complex formation. Interestingly, only about 20% of APP is dimerized in cultured cells whereas up to 50% of APP is dimerized in mouse brains, independent of age and splice forms. Furthermore, we could show that dimerized APP originates mostly from neurons and is enriched in synaptosomes. Finally, BN gel analysis of human cortex samples shows a significant decrease of APP dimers in AD patients compared to controls. CONCLUSIONS Together, we suggest that loss of full-length APP dimers might correlate with loss of synapses in the process of AD.
Collapse
Affiliation(s)
- Sandra Schilling
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Alexander August
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Mathieu Meleux
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Carolin Conradt
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Luisa M Tremmel
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
- Medical, Biochemistry & Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Sandra Teigler
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Virginie Adam
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ulrike C Müller
- Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Edward H Koo
- Department of Neuroscience, University of California, San Diego (UCSD), La Jolla, CA, 92093-0662, USA
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
- Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, City-Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
11
|
Schilling S, Pradhan A, Heesch A, Helbig A, Blennow K, Koch C, Bertgen L, Koo EH, Brinkmalm G, Zetterberg H, Kins S, Eggert S. Differential effects of familial Alzheimer's disease-causing mutations on amyloid precursor protein (APP) trafficking, proteolytic conversion, and synaptogenic activity. Acta Neuropathol Commun 2023; 11:87. [PMID: 37259128 DOI: 10.1186/s40478-023-01577-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
The amyloid precursor protein (APP) is a key player in Alzheimer`s disease (AD) and the precursor of the Aβ peptide, which is generated by consecutive cleavages of β- and γ-secretases. Familial Alzheimer's disease (FAD) describes a hereditary subgroup of AD that represents a low percentage of AD cases with an early onset of the disease. Different APP FAD mutations are thought to have qualitatively different effects on its proteolytic conversion. However, few studies have explored the pathogenic and putative physiological differences in more detail. Here, we compared different FAD mutations, located at the β- (Swedish), α- (Flemish, Arctic, Iowa) or γ-secretase (Iberian) cleavage sites. We examined heterologous expression of APP WT and FAD mutants in non-neuronal cells and their impact on presynaptic differentiation in contacting axons of co-cultured neurons. To decipher the underlying molecular mechanism, we tested the subcellular localization, the endocytosis rate and the proteolytic processing in detail by immunoprecipitation-mass spectrometry. Interestingly, we found that only the Iberian mutation showed altered synaptogenic function. Furthermore, the APP Iowa mutant shows significantly decreased α-secretase processing which is in line with our results that APP carrying the Iowa mutation was significantly increased in early endosomes. However, most interestingly, immunoprecipitation-mass spectrometry analysis revealed that the amino acid substitutions of APP FAD mutants have a decisive impact on their processing reflected in altered Aβ profiles. Importantly, N-terminally truncated Aβ peptides starting at position 5 were detected preferentially for APP Flemish, Arctic, and Iowa mutants containing amino acid substitutions around the α-secretase cleavage site. The strongest change in the ratio of Aβ40/Aβ42 was observed for the Iberian mutation while APP Swedish showed a substantial increase in Aβ1-17 peptides. Together, our data indicate that familial AD mutations located at the α-, β-, and γ-secretase cleavage sites show considerable differences in the underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Sandra Schilling
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ajay Pradhan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Amelie Heesch
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Andrea Helbig
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christian Koch
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Lea Bertgen
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Edward H Koo
- San Diego (UCSD), Department of Neuroscience, University of California, La Jolla, CA, 92093-0662, USA
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City-Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
12
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Unno K, Taguchi K, Takagi Y, Hase T, Meguro S, Nakamura Y. Mouse Models with SGLT2 Mutations: Toward Understanding the Role of SGLT2 beyond Glucose Reabsorption. Int J Mol Sci 2023; 24:ijms24076278. [PMID: 37047250 PMCID: PMC10094282 DOI: 10.3390/ijms24076278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The sodium–glucose cotransporter 2 (SGLT2) mainly carries out glucose reabsorption in the kidney. Familial renal glycosuria, which is a mutation of SGLT2, is known to excrete glucose in the urine, but blood glucose levels are almost normal. Therefore, SGLT2 inhibitors are attracting attention as a new therapeutic drug for diabetes, which is increasing worldwide. In fact, SGLT2 inhibitors not only suppress hyperglycemia but also reduce renal, heart, and cardiovascular diseases. However, whether long-term SGLT2 inhibition is completely harmless requires further investigation. In this context, mice with mutations in SGLT2 have been generated and detailed studies are being conducted, e.g., the SGLT2−/− mouse, Sweet Pee mouse, Jimbee mouse, and SAMP10-ΔSglt2 mouse. Biological changes associated with SGLT2 mutations have been reported in these model mice, suggesting that SGLT2 is not only responsible for sugar reabsorption but is also related to other functions, such as bone metabolism, longevity, and cognitive functions. In this review, we present the characteristics of these mutant mice. Moreover, because the relationship between diabetes and Alzheimer’s disease has been discussed, we examined the relationship between changes in glucose homeostasis and the amyloid precursor protein in SGLT2 mutant mice.
Collapse
|
14
|
Li YZ, Zhu YB, Ge AN, Gao M, Wang KL, Zeng XR, Li J, Li Y, Xu JY, Bai HH, Wu SJ. Reduced expression of APLP2 in spinal GABAergic inhibitory neurons contributed to nerve injury-induced microglial activation and pain sensitization. Neuropharmacology 2023; 224:109334. [PMID: 36442651 DOI: 10.1016/j.neuropharm.2022.109334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
The amyloid precursor protein (APP) is critical for the pathogenesis of Alzheimer's disease (AD). The AD patients usually have lower pain sensitivity in addition to cognitive impairments. However, considerably less is known as yet about the role of APP and its two mammalian homologues, amyloid precursor-like protein 1 and 2 (APLP1, APLP2), in spinal processing of nociceptive information. Here we found that all APP family members were present in spinal cord dorsal horn of adult male C57BL/6J mice. Peripheral nerve injury specifically reduced the expression of spinal APLP2 that correlated with neuropathic mechanical allodynia. The loss of APLP2 was confined to inhibitory GABAergic interneurons. Targeted knockdown of APLP2 in GABAergic interneurons of GAD2-Cre mice evoked pain hypersensitivity by means of microglia activation. Our data showed that GABAergic terminals expressed APLP2, a putative cell adhesion protein that interacted with microglia-specific integrin molecule CD11b. Knocking down APLP2 in GAD2-positive neurons to disrupt the trans-cellular interaction led to microglia-dependent pain sensitization. Our data thus revealed an important role of APLP2 for GABAergic interneurons to control microglial activity and pain sensitivity.
Collapse
Affiliation(s)
- Yu-Zhe Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yue-Bin Zhu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - An-Na Ge
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Min Gao
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Kang-Li Wang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiang-Ru Zeng
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jing Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yuan Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jia-Yu Xu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Hu-Hu Bai
- School of Life Science, Lanzhou University, Gansu, 730000, PR China.
| | - Shu-Jin Wu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| |
Collapse
|
15
|
Neurexin-β Mediates the Synaptogenic Activity of Amyloid Precursor Protein. J Neurosci 2022; 42:8936-8947. [PMID: 36261284 PMCID: PMC9732828 DOI: 10.1523/jneurosci.0511-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 01/05/2023] Open
Abstract
In addition to its role in Alzheimer's disease, amyloid precursor protein (APP) has physiological roles in synapse development and function. APP induces presynaptic differentiation when presented to axons, but the mechanism is unknown. Here we show that APP binds neurexin to mediate this synaptogenic activity. APP specifically binds β not α neurexins modulated by splice site 4. Binding to neurexin heparan sulfate glycan and LNS protein domains is required for high-affinity interaction and for full-length APP to recruit axonal neurexin. The synaptogenic activity of APP is abolished by triple knockdown of neurexins in hippocampal neurons pooled from male and female rats. Based on these and previous results, our model is that a dendritic-axonal trans dimer of full-length APP binds to axonal neurexin-β to promote synaptic differentiation and function. Furthermore, soluble sAPPs also bind neurexin-β and inhibit its interaction with neuroligin-1, raising the possibility that disruption of neurexin function by altered levels of full-length APP and its cleavage products may contribute to early synaptic deficits in Alzheimer's disease.SIGNIFICANCE STATEMENT The prevailing model for the basis of Alzheimer's disease is the amyloid cascade triggered by altered cleavage of amyloid precursor protein (APP). APP also has physiological roles at the synapse, but the molecular basis for its synaptic functions is not well understood. Here, we show that APP binds the presynaptic organizing protein neurexin-β and that neurexin is essential for the synaptogenic activity of APP. Furthermore, soluble APP forms generated by APP cleavage also bind neurexin-β and can block interaction with transmembrane synaptogenic ligands of neurexin. These findings reveal a role for neurexin-APP interaction in synapse development and raise the possibility that disruptions of neurexin function may contribute to synaptic and cognitive deficits in the critical early stage of Alzheimer's disease.
Collapse
|
16
|
Erdinger S, Amrein I, Back M, Ludewig S, Korte M, von Engelhardt J, Wolfer DP, Müller UC. Lack of APLP1 leads to subtle alterations in neuronal morphology but does not affect learning and memory. Front Mol Neurosci 2022; 15:1028836. [DOI: 10.3389/fnmol.2022.1028836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
The amyloid precursor protein APP plays a crucial role in Alzheimer pathogenesis. Its physiological functions, however, are only beginning to be unraveled. APP belongs to a small gene family, including besides APP the closely related amyloid precursor-like proteins APLP1 and APLP2, that all constitute synaptic adhesion proteins. While APP and APLP2 are ubiquitously expressed, APLP1 is specific for the nervous system. Previous genetic studies, including combined knockouts of several family members, pointed towards a unique role for APLP1, as only APP/APLP1 double knockouts were viable. We now examined brain and neuronal morphology in APLP1 single knockout (KO) animals, that have to date not been studied in detail. Here, we report that APLP1-KO mice show normal spine density in hippocampal CA1 pyramidal cells and subtle alterations in dendritic complexity. Extracellular field recordings revealed normal basal synaptic transmission and no alterations in synaptic plasticity (LTP). Further, behavioral studies revealed in APLP1-KO mice a small deficit in motor function and reduced diurnal locomotor activity, while learning and memory were not affected by the loss of APLP1. In summary, our study indicates that APP family members serve both distinct and overlapping functions that need to be considered for therapeutic treatments of Alzheimer’s disease.
Collapse
|
17
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|
18
|
Moore MG, Thompson CH, Reimers MA, Purcell EK. Differential Co-Expression Analysis of RNA-Seq Data Reveals Novel Potential Biomarkers of Device-Tissue Interaction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3072-3076. [PMID: 36085767 PMCID: PMC9724584 DOI: 10.1109/embc48229.2022.9871437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The biological response to electrodes implanted in the brain has been a long-standing barrier to achieving a stable tissue device-interface. Understanding the mechanisms underlying this response could explain phenomena including recording instability and loss, shifting stimulation thresholds, off-target effects of neuromodulation, and stimulation-induced depression of neural excitability. Our prior work detected differential expression in hundreds of genes following device implantation. Here, we extend upon that work by providing new analyses using differential co-expression analysis, which identifies changes in the correlation structure between groups of genes detected at the interface in comparison to control tissues. We used an "eigengene" approach to identify hub genes associated with each module. Our work adds to a growing body of literature which applies new techniques in molecular biology and computational analysis to long-standing issues surrounding electrode integration with the brain.
Collapse
|
19
|
Beta-Site Amyloid Precursor Protein-Cleaving Enzyme Inhibition Partly Restores Sevoflurane-Induced Deficits on Synaptic Plasticity and Spine Loss. Int J Mol Sci 2022; 23:ijms23126637. [PMID: 35743082 PMCID: PMC9223703 DOI: 10.3390/ijms23126637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Evidence indicates that inhalative anesthetics enhance the β-site amyloid precursor protein (APP)-cleaving enzyme (BACE) activity, increase amyloid beta 1-42 (Aβ1–42) aggregation, and modulate dendritic spine dynamics. However, the mechanisms of inhalative anesthetics on hippocampal dendritic spine plasticity and BACE-dependent APP processing remain unclear. In this study, hippocampal slices were incubated with equipotent isoflurane (iso), sevoflurane (sevo), or xenon (Xe) with/without pretreatment of the BACE inhibitor LY2886721 (LY). Thereafter, CA1 dendritic spine density, APP processing-related molecule expressions, nectin-3 levels, and long-term potentiation (LTP) were tested. The nectin-3 downregulation on LTP and dendritic spines were evaluated. Sevo treatment increased hippocampal mouse Aβ1–42 (mAβ1–42), abolished CA1-LTP, and decreased spine density and nectin-3 expressions in the CA1 region. Furthermore, CA1-nectin-3 knockdown blocked LTP and reduced spine density. Iso treatment decreased spine density and attenuated LTP. Although Xe blocked LTP, it did not affect spine density, mAβ1–42, or nectin-3. Finally, antagonizing BACE activity partly restored sevo-induced deficits. Taken together, our study suggests that sevo partly elevates BACE activity and interferes with synaptic remodeling, whereas iso mildly modulates synaptic changes in the CA1 region of the hippocampus. On the other hand, Xe does not alternate dendritic spine remodeling.
Collapse
|
20
|
Karuppan SJ, Vogt A, Fischer Z, Ladutska A, Swiastyn J, McGraw HF, Bouyain S. Members of the vertebrate contactin and amyloid precursor protein families interact through a conserved interface. J Biol Chem 2021; 298:101541. [PMID: 34958801 PMCID: PMC8808184 DOI: 10.1016/j.jbc.2021.101541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/06/2023] Open
Abstract
Contactins (CNTNs) are neural cell adhesion molecules that encode axon-target specificity during the patterning of the vertebrate visual and olfactory systems. Because CNTNs are tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, they lack an intracellular region to communicate across the membrane. Instead, they form coreceptor complexes with distinct transmembrane proteins to transmit signals inside the cell. In particular, a complex of CNTN4 and amyloid precursor protein (APP) is known to guide the assembly of specific circuits in the visual system. Here, using in situ hybridization in zebrafish embryos, we show that CNTN4, CNTN5, and the APP homologs, amyloid beta precursor like protein 1 and amyloid beta precursor like protein 2, are expressed in olfactory pits, suggesting that these receptors may also function together in the organization of olfactory tissues. Furthermore, we use biochemical and structural approaches to characterize interactions between members of these two receptor families. In particular, APP and amyloid beta precursor like protein 1 interact with CNTN3–5, whereas amyloid beta precursor like protein 2 only binds to CNTN4 and CNTN5. Finally, structural analyses of five CNTN–amyloid pairs indicate that these proteins interact through a conserved interface involving the second fibronectin type III repeat of CNTNs and the copper-binding domain of amyloid proteins. Overall, this work sets the stage for analyzing CNTN–amyloid-mediated connectivity in vertebrate sensory circuits.
Collapse
Affiliation(s)
- Sebastian J Karuppan
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Alex Vogt
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Zachary Fischer
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Aliona Ladutska
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Jonathan Swiastyn
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Hillary F McGraw
- Department of Genetics, Developmental and Evolutionary Biology, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Samuel Bouyain
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110.
| |
Collapse
|
21
|
Szeto B, Valentini C, Aksit A, Werth EG, Goeta S, Brown LM, Olson ES, Kysar JW, Lalwani AK. Impact of Systemic versus Intratympanic Dexamethasone Administration on the Perilymph Proteome. J Proteome Res 2021; 20:4001-4009. [PMID: 34291951 DOI: 10.1021/acs.jproteome.1c00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucocorticoids are the first-line treatment for sensorineural hearing loss, but little is known about the mechanism of their protective effect or the impact of route of administration. The recent development of hollow microneedles enables safe and reliable sampling of perilymph for proteomic analysis. Using these microneedles, we investigate the effect of intratympanic (IT) versus intraperitoneal (IP) dexamethasone administration on guinea pig perilymph proteome. Guinea pigs were treated with IT dexamethasone (n = 6), IP dexamethasone (n = 8), or untreated for control (n = 8) 6 h prior to aspiration. The round window membrane (RWM) was accessed via a postauricular approach, and hollow microneedles were used to perforate the RWM and aspirate 1 μL of perilymph. Perilymph samples were analyzed by liquid chromatography-mass spectrometry-based label-free quantitative proteomics. Mass spectrometry raw data files have been deposited in an international public repository (MassIVE proteomics repository at https://massive.ucsd.edu/) under data set # MSV000086887. In the 22 samples of perilymph analyzed, 632 proteins were detected, including the inner ear protein cochlin, a perilymph marker. Of these, 14 proteins were modulated by IP, and three proteins were modulated by IT dexamethasone. In both IP and IT dexamethasone groups, VGF nerve growth factor inducible was significantly upregulated compared to control. The remaining adjusted proteins modulate neurons, inflammation, or protein synthesis. Proteome analysis facilitated by the use of hollow microneedles shows that route of dexamethasone administration impacts changes seen in perilymph proteome. Compared to IT administration, the IP route was associated with greater changes in protein expression, including proteins involved in neuroprotection, inflammatory pathway, and protein synthesis. Our findings show that microneedles can mediate safe and effective intracochlear sampling and hold promise for inner ear diagnostics.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Chris Valentini
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jeffrey W Kysar
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Anil K Lalwani
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
22
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
23
|
Steubler V, Erdinger S, Back MK, Ludewig S, Fässler D, Richter M, Han K, Slomianka L, Amrein I, von Engelhardt J, Wolfer DP, Korte M, Müller UC. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism-like phenotype. EMBO J 2021; 40:e107471. [PMID: 34008862 PMCID: PMC8204861 DOI: 10.15252/embj.2020107471] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
The key role of APP for Alzheimer pathogenesis is well established. However, perinatal lethality of germline knockout mice lacking the entire APP family has so far precluded the analysis of its physiological functions for the developing and adult brain. Here, we generated conditional APP/APLP1/APLP2 triple KO (cTKO) mice lacking the APP family in excitatory forebrain neurons from embryonic day 11.5 onwards. NexCre cTKO mice showed altered brain morphology with agenesis of the corpus callosum and disrupted hippocampal lamination. Further, NexCre cTKOs revealed reduced basal synaptic transmission and drastically reduced long-term potentiation that was associated with reduced dendritic length and reduced spine density of pyramidal cells. With regard to behavior, lack of the APP family leads not only to severe impairments in a panel of tests for learning and memory, but also to an autism-like phenotype including repetitive rearing and climbing, impaired social communication, and deficits in social interaction. Together, our study identifies essential functions of the APP family during development, for normal hippocampal function and circuits important for learning and social behavior.
Collapse
Affiliation(s)
- Vicky Steubler
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Susanne Erdinger
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Michaela K Back
- Institute of PathophysiologyFocus Program Translational Neuroscience (FTN)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Susann Ludewig
- Division of Cellular NeurobiologyZoological Institute, TU BraunschweigBraunschweigGermany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration GroupBraunschweigGermany
| | - Dominique Fässler
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Max Richter
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Kang Han
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Lutz Slomianka
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Irmgard Amrein
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Jakob von Engelhardt
- Institute of PathophysiologyFocus Program Translational Neuroscience (FTN)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - David P Wolfer
- Institute of Anatomy and Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
- Institute of Human Movement SciencesETH ZurichZurichSwitzerland
| | - Martin Korte
- Division of Cellular NeurobiologyZoological Institute, TU BraunschweigBraunschweigGermany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration GroupBraunschweigGermany
| | - Ulrike C Müller
- Department of Functional GenomicsInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
24
|
Onodera W, Asahi T, Sawamura N. Rapid evolution of mammalian APLP1 as a synaptic adhesion molecule. Sci Rep 2021; 11:11305. [PMID: 34050225 PMCID: PMC8163877 DOI: 10.1038/s41598-021-90737-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Amyloid precursor protein (APP) family members are involved in essential neuronal development including neurite outgrowth, neuronal migration and maturation of synapse and neuromuscular junction. Among the APP gene family members, amyloid precursor-like protein 1 (APLP1) is selectively expressed in neurons and has specialized functions during synaptogenesis. Although a potential role for APLP1 in neuronal evolution has been indicated, its precise evolutionary and functional contributions are unknown. This study shows the molecular evolution of the vertebrate APP family based on phylogenetic analysis, while contrasting the evolutionary differences within the APP family. Phylogenetic analysis showed 15 times higher substitution rate that is driven by positive selection at the stem branch of the mammalian APLP1, resulting in dissimilar protein sequences compared to APP/APLP2. Docking simulation identified one positively selected site in APLP1 that alters the heparin-binding site, which could affect its function, and dimerization rate. Furthermore, the evolutionary rate covariation between the mammalian APP family and synaptic adhesion molecules (SAMs) was confirmed, indicating that only APLP1 has evolved to gain synaptic adhesion property. Overall, our results suggest that the enhanced synaptogenesis property of APLP1 as one of the SAMs may have played a role in mammalian brain evolution.
Collapse
Affiliation(s)
- Wataru Onodera
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan.,Research Organization for Nano & Life Innovation, Waseda University, #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
| | - Naoya Sawamura
- Research Organization for Nano & Life Innovation, Waseda University, #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan. .,Green Computing Systems Research Organization, Waseda University, Shinjuku, Japan.
| |
Collapse
|
25
|
Eggert S, Gruebl T, Rajender R, Rupp C, Sander B, Heesch A, Zimmermann M, Hoepfner S, Zentgraf H, Kins S. The Rab5 activator RME-6 is required for amyloid precursor protein endocytosis depending on the YTSI motif. Cell Mol Life Sci 2020; 77:5223-5242. [PMID: 32065241 PMCID: PMC7671991 DOI: 10.1007/s00018-020-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Endocytosis of the amyloid precursor protein (APP) is critical for generation of β-amyloid, aggregating in Alzheimer's disease. APP endocytosis depending on the intracellular NPTY motif is well investigated, whereas involvement of the YTSI (also termed BaSS) motif remains controversial. Here, we show that APP lacking the YTSI motif (ΔYTSI) displays reduced localization to early endosomes and decreased internalization rates, similar to APP ΔNPTY. Additionally, we show that the YTSI-binding protein, PAT1a interacts with the Rab5 activator RME-6, as shown by several independent assays. Interestingly, knockdown of RME-6 decreased APP endocytosis, whereas overexpression increased the same. Similarly, APP ΔNPTY endocytosis was affected by PAT1a and RME-6 overexpression, whereas APP ΔYTSI internalization remained unchanged. Moreover, we could show that RME-6 mediated increase of APP endocytosis can be diminished upon knocking down PAT1a. Together, our data identify RME-6 as a novel player in APP endocytosis, involving the YTSI-binding protein PAT1a.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Tomas Gruebl
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Ritu Rajender
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Carsten Rupp
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Bianca Sander
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Amelie Heesch
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Marius Zimmermann
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Sebastian Hoepfner
- MPI of Molecular Cell Biology and Genetics, Dresden, Germany
- Bird & Bird LLM, Munich, Germany
| | | | - Stefan Kins
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany.
| |
Collapse
|
26
|
Smart treatment strategies for alleviating tauopathy and neuroinflammation to improve clinical outcome in Alzheimer's disease. Drug Discov Today 2020; 25:2110-2129. [PMID: 33011341 DOI: 10.1016/j.drudis.2020.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 09/23/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease leading to progressive loss of memory that mainly affects people above 60 years of age. It is one of the leading causes of deaths in the USA. Given its inherent heterogeneity and a still-incomplete understanding of its pathology, biomarkers, and targets available for therapy, it is a challenge to design an effective therapeutic strategy. Several hypotheses have been proposed to understand the disease and to identify reliable markers and targets for treatments. However, none have resulted in strong support from clinical trials. In this review, we objectively discuss the various therapeutic strategies and mechanistic approaches to improve the current clinical outcome of AD therapy.
Collapse
|
27
|
Lim B, Tsolaki M, Soosaipillai A, Brown M, Zilakaki M, Tagaraki F, Fotiou D, Koutsouraki E, Grosi E, Prassas I, Diamandis EP. Liquid biopsy of cerebrospinal fluid identifies neuronal pentraxin receptor (NPTXR) as a biomarker of progression of Alzheimer's disease. Clin Chem Lab Med 2020; 57:1875-1881. [PMID: 31415236 DOI: 10.1515/cclm-2019-0428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
Background Alzheimer's disease (AD) is the most prevalent form of dementia. Currently, the most studied biomarkers of AD are cerebrospinal fluid (CSF) amyloid β 1-42, total tau and phosphorylated tau. However, misdiagnosis can exceed 20%. Recently, we found that CSF amyloid β precursor-like protein-1 (APLP1) and neuronal pentraxin receptor (NPTXR) are promising biomarkers of AD. The aim of the present study is to validate CSF APLP1 and NPTXR as biomarkers of AD severity. Methods APLP1 and NPTXR concentrations were measured in the CSF of patients with mild cognitive impairment (MCI) (n = 14), mild AD (n = 21), moderate AD (n = 43) and severe AD (n = 30) using enzyme-linked immunosorbent assays (ELISAs). Results CSF APLP1 and NPTXR were not associated with age or sex. CSF APLP1 was not different between any of the AD severity groups (p = 0.31). CSF NPTXR was significantly different between MCI and mild AD (p = 0.006), mild and moderate AD (p = 0.016), but not between moderate and severe AD (p = 0.36). NPTXR concentration progressively declined from MCI to mild, to moderate and to severe AD patients (p < 0.0001, Kruskal-Wallis test). CSF NPTXR positively correlated with the Mini-Mental Status Examination (MMSE) score (p < 0.001). Conclusions NPTXR concentration in CSF is a promising biomarker of AD severity and could inform treatment success and disease progression in clinical settings.
Collapse
Affiliation(s)
- Bryant Lim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Magda Tsolaki
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Marshall Brown
- Department of Biostatistics, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Maria Zilakaki
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Tagaraki
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Fotiou
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Effrosyni Koutsouraki
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Effrosyni Grosi
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| |
Collapse
|
28
|
Unno K, Takagi Y, Konishi T, Suzuki M, Miyake A, Kurotaki T, Hase T, Meguro S, Shimada A, Hasegawa-Ishii S, Pervin M, Taguchi K, Nakamura Y. Mutation in Sodium-Glucose Cotransporter 2 Results in Down-Regulation of Amyloid Beta (A4) Precursor-Like Protein 1 in Young Age, Which May Lead to Poor Memory Retention in Old Age. Int J Mol Sci 2020; 21:ijms21155579. [PMID: 32759773 PMCID: PMC7432872 DOI: 10.3390/ijms21155579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Senescence-accelerated mouse prone 10 (SAMP10) exhibits cerebral atrophy and depression-like behavior. A line of SAMP10 with spontaneous mutation in the Slc5a2 gene encoding the sodium-glucose cotransporter (SGLT) 2 was named SAMP10/TaSlc-Slc5a2slc (SAMP10-ΔSglt2) and was identified as a renal diabetes model. In contrast, a line of SAMP10 with no mutation in SGLT2 (SAMP10/TaIdrSlc, SAMP10(+)) was recently established under a specific pathogen-free condition. Here, we examined the mutation effect in SGLT2 on brain function and longevity. No differences were found in the survival curve, depression-like behavior, and age-related brain atrophy between SAMP10-ΔSglt2 and SAMP10(+). However, memory retention was lower in SAMP10-ΔSglt2 mice than SAMP10(+). Amyloid beta (A4) precursor-like protein 1 (Aplp1) expression was significantly lower in the hippocampus of SAMP10-ΔSGLT2 than in SAMP10(+) at 2 months of age, but was similar at 12 months of age. CaM kinase-like vesicle association (Camkv) expression was remarkably lower in SAMP10(+). These genes have been reported to be involved in dendrite function. Amyloid precursor proteins have been reported to involve in maintaining homeostasis of glucose and insulin. These results suggest that mutation in SGLT2 results in down-regulation of Aplp1 in young age, which can lead to poor memory retention in old age.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshiichi Takagi
- Production Center for Experimental Animals, Japan SLC Incorporated, 85 Ohara, Kita-ku, Hamamatsu, Shizuoka 433-8102, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita 010-0195, Japan
| | - Mitsuhiro Suzuki
- Haruno Branch for Experimental Animals, Japan SLC incorporated, 1478 Haruno-cho Ryoke, Tenryu-ku, Hamamatsu, Shizuoka 437-0626, Japan
| | - Akiyuki Miyake
- Haruno Branch for Experimental Animals, Japan SLC incorporated, 1478 Haruno-cho Ryoke, Tenryu-ku, Hamamatsu, Shizuoka 437-0626, Japan
| | - Takumi Kurotaki
- Haruno Branch for Experimental Animals, Japan SLC incorporated, 1478 Haruno-cho Ryoke, Tenryu-ku, Hamamatsu, Shizuoka 437-0626, Japan
| | - Tadashi Hase
- Research and Development, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Shinichi Meguro
- Biological Science Research, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Atsuyoshi Shimada
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan
| | - Sanae Hasegawa-Ishii
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan
| | - Monira Pervin
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
29
|
Lanchec E, Désilets A, Béliveau F, Fontaine-Carbonneau C, Laniel A, Leduc R, Lavoie C. Matriptase processing of APLP1 ectodomain alters its homodimerization. Sci Rep 2020; 10:10091. [PMID: 32572095 PMCID: PMC7308337 DOI: 10.1038/s41598-020-67005-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/29/2020] [Indexed: 11/09/2022] Open
Abstract
The amyloid beta peptide (Aβ) is derived from the amyloid precursor protein (APP) by secretase processing. APP is also cleaved by numerous other proteases, such as the type II transmembrane serine protease matriptase, with consequences on the production of Aβ. Because the APP homolog protein amyloid-like protein 1 (APLP1) shares similarities with APP, we sought to determine if matriptase also plays a role in its processing. Here, we demonstrate that matriptase directly interacts with APLP1 and that APLP1 is cleaved in cellulo by matriptase in its E1 ectodomains at arginine 124. Replacing Arg124 with Ala abolished APLP1 processing by matriptase. Using a bioluminescence resonance energy transfer (BRET) assay we found that matriptase reduces APLP1 homodimeric interactions. This study identifies matriptase as the first protease cleaving APLP1 in its dimerization domain, potentially altering the multiple functions associated with dimer formation.
Collapse
Affiliation(s)
- Erwan Lanchec
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H5N4, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H5N4, Canada
| | - François Béliveau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H5N4, Canada
| | - Cloé Fontaine-Carbonneau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H5N4, Canada
| | - Andréanne Laniel
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H5N4, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H5N4, Canada.
| | - Christine Lavoie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H5N4, Canada.
| |
Collapse
|
30
|
Barthet G, Mulle C. Presynaptic failure in Alzheimer's disease. Prog Neurobiol 2020; 194:101801. [PMID: 32428558 DOI: 10.1016/j.pneurobio.2020.101801] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Synaptic loss is the best correlate of cognitive deficits in Alzheimer's disease (AD). Extensive experimental evidence also indicates alterations of synaptic properties at the early stages of disease progression, before synapse loss and neuronal degeneration. A majority of studies in mouse models of AD have focused on post-synaptic mechanisms, including impairment of long-term plasticity, spine structure and glutamate receptor-mediated transmission. Here we review the literature indicating that the synaptic pathology in AD includes a strong presynaptic component. We describe the evidence indicating presynaptic physiological functions of the major molecular players in AD. These include the amyloid precursor protein (APP) and the two presenilin (PS) paralogs PS1 or PS2, genetically linked to the early-onset form of AD, in addition to tau which accumulates in a pathological form in the AD brain. Three main mechanisms participating in presynaptic functions are highlighted. APP fragments bind to presynaptic receptors (e.g. nAChRs and GABAB receptors), presenilins control Ca2+ homeostasis and Ca2+-sensors, and tau regulates the localization of presynaptic molecules and synaptic vesicles. We then discuss how impairment of these presynaptic physiological functions can explain or forecast the hallmarks of synaptic impairment and associated dysfunction of neuronal circuits in AD. Beyond the physiological roles of the AD-related proteins, studies in AD brains also support preferential presynaptic alteration. This review features presynaptic failure as a strong component of pathological mechanisms in AD.
Collapse
Affiliation(s)
- Gael Barthet
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, France.
| |
Collapse
|
31
|
SWATH-MS analysis of cerebrospinal fluid to generate a robust battery of biomarkers for Alzheimer's disease. Sci Rep 2020; 10:7423. [PMID: 32366888 PMCID: PMC7198522 DOI: 10.1038/s41598-020-64461-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebrospinal fluid (CSF) Aβ42 and tau protein levels are established diagnostic biomarkers of Alzheimer's disease (AD). However, their inadequacy to represent clinical efficacy in drug trials indicates the need for new biomarkers. Sequential window acquisition of all theoretical fragment ion spectra (SWATH)-based mass spectrometry (MS) is an advanced proteomic tool for large-scale, high-quality quantification. In this study, SWATH-MS showed that VGF, chromogranin-A, secretogranin-1, and opioid-binding protein/cell adhesion molecule were significantly decreased in 42 AD patients compared to 39 controls, whereas 14-3-3ζ was increased (FDR < 0.05). In addition, 16 other proteins showed substantial changes (FDR < 0.2). The expressions of the top 21 analytes were closely interconnected, but were poorly correlated with CSF Aβ42, tTau, and pTau181 levels. Logistic regression analysis and data mining were used to establish the best algorithm for AD, which created novel biomarker panels with high diagnostic value (AUC = 0.889 and 0.924) and a strong correlation with clinical severity (all p < 0.001). Targeted proteomics was used to validate their usefulness in a different cohort (n = 36) that included patients with other brain disorders (all p < 0.05). This study provides a list of proteins (and combinations thereof) that could serve as new AD biomarkers.
Collapse
|
32
|
Mehr A, Hick M, Ludewig S, Müller M, Herrmann U, von Engelhardt J, Wolfer DP, Korte M, Müller UC. Lack of APP and APLP2 in GABAergic Forebrain Neurons Impairs Synaptic Plasticity and Cognition. Cereb Cortex 2020; 30:4044-4063. [PMID: 32219307 DOI: 10.1093/cercor/bhaa025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amyloid-β precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, yet its physiological functions remain incompletely understood. Previous studies had indicated important synaptic functions of APP and the closely related homologue APLP2 in excitatory forebrain neurons for spine density, synaptic plasticity, and behavior. Here, we show that APP is also widely expressed in several interneuron subtypes, both in hippocampus and cortex. To address the functional role of APP in inhibitory neurons, we generated mice with a conditional APP/APLP2 double knockout (cDKO) in GABAergic forebrain neurons using DlxCre mice. These DlxCre cDKO mice exhibit cognitive deficits in hippocampus-dependent spatial learning and memory tasks, as well as impairments in species-typic nesting and burrowing behaviors. Deficits at the behavioral level were associated with altered neuronal morphology and synaptic plasticity Long-Term Potentiation (LTP). Impaired basal synaptic transmission at the Schafer collateral/CA1 pathway, which was associated with altered compound excitatory/inhibitory synaptic currents and reduced action potential firing of CA1 pyramidal cells, points to a disrupted excitation/inhibition balance in DlxCre cDKOs. Together, these impairments may lead to hippocampal dysfunction. Collectively, our data reveal a crucial role of APP family proteins in inhibitory interneurons to maintain functional network activity.
Collapse
Affiliation(s)
- Annika Mehr
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, 69120 Heidelberg, Germany
| | - Meike Hick
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Susann Ludewig
- Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Michaela Müller
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Ulrike Herrmann
- Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - David P Wolfer
- Institute of Anatomy, University of Zürich, 8057 Zürich, Switzerland.,Institute of Human Movement Sciences and Sport, ETH Zürich, 8057 Zürich, Switzerland
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,AG Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ulrike C Müller
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, 69120 Heidelberg, Germany.,Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
33
|
Kanyo R, Leighton PLA, Neil GJ, Locskai LF, Allison WT. Amyloid-β precursor protein mutant zebrafish exhibit seizure susceptibility that depends on prion protein. Exp Neurol 2020; 328:113283. [PMID: 32165257 DOI: 10.1016/j.expneurol.2020.113283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/03/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022]
Abstract
It has been proposed that Amyloid β Precursor Protein (APP) might act as a rheostat controlling neuronal excitability, but mechanisms have remained untested. APP and its catabolite Aβ are known to impact upon synapse function and dysfunction via their interaction with the prion protein (PrPC), suggesting a candidate pathway. Here we test if PrPC is required for this APP function in vivo, perhaps via modulating mGluR5 ion channels. We engineered zebrafish to lack homologs of PrPC and APP, allowing us to assess their purported genetic and physiological interactions in CNS development. We generated four appa null alleles as well as prp1-/-;appa-/- double mutants (engineering of prp1 mutant alleles is described elsewhere). Unexpectedly, appa-/- and compound prp1-/-;appa-/- mutants are viable and lacked overt phenotypes (except being slightly smaller than wildtype fish at some developmental stages). Zebrafish prp1-/- mutants were substantially more sensitive to appa knockdown than wildtype fish, and both zebrafish prp1 and mammalian Prnp mRNA were significantly able to partially rescue this effect. Further, appa-/- mutants exhibited increased seizures upon exposure to low doses of convulsant. The mechanism of this seizure susceptibility requires prp1 insomuch that seizures were significantly dampened to wildtype levels in prp1-/-;appa-/- mutants. Inhibiting mGluR5 channels, which may be downstream of PrPC, increased seizure intensity only in prp1-/- mutants, and this seizure mechanism required intact appa. Taken together, these results support an intriguing genetic interaction between prp1 and appa with their shared roles impacting upon neuron hyperexcitability, thus complementing and extending past works detailing their biochemical interaction(s).
Collapse
Affiliation(s)
- Richard Kanyo
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Patricia L A Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Gavin J Neil
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Laszlo F Locskai
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
34
|
The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer’s Disease. Neuroscience 2020; 424:184-202. [DOI: 10.1016/j.neuroscience.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
|
35
|
Abstract
The Amyloid Precursor Protein (APP) is infamous for its proposed pivotal role in the pathogenesis of Alzheimer’s disease (AD). Much research on APP focusses on potential contributions to neurodegeneration, mostly based on mouse models with altered expression or mutated forms of APP. However, cumulative evidence from recent years indicates the indispensability of APP and its metabolites for normal brain physiology. APP contributes to the regulation of synaptic transmission, plasticity, and calcium homeostasis. It plays an important role during development and it exerts neuroprotective effects. Of particular importance is the soluble secreted fragment APPsα which mediates many of its physiological actions, often counteracting the effects of the small APP-derived peptide Aβ. Understanding the contribution of APP for normal functions of the nervous system is of high importance, both from a basic science perspective and also as a basis for generating new pathophysiological concepts and therapeutic approaches in AD. In this article, we review the physiological functions of APP and its metabolites, focusing on synaptic transmission, plasticity, calcium signaling, and neuronal network activity.
Collapse
Affiliation(s)
- Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Susann Ludewig
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martin Korte
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
36
|
Zhang HH, Meng SQ, Guo XY, Zhang JL, Zhang W, Chen YY, Lu L, Yang JL, Xue YX. Traumatic Stress Produces Delayed Alterations of Synaptic Plasticity in Basolateral Amygdala. Front Psychol 2019; 10:2394. [PMID: 31708835 PMCID: PMC6824323 DOI: 10.3389/fpsyg.2019.02394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
Acute traumatic event exposure is a direct cause of post-traumatic stress disorder (PTSD). Amygdala is suggested to be associated with the development of PTSD. In our previous findings, different activation patterns of GABAergic neurons and glutamatergic neurons in early or late stages after stress were found. However, the neural plastic mechanism underlying the role of basolateral amygdala (BLA) in post-traumatic stress disorder remains unclear. Therefore, this study mainly aimed at investigating time-dependent morphologic and electrophysiological changes in BLA during the development of PTSD. We used single prolonged stress (SPS) procedure to establish PTSD model of rats. The rats showed no alterations in anxiety behavior as well as in dendritic spine density or synaptic transmission in BLA 1 day after SPS. However, 10 days after SPS, rats showed enhancement of anxiety behavior, and spine density and frequency of miniature excitatory and inhibitory postsynaptic currents in BLA. Our results suggested that after traumatic stress, BLA displayed delayed increase in both spinogenesis and synaptic transmission, which seemed to facilitate the development of PTSD.
Collapse
Affiliation(s)
- Huan-Huan Zhang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi-Qiu Meng
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Xin-Yi Guo
- Department of Psychiatry, Tianjin Medical University, Tianjin, China
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Liang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy and Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
| | - Wen Zhang
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Ya-Yun Chen
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
- Peking University Sixth Hospital/Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Jian-Li Yang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
37
|
Is brain iron trafficking part of the physiology of the amyloid precursor protein? J Biol Inorg Chem 2019; 24:1171-1177. [PMID: 31578640 DOI: 10.1007/s00775-019-01684-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein is so named, because a proteolytic fragment of it was found associated with a neuropathic disorder now known as Alzheimer's disease. This fragment, Aβ, along with tau makes up the plaques and tangles that are the hallmark of AD. Iron (and other first-row transition metals) is found associated with these proteinaceous deposits. Much research has focused on the relationship of the plaques and iron to the etiology of the disease. This commentary asks another question, one only more recently addressed namely, what is the physiologic function of the amyloid precursor protein (APP) and of its secretase-generated soluble species? Overall, the data make clear that APP and its products have neurotrophic functions and some data indicate one of these may be to modulate the trafficking of iron in the brain.
Collapse
|
38
|
Lee YJ, Ch'ng TH. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromolecular Med 2019; 22:1-24. [PMID: 31346933 DOI: 10.1007/s12017-019-08556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Regulated intramembrane proteolysis (RIP) occurs in a cell when transmembrane proteins are cleaved by intramembrane proteases such as secretases to generate soluble protein fragments in the extracellular environment and the cytosol. In the cytosol, these soluble intracellular domains (ICDs) have local functions near the site of cleavage or in many cases, translocate to the nucleus to modulate gene expression. While the mechanism of RIP is relatively well studied, the fate and function of ICDs for most substrate proteins remain poorly characterized. In neurons, RIP occurs in various subcellular compartments including at the synapse. In this review, we summarize current research on RIP in neurons, focusing specifically on synaptic proteins where the presence and function of the ICDs have been reported. We also briefly discuss activity-driven processing of RIP substrates at the synapse and the cellular machinery that support long-distance transport of ICDs from the synapse to the nucleus. Finally, we describe future challenges in this field of research in the context of understanding the contribution of ICDs in neuronal function.
Collapse
Affiliation(s)
- Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore.,Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore, Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
39
|
Tang BL. Amyloid Precursor Protein (APP) and GABAergic Neurotransmission. Cells 2019; 8:E550. [PMID: 31174368 PMCID: PMC6627941 DOI: 10.3390/cells8060550] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/25/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022] Open
Abstract
The amyloid precursor protein (APP) is the parent polypeptide from which amyloid-beta (Aβ) peptides, key etiological agents of Alzheimer's disease (AD), are generated by sequential proteolytic processing involving β- and γ-secretases. APP mutations underlie familial, early-onset AD, and the involvement of APP in AD pathology has been extensively studied. However, APP has important physiological roles in the mammalian brain, particularly its modulation of synaptic functions and neuronal survival. Recent works have now shown that APP could directly modulate γ-aminobutyric acid (GABA) neurotransmission in two broad ways. Firstly, APP is shown to interact with and modulate the levels and activity of the neuron-specific Potassium-Chloride (K+-Cl-) cotransporter KCC2/SLC12A5. The latter is key to the maintenance of neuronal chloride (Cl-) levels and the GABA reversal potential (EGABA), and is therefore important for postsynaptic GABAergic inhibition through the ionotropic GABAA receptors. Secondly, APP binds to the sushi domain of metabotropic GABAB receptor 1a (GABABR1a). In this regard, APP complexes and is co-transported with GABAB receptor dimers bearing GABABR1a to the axonal presynaptic plasma membrane. On the other hand, secreted (s)APP generated by secretase cleavages could act as a GABABR1a-binding ligand that modulates presynaptic vesicle release. The discovery of these novel roles and activities of APP in GABAergic neurotransmission underlies the physiological importance of APP in postnatal brain function.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
40
|
August A, Schmidt N, Klingler J, Baumkötter F, Lechner M, Klement J, Eggert S, Vargas C, Wild K, Keller S, Kins S. Copper and zinc ions govern the trans‐directed dimerization of APP family members in multiple ways. J Neurochem 2019; 151:626-641. [DOI: 10.1111/jnc.14716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alexander August
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Nadine Schmidt
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Johannes Klingler
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Frederik Baumkötter
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Marius Lechner
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Jessica Klement
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Simone Eggert
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Carolyn Vargas
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH) University of Heidelberg Heidelberg Germany
| | - Sandro Keller
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Stefan Kins
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| |
Collapse
|
41
|
Yao F, Zhang K, Zhang Y, Guo Y, Li A, Xiao S, Liu Q, Shen L, Ni J. Identification of Blood Biomarkers for Alzheimer's Disease Through Computational Prediction and Experimental Validation. Front Neurol 2019; 9:1158. [PMID: 30671019 PMCID: PMC6331438 DOI: 10.3389/fneur.2018.01158] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the major cause of dementia in population aged over 65 years, accounting up to 70% dementia cases. However, validated peripheral biomarkers for AD diagnosis are not available up to present. In this study, we adopted a new strategy of combination of computational prediction and experimental validation to identify blood protein biomarkers for AD. Methods: First, we collected tissue-based gene expression data of AD patients and healthy controls from GEO database. Second, we analyzed these data and identified differentially expressed genes for AD. Third, we applied a blood-secretory protein prediction program on these genes and predicted AD-related proteins in blood. Finally, we collected blood samples of AD patients and healthy controls to validate the potential AD biomarkers by using ELISA experiments and Western blot analyses. Results: A total of 2754 genes were identified to express differentially in brain tissues of AD, among which 296 genes were predicted to encode AD-related blood-secretory proteins. After careful analysis and literature survey on these predicted blood-secretory proteins, ten proteins were considered as potential AD biomarkers, five of which were experimentally verified with significant change in blood samples of AD vs. controls by ELISA, including GSN, BDNF, TIMP1, VLDLR, and APLP2. ROC analyses showed that VLDLR and TIMP1 had excellent performance in distinguishing AD patients from controls (area under the curve, AUC = 0.932 and 0.903, respectively). Further validation of VLDLR and TIMP1 by Western blot analyses has confirmed the results obtained in ELISA experiments. Conclusion: VLDLR and TIMP1 had better discriminative abilities between ADs and controls, and might serve as potential blood biomarkers for AD. To our knowledge, this is the first time to identify blood protein biomarkers for AD through combination of computational prediction and experimental validation. In addition, VLDLR was first reported here as potential blood protein biomarker for AD. Thus, our findings might provide important information for AD diagnosis and therapies.
Collapse
Affiliation(s)
- Fang Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Kaoyuan Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, Shenzhen, China
| | - Aidong Li
- Department of Rehabilitation, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
42
|
Alzheimer’s disease (AD) therapeutics – 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem Pharmacol 2018; 158:359-375. [DOI: 10.1016/j.bcp.2018.09.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
|
43
|
Consequences of Pharmacological BACE Inhibition on Synaptic Structure and Function. Biol Psychiatry 2018; 84:478-487. [PMID: 29945719 DOI: 10.1016/j.biopsych.2018.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder among elderly persons. Overt accumulation and aggregation of the amyloid-β peptide (Aβ) is thought to be the initial causative factor for Alzheimer's disease. Aβ is produced by sequential proteolytic cleavage of the amyloid precursor protein. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the initial and rate-limiting protease for the generation of Aβ. Therefore, inhibiting BACE1 is considered one of the most promising therapeutic approaches for potential treatment of Alzheimer's disease. Currently, several drugs blocking this enzyme (BACE inhibitors) are being evaluated in clinical trials. However, high-dosage BACE-inhibitor treatment interferes with structural and functional synaptic plasticity in mice. These adverse side effects may mask the therapeutic benefit of lowering the Aβ concentration. In this review, we focus on the consequences of BACE inhibition-mediated synaptic deficits and the potential clinical implications.
Collapse
|
44
|
Herber J, Njavro J, Feederle R, Schepers U, Müller UC, Bräse S, Müller SA, Lichtenthaler SF. Click Chemistry-mediated Biotinylation Reveals a Function for the Protease BACE1 in Modulating the Neuronal Surface Glycoproteome. Mol Cell Proteomics 2018; 17:1487-1501. [PMID: 29716987 DOI: 10.1074/mcp.ra118.000608] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
The cell surface proteome is dynamic and has fundamental roles in cell signaling. Many surface membrane proteins are proteolytically released into a cell's secretome, where they can have additional functions in cell-cell-communication. Yet, it remains challenging to determine the surface proteome and to compare it to the cell secretome, under serum-containing cell culture conditions. Here, we set up and evaluated the 'surface-spanning protein enrichment with click sugars' (SUSPECS) method for cell surface membrane glycoprotein biotinylation, enrichment and label-free quantitative mass spectrometry. SUSPECS is based on click chemistry-mediated labeling of glycoproteins, is compatible with labeling of living cells and can be combined with secretome analyses in the same experiment. Immunofluorescence-based confocal microscopy demonstrated that SUSPECS selectively labeled cell surface proteins. Nearly 700 transmembrane glycoproteins were consistently identified at the surface of primary neurons. To demonstrate the utility of SUSPECS, we applied it to the protease BACE1, which is a key drug target in Alzheimer's disease. Pharmacological BACE1-inhibition selectively remodeled the neuronal surface glycoproteome, resulting in up to 7-fold increased abundance of the BACE1 substrates APP, APLP1, SEZ6, SEZ6L, CNTN2, and CHL1, whereas other substrates were not or only mildly affected. Interestingly, protein changes at the cell surface only partly correlated with changes in the secretome. Several altered proteins were validated by immunoblots in neurons and mouse brains. Apparent nonsubstrates, such as TSPAN6, were also increased, indicating that BACE1-inhibition may lead to unexpected secondary effects. In summary, SUSPECS is broadly useful for determination of the surface glycoproteome and its correlation with the secretome.
Collapse
Affiliation(s)
- Julia Herber
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,§Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jasenka Njavro
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,§Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Regina Feederle
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,¶Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,‖Institute for Diabetes and Obesity, Monoclonal Antibody Research Group, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Ute Schepers
- **Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
| | - Ulrike C Müller
- ‡‡Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University Heidelberg, Germany
| | - Stefan Bräse
- **Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
| | - Stephan A Müller
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,§Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan F Lichtenthaler
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; .,§Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,¶Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,§§Institute for Advanced Study, Technische Universität München, Munich, Germany
| |
Collapse
|
45
|
Schauenburg L, Liebsch F, Eravci M, Mayer MC, Weise C, Multhaup G. APLP1 is endoproteolytically cleaved by γ-secretase without previous ectodomain shedding. Sci Rep 2018; 8:1916. [PMID: 29382944 PMCID: PMC5789831 DOI: 10.1038/s41598-018-19530-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Regulated intramembrane proteolysis of the amyloid precursor protein (APP) and its homologs, the APP like proteins APLP1 and APLP2, is typically a two-step process, which is initiated by ectodomain-shedding of the substrates by α- or β-secretases. Growing evidence, however, indicates that the cleavage process for APLP1 is different than for APP. Here, we describe that full-length APLP1, but not APP or APLP2, is uniquely cleaved by γ-secretase without previous ectodomain shedding. The new fragment, termed sAPLP1γ, was exclusively associated with APLP1, not APP, APLP2. We provide an exact molecular analysis showing that sAPLP1γ was uniquely generated by γ-secretase from full-length APLP1. Mass spectrometry analysis showed that the sAPLP1γ fragment and the longest Aβ-like peptide share the C-terminus. This novel mechanism of γ-secretase action is consistent with an ϵ-cut based upon the nature of the reaction in APP. We further demonstrate that the APLP1 transmembrane sequence is the critical determinant for γ-shedding and release of full-length APLP1. Moreover, the APLP1 TMS is sufficient to convert larger type-I membrane proteins like APP into direct γ-secretase substrates. Taken together, the direct cleavage of APLP1 is a novel feature of the γ-secretase prompting a re-thinking of γ-secretase activity modulation as a therapeutic strategy for Alzheimer disease.
Collapse
Affiliation(s)
- Linda Schauenburg
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.,Sphingotec Therapeutics GmbH, Neuendorfstr. 15a, 16761, Hennigsdorf, Germany
| | - Filip Liebsch
- Department of Pharmacology & Therapeutics and Integrated Program in Neuroscience, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Murat Eravci
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Magnus C Mayer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.,Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166, Teterow, Germany
| | - Christoph Weise
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Gerhard Multhaup
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany. .,Department of Pharmacology & Therapeutics and Integrated Program in Neuroscience, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
46
|
Eggert S, Gonzalez AC, Thomas C, Schilling S, Schwarz SM, Tischer C, Adam V, Strecker P, Schmidt V, Willnow TE, Hermey G, Pietrzik CU, Koo EH, Kins S. Dimerization leads to changes in APP (amyloid precursor protein) trafficking mediated by LRP1 and SorLA. Cell Mol Life Sci 2018; 75:301-322. [PMID: 28799085 PMCID: PMC11105302 DOI: 10.1007/s00018-017-2625-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/17/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Proteolytic cleavage of the amyloid precursor protein (APP) by α-, β- and γ-secretases is a determining factor in Alzheimer's disease (AD). Imbalances in the activity of all three enzymes can result in alterations towards pathogenic Aβ production. Proteolysis of APP is strongly linked to its subcellular localization as the secretases involved are distributed in different cellular compartments. APP has been shown to dimerize in cis-orientation, affecting Aβ production. This might be explained by different substrate properties defined by the APP oligomerization state or alternatively by altered APP monomer/dimer localization. We investigated the latter hypothesis using two different APP dimerization systems in HeLa cells. Dimerization caused a decreased localization of APP to the Golgi and at the plasma membrane, whereas the levels in the ER and in endosomes were increased. Furthermore, we observed via live cell imaging and biochemical analyses that APP dimerization affects its interaction with LRP1 and SorLA, suggesting that APP dimerization modulates its interplay with sorting molecules and in turn its localization and processing. Thus, pharmacological approaches targeting APP oligomerization properties might open novel strategies for treatment of AD.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany.
| | - A C Gonzalez
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Institute for Biochemistry, Christian Albrechts University Kiel, 24118, Kiel, Germany
| | - C Thomas
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - S Schilling
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - S M Schwarz
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Institute for Medical Virology, University of Frankfurt, 60596, Frankfurt, Germany
| | | | - V Adam
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - P Strecker
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - V Schmidt
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - T E Willnow
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - G Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - C U Pietrzik
- Institute for Pathobiochemistry, Molecular Neurodegeneration, University Medical Center of the Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - E H Koo
- Department of Neuroscience, University of California San Diego (UCSD), La Jolla, CA, 92093-0662, USA
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany.
| |
Collapse
|
47
|
Trafficking in Alzheimer's Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol Neurobiol 2017; 55:5809-5829. [PMID: 29079999 DOI: 10.1007/s12035-017-0806-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein (APP), one key player in Alzheimer's disease (AD), is extensively processed by different proteases. This leads to the generation of diverging fragments including the amyloid β (Aβ) peptide, which accumulates in brains of AD patients. Subcellular trafficking of APP is an important aspect for its proteolytic conversion, since the various secretases which cleave APP are located in different cellular compartments. As a consequence, altered subcellular targeting of APP is thought to directly affect the degree to which Aβ is generated. The mechanisms underlying intracellular APP transport are critical to understand AD pathogenesis and can serve as a target for future pharmacological interventions. In the recent years, a number of APP interacting proteins were identified which are implicated in sorting of APP, thereby influencing APP processing at different angles of the secretory or endocytic pathway. This review provides an update on the proteolytic processing of APP and the interplay of the transmembrane proteins low-density lipoprotein receptor-related protein 1, sortilin-receptor with A-type repeats, SorCS1c, sortilin, and calsyntenin. We discuss the specific interactions with APP, the capacity to modulate the intracellular itinerary and the proteolytic conversion of APP, a possible involvement in the clearance of Aβ, and the implications of these transmembrane proteins in AD and other neurodegenerative diseases.
Collapse
|
48
|
Dunsing V, Mayer M, Liebsch F, Multhaup G, Chiantia S. Direct evidence of amyloid precursor-like protein 1 trans interactions in cell-cell adhesion platforms investigated via fluorescence fluctuation spectroscopy. Mol Biol Cell 2017; 28:3609-3620. [PMID: 29021345 PMCID: PMC5706989 DOI: 10.1091/mbc.e17-07-0459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/13/2017] [Accepted: 10/04/2017] [Indexed: 01/25/2023] Open
Abstract
The amyloid precursor–like protein 1 (APLP1) plays a role in synaptic adhesion and synaptogenesis. In this work, we use quantitative fluorescence microscopy to demonstrate the existence of APLP1–APLP1 trans interaction across cell–cell junctions and propose a model explaining the molecular mechanism driving APLP1 multimerization. The amyloid precursor–like protein 1 (APLP1) is a type I transmembrane protein that plays a role in synaptic adhesion and synaptogenesis. Past investigations indicated that APLP1 is involved in the formation of protein–protein complexes that bridge the junctions between neighboring cells. Nevertheless, APLP1–APLP1 trans interactions have never been directly observed in higher eukaryotic cells. Here, we investigated APLP1 interactions and dynamics directly in living human embryonic kidney cells using fluorescence fluctuation spectroscopy techniques, namely cross-correlation scanning fluorescence correlation spectroscopy and number and brightness analysis. Our results show that APLP1 forms homotypic trans complexes at cell–cell contacts. In the presence of zinc ions, the protein forms macroscopic clusters, exhibiting an even higher degree of trans binding and strongly reduced dynamics. Further evidence from giant plasma membrane vesicles suggests that the presence of an intact cortical cytoskeleton is required for zinc-induced cis multimerization. Subsequently, large adhesion platforms bridging interacting cells are formed through APLP1–APLP1 trans interactions. Taken together, our results provide direct evidence that APLP1 functions as a neuronal zinc-dependent adhesion protein and allow a more detailed understanding of the molecular mechanisms driving the formation of APLP1 adhesion platforms.
Collapse
Affiliation(s)
- Valentin Dunsing
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Magnus Mayer
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
| | - Filip Liebsch
- Department of Pharmacology and Therapeutics/Integrated Program in Neuroscience, McGill University, Montreal, QC H3G 1Y63, Canada
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics/Integrated Program in Neuroscience, McGill University, Montreal, QC H3G 1Y63, Canada
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
49
|
Han K, Müller UC, Hülsmann S. Amyloid-precursor Like Proteins APLP1 and APLP2 Are Dispensable for Normal Development of the Neonatal Respiratory Network. Front Mol Neurosci 2017; 10:189. [PMID: 28690498 PMCID: PMC5479907 DOI: 10.3389/fnmol.2017.00189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Recent studies using animal models indicated that the members of the amyloid precursor protein (APP) gene family are important for the formation, maintenance, and plasticity of synapses. Despite this, the specific role of the APP homologs APLP1 and APLP2 within the CNS and PNS is still poorly understood. In contrast to the subtle phenotypes of single mutants, double knockout mice (DKO) lacking APP/APLP2 or APLP1/APLP2 die within the first day after birth. Whereas APP/APLP2-DKO mice show severe deficits of neuromuscular morphology and transmission, the underlying cause of lethality of APLP1/APLP2-DKO mice remains unclear. Since expression of both proteins was confirmed by in situ hybridization, we aimed to test the role of APLP1/APLP2 in the formation and maintenance of synapses in the brainstem, and assessed a potential dysfunction of the most vital central neuronal network in APLP1/APLP2-DKO mice by analyzing the respiratory network of the medulla. We performed in vivo unrestrained whole body plethysmography in newborn APLP1/APLP2-DKO mice at postnatal day zero. Additionally, we directly tested the activity of the respiratory network in an acute slice preparation that includes the pre-Bötzinger complex. In both sets of experiments, no significant differences were detected regarding respiratory rate and cycle variability, strongly arguing against central respiratory problems as the primary cause of death of APLP1/APLP2-DKO mice. Thus, we conclude that APLP1 and APLP2 are dispensable for the development of the network and the generation of a normal breathing rhythm.
Collapse
Affiliation(s)
- Kang Han
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| | - Ulrike C Müller
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| | - Swen Hülsmann
- Klinik für Anästhesiologie, Universitätsmedizin GöttingenGöttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany
| |
Collapse
|