1
|
Liang L, Chen S, Su W, Zhang H, Yu R. Integrated Transcriptomic and Proteomic Study of the Mechanism of Action of the Novel Small-Molecule Positive Allosteric Modulator 1 in Targeting PAC1-R for the Treatment of D-Gal-Induced Aging Mice. Int J Mol Sci 2024; 25:3872. [PMID: 38612681 PMCID: PMC11011505 DOI: 10.3390/ijms25073872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.
Collapse
Affiliation(s)
- Lili Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shang Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wanlin Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huahua Zhang
- Department of Medical Genetics, Guangdong Medical University, Dongguan 523808, China
| | - Rongjie Yu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
2
|
Examination of pituitary adenylate cyclase-activating polypeptide in Parkinson’s disease focusing on correlations with motor symptoms. GeroScience 2022; 44:785-803. [PMID: 35220508 PMCID: PMC9135934 DOI: 10.1007/s11357-022-00530-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
The neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) have been shown in numerous in vitro and in vivo models of Parkinson’s disease (PD) supporting the theory that PACAP could have an important role in the pathomechanism of the disorder affecting mostly older patients. Earlier studies found changes in PACAP levels in neurological disorders; therefore, the aim of our study was to examine PACAP in plasma samples of PD patients. Peptide levels were measured with ELISA and correlated with clinical parameters, age, stage of the disorder based on the Hoehn and Yahr (HY) scale, subtype of the disease, treatment, and specific scores measuring motor and non-motor symptoms, such as movement disorder society-unified Parkinson’s disease rating scale (MDS-UPDRS), Epworth sleepiness scale (ESS), Parkinson’s disease sleep scale (PDSS-2), and Beck depression inventory (BDI). Our results showed significantly decreased PACAP levels in PD patients without deep brain stimulation (DBS) therapy and in akinetic-rigid subtype; additionally we also observed a further decrease in the HY stage 3 and 4. Elevated PACAP levels were found in patients with DBS. There were no significant correlations between PACAP level with MDS-UPDRS, type of pharmacological treatment, PDSS-2 sleepiness, or depression (BDI) scales, but we found increased PACAP level in patients with more severe sleepiness problems based on the ESS scale. Based on these results, we suggest that following the alterations of PACAP with other frequently used clinical biomarkers in PD patients might improve strategic planning of further therapeutic interventions and help to provide a clearer prognosis regarding the future perspective of the disease.
Collapse
|
3
|
Zhang L, Hernandez VS, Gerfen CR, Jiang SZ, Zavala L, Barrio RA, Eiden LE. Behavioral role of PACAP signaling reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations. eLife 2021; 10:61718. [PMID: 33463524 PMCID: PMC7875564 DOI: 10.7554/elife.61718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/18/2021] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide PACAP, acting as a co-transmitter, increases neuronal excitability, which may enhance anxiety and arousal associated with threat conveyed by multiple sensory modalities. The distribution of neurons expressing PACAP and its receptor, PAC1, throughout the mouse nervous system was determined, in register with expression of glutamatergic and GABAergic neuronal markers, to develop a coherent chemoanatomical picture of PACAP role in brain motor responses to sensory input. A circuit role for PACAP was tested by observing Fos activation of brain neurons after olfactory threat cue in wild-type and PACAP knockout mice. Neuronal activation and behavioral response, were blunted in PACAP knock-out mice, accompanied by sharply downregulated vesicular transporter expression in both GABAergic and glutamatergic neurons expressing PACAP and its receptor. This report signals a new perspective on the role of neuropeptide signaling in supporting excitatory and inhibitory neurotransmission in the nervous system within functionally coherent polysynaptic circuits.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.,Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Vito S Hernandez
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Sunny Z Jiang
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Lilian Zavala
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rafael A Barrio
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States.,Department of Complex Systems, Institute of Physics, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| |
Collapse
|
4
|
The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch 2020; 472:1415-1429. [PMID: 32506322 DOI: 10.1007/s00424-020-02412-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Copper is an essential element in cells; it can act as either a recipient or a donor of electrons, participating in various reactions. However, an excess of copper ions in cells is detrimental as these copper ions can generate free radicals and increase oxidative stress. In multicellular organisms, copper metabolism involves uptake, distribution, sequestration, and excretion, at both the cellular and systemic levels. Mammalian enterocytes take in bioavailable copper ions from the diet in a Ctr1-dependent manner. After incorporation, cuprous ions are delivered to ATP7A, which pumps Cu+ from enterocytes into the blood. Copper ions arrive at the liver through the portal vein and are incorporated into hepatocytes by Ctr1. Then, Cu+ can be secreted into the bile or the blood via the Atox1/ATP7B/ceruloplasmin route. In the bloodstream, this micronutrient can reach peripheral tissues and is again incorporated by Ctr1. In peripheral tissue cells, cuprous ions are either sequestrated by molecules such as metallothioneins or targeted to utilization pathways by chaperons such as Atox1, Cox17, and CCS. Copper metabolism must be tightly controlled in order to achieve homeostasis and avoid disorders. A hereditary or acquired copper unbalance, including deficiency, overload, or misdistribution, may cause or aggravate certain diseases such as Menkes disease, Wilson disease, neurodegenerative diseases, anemia, metabolic syndrome, cardiovascular diseases, and cancer. A full understanding of copper metabolism and its roles in diseases underlies the identification of novel effective therapies for such diseases.
Collapse
|
5
|
Fulop DB, Humli V, Szepesy J, Ott V, Reglodi D, Gaszner B, Nemeth A, Szirmai A, Tamas L, Hashimoto H, Zelles T, Tamas A. Hearing impairment and associated morphological changes in pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Sci Rep 2019; 9:14598. [PMID: 31601840 PMCID: PMC6787024 DOI: 10.1038/s41598-019-50775-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a regulatory and cytoprotective neuropeptide, its deficiency implies accelerated aging in mice. It is present in the auditory system having antiapoptotic effects. Expression of Ca2+-binding proteins and its PAC1 receptor differs in the inner ear of PACAP-deficient (KO) and wild-type (WT) mice. Our aim was to elucidate the functional role of PACAP in the auditory system. Auditory brainstem response (ABR) tests found higher hearing thresholds in KO mice at click and low frequency burst stimuli. Hearing impairment at higher frequencies showed as reduced ABR wave amplitudes and latencies in KO animals. Increase in neuronal activity, demonstrated by c-Fos immunolabeling, was lower in KO mice after noise exposure in the ventral and dorsal cochlear nuclei. Noise induced neuronal activation was similar in further relay nuclei of the auditory pathway of WT and KO mice. Based on the similar inflammatory and angiogenic protein profile data from cochlear duct lysates, neither inflammation nor disturbed angiogenesis, as potential pathological components in sensorineural hearing losses, seem to be involved in the pathomechanism of the presented functional and morphological changes in PACAP KO mice. The hearing impairment is probably concomitant with the markedly accelerated aging processes in these animals.
Collapse
Affiliation(s)
- Daniel Balazs Fulop
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Viktoria Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Virag Ott
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Adrienn Nemeth
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.,Department of Otorhinolaryngology, University of Pecs Medical School, Pecs, Hungary
| | - Agnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Laszlo Tamas
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary. .,Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.
| |
Collapse
|
6
|
Bryche B, Saint-Albin A, Le Poupon Schlegel C, Baly C, Congar P, Meunier N. Endothelin increases the proliferation of rat olfactory mucosa cells. Neural Regen Res 2019; 15:352-360. [PMID: 31552909 PMCID: PMC6905347 DOI: 10.4103/1673-5374.265558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The olfactory mucosa holds olfactory sensory neurons directly in contact with an aggressive environment. In order to maintain its integrity, it is one of the few neural zones which are continuously renewed during the whole animal life. Among several factors regulating this renewal, endothelin acts as an anti-apoptotic factor in the rat olfactory epithelium. In the present study, we explored whether endothelin could also act as a proliferative factor. Using primary culture of the olfactory mucosa, we found that an early treatment with endothelin increased its growth. Consistently, a treatment with a mixture of BQ123 and BQ788 (endothelin receptor antagonists) decreased the primary culture growth without affecting the cellular death level. We then used combined approaches of calcium imaging, reverse transcriptase-quantitative polymerase chain reaction and protein level measurements to show that endothelin was locally synthetized by the primary culture until it reached confluency. Furthermore, in vivo intranasal instillation of endothelin receptor antagonists led to a decrease of olfactory mucosa cell expressing proliferating cell nuclear antigen (PCNA), a marker of proliferation. Only short-term treatment reduced the PCNA level in the olfactory mucosa cells. When the treatment was prolonged, the PCNA level was not statistically affected but the expression level of endothelin was increased. Overall, our results show that endothelin plays a proliferative role in the olfactory mucosa and that its level is dynamically regulated. This study was approved by the Comité d’éthique en expérimentation animale COMETHEA (COMETHEA C2EA -45; protocol approval #12-058) on November 28, 2012.
Collapse
Affiliation(s)
- Bertrand Bryche
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas; Université de Versailles Saint-Quentin en Yvelines, Département de Biologie, Versailles, France
| | - Audrey Saint-Albin
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Le Poupon Schlegel
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Christine Baly
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Patrice Congar
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Meunier
- Neurobiologie de l'olfaction, Institut National de Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas; Université de Versailles Saint-Quentin en Yvelines, Département de Biologie, Versailles, France
| |
Collapse
|
7
|
Translational potential of olfactory mucosa for the study of neuropsychiatric illness. Transl Psychiatry 2015; 5:e527. [PMID: 25781226 PMCID: PMC4354342 DOI: 10.1038/tp.2014.141] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/22/2014] [Accepted: 11/17/2014] [Indexed: 01/02/2023] Open
Abstract
The olfactory mucosa (OM) is a unique source of regenerative neural tissue that is readily obtainable from living human subjects and thus affords opportunities for the study of psychiatric illnesses. OM tissues can be used, either as ex vivo OM tissue or in vitro OM-derived neural cells, to explore parameters that have been difficult to assess in the brain of living individuals with psychiatric illness. As OM tissues are distinct from brain tissues, an understanding of the neurobiology of the OM is needed to relate findings in these tissues to those of the brain as well as to design and interpret ex vivo or in vitro OM studies. To that end, we discuss the molecular, cellular and functional characteristics of cell types within the olfactory mucosa, describe the organization of the OM and highlight its role in the olfactory neurocircuitry. In addition, we discuss various approaches to in vitro culture of OM-derived cells and their characterization, focusing on the extent to which they reflect the in vivo neurobiology of the OM. Finally, we review studies of ex vivo OM tissues and in vitro OM-derived cells from individuals with psychiatric, neurodegenerative and neurodevelopmental disorders. In particular, we discuss the concordance of this work with postmortem brain studies and highlight possible future approaches, which may offer distinct strengths in comparison to in vitro paradigms based on genomic reprogramming.
Collapse
|
8
|
Irwin M, Greig A, Tvrdik P, Lucero MT. PACAP modulation of calcium ion activity in developing granule cells of the neonatal mouse olfactory bulb. J Neurophysiol 2014; 113:1234-48. [PMID: 25475351 DOI: 10.1152/jn.00594.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca(2+) activity in the CNS is critical for the establishment of developing neuronal circuitry prior to and during early sensory input. In developing olfactory bulb (OB), the neuromodulators that enhance network activity are largely unknown. Here we provide evidence that pituitary adenylate cyclase-activating peptide (PACAP)-specific PAC1 receptors (PAC1Rs) expressed in postnatal day (P)2-P5 mouse OB are functional and enhance network activity as measured by increases in calcium in genetically identified granule cells (GCs). We used confocal Ca(2+) imaging of OB slices from Dlx2-tdTomato mice to visualize GABAergic GCs. To address whether the PACAP-induced Ca(2+) oscillations were direct or indirect effects of PAC1R activation, we used antagonists for the GABA receptors (GABARs) and/or glutamate receptors (GluRs) in the presence and absence of PACAP. Combined block of GABARs and GluRs yielded a 66% decrease in the numbers of PACAP-responsive cells, suggesting that 34% of OB neurons are directly activated by PACAP. Similarly, immunocytochemistry using anti-PAC1 antibody showed that 34% of OB neurons express PAC1R. Blocking either GluRs or GABARs alone indirectly showed that PACAP stimulates release of both glutamate and GABA, which activate GCs. The appearance of PACAP-induced Ca(2+) activity in immature GCs suggests a role for PACAP in GC maturation. To conclude, we find that PACAP has both direct and indirect effects on neonatal OB GABAergic cells and may enhance network activity by promoting glutamate and GABA release. Furthermore, the numbers of PACAP-responsive GCs significantly increased between P2 and P5, suggesting that PACAP-induced Ca(2+) activity contributes to neonatal OB development.
Collapse
Affiliation(s)
- Mavis Irwin
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ann Greig
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Petr Tvrdik
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah; Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Mary T Lucero
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah; Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, Utah; and Department of Neuroscience and Physiology, American University of the Caribbean, Cupecoy, Sint Maarten, Netherlands Antilles
| |
Collapse
|
9
|
Sandor B, Fintor K, Felszeghy S, Juhasz T, Reglodi D, Mark L, Kiss P, Jungling A, Fulop BD, Nagy AD, Hashimoto H, Zakany R, Nagy A, Tamas A. Structural and morphometric comparison of the molar teeth in pre-eruptive developmental stage of PACAP-deficient and wild-type mice. J Mol Neurosci 2014; 54:331-41. [PMID: 25112419 DOI: 10.1007/s12031-014-0392-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/24/2014] [Indexed: 12/14/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide with widespread distribution. It plays pivotal role in neuronal development. PACAP-immunoreactive fibers have been found in the tooth pulp, and recently, it has been shown that PACAP may also play a role in the regeneration of the periodontium after luxation injuries. However, there is no data about the effect of endogenous PACAP on tooth development. Ectodermal organogenesis including tooth development is regulated by different members of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), hedgehog (HH), and Wnt families. There is also a growing evidence to support the hypothesis that PACAP interacts with sonic hedgehog (SHH) receptor (PTCH1) and its downstream target (Gli1) suggesting its role in tooth development. Therefore, our aim was to study molar tooth development in mice lacking endogenous PACAP. In this study morphometric, immunohistochemical and structural comparison of molar teeth in pre-eruptive developmental stage was performed on histological sections of 7-day-old wild-type and PACAP-deficient mice. Further structural analysis was carried out with Raman microscope. The morphometric comparison of the 7-day-old samples revealed that the dentin was significantly thinner in the molars of PACAP-deficient mice compared to wild-type animals. Raman spectra of the enamel in wild-type mice demonstrated higher diversity in secondary structure of enamel proteins. In the dentin of PACAP-deficient mice higher intracrystalline disordering in the hydroxyapatite molecular structure was found. We also obtained altered SHH, PTCH1 and Gli1 expression level in secretory ameloblasts of PACAP-deficient mice compared to wild-type littermates suggesting that PACAP might play an important role in molar tooth development and matrix mineralization involving influence on SHH signaling cascade.
Collapse
Affiliation(s)
- B Sandor
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
11
|
Gaier ED, Miller MB, Ralle M, Aryal D, Wetsel WC, Mains RE, Eipper BA. Peptidylglycine α-amidating monooxygenase heterozygosity alters brain copper handling with region specificity. J Neurochem 2013; 127:605-19. [PMID: 24032518 DOI: 10.1111/jnc.12438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022]
Abstract
Copper (Cu), an essential trace element present throughout the mammalian nervous system, is crucial for normal synaptic function. Neuronal handling of Cu is poorly understood. We studied the localization and expression of Atp7a, the major intracellular Cu transporter in the brain, and its relation to peptidylglycine α-amidating monooxygenase (PAM), an essential cuproenzyme and regulator of Cu homeostasis in neuroendocrine cells. Based on biochemical fractionation and immunostaining of dissociated neurons, Atp7a was enriched in post-synaptic vesicular fractions. Cu followed a similar pattern, with ~ 20% of total Cu in synaptosomes. A mouse model heterozygous for the Pam gene (PAM+/−) was selectively Cu deficient in the amygdala. As in cortex and hippocampus, Atp7a and PAM expression overlap in the amygdala, with highest expression in interneurons. Messenger RNA levels of Atox-1 and Atp7a, which deliver Cu to the secretory pathway, were reduced in the amygdala but not in the hippocampus in PAM+/− mice, GABAB receptor mRNA levels were similarly affected. Consistent with Cu deficiency, dopamine β-monooxygenase function was impaired as evidenced by elevated dopamine metabolites in the amygdala, but not in the hippocampus, of PAM+/− mice. These alterations in Cu delivery to the secretory pathway in the PAM+/− amygdala may contribute to the physiological and behavioral deficits observed. Atp7a, a Cu-transporting P-type ATPase, is localized to the trans-Golgi network and to vesicles distributed throughout the dendritic arbor. Tissue-specific alterations in Atp7a expression were found in mice heterozygous for peptidylglycine α-amidating monooxygenase (PAM), an essential neuropeptide-synthesizing cuproenzyme. Atp7a and PAM are highly expressed in amygdalar interneurons. Reduced amygdalar expression of Atox-1 and Atp7a in PAM heterozygous mice may lead to reduced synaptic Cu levels, contributing to the behavioral and neurochemical alterations seen in these mice.
Collapse
Affiliation(s)
- Eric D Gaier
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Peptide hormones with a C-terminal amide regulate numerous physiological processes and are associated with many disease states. Consequently, the key enzymes involved in their production, peptidylglycine α-amidating monooxygenase and carboxypeptidase E, have been studied intensively. This review surveys what is known about the enzymes themselves and their cofactors, as well as their substrates and competitive and mechanism-based inhibitors.
Collapse
|
13
|
Lucero MT. Peripheral modulation of smell: fact or fiction? Semin Cell Dev Biol 2012; 24:58-70. [PMID: 22986099 DOI: 10.1016/j.semcdb.2012.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 09/06/2012] [Indexed: 01/01/2023]
Abstract
Despite studies dating back 30 or more years showing modulation of odorant responses at the level of the olfactory epithelium, most descriptions of the olfactory system infer that odorant signals make their way from detection by cilia on olfactory sensory neurons to the olfactory bulb unaltered. Recent identification of multiple subtypes of microvillar cells and identification of neuropeptide and neurotransmitter expression in the olfactory mucosa add to the growing body of literature for peripheral modulation in the sense of smell. Complex mechanisms including perireceptor events, modulation of sniff rates, and changes in the properties of sensory neurons match the sensitivity of olfactory sensory neurons to the external odorant environment, internal nutritional status, reproductive status, and levels of arousal or stress. By furthering our understanding of the players mediating peripheral olfaction, we may open the door to novel approaches for modulating the sense of smell in both health and disease.
Collapse
Affiliation(s)
- Mary T Lucero
- Department of Physiology, School of Medicine, University of Utah, 420 Chipeta Way Ste, 1700 Salt Lake City, UT 84108, USA.
| |
Collapse
|
14
|
ATP7A gene addition to the choroid plexus results in long-term rescue of the lethal copper transport defect in a Menkes disease mouse model. Mol Ther 2011; 19:2114-23. [PMID: 21878905 DOI: 10.1038/mt.2011.143] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Menkes disease is a lethal infantile neurodegenerative disorder of copper metabolism caused by mutations in a P-type ATPase, ATP7A. Currently available treatment (daily subcutaneous copper injections) is not entirely effective in the majority of affected individuals. The mottled-brindled (mo-br) mouse recapitulates the Menkes phenotype, including abnormal copper transport to the brain owing to mutation in the murine homolog, Atp7a, and dies by 14 days of age. We documented that mo-br mice on C57BL/6 background were not rescued by peripheral copper administration, and used this model to evaluate brain-directed therapies. Neonatal mo-br mice received lateral ventricle injections of either adeno-associated virus serotype 5 (AAV5) harboring a reduced-size human ATP7A (rsATP7A) complementary DNA (cDNA), copper chloride, or both. AAV5-rsATP7A showed selective transduction of choroid plexus epithelia and AAV5-rsATP7A plus copper combination treatment rescued mo-br mice; 86% survived to weaning (21 days), median survival increased to 43 days, 37% lived beyond 100 days, and 22% survived to the study end point (300 days). This synergistic treatment effect correlated with increased brain copper levels, enhanced activity of dopamine-β-hydroxylase, a copper-dependent enzyme, and correction of brain pathology. Our findings provide the first definitive evidence that gene therapy may have clinical utility in the treatment of Menkes disease.
Collapse
|
15
|
Stroth N, Holighaus Y, Ait-Ali D, Eiden LE. PACAP: a master regulator of neuroendocrine stress circuits and the cellular stress response. Ann N Y Acad Sci 2011; 1220:49-59. [PMID: 21388403 DOI: 10.1111/j.1749-6632.2011.05904.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is released from stress-transducing neurons. It exerts postsynaptic effects required to complete the hypothalamo-pituitary-adrenocortical (HPA) and hypothalamo-sympatho-adrenal (HSA) circuits activated by psychogenic and metabolic stressors. Upon activation of these circuits, PACAP-responsive (in cell culture models) and PACAP-dependent (in vivo) transcriptomic responses in the adrenal gland, hypothalamus, and pituitary have been identified. Gene products produced in response circuits during stress include additional neuropeptides, neurotransmitter biosynthetic enzymes, and neuroprotective factors. Major portions of HPA and HSA stress responses are abolished in PACAP-deficient mice. This deficit occurs at the level of both the hypothalamus (HPA axis) and the adrenal medulla (HSA axis). PACAP-dependent transcriptional stress responses are conveyed through noncanonical cyclic AMP- and calcium-initiated signaling pathways within the HSA circuit. PACAP transcriptional regulation of the HPA axis, in the hypothalamus, is likely to be mediated via canonical cyclic AMP signaling through protein kinase A.
Collapse
Affiliation(s)
- Nikolas Stroth
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, NIMH-IRP, NIH, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
16
|
Abstract
This Review summarizes recent advances in understanding copper-transporting ATPase 1 (ATP7A), and examines the neurological phenotypes associated with dysfunction of this protein. Involvement of ATP7A in axonal outgrowth, synapse integrity and neuronal activation underscores the fundamental importance of copper metabolism to neurological function. Defects in ATP7A cause Menkes disease, an infantile-onset, lethal condition. Neonatal diagnosis and early treatment with copper injections enhance survival in patients with this disease, and can normalize clinical outcomes if mutant ATP7A molecules retain small amounts of residual activity. Gene replacement rescues a mouse model of Menkes disease, suggesting a potential therapeutic approach for patients with complete loss-of-function ATP7A mutations. Remarkably, a newly discovered ATP7A disorder-isolated distal motor neuropathy-has none of the characteristic clinical or biochemical abnormalities of Menkes disease or its milder allelic variant occipital horn syndrome (OHS), instead resembling Charcot-Marie-Tooth disease type 2. These findings indicate that ATP7A has a crucial but previously unappreciated role in motor neuron maintenance, and that the mechanism underlying ATP7A-related distal motor neuropathy is distinct from Menkes disease and OHS pathophysiology. Collectively, these insights refine our knowledge of the neurology of ATP7A-related copper transport diseases and pave the way for further progress in understanding ATP7A function.
Collapse
|
17
|
Laziz I, Larbi A, Grebert D, Sautel M, Congar P, Lacroix MC, Salesse R, Meunier N. Endothelin as a neuroprotective factor in the olfactory epithelium. Neuroscience 2010; 172:20-9. [PMID: 21035524 DOI: 10.1016/j.neuroscience.2010.10.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 01/11/2023]
Abstract
In mammals, the olfactory sensory neurons are the only ones directly in contact with an aggressive environment. Thus, the olfactory mucosa is one of the few neuronal zones which are continuously renewed during adulthood. We have previously shown that endothelin is locally matured in the olfactory mucosa and that olfactory sensory neurons preferentially express ETB receptors, while ETA receptors are rather present in non neuronal olfactory mucosa cells. In addition to its vasoactive effect, the endothelin system is known for its pleiotropic effects including the modulation of cell population dynamics. We thus examined its potential neuroprotective effect in the olfactory mucosa using a primary culture of olfactory sensory neurons lying on non neuronal cells. While a serum deprivation led to a massive decrease of the density of olfactory sensory neurons in the primary cultures, endothelin 1 (ET-1) rescued part of the neuronal population through both ETA and ETB receptors. This effect was mainly anti-apoptotic as it reduced cleaved caspase-3 signal and nuclear condensation. Furthermore, the olfactory epithelium of ETB-deficient rats displayed increased apoptosis. These results strongly suggest that ET-1 acts as an anti-apoptotic factor on olfactory sensory neurons, directly through ETB and indirectly by limiting non neuronal cells death through ETA.
Collapse
Affiliation(s)
- I Laziz
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Domaine de Vilvert, F-78350 Jouy-en-Josas, IFR 144 Neuro-Sud Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ip V, Liu JJ, Mercer JFB, McKeage MJ. Differential expression of ATP7A, ATP7B and CTR1 in adult rat dorsal root ganglion tissue. Mol Pain 2010; 6:53. [PMID: 20836889 PMCID: PMC2949721 DOI: 10.1186/1744-8069-6-53] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/13/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG) tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg) or drug vehicle twice weekly for 8 weeks. RESULTS In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated heavy neurofilament subunit (pNF-H). High levels of CTR1 mRNA were detected in all tissues from healthy control animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them. Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals. CONCLUSIONS In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or ATP7B. The neuron subtype-specific and largely non-overlapping distribution of ATP7A and CTR1 within rat DRG tissue may be required to support the potentially differing cuproenzyme requirements of distinct subsets of sensory neurons, and could influence the transport and neurotoxicity of oxaliplatin.
Collapse
Affiliation(s)
- Virginia Ip
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Johnson J Liu
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Julian FB Mercer
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | - Mark J McKeage
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
May V, Lutz E, MacKenzie C, Schutz KC, Dozark K, Braas KM. Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor activation coordinates multiple neurotrophic signaling pathways: Akt activation through phosphatidylinositol 3-kinase gamma and vesicle endocytosis for neuronal survival. J Biol Chem 2010; 285:9749-9761. [PMID: 20093365 PMCID: PMC2843224 DOI: 10.1074/jbc.m109.043117] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
MAPK and Akt pathways are predominant mediators of trophic signaling for many neuronal systems. Among the vasoactive intestinal peptide/secretin/glucagon family of related peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) binding to specific PAC(1) receptor isoforms can engage multiple signaling pathways and promote neuroprotection through mechanisms that are not well understood. Using a primary sympathetic neuronal system, the current studies demonstrate that PACAP activation of PAC(1)HOP1 receptors engages both MAPK and Akt neurotrophic pathways in an integrated program to facilitate neuronal survival after growth factor withdrawal. PACAP not only stimulated prosurvival ERK1/2 and ERK5 activation but also abrogated SAPK/JNK and p38 MAPK signaling in parallel. In contrast to the potent and rapid effects of PACAP in ERK1/2 phosphorylation, PACAP stimulated Akt phosphorylation in a late phase of PAC(1)HOP1 receptor signaling. From inhibitor and immunoprecipitation analyses, the PACAP/PAC(1)HOP1 receptor-mediated Akt responses did not represent transactivation mechanisms but appeared to depend on G alpha(q)/phosphatidylinositol 3-kinase gamma activity and vesicular internalization pathways. Phosphatidylinositol 3-kinase gamma-selective inhibitors blocked PACAP-stimulated Akt phosphorylation in primary neuronal cultures and in PAC(1)HOP1-overexpressing cell lines; RNA interference-mediated knockdown of the receptor effectors attenuated PACAP-mediated Akt activation. Similarly, perturbation of endocytic pathways also blocked Akt phosphorylation. Between ERK and Akt pathways, PACAP-stimulated Akt signaling was the primary cascade that attenuated cultured neuron apoptosis after growth factor withdrawal. The partitioning of PACAP-mediated Akt signaling in endosomes may be a key mechanism contributing to the high spatial and temporal specificity in signal transduction necessary for survival pathways.
Collapse
Affiliation(s)
- Victor May
- Departments of Anatomy and Neurobiology and of Pharmacology, The University of Vermont College of Medicine, Burlington, Vermont 05405.
| | - Eve Lutz
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Royal College, 204 George Street, Glasgow G1 1XW, Scotland, United Kingdom
| | - Christopher MacKenzie
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Royal College, 204 George Street, Glasgow G1 1XW, Scotland, United Kingdom
| | - Kristin C Schutz
- Departments of Anatomy and Neurobiology and of Pharmacology, The University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Kate Dozark
- Departments of Anatomy and Neurobiology and of Pharmacology, The University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Karen M Braas
- Departments of Anatomy and Neurobiology and of Pharmacology, The University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
20
|
Racz B, Horvath G, Reglodi D, Gasz B, Kiss P, Gallyas F, Sumegi B, Toth G, Nemeth A, Lubics A, Tamas A. PACAP ameliorates oxidative stress in the chicken inner ear: an in vitro study. ACTA ACUST UNITED AC 2009; 160:91-8. [PMID: 19969027 DOI: 10.1016/j.regpep.2009.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/09/2009] [Accepted: 12/02/2009] [Indexed: 11/30/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic and multifunctional neuropeptide. Numerous studies prove that PACAP has neuroprotective effects in diverse neuronal systems in vitro and in vivo. The involvement of PACAP in visual and olfactory sensory processing has also been documented, but little is known about its effects in the auditory system. The presence of PACAP and its receptor, the specific PAC1 receptor, has been shown in the cochlea and in brain structures involved in auditory pathways. The aim of the present study was to investigate whether PACAP is protective in cochlear oxidative stress-induced cell death, which is known to play a role in several ototoxic insults. Chicken cochlear cells were exposed to 1mM H(2)O(2), which resulted in a marked reduction of cell viability and a parallel increase of apoptotic and necrotic cells assessed by MTT test, annexin V/propidium iodide flow cytometry and JC-1 apoptosis assay. Co-incubation with 100nM PACAP increased cell viability and reduced the percentage of apoptotic cells. Furthermore, oxidative stress increased the activation of caspase-3, while simultaneous PACAP treatment reduced it. In summary, our present results demonstrate that PACAP effectively protects cochlear cells against oxidative stress-induced apoptotic cell death.
Collapse
Affiliation(s)
- Boglarka Racz
- Department of Biochemistry and Medical Chemistry, University of Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boros A, Reglodi D, Herbert Z, Kiszler G, Nemeth J, Lubics A, Kiss P, Tamas A, Shioda S, Matsuda K, Pollak E, Molnar L. Changes in the expression of PACAP-like compounds during the embryonic development of the earthworm Eisenia fetida. J Mol Neurosci 2008; 36:157-65. [PMID: 18607777 DOI: 10.1007/s12031-008-9102-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/08/2008] [Indexed: 10/21/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is expressed at very early stages in the vertebrate nervous system, and its functions in the embryonic development have been shown by various studies. PACAP is an extremely conserved molecule in phylogeny; however, little is known about its presence and functions in invertebrates. Our previous studies have shown the occurrence of PACAP-like immunoreactivity in the invertebrate nervous system. The aim of this study was to investigate the presence and localization of PACAP-like compounds during the embryonic development of earthworms from cocoon deposition to hatching using immunological methods (radioimmunoassay, dot blot, immunohistochemistry). PACAP-like immunoreactive compounds were detected at very early stages of the embryonic development of the earthworm Eisenia fetida. No significant changes were observed during the early stages in the developing embryo, but a marked increase occurred before hatching. In contrast, during the embryonic development, the level of PACAP-like compounds gradually decreased in cocoon fluids. Immunohistochemistry revealed the presence of PACAP-like immunoreactive cell bodies and processes in the developing body wall, prostomium, pharyngeal wall, and central nervous system. Cells located in the body wall correspond to putative progenitor cells of primary sensory cells. In the present study, we also showed that the clitellum (reproductive organ) of sexually mature worms contained significantly higher levels of PACAP-like immunoreactivity than other regions of the same animals or the clitellar region of a non-reproducing animal. In summary, these observations provide a morphological basis and suggest a role of PACAP(-like peptides) in the reproductive and developmental functions of invertebrates.
Collapse
Affiliation(s)
- Akos Boros
- Department of General Zoology, University of Pécs, Ifjúság u. 6., 7624, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ghzili H, Grumolato L, Thouënnon E, Tanguy Y, Turquier V, Vaudry H, Anouar Y. Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol 2008; 29:128-41. [PMID: 18048093 DOI: 10.1016/j.yfrne.2007.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/24/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023]
Abstract
Sympathetic neurons and chromaffin cells derive from common sympathoadrenal precursors which arise from the neural crest. Cells from this lineage migrate to their final destination and differentiate by acquiring a catecholaminergic phenotype in response to different environmental factors. It has been shown that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its PAC1 receptor are expressed at early stages of sympathetic development, and participate to the control of neuroblast proliferation and differentiation. PACAP also acts as a neurotransmitter to stimulate catecholamine and neuropeptide biosynthesis and release from sympathetic neurons and chromaffin cells, during development and in adulthood. In addition, PACAP and its receptors have been described in neuroblastoma and pheochromocytoma, and the neuropeptide regulates the differentiation and activity of sympathoadrenal-derived tumoral cell lines, suggestive of an important role in the pathophysiology of the sympathoadrenal lineage. Transcriptome studies uncovered genes and pathways of known and unknown roles that underlie the effects of PACAP in the sympathoadrenal system.
Collapse
Affiliation(s)
- Hafida Ghzili
- INSERM, U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev 2007; 87:1011-46. [PMID: 17615395 DOI: 10.1152/physrev.00004.2006] [Citation(s) in RCA: 569] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B are evolutionarily conserved polytopic membrane proteins with essential roles in human physiology. The Cu-ATPases are expressed in most tissues, and their transport activity is crucial for central nervous system development, liver function, connective tissue formation, and many other physiological processes. The loss of ATP7A or ATP7B function is associated with severe metabolic disorders, Menkes disease, and Wilson disease. In cells, the Cu-ATPases maintain intracellular copper concentration by transporting copper from the cytosol across cellular membranes. They also contribute to protein biosynthesis by delivering copper into the lumen of the secretory pathway where metal ion is incorporated into copper-dependent enzymes. The biosynthetic and homeostatic functions of Cu-ATPases are performed in different cell compartments; targeting to these compartments and the functional activity of Cu-ATPase are both regulated by copper. In recent years, significant progress has been made in understanding the structure, function, and regulation of these essential transporters. These studies raised many new questions related to specific physiological roles of Cu-ATPases in various tissues and complex mechanisms that control the Cu-ATPase function. This review summarizes current data on the structural organization and functional properties of ATP7A and ATP7B as well as their localization and functions in various tissues, and discusses the current models of regulated trafficking of human Cu-ATPases.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
24
|
Watanabe J, Nakamachi T, Matsuno R, Hayashi D, Nakamura M, Kikuyama S, Nakajo S, Shioda S. Localization, characterization and function of pituitary adenylate cyclase-activating polypeptide during brain development. Peptides 2007; 28:1713-9. [PMID: 17719696 DOI: 10.1016/j.peptides.2007.06.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Neural development is controlled by region-specific factors that regulate cell proliferation, migration and differentiation. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts a wide range of effects on different cell types in the brain as early as the fetal stage. Here we review current knowledge concerning several aspects of PACAP expression in embryonic and neonatal neural tissue: (i) the distribution of PACAP and PACAP receptors mRNA in the developing brain; (ii) the characteristic generation of neurons, astrocytes and oligodendrocytes in brain areas where the PACAP receptor is expressed and (iii) the role of PACAP as a regulator of neural development, inducing differentiation and proliferation in association with other trophic factors or signal transduction molecules.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Watanabe J, Ohba M, Ohno F, Kikuyama S, Nakamura M, Nakaya K, Arimura A, Shioda S, Nakajo S. Pituitary adenylate cyclase-activating polypeptide-induced differentiation of embryonic neural stem cells into astrocytes is mediated via the beta isoform of protein kinase C. J Neurosci Res 2007; 84:1645-55. [PMID: 17022039 DOI: 10.1002/jnr.21065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have found previously that pituitary adenylate cyclase-activating polypeptide (PACAP) increases the number of astrocytes generated from cultured mouse neural stem cells (NSCs) via a mechanism that is independent of the cyclic AMP/protein kinase A pathway (Ohno et al., 2005). In the present study, the signaling pathway involved in the differentiation process was further investigated. PACAP-induced differentiation was inhibited by the phospholipase C inhibitor, U73122, the protein kinase C (PKC) inhibitor, chelerythrine, and the intracellular calcium chelator, BAPTA-AM, and was mimicked by phorbol 12-myristate 13-acetate (PMA), but not by 4alpha-PMA. These results suggest that the PACAP-generated signal was mediated via the PACAP receptor, PAC1 stimulated heterotrimeric G-protein, resulting in activation of phospholipase C, followed by calcium- and phospholipid-dependent protein kinase C (cPKC). To elucidate the involvement of the different isoforms of cPKC, their gene and protein expression were examined. Embryonic NSCs expressed alpha and betaII PKC, but lacked PKCgamma. When NSCs were exposed to 2 nM PACAP, protein expression levels of the betaII isoform transiently increased two-fold before differentiation, returning to basal levels by Day 4, whereas the level of PKCalpha increased linearly up to Day 6. Overexpression of PKCbetaII with adenovirus vector synergistically enhanced differentiation in the presence of 1 nM PACAP, whereas expression of the dominant-negative mutant of PKCbetaII proved inhibitory. These results indicate that the beta isoform of PKC plays a crucial role in the PACAP-induced differentiation of mouse embryonic NSCs into astrocytes.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of Anatomy, School of Medicine, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The effects of PACAP on neural cell proliferation. ACTA ACUST UNITED AC 2006; 137:50-7. [PMID: 17011642 DOI: 10.1016/j.regpep.2006.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/20/2006] [Accepted: 03/30/2006] [Indexed: 01/25/2023]
Abstract
PACAP and its receptors are expressed in growth zones of the brain. By stimulating PAC(1)-receptors PACAP can enhance, as well as reduce, the proliferation rate in a cell-type dependent manner. PACAP can enhance the proliferation rate by activating phospholipase C and protein kinase C, although other signal transduction pathways may also be responsible. PACAP can suppress proliferation by inhibiting protein complexes of the cyclins D and E with the cyclin-dependent kinases 4/6 and 2, respectively, which are necessary for entry into the cell cycle. PACAP seems to exert these inhibitory effects by acting via the Sonic hedgehog glycoprotein and the small GTPase RhoA. Also, the activation of a cyclin-dependent kinase inhibitor has been suggested. The signal transduction pathways mediating the effects of PACAP on proliferation are discussed.
Collapse
|
27
|
Montani G, Tonelli S, Elsaesser R, Paysan J, Tirindelli R. Neuropeptide Y in the olfactory microvillar cells. Eur J Neurosci 2006; 24:20-4. [PMID: 16800866 DOI: 10.1111/j.1460-9568.2006.04878.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper examines a possible role of microvillar cells in coordinating cell death and regeneration of olfactory epithelial neurons. The olfactory neuroepithelium of mammals is a highly dynamic organ. Olfactory neurons periodically degenerate by apoptosis and as a consequence of chemical or physical damage. To compensate for this loss of cells, the olfactory epithelium maintains a lifelong ability to regenerate from a pool of resident multipotent stem cells. To assure functional continuity and histological integrity of the olfactory epithelium over a period of many decades, apoptosis and regeneration require to be precisely coordinated. Among the factors that have been implicated in mediating this regulation is the neuropeptide Y (NPY). Knockout mice that lack functional expression of this neurogenic peptide show defects in embryonic development of the olfactory epithelium and in its ability to regenerate in the adult. Here we show that, in postnatal olfactory epithelia, NPY is exclusively expressed by a specific population of microvillar cells. We previously characterized these cells as a novel type of putative chemosensory cells, which are provided with a phosphatidyl-inositol-mediated signal transduction cascade. Our findings allow for the first time to suggest that microvillar cells are involved in connecting apoptosis to neuronal regeneration by stimulus-induced release of NPY.
Collapse
Affiliation(s)
- Giorgia Montani
- Department of Neuroscience, University of Parma, Via Volturno, 39, I-43100, Parma, Italy
| | | | | | | | | |
Collapse
|
28
|
Han P, Lucero MT. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons. Neuroscience 2005; 134:745-56. [PMID: 16019148 DOI: 10.1016/j.neuroscience.2005.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/24/2005] [Accepted: 05/07/2005] [Indexed: 11/20/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.
Collapse
Affiliation(s)
- P Han
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT 84108, USA
| | | |
Collapse
|
29
|
Józsa R, Hollósy T, Tamás A, Tóth G, Lengvári I, Reglodi D. Pituitary adenylate cyclase activating polypeptide plays a role in olfactory memory formation in chicken. Peptides 2005; 26:2344-50. [PMID: 15927304 DOI: 10.1016/j.peptides.2005.03.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/29/2005] [Accepted: 03/30/2005] [Indexed: 11/25/2022]
Abstract
PACAP plays an important role during development of the nervous system and is also involved in memory processing. The aim of the present study was to investigate the function of PACAP in chicken embryonic olfactory memory formation by blocking PACAP at a sensitive period in ovo. Chicken were exposed daily to strawberry scent in ovo from embryonic day 15. Control eggs were treated only with saline, while other eggs received a single injection of the PACAP antagonist PACAP6-38 at day 15. The consumption of scented and unscented water was measured daily after hatching. Animals exposed to strawberry scent in ovo showed no preference. However, chickens exposed to PACAP6-38, showed a clear preference for plain water, similarly to unexposed chicken. Our present study points to PACAP's possible importance in embryonic olfactory memory formation.
Collapse
Affiliation(s)
- Rita Józsa
- Department of Anatomy, Pécs University Medical Faculty and Neurohumoral Regulations Research Group of the Hungarian Academy of Sciences, 7624 Pecs, Szigeti u 12, Hungary
| | | | | | | | | | | |
Collapse
|
30
|
Czyzyk TA, Ning Y, Hsu MS, Peng B, Mains RE, Eipper BA, Pintar JE. Deletion of peptide amidation enzymatic activity leads to edema and embryonic lethality in the mouse. Dev Biol 2005; 287:301-13. [PMID: 16225857 DOI: 10.1016/j.ydbio.2005.09.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 08/04/2005] [Accepted: 09/06/2005] [Indexed: 11/25/2022]
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the COOH-terminal amidation of peptide hormones. We previously had found high expression of PAM in several regions of the developing rodent. To determine the function of PAM during mouse embryogenesis, we produced a null mutant of the PAM gene. Homozygous mutants die in utero between e14.5 and e15.5 with severe edema that is likely due to cardiovascular deficits. These defects include thinning of the aorta and carotid arteries and are very similar to those of the recently characterized adrenomedullin (AM) gene KO despite the presence of elevated immunoreactive AM in PAM KO embryos. No peptide amidation activity was detected in PAM mutant embryos, and there was no moderation of the AM-like phenotype that could be expected if any alternative peptide amidation mechanism exists in the mouse. Despite the proposed contribution of amidated peptides to neuronal cell proliferation, no alteration in neuroblast proliferation was observed in homozygous mutant embryos prior to lethality. Mice heterozygous for the mutant PAM allele develop normally and express wildtype levels of several amidated peptides despite having one half the wildtype levels of PAM activity and PAM protein. Nonetheless, both an increase in adiposity and a mild glucose intolerance developed in aged (>10 months) heterozygous mice compared to littermate controls. Ablation of PAM thus demonstrates an essential function for this gene during mouse development, while alterations in PAM activity in the adult may underlie more subtle physiologic effects.
Collapse
Affiliation(s)
- Traci A Czyzyk
- Department of Neuroscience and Cell Biology, CABM Rm 326, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Meyer DK, Fischer C, Becker U, Göttsching I, Boutillier S, Baermann C, Schmidt G, Klugbauer N, Leemhuis J. Pituitary Adenylyl Cyclase-activating Polypeptide 38 Reduces Astroglial Proliferation by Inhibiting the GTPase RhoA. J Biol Chem 2005; 280:25258-66. [PMID: 15870074 DOI: 10.1074/jbc.m501630200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pituitary adenylyl cyclase-activating polypeptide 38 (PACAP38) plays an important role in the proliferation and differentiation of neural cells. In the present study, we have investigated how PACAP38 inhibits the proliferation of cultured neocortical astroglial cells. When applied to synchronized cells during the G(1) phase of the cell cycle, PACAP38 diminished the subsequent nuclear uptake of bromodeoxyuridine. When applied for 2 days, it reduced the cell number. PACAP38 did not exert its antiproliferative effect by activating protein kinase A. It also did not reduce the activity of mitogen-activated protein kinases essential for G(1) phase progression. Instead, PACAP38 acted on a member of the Rho family of small GTPases. It reduced the activity of RhoA as was shown with a Rhotekin pull-down assay. The decrease in endogenous RhoA activity induced by treatment of the cells with C3 exotoxin or by expression of dominant negative RhoA also reduced the nuclear uptake of bromodeoxyuridine. In contrast, expression of constitutively active RhoA prevented the effect of PACAP38. Our data show a novel signal transduction pathway by which the neuropeptide influences cell proliferation.
Collapse
Affiliation(s)
- Dieter K Meyer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Zentrum für Neurowissenschaften, Albert-Ludwigs-Universität, D-79104 Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Girard BM, Keller ET, Schutz KC, May V, Braas KM. Pituitary adenylate cyclase activating polypeptide and PAC1 receptor signaling increase Homer 1a expression in central and peripheral neurons. ACTA ACUST UNITED AC 2005; 123:107-16. [PMID: 15518900 DOI: 10.1016/j.regpep.2004.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase activating polypeptides (PACAP) and PAC1 receptor signaling have diverse roles in central and peripheral nervous system development and function. In recent microarray analyses for PACAP and PAC1 receptor modulation of neuronal transcripts, the mRNA of Homer 1a (H1a), which encodes the noncrosslinking and immediate early gene product isoform of Homer, was identified to be strongly upregulated in superior cervical ganglion (SCG) sympathetic neurons. Given the prominent roles of Homer in synaptogenesis, synaptic protein complex assembly and receptor/channel signaling, we have examined the ability for PACAP to induce H1a expression in sympathetic, cortical and hippocampal neurons to evaluate more comprehensively the roles of PACAP in synaptic function. In both central and peripheral neuronal cultures, PACAP peptides increased transiently H1a transcript levels approximately 3.5- to 6-fold. From real-time quantitative PCR measurements, the temporal patterns of PACAP-mediated H1a mRNA induction among the different neuronal cultures appeared similar although the onset of sympathetic H1a transcript expression appeared protracted. The increase in H1a transcripts was accompanied by increases in H1a protein levels. Comparative studies with VIP and PACAP(6-38) antagonist demonstrated that the PACAP effects reflected PAC1 receptor activation and signaling. The PAC1 receptor isoforms expressed in central and peripheral neurons can engage diverse intracellular second messenger systems, and studies using selective signaling pathway inhibitors demonstrated that the cyclic AMP/PKA and MEK/ERK cascades are principal mediators of the PACAP-mediated H1a induction response. In modulating H1a transcript and protein expression, these studies may implicate broad roles for PACAP and PAC1 receptor signaling in synaptic development and plasticity.
Collapse
Affiliation(s)
- Beatrice M Girard
- Departments of Anatomy and Neurobiology, and Pharmacology, University of Vermont College of Medicine, 149 Beaumont Avenue, HSRF 428, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
33
|
Linden R, Martins RAP, Silveira MS. Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina. Prog Retin Eye Res 2004; 24:457-91. [PMID: 15845345 DOI: 10.1016/j.preteyeres.2004.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has long been known that a barrage of signals from neighboring and connecting cells, as well as components of the extracellular matrix, control cell survival. Given the extensive repertoire of retinal neurotransmitters, neuromodulators and neurotrophic factors, and the exhuberant interconnectivity of retinal interneurons, it is likely that various classes of released neuroactive substances may be involved in the control of sensitivity to retinal cell death. The aim of this article is to review evidence that neurotransmitters and neuropeptides control the sensitivity to programmed cell death in the developing retina. Whereas the best understood mechanism of execution of cell death is that of caspase-mediated apoptosis, current evidence shows that not only there are many parallel pathways to apoptotic cell death, but non-apoptotic programs of execution of cell death are also available, and may be triggered either in isolation or combined with apoptosis. The experimental data show that many upstream signaling pathways can modulate cell death, including those dependent on the second messengers cAMP-PKA, calcium and nitric oxide. Evidence for anterograde neurotrophic control is provided by a variety of models of the central nervous system, and the data reviewed here indicate that an early function of certain neurotransmitters, such as glutamate and dopamine, as well as neuropeptides such as pituitary adenylyl cyclase-activating polypeptide and vasoactive intestinal peptide is the trophic support of cell populations in the developing retina. This may have implications both regarding the mechanisms of retinal organogenesis, as well as pathological conditions leading to retinal dystrophies and to dysfunctional cellular behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Centro de Ciencias da Saude, Instituto de Biofísica da UFRJ, Cidade Universitária, bloco G, Rio de Janeiro 21949-900, Brazil.
| | | | | |
Collapse
|
34
|
Braas KM, Rossignol TM, Girard BM, May V, Parsons RL. Pituitary adenylate cyclase activating polypeptide (PACAP) decreases neuronal somatostatin immunoreactivity in cultured guinea-pig parasympathetic cardiac ganglia. Neuroscience 2004; 126:335-46. [PMID: 15207351 DOI: 10.1016/j.neuroscience.2004.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2004] [Indexed: 11/27/2022]
Abstract
Postganglionic parasympathetic neurons in guinea-pig cardiac ganglia exhibit choline acetyltransferase (ChAT)-immunoreactivity, and a large fraction (60%) of the ChAT-positive cardiac neurons co-express somatostatin-immunoreactivity. This co-expression remained when the cardiac ganglia explants were maintained in culture for 72 h (40% somatostatin-immunoreactive). The guinea-pig cardiac ganglia neurons express the high affinity pituitary adenylate cyclase activating polypeptide (PACAP)-selective PAC1 receptor, and treatment of the ganglia explants with 20 nM PACAP27 for 72 h to evaluate PACAP regulation of somatostatin expression revealed a dramatic 85% decrease in the number of somatostatin-IR neurons (6% somatostatin-IR neurons) compared with untreated control explant preparations. The decrease in percentage of somatostatin-IR neurons by PACAP27 was time- and concentration-dependent, and selective for PACAP27; PACAP38 and vasoactive intestinal polypeptide were less effective. PACAP6-38, a PACAP antagonist, eliminated the PACAP27-induced change in somatostatin positive neurons. The PACAP-mediated decrease in somatostatin-IR neurons was eliminated in calcium-deficient solutions and by the addition of nifedipine, indicating a requirement for calcium influx through L-type calcium channels. The addition of either the calmodulin inhibitor N-(4-aminobutyl)-1-naphthalenesulfonamide or the MEK inhibitor PD98059, also eliminated the PACAP27-induced decrease in somatostatin-IR cells. The PACAP27-mediated effect on somatostatin expression was not affected by inhibitors of protein kinase A or phospholipase C, but was reduced by the adenylyl cyclase inhibitor SQ22356, suggesting cAMP involvement. Semiquantitative and quantitative reverse transcription PCR prosomatostatin transcript measurements showed that cardiac ganglia prosomatostatin mRNA levels were not diminished by chronic PACAP27 exposure despite the dramatic decrement in somatostatin-expressing neurons. Neuronal peptide-IR content represents a balance between production and secretion. These results suggested that one of the primary effects of PACAP exposure may be enhanced levels of neuropeptide release that exceeded production levels, resulting in somatostatin depletion and a decrement in the number of identifiable somatostatin-expressing cardiac neurons.
Collapse
Affiliation(s)
- K M Braas
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
35
|
Ramer LM, Richter MW, Roskams AJ, Tetzlaff W, Ramer MS. Peripherally-derived olfactory ensheathing cells do not promote primary afferent regeneration following dorsal root injury. Glia 2004; 47:189-206. [PMID: 15185397 DOI: 10.1002/glia.20054] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Olfactory ensheathing cells (OECs) may support axonal regrowth, and thus might be a viable treatment for spinal cord injury (SCI); however, peripherally-derived OECs remain untested in most animal models of SCI. We have transplanted OECs from the lamina propria (LP) of mice expressing green fluorescent protein (GFP) in all cell types into immunosuppressed rats with cervical or lumbar dorsal root injuries. LP-OECs were deposited into either the dorsal root ganglion (DRG), intact or injured dorsal roots, or the dorsal columns via the dorsal root entry zone (DREZ). LP-OECs injected into the DRG or dorsal root migrated centripetally, and migration was more extensive in the injured root than in the intact root. These peripherally deposited OECs migrated within the PNS but did not cross the DREZ; similarly, large- or small-caliber primary afferents were not seen to regenerate across the DREZ. LP-OEC deposition into the dorsal columns via the DREZ resulted in a laminin-rich injection track: due to the pipette trajectory, this track pierced the glia limitans at the DREZ. OECs migrated centrifugally through this track, but did not traverse the DREZ; axons entered the spinal cord via this track, but were not seen to reenter CNS tissue. We found a preferential association between CGRP-positive small- to medium-diameter afferents and OEC deposits in injured dorsal roots as well as within the spinal cord. In the cord, OEC deposition resulted in increased angiogenesis and altered astrocyte alignment. These data are the first to demonstrate interactions between sensory axons and peripherally-derived OECs following dorsal root injury.
Collapse
Affiliation(s)
- Leanne M Ramer
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
36
|
Hegg CC, Au E, Roskams AJ, Lucero MT. PACAP is present in the olfactory system and evokes calcium transients in olfactory receptor neurons. J Neurophysiol 2003; 90:2711-9. [PMID: 12761277 PMCID: PMC2976504 DOI: 10.1152/jn.00288.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pituitary adenylate cyclase activating peptide (PACAP), a neuroregulatory peptide, is found in germinative regions of the CNS, including the olfactory bulb, throughout adulthood. We show that 1) PACAP immunoreactivity is also present in the neonatal mouse and adult mouse and rat olfactory epithelium, 2) PACAP expression pattern differs between neonatal and adult mice, and 3) PACAP is produced by olfactory ensheathing cells. PACAP may thus be a key factor in the uniquely supportive role of olfactory ensheathing cells in regeneration of neurons from olfactory epithelium and lesioned spinal cord. Using calcium imaging, we demonstrated physiological responses to PACAP in both neonatal and adult olfactory receptor neurons (ORNs). We propose that PACAP plays an important role in normal turnover of ORNs by providing neurotrophic support during development and regeneration and neuroprotective support of mature neurons.
Collapse
Affiliation(s)
- Colleen C Hegg
- Department of Physiology, School of Medicine, University of Utah, Salt Lake City, Utah 84108-1297, USA
| | | | | | | |
Collapse
|
37
|
Ronnett GV, Leopold D, Cai X, Hoffbuhr KC, Moses L, Hoffman EP, Naidu S. Olfactory biopsies demonstrate a defect in neuronal development in Rett's syndrome. Ann Neurol 2003; 54:206-18. [PMID: 12891673 DOI: 10.1002/ana.10633] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rett's Syndrome (RTT) is a neurodevelopmental disorder resulting from mutation in the mecp2 gene that encodes methyl CpG binding protein 2, a transcriptional repressor. Because this disease primarily affects neurons, tissue is not available during active disease. We used the olfactory system as a model to investigate abnormalities in neuronal development in RTT, because olfactory receptor neurons (ORNs) are replaced throughout life by ongoing postnatal neurogenesis. Thus, even in the adult, the olfactory epithelium contains neurons at various developmental stages. We obtained biopsies of nasal epithelium containing ORNs from RTT patients and age-matched controls to study the status of the neuronal population using antibodies to stage-specific developmental markers. There were no postprocedure complications. Compared with age-matched controls, there were far fewer mature ORNs, as defined by olfactory marker protein expression, and significantly greater numbers of immature neuron-specific tubulin-positive ORNs present. In RTT biopsies, olfactory marker protein-positive neurons displayed abnormal structure. These results suggest that dysfunction of MeCP2 results in decreased survival of mature ORNs with a compensatory increase in neurogenesis, or a failure of immature neurons to mature. Our study indicates that olfactory biopsies provide a method to study neuronal developmental diseases in adults and children.
Collapse
Affiliation(s)
- Gabriele V Ronnett
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen J, Tu Y, Moon C, Nagata E, Ronnett GV. Heme oxygenase-1 and heme oxygenase-2 have distinct roles in the proliferation and survival of olfactory receptor neurons mediated by cGMP and bilirubin, respectively. J Neurochem 2003; 85:1247-61. [PMID: 12753084 DOI: 10.1046/j.1471-4159.2003.01776.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heme oxygenase (HO) is implicated in protection against oxidative stress, proliferation and apoptosis in many cell types, including neurons. We utilized olfactory receptor neurons (ORNs) as a model to define the roles of HO-1 and HO-2 in neuronal development and survival, and to determine the mediators of these effects. The olfactory system is a useful model as ORNs display neurogenesis post-natally and do not contain nitric oxide synthase (NOS) activity, which could confound results. HO isoforms were expressed in ORNs during embryogenesis and post-natally. Mice null for either HO-1 or HO-2 displayed decreased proliferation of neuronal precursors. However, apoptosis was increased only in HO-2 null mice. Cyclic GMP immunostaining was reduced in ORNs in both genotypes, providing direct evidence that HO mediates cGMP production in vivo. Bilirubin immunostaining was reduced only in HO-2 null mice. These roles for HO-1 and HO-2 were confirmed using detergent ablation of the epithelium to observe increased neurogenesis of ORNs after target disruption in HO null mice. Primary cultures of ORNs revealed that proliferative and survival effects of HO were mediated through cGMP and bilirubin, respectively. These results support a role for HO, the CO-cGMP signaling system and bilirubin in neurodevelopment and in response to injury.
Collapse
Affiliation(s)
- Jijun Chen
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Olfactory ensheathing cells (OECs) continuously support the regeneration of olfactory receptor neurons (ORNs). In addition, OECs promote regeneration of neurons within the CNS in a number of transplantation paradigms, but details of exactly how they support regeneration remain elusive. The majority of studies using OECs to promote regeneration have thus far focused on understanding the cell biology of OECs purified from the olfactory bulb (OB). Here we show that a population of OECs similar to those obtained from the OB is present in the lamina propria (LP) beneath the olfactory epithelium (OE). These OECs are the first glial cells encountered by the axons of developing ORNs as they exit the OE and display distinct and variable expression of p75, S100beta, GFAP, and O4, characteristic markers of bulb OECs. Once purified in vitro, they display Schwann cell-like and astrocyte-like properties and expand rapidly. In addition to resembling OB-OECs, LP-OECs also express a unique combination of developmentally important proteins-CD 44, beta1 integrin, P200, Notch 3, NG2, VEGF, and PACAP and CREB binding protein (CBP/p300)-not previously reported in OB-OECs. These data suggest that LP-OECs, like OB-OECs, are a developmentally distinct class of glia that are capable of both immature and mature function, depending on environmental stimuli, within the adult nervous system.
Collapse
Affiliation(s)
- Edmund Au
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
40
|
Steveson TC, Ciccotosto GD, Ma XM, Mueller GP, Mains RE, Eipper BA. Menkes protein contributes to the function of peptidylglycine alpha-amidating monooxygenase. Endocrinology 2003; 144:188-200. [PMID: 12488345 DOI: 10.1210/en.2002-220716] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Menkes protein (ATP7A) is a P-type ATPase involved in copper uptake and homeostasis. Disturbed copper homeostasis occurs in patients with Menkes disease, an X-linked disorder characterized by mental retardation, neurodegeneration, connective tissue disorders, and early childhood death. Mutations in ATP7A result in malfunction of copper-requiring enzymes, such as tyrosinase and copper/zinc superoxide dismutase. The first step of the two-step amidation reaction carried out by peptidylglycine alpha-amidating monooxygenase (PAM) also requires copper. We used tissue from wild-type rats and mice and an ATP7A-specific antibody to determine that ATP7A is expressed at high levels in tissues expressing high levels of PAM. ATP7A is largely localized to the trans Golgi network in pituitary endocrine cells. The Atp7a mouse, bearing a mutation in the Atp7a gene, is an excellent model system for examining the consequences of ATP7A malfunction. Despite normal levels of PAM protein, levels of several amidated peptides were reduced in pituitary and brain extracts of Atp7a mice, demonstrating that PAM function is compromised when ATP7A is inactive. Based on these results, we conclude that a reduction in the ability of PAM to produce bioactive end-products involved in neuronal growth and development could contribute to many of the biological effects associated with Menkes disease.
Collapse
Affiliation(s)
- Tami C Steveson
- Department of Neuroscience,, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | | | | | |
Collapse
|
41
|
Girard BM, May V, Bora SH, Fina F, Braas KM. Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. REGULATORY PEPTIDES 2002; 109:89-101. [PMID: 12409220 DOI: 10.1016/s0167-0115(02)00191-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulated expression of the peptide and transcript levels of the neurotrophic peptides, pituitary adenylate cyclase-activating polypeptide (PACAP), galanin and vasoactive intestinal peptide (VIP) were examined in sympathetic neurons of the rat superior cervical ganglion (SCG). Real-time quantitative PCR methods were developed to assess modulation of neuronal peptide precursor protein transcript levels following experimental paradigms of neuropeptidergic plasticity. Oligonucleotide primer, fluorogenic probe and amplification conditions were optimized for maximal assay sensitivity. Depolarization of primary cultured sympathetic neurons stimulated PACAP, galanin, and VIP peptide contents and releases with differing magnitudes and temporal profiles. The rank order of increased neuronal peptide content paralleled the augmented peptide release (VIP>galanin>PACAP). Maximal cellular PACAP and VIP levels were achieved by 72 and 96 h, respectively; galanin levels did not plateau during the treatment period. PACAP transcript elevation was rapid and transient; PACAP mRNA expression diminished at longer depolarization times, which diverged markedly from the sustained high peptide production levels. By contrast, VIP and galanin mRNAs reached maximal levels at later times, and appeared to correlate more closely with peptide production. We previously described multiple proPACAP mRNA variants resulting from alternative 3' untranslated region cleavage and polyadenylation. The shorter depolarization-induced PACAP transcripts exhibit longer half-lives, suggesting that the short proPACAP mRNA variant may function to impart PACAP translational efficiency and sustain PACAP peptide production.
Collapse
Affiliation(s)
- Béatrice M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
42
|
Lelievre V, Hu Z, Byun JY, Ioffe Y, Waschek JA. Fibroblast growth factor-2 converts PACAP growth action on embryonic hindbrain precursors from stimulation to inhibition. J Neurosci Res 2002; 67:566-73. [PMID: 11891769 DOI: 10.1002/jnr.10153] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pituitary adenylyl cyclase activating peptide (PACAP) has been shown either to stimulate or to inhibit neural cell proliferation depending on the origin of the cell population. We show here that, depending on the presence or absence of fibroblast growth factor-2 (FGF-2, also called basic FGF), PACAP may either stimulate or inhibit DNA synthesis in neural precursors isolated from embryonic day 10.5 mouse hindbrain. In the absence of FGF-2, PACAP stimulated 3H-thymidine incorporation in a dose-dependent manner. This stimulatory action was unaffected by antagonists of protein kinases A and C but was abolished in the presence of the MEK1/2 antagonist PD98059. In contrast, when FGF-2 was present, PACAP inhibited DNA synthesis. This inhibitory action was insensitive to PD98059 but was fully blocked by the protein kinase A (PKA) inhibitor H89. The differential blockades by MEK1/2 and PKA inhibitors indicate that the FGF-2-induced switch in PACAP action on DNA synthesis was accomplished by a change in PACAP signaling pathways. We hypothesize that the actions of PACAP in the specific parts of the developing nervous system are determined in part by the presence or absence of FGFs and other growth factors.
Collapse
Affiliation(s)
- Vincent Lelievre
- Department of Psychiatry and Mental Retardation Research Center, Neuropsychiatric Institute, University of California at Los Angeles, Los Angeles, California 90024, USA
| | | | | | | | | |
Collapse
|
43
|
Hansel DE, Eipper BA, Ronnett GV. Regulation of olfactory neurogenesis by amidated neuropeptides. J Neurosci Res 2001; 66:1-7. [PMID: 11598996 DOI: 10.1002/jnr.1191] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The existence of stem cells in the CNS raises issues concerning the ability of nervous tissues to regenerate in the adult mammal and provides new perspectives on the treatment of degenerative disease and traumatic injury of the nervous system. These cells have a relatively limited range of locations within the nervous system and include cells of the rostral migratory stream, hippocampus, retina, and olfactory epithelium. The olfactory epithelium has been studied as a model of adult neuronal regeneration, with neuronal precursor/basal cells serving as the olfactory "stem cells." The identification of factors that promote neuronal proliferation or regeneration within the olfactory epithelium can provide clues to the process of adult mammalian nervous system repair and treatment. Multiple factors have been examined that appear to influence the proliferation and subsequent maturation of basal cells. These factors include nerve growth factor, fibroblast growth factor-2, epidermal growth factor, and insulin/insulin-like growth factor-1. Recently, two amidated neuropeptides, neuropeptide Y (NPY) and pituitary adenylate cyclase-activating polypeptide (PACAP38), identified in the olfactory epithelium have been shown to promote dramatically neuronal proliferation. The effects of NPY and PACAP suggest that amidated neuropeptides may serve a broad developmental and regenerative role in the mammalian olfactory epithelium.
Collapse
Affiliation(s)
- D E Hansel
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|