1
|
Henderson F, Dumas S, Gangarossa G, Bernard V, Pujol M, Poirel O, Pietrancosta N, El Mestikawy S, Daumas S, Fabre V. Regulation of stress-induced sleep perturbations by dorsal raphe VGLUT3 neurons in male mice. Cell Rep 2024; 43:114411. [PMID: 38944834 DOI: 10.1016/j.celrep.2024.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Exposure to stressors has profound effects on sleep that have been linked to serotonin (5-HT) neurons of the dorsal raphe nucleus (DR). However, the DR also comprises glutamatergic neurons expressing vesicular glutamate transporter type 3 (DRVGLUT3), leading us to examine their role. Cell-type-specific tracing revealed that DRVGLUT3 neurons project to brain areas regulating arousal and stress. We found that chemogenetic activation of DRVGLUT3 neurons mimics stress-induced sleep perturbations. Furthermore, deleting VGLUT3 in the DR attenuated stress-induced sleep perturbations, especially after social defeat stress. In the DR, VGLUT3 is found in subsets of 5-HT and non-5-HT neurons. We observed that both populations are activated by acute stress, including those projecting to the ventral tegmental area. However, deleting VGLUT3 in 5-HT neurons minimally affected sleep regulation. These findings suggest that VGLUT3 expression in the DR drives stress-induced sleep perturbations, possibly involving non-5-HT DRVGLUT3 neurons.
Collapse
Affiliation(s)
- Fiona Henderson
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | | | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; Institut Universitaire de France (IUF), Paris, France
| | - Véronique Bernard
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Marine Pujol
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Odile Poirel
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Sorbonne Université, CNRS UMR 7203, Laboratoire des BioMolécules, 75005 Paris, France
| | - Salah El Mestikawy
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC H4H 1R3, Canada
| | - Stéphanie Daumas
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| | - Véronique Fabre
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| |
Collapse
|
2
|
Wu J, Zhao Z. Acupuncture in circadian rhythm sleep-wake disorders and its potential neurochemical mechanisms. Front Neurosci 2024; 18:1346635. [PMID: 38318465 PMCID: PMC10839072 DOI: 10.3389/fnins.2024.1346635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Circadian rhythm sleep-wake disorders (CRSWDs) are becoming increasingly common in modern societies due to lifestyle changes. The detrimental effects of CRSWDs on sleep and psychological health have attracted considerable attention recently. Alternative remedies for the treatment of CRSWDs have also gained attention in recent years owing to the limitations of medications. Several in vivo and clinical investigations have shown that acupuncture, one of the most important components of traditional Chinese medicine (TCM), has been shown to modulate sleep-related circadian rhythms. Owing to the lack of research on the mechanism and effectiveness of acupuncture in treating CRSWDs, clinical applications of acupuncture have not gained popularity. This paper reviews the acupuncture methods, acupoint selection, and biochemical indicators supplied by in vivo and clinical studies to explore the effectiveness of acupuncture, and summarizes the circadian rhythm mechanisms and the acupuncture characteristics on circadian rhythm. The neurochemical mechanisms linked to acupuncture in treating CRSWDs are also outlined from the perspective of the central and peripheral biological clocks. Lastly, the inadequacy of previous studies on CRSWDs and conflicting results regarding acupuncture are explored and future research directions are envisioned.
Collapse
|
3
|
Ahn Y, Lee HH, Kim BH, Park SJ, Kim YS, Suh HJ, Jo K. Heukharang lettuce (Lactuca sativa L.) leaf extract displays sleep-promoting effects through GABA A receptor. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116602. [PMID: 37149068 DOI: 10.1016/j.jep.2023.116602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although lettuce is traditionally known to have hypnotic and sedative effects, to date, only a few studies have documented its sleep-promoting effects and elucidated the related mechanisms. AIM OF THE STUDY We aimed to investigate the sleep-promoting activity of Heukharang lettuce leaf extract (HLE) with increased lactucin content, known as a sleep-promoting substance in lettuce, in animal models. MATERIALS AND METHODS To evaluate the effect of HLE on sleep behavior, analysis of electroencephalogram (EEG), gene expression of brain receptors, and activation mechanisms using antagonists were investigated in rodent models. RESULTS High-performance liquid chromatography analysis showed that HLE contained lactucin (0.78 mg/g of extract) and quercetin-3-glucuronide (1.3 mg/g of extract). In the pentobarbital-induced sleep model, the group administered 150 mg/kg of HLE showed a 47.3% increase in sleep duration time as compared to the normal group (NOR). The EEG analysis showed that the HLE significantly increased non-rapid eye movement (NREM), where delta waves were improved by 59.5% when compared to the NOR, resulting in increased sleep time. In the caffeine-induced arousal model, HLE significantly decreased the awake time increased by caffeine administration (35.5%) and showed a similar level to NOR. In addition, HLE increased the gene and protein expression of gamma-aminobutyric acid receptor type A (GABAA), GABA type B, and 5-hydroxytryptamine (serotonin) receptor 1A. In particular, in comparison to the NOR, the group administered 150 mg/kg HLE showed an increase in expression levels of GABAA and protein by 2.3 and 2.5 times, respectively. When the expression levels were checked using GABAA receptor antagonists, HLE showed similar levels to NOR, as the sleep duration was reduced by flumazenil (45.1%), a benzodiazepine antagonist. CONCLUSIONS HLE increased NREM sleep and significantly improved sleep behavior due to its action on the GABAA receptors. The collective findings suggest that HLE can be used as a novel sleep-enhancing agent in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| | - Hee Hwan Lee
- Medience Co. Ltd., Chuncheon, Gangwon-do, 24232, Republic of Korea.
| | - Byung-Hak Kim
- Medience Co. Ltd., Chuncheon, Gangwon-do, 24232, Republic of Korea.
| | - Sang Jae Park
- Medience Co. Ltd., Chuncheon, Gangwon-do, 24232, Republic of Korea.
| | - Young Suk Kim
- Department of Food and Nutrition, Ansan University, Ansan, 14328, Republic of Korea.
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Republic of Korea.
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Wang LX, Zhao Q, Zhang Y, Xue R, Li S, Li Y, Yu JJ, Li JC, Zhang YZ. Network pharmacology and pharmacological evaluation for deciphering novel indication of Sishen Wan in insomnia treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154500. [PMID: 36288650 DOI: 10.1016/j.phymed.2022.154500] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Insomnia is the most frequent sleep disorder worldwide and is a prominent risk factor for mental and physical health deterioration. The clinical application of common pharmacological treatments for insomnia is far from satisfactory due to their various adverse effects. In recent years, drugs developed from natural herbs have become potential alternative therapies for insomnia. Sishen Wan (SSW), a traditional Chinese medicine (TCM) used for centuries to treat diarrheal disease, consists of multiple neurologically active herbs with sleep-regulating potential that may have therapeutic effects on insomnia. However, its hypnotic and sleep-regulating effects have not been evaluated in clinical practice or laboratory experiments. PURPOSE To investigate the anti-insomnia effects of SSW and explore its possible mechanisms using preclinical models. STUDY DESIGN AND METHODS The sedative effect of the SSW formula was investigated using network pharmacology analysis that was validated using various pharmacological approaches, including the evaluation of locomotor activity (LMA), pentobarbital-induced sleep time, and electroencephalography/electromyogram (EEG/EMG)-based sleep profiling in normal rats. Several animal models of insomnia, including sleep deprivation, serotonin depletion, and cage-changing models, have been used to further assess the anti-insomnia effects of SSW. Furthermore, the potential underlying mechanisms of action of SSW were predicted using bioinformatics methods and verified using in vivo and in silico experiments. RESULTS The results showed that SSW reduced LMA and prolonged pentobarbital-induced sleep time in a dose-dependent manner, which was consistent with the increase in non-rapid eye movement (NREM) sleep in normal rats, indicating a solid sedative effect. In animal models of insomnia, SSW alleviated sleep disturbance by increasing NREM sleep time, shortening NREM sleep latency, and inhibiting sleep fragmentation, suggesting a possible curative effect of SSW on insomnia. Finally, through functional enrichment analysis and in vivo and in silico experiments, 5-HT1A was identified as the key target of the anti-insomnia effect of SSW. Moreover, (S)-propranolol, nuciferine, zizyphusine, and N,N-dimethyl-5-methoxytryptamine may be the active compounds of SSW responsible for its anti-insomnia effect. CONCLUSION This study extended the possible indication scope for SSW, which provides a potential therapeutic TCM that may be used for insomnia treatment, as well as a reference scheme for the discovery of novel indications of TCM.
Collapse
Affiliation(s)
- Luo-Xuan Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Qian Zhao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Guangzhou University of Traditional Chinese Medicine, Center for Animal Experiment, Guangzhou, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Shuo Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Ying Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Ji-Jun Yu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing, China
| | - Jing-Cao Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - You-Zhi Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
5
|
Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion. Nat Commun 2022; 13:7708. [PMID: 36550097 PMCID: PMC9780347 DOI: 10.1038/s41467-022-35346-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.
Collapse
|
6
|
Knapp EM, Kaiser A, Arnold RC, Sampson MM, Ruppert M, Xu L, Anderson MI, Bonanno SL, Scholz H, Donlea JM, Krantz DE. Mutation of the Drosophila melanogaster serotonin transporter dSERT impacts sleep, courtship, and feeding behaviors. PLoS Genet 2022; 18:e1010289. [PMID: 36409783 PMCID: PMC9721485 DOI: 10.1371/journal.pgen.1010289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The Serotonin Transporter (SERT) regulates extracellular serotonin levels and is the target of most current drugs used to treat depression. The mechanisms by which inhibition of SERT activity influences behavior are poorly understood. To address this question in the model organism Drosophila melanogaster, we developed new loss of function mutations in Drosophila SERT (dSERT). Previous studies in both flies and mammals have implicated serotonin as an important neuromodulator of sleep, and our newly generated dSERT mutants show an increase in total sleep and altered sleep architecture that is mimicked by feeding the SSRI citalopram. Differences in daytime versus nighttime sleep architecture as well as genetic rescue experiments unexpectedly suggest that distinct serotonergic circuits may modulate daytime versus nighttime sleep. dSERT mutants also show defects in copulation and food intake, akin to the clinical side effects of SSRIs and consistent with the pleomorphic influence of serotonin on the behavior of D. melanogaster. Starvation did not overcome the sleep drive in the mutants and in male dSERT mutants, the drive to mate also failed to overcome sleep drive. dSERT may be used to further explore the mechanisms by which serotonin regulates sleep and its interplay with other complex behaviors.
Collapse
Affiliation(s)
- Elizabeth M. Knapp
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Andrea Kaiser
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Rebecca C. Arnold
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Maureen M. Sampson
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Manuela Ruppert
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Li Xu
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | | | - Shivan L. Bonanno
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Henrike Scholz
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Jeffrey M. Donlea
- Department of Neurobiology, University of California, Los Angeles, California, United States of America
| | - David E. Krantz
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Abstract
Behavioral states naturally alternate between wakefulness and the sleep phases rapid eye movement and nonrapid eye movement sleep. Waking and sleep states are complex processes that are elegantly orchestrated by spatially fine-tuned neurochemical changes of neurotransmitters and neuromodulators including glutamate, acetylcholine, γ-aminobutyric acid, norepinephrine, dopamine, serotonin, histamine, hypocretin, melanin concentrating hormone, adenosine, and melatonin. However, as highlighted in this brief overview, no single neurotransmitter or neuromodulator, but rather their complex interactions within organized neuronal ensembles, regulate waking and sleep states. The neurochemical pathways presented here are aimed to provide a conceptual framework for the understanding of the effects of currently used sleep medications.
Collapse
Affiliation(s)
- Sebastian C Holst
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Layunta E, Buey B, Mesonero JE, Latorre E. Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Front Endocrinol (Lausanne) 2021; 12:748254. [PMID: 34819919 PMCID: PMC8607755 DOI: 10.3389/fendo.2021.748254] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Disruption of the microbiota-gut-brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut-brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota-host interactions. Despite the numerous investigations focused on the gut-brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota-gut-brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota-gut-brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.
Collapse
Affiliation(s)
- Elena Layunta
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Venner A, Broadhurst RY, Sohn LT, Todd WD, Fuller PM. Selective activation of serotoninergic dorsal raphe neurons facilitates sleep through anxiolysis. Sleep 2021; 43:5573750. [PMID: 31553451 DOI: 10.1093/sleep/zsz231] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/18/2019] [Indexed: 11/12/2022] Open
Abstract
A role for the brain's serotoninergic (5HT) system in the regulation of sleep and wakefulness has been long suggested. Yet, previous studies employing pharmacological, lesion and genetically driven approaches have produced inconsistent findings, leaving 5HT's role in sleep-wake regulation incompletely understood. Here we sought to define the specific contribution of 5HT neurons within the dorsal raphe nucleus (DRN5HT) to sleep and arousal control. To do this, we employed a chemogenetic strategy to selectively and acutely activate DRN5HT neurons and monitored sleep-wake using electroencephalogram recordings. We additionally assessed indices of anxiety using the open field and elevated plus maze behavioral tests and employed telemetric-based recordings to test effects of acute DRN5HT activation on body temperature and locomotor activity. Our findings indicate that the DRN5HT cell population may not modulate sleep-wake per se, but rather that its activation has apparent anxiolytic properties, suggesting the more nuanced view that DRN5HT neurons are sleep permissive under circumstances that produce anxiety or stress.
Collapse
Affiliation(s)
- Anne Venner
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Rebecca Y Broadhurst
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Lauren T Sohn
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - William D Todd
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY.,Program in Neuroscience, University of Wyoming, Laramie, WY
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Jo K, Kim S, Hong KB, Suh HJ. Nelumbo nucifera promotes non-rapid eye movement sleep by regulating GABAergic receptors in rat model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113511. [PMID: 33148434 DOI: 10.1016/j.jep.2020.113511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nelumbo nucifera are used in folk medicine for anti-depressant, anti-convulsant, neuroprotective, and many other purposes. AIM OF THE STUDY The present work evaluated the sleep potentiating effects of water extract from lotus seed in rat, and the neuropharmacological mechanisms underlying these effects. MATERIALS AND METHODS Pentobarbital-induced sleep test and electroencephalogram (EEG) analysis were applied to investigate sleep latency, duration, total sleeping time and sleep quality of Lotus extract. In addition, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. RESULTS We found that the amounts of the possible active compounds GABA (2.33 mg/g) and L-tryptophan (2.00 mg/g) were higher than quinidine (0.55 mg/g) and neferine (0.16 mg/g) in lotus seed extract. High dose (160 mg/kg) administration of lotus extract led to a tendency towards decreased sleep latency time and an increase in sleep duration time compared to the control group in a pentobarbital-induced sleep model (p < 0.05). After high dose administration, total sleep and NREM were significantly increased compared to control, while wake time and REM were significantly decreased. Lotus extract-treated rats showed significantly reduced wake time and increased sleep time in a caffeine-induced model of arousal. The transcription level of GABAA receptor, GABAB receptor, and serotonin receptor tended to increase with dose, and lotus extract showed a strong dose-dependent binding capacity to the GABAA receptor. CONCLUSION The above results strongly suggest that GABA contained in lotus seed extract acts as a sleep potentiating compound, and that sleep-potentiating activity involves GABAA receptor binding.
Collapse
Affiliation(s)
- Kyungae Jo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea Univetsity, Seoul, 02841, Republic of Korea.
| | - Singeun Kim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea Univetsity, Seoul, 02841, Republic of Korea.
| | - Ki-Bae Hong
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea Univetsity, Seoul, 02841, Republic of Korea.
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea Univetsity, Seoul, 02841, Republic of Korea.
| |
Collapse
|
12
|
Hypocretinergic interactions with the serotonergic system regulate REM sleep and cataplexy. Nat Commun 2020; 11:6034. [PMID: 33247179 PMCID: PMC7699625 DOI: 10.1038/s41467-020-19862-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
Loss of muscle tone triggered by emotions is called cataplexy and is the pathognomonic symptom of narcolepsy, which is caused by hypocretin deficiency. Cataplexy is classically considered to be an abnormal manifestation of REM sleep and is treated by selective serotonin (5HT) reuptake inhibitors. Here we show that deleting the 5HT transporter in hypocretin knockout mice suppressed cataplexy while dramatically increasing REM sleep. Additionally, double knockout mice showed a significant deficit in the buildup of sleep need. Deleting one allele of the 5HT transporter in hypocretin knockout mice strongly increased EEG theta power during REM sleep and theta and gamma powers during wakefulness. Deleting hypocretin receptors in the dorsal raphe neurons of adult mice did not induce cataplexy but consolidated REM sleep. Our results indicate that cataplexy and REM sleep are regulated by different mechanisms and both states and sleep need are regulated by the hypocretinergic input into 5HT neurons. Narcolepsy is characterized by a sudden loss of muscle tone (cataplexy) similar to REM sleep and is caused by hypocretin deficiency. Here, the authors show that deleting the serotonin transporter gene in hypocretin knockout mice suppresses cataplexy while dramatically increasing REM sleep, indicating that these are two different states but are both regulated by hypocretinergic input to serotonergic neurons.
Collapse
|
13
|
Mazzotta GM, Damulewicz M, Cusumano P. Better Sleep at Night: How Light Influences Sleep in Drosophila. Front Physiol 2020; 11:997. [PMID: 33013437 PMCID: PMC7498665 DOI: 10.3389/fphys.2020.00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023] Open
Abstract
Sleep-like states have been described in Drosophila and the mechanisms and factors that generate and define sleep-wake profiles in this model organism are being thoroughly investigated. Sleep is controlled by both circadian and homeostatic mechanisms, and environmental factors such as light, temperature, and social stimuli are fundamental in shaping and confining sleep episodes into the correct time of the day. Among environmental cues, light seems to have a prominent function in modulating the timing of sleep during the 24 h and, in this review, we will discuss the role of light inputs in modulating the distribution of the fly sleep-wake cycles. This phenomenon is of growing interest in the modern society, where artificial light exposure during the night is a common trait, opening the possibility to study Drosophila as a model organism for investigating shift-work disorders.
Collapse
Affiliation(s)
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Paola Cusumano
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
14
|
Liu CY, Tsai CJ, Yasugaki S, Nagata N, Morita M, Isotani A, Yanagisawa M, Hayashi Y. Copine-7 is required for REM sleep regulation following cage change or water immersion and restraint stress in mice. Neurosci Res 2020; 165:14-25. [PMID: 32283105 DOI: 10.1016/j.neures.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Sleep is affected by the environment. In rodents, changes in the amount of rapid eye movement sleep (REMS) can precede those of other sleep/wake stages. The molecular mechanism underlying the dynamic regulation of REMS remains poorly understood. Here, we focused on the sublaterodorsal nucleus (SLD), located in the pontine tegmental area, which plays a crucial role in the regulation of REMS. We searched for genes selectively expressed in the SLD and identified copine-7 (Cpne7), whose involvement in sleep was totally unknown. We generated Cpne7-Cre knock-in mice, which enabled both the knockout (KO) of Cpne7 and the genetic labeling of Cpne7-expressing cells. While Cpne7-KO mice exhibited normal sleep under basal conditions, the amount of REMS in Cpne7-KO mice was larger compared to wildtype mice following cage change or water immersion and restraint stress, both of which are conditions that acutely reduce REMS. Thus, it was suggested that copine-7 is involved in negatively regulating REMS under certain conditions. In addition, chemogenetically activating Cpne7-expressing neurons in the SLD reduced the amount of REMS, suggesting that these neurons negatively regulate REMS. These results identify copine-7 and Cpne7-expressing neurons in the SLD as candidate molecular or neuronal components of the regulatory system that controls REMS.
Collapse
Affiliation(s)
- Chih-Yao Liu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Chia-Jung Tsai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinnosuke Yasugaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Nanae Nagata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miho Morita
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayako Isotani
- NPO for Biotechnology Research and Development, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Frontiers of MIRAI in Policy and Technology (F-MIRAI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
15
|
Sakai K. What single‐unit recording studies tell us about the basic mechanisms of sleep and wakefulness. Eur J Neurosci 2019; 52:3507-3530. [DOI: 10.1111/ejn.14485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Kazuya Sakai
- Integrative Physiology of the Brain Arousal System Lyon Neuroscience Research Center INSERM U1028 University Lyon 1 Lyon France
| |
Collapse
|
16
|
Atkin T, Comai S, Gobbi G. Drugs for Insomnia beyond Benzodiazepines: Pharmacology, Clinical Applications, and Discovery. Pharmacol Rev 2018; 70:197-245. [PMID: 29487083 DOI: 10.1124/pr.117.014381] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the GABAergic benzodiazepines (BZDs) and Z-drugs (zolpidem, zopiclone, and zaleplon) are FDA-approved for insomnia disorders with a strong evidence base, they have many side effects, including cognitive impairment, tolerance, rebound insomnia upon discontinuation, car accidents/falls, abuse, and dependence liability. Consequently, the clinical use of off-label drugs and novel drugs that do not target the GABAergic system is increasing. The purpose of this review is to analyze the neurobiological and clinical evidence of pharmacological treatments of insomnia, excluding the BZDs and Z-drugs. We analyzed the melatonergic agonist drugs, agomelatine, prolonged-release melatonin, ramelteon, and tasimelteon; the dual orexin receptor antagonist suvorexant; the modulators of the α2δ subunit of voltage-sensitive calcium channels, gabapentin and pregabalin; the H1 antagonist, low-dose doxepin; and the histamine and serotonin receptor antagonists, amitriptyline, mirtazapine, trazodone, olanzapine, and quetiapine. The pharmacology and mechanism of action of these treatments and the evidence-base for the use of these drugs in clinical practice is outlined along with novel pipelines. There is evidence to recommend suvorexant and low-dose doxepin for sleep maintenance insomnia; there is also sufficient evidence to recommend ramelteon for sleep onset insomnia. Although there is limited evidence for the use of the quetiapine, trazodone, mirtazapine, amitriptyline, pregabalin, gabapentin, agomelatine, and olanzapine as treatments for insomnia disorder, these drugs may improve sleep while successfully treating comorbid disorders, with a different side effect profile than the BZDs and Z-drugs. The unique mechanism of action of each drug allows for a more personalized and targeted medical management of insomnia.
Collapse
Affiliation(s)
- Tobias Atkin
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, Quebec, Canada (T.A., S.C., G.G.); and Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.)
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, Quebec, Canada (T.A., S.C., G.G.); and Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.)
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, Quebec, Canada (T.A., S.C., G.G.); and Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy (S.C.)
| |
Collapse
|
17
|
Abstract
The regulated alternations between wakefulness and sleep states reflect complex behavioral processes, orchestrated by distinct neurochemical changes in brain parenchyma. No single neurotransmitter or neuromodulator controls the sleep-wake states in isolation. Rather, fine-tuned interactions within organized neuronal circuits regulate waking and sleep states and drive their transitions. Structural or functional dysregulation and medications interfering with these ensembles can lead to sleep-wake disorders and exert wanted or unwanted pharmacological actions on sleep-wake states. Knowledge of the neurochemical bases of sleep-wake states, which will be discussed in this article, provides the conceptual framework for understanding pharmacological effects on sleep and wake.
Collapse
Affiliation(s)
- Sebastian C Holst
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 28 Juliane Maries Vej 6931, Copenhagen 2100, Denmark.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Iwasaki K, Komiya H, Kakizaki M, Miyoshi C, Abe M, Sakimura K, Funato H, Yanagisawa M. Ablation of Central Serotonergic Neurons Decreased REM Sleep and Attenuated Arousal Response. Front Neurosci 2018; 12:535. [PMID: 30131671 PMCID: PMC6090062 DOI: 10.3389/fnins.2018.00535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
Sleep/wake behavior is regulated by distinct groups of neurons, such as dopaminergic, noradrenergic, and orexinergic neurons. Although monoaminergic neurons are usually considered to be wake-promoting, the role of serotonergic neurons in sleep/wake behavior remains inconclusive because of the effect of serotonin (5-HT)-deficiency on brain development and the compensation for inborn 5-HT deficiency by other sleep/wake-regulating neurons. Here, we performed selective ablation of central 5-HT neurons in the newly developed Rosa-diphtheria toxin receptor (DTR)-tdTomato mouse line that was crossed with Pet1Cre/+ mice to examine the role of 5-HT neurons in the sleep/wake behavior of adult mice. Intracerebroventricular administration of diphtheria toxin completely ablated tdTomato-positive cells in Pet1Cre/+; Rosa-DTR-tdTomato mice. Electroencephalogram/electromyogram-based sleep/wake analysis demonstrated that central 5-HT neuron ablation in adult mice decreased the time spent in rapid eye movement (REM) sleep, which was associated with fewer transitions from non-REM (NREM) sleep to REM sleep than in control mice. Central 5-HT neuron-ablated mice showed attenuated wake response to a novel environment and increased theta power during wakefulness compared to control mice. The current findings indicated that adult 5-HT neurons work to support wakefulness and regulate REM sleep time through a biased transition from NREM sleep to REM sleep.
Collapse
Affiliation(s)
- Kanako Iwasaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Haruna Komiya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
19
|
Chazalon M, Dumas S, Bernard JF, Sahly I, Tronche F, de Kerchove d'Exaerde A, Hamon M, Adrien J, Fabre V, Bonnavion P. The GABAergic Gudden's dorsal tegmental nucleus: A new relay for serotonergic regulation of sleep-wake behavior in the mouse. Neuropharmacology 2018; 138:315-330. [PMID: 29908240 DOI: 10.1016/j.neuropharm.2018.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/28/2018] [Accepted: 06/10/2018] [Indexed: 11/17/2022]
Abstract
Serotonin (5-HT) neurons are involved in wake promotion and exert a strong inhibitory influence on rapid eye movement (REM) sleep. Such effects have been ascribed, at least in part to the action of 5-HT at post-synaptic 5-HT1A receptors (5-HT1AR) in the brainstem, a major wake/REM sleep regulatory center. However, the neuroanatomical substrate through which 5-HT1AR influence sleep remains elusive. We therefore investigated whether a brainstem structure containing a high density of 5-HT1AR mRNA, the GABAergic Gudden's dorsal tegmental nucleus (DTg), may contribute to 5-HT-mediated regulatory mechanisms of sleep-wake stages. We first found that bilateral lesions of the DTg promote wake at the expense of sleep. In addition, using local microinjections into the DTg in freely moving mice, we showed that local activation of 5-HT1AR by the prototypical agonist 8-OH-DPAT enhances wake and reduces deeply REM sleep duration. The specific involvement of 5-HT1AR in the latter effects was further demonstrated by ex vivo extracellular recordings showing that the selective 5-HT1AR antagonist WAY 100635 prevented DTg neuron inhibition by 8-OH-DPAT. We next found that GABAergic neurons of the ventral DTg exclusively targets glutamatergic neurons of the lateral mammillary nucleus (LM) in the posterior hypothalamus by means of anterograde and retrograde tracing techniques using cre driver mouse lines and a modified rabies virus. Altogether, our findings strongly support the idea that 5-HT-driven enhancement of wake results from 5-HT1AR-mediated inhibition of DTg GABAergic neurons that would in turn disinhibit glutamatergic neurons in the mammillary bodies. We therefore propose a Raphe→DTg→LM pathway as a novel regulatory circuit underlying 5-HT modulation of arousal.
Collapse
Affiliation(s)
- Marine Chazalon
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), ULB Neurosciences Institute, Brussels, Belgium
| | | | - Jean-François Bernard
- Sorbonne Paris Cité, Université Paris Descartes, Inserm, Centre de Psychiatrie et Neurosciences (CPN), 75014, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - Iman Sahly
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - François Tronche
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), ULB Neurosciences Institute, Brussels, Belgium
| | - Michel Hamon
- Sorbonne Paris Cité, Université Paris Descartes, Inserm, Centre de Psychiatrie et Neurosciences (CPN), 75014, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - Joëlle Adrien
- Université Paris Descartes, VIFASOM, Hôtel-Dieu de Paris, 75004, Paris, France
| | - Véronique Fabre
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France.
| | - Patricia Bonnavion
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), ULB Neurosciences Institute, Brussels, Belgium; Sorbonne Paris Cité, Université Paris Descartes, Inserm, Centre de Psychiatrie et Neurosciences (CPN), 75014, Paris, France.
| |
Collapse
|
20
|
Sakai K. Behavioural state-specific neurons in the mouse medulla involved in sleep-wake switching. Eur J Neurosci 2018; 47:1482-1503. [PMID: 29791042 DOI: 10.1111/ejn.13963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 11/28/2022]
Abstract
The medullary reticular formation (RF) is involved in the maintenance of several vital physiological functions and level of vigilance. In this study, in nonanesthetised, head-fixed mice, I examined the role of medullary RF neurons in the control of sleep-wake states, that is, wakefulness (W), slow-wave sleep (SWS) and paradoxical (or rapid eye movement) sleep (PS). I showed, for the first time, that the mouse medullary RF contains presumed SWS-promoting, SWS-on neurons that remain silent during W, display a sharp increase in discharge rate at sleep onset, and discharge tonically and selectively during SWS. In addition, I showed the presence in the medullary RF of both PS-on and PS-off neurons, which, respectively, commence discharging or cease firing selectively just prior to, and during, PS. PS-off neurons were located in the raphe nuclei and ventral medulla, while PS-on neurons were found in both the lateral part of the ventral gigantocellular reticular nucleus and the raphe nuclei, as were SWS-on neurons. PS-off and SWS-on neurons appear to play an important role in both the W-SWS and SWS-PS switches, while PS-on and PS-off neurons play an important role in the PS-W switch. The present findings on the trends in spike activity at the transitions from SWS to PS and from PS to W are in line with the reciprocal interaction hypothesis according to which PS occurs as a result of the cessation of discharge of PS-off neurons, while PS ends as a result of the start of discharge of PS-off neurons.
Collapse
Affiliation(s)
- Kazuya Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| |
Collapse
|
21
|
Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR. Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets 2018; 22:513-526. [DOI: 10.1080/14728222.2018.1480723] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Juan J. Canales
- Division of Psychology, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | | | - Stefano Espinoza
- Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies Dept., Genoa, Italy
| | - Ilya Sukhanov
- Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Center for Translational Biomedicine, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
22
|
Zhang X, Yan H, Luo Y, Huang Z, Rao Y. Thermoregulation-Independent Regulation of Sleep by Serotonin Revealed in Mice Defective in Serotonin Synthesis. Mol Pharmacol 2018; 93:657-664. [DOI: 10.1124/mol.117.111229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/03/2018] [Indexed: 11/22/2022] Open
|
23
|
Schwartz MD, Palmerston JB, Lee DL, Hoener MC, Kilduff TS. Deletion of Trace Amine-Associated Receptor 1 Attenuates Behavioral Responses to Caffeine. Front Pharmacol 2018; 9:35. [PMID: 29456505 PMCID: PMC5801540 DOI: 10.3389/fphar.2018.00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 12/18/2022] Open
Abstract
Trace amines (TAs), endogenous amino acid metabolites that are structurally similar to the biogenic amines, are endogenous ligands for trace amine-associated receptor 1 (TAAR1), a GPCR that modulates dopaminergic, serotonergic, and glutamatergic activity. Selective TAAR1 full and partial agonists exhibit similar pro-cognitive, antidepressant- and antipsychotic-like properties in rodents and non-human primates, suggesting TAAR1 as a novel target for the treatment of neurological and psychiatric disorders. We previously reported that TAAR1 partial agonists are wake-promoting in rats and mice, and that TAAR1 knockout (KO) and overexpressing mice exhibit altered sleep-wake and EEG spectral composition. Here, we report that locomotor and EEG spectral responses to the psychostimulants modafinil and caffeine are attenuated in TAAR1 KO mice. TAAR1 KO mice and WT littermates were instrumented for EEG and EMG recording and implanted with telemetry transmitters for monitoring locomotor activity (LMA) and core body temperature (Tb). Following recovery, mice were administered modafinil (25, 50, 100 mg/kg), caffeine (2.5, 10, 20 mg/kg) or vehicle p.o. at ZT6 in balanced order. In WT mice, both modafinil and caffeine dose-dependently increased LMA for up to 6 h following dosing, whereas only the highest dose of each drug increased LMA in KO mice, and did so for less time after dosing. This effect was particularly pronounced following caffeine, such that total LMA response was significantly attenuated in KO mice compared to WT at all doses of caffeine and did not differ from Vehicle treatment. Tb increased comparably in both genotypes in a dose-dependent manner. TAAR1 deletion was associated with reduced wake consolidation following both drugs, but total time in wakefulness did not differ between KO and WT mice. Furthermore, gamma band EEG activity following both modafinil and caffeine treatment was attenuated in TAAR1 KO compared to WT mice. Our results show that TAAR1 is a critical component of the behavioral and cortical arousal associated with two widely used psychostimulants with very different mechanisms of action. Together with our previous findings, these data suggest that TAAR1 is a previously unrecognized component of an endogenous wake-modulating system.
Collapse
Affiliation(s)
- Michael D Schwartz
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Jeremiah B Palmerston
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Diana L Lee
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Marius C Hoener
- Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| |
Collapse
|
24
|
Kiryanova V, Smith VM, Antle MC, Dyck RH. Behavior of Adult 5-HT1A Receptor Knockout Mice Exposed to Stress During Prenatal Development. Neuroscience 2018; 371:16-28. [DOI: 10.1016/j.neuroscience.2017.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/27/2017] [Accepted: 11/21/2017] [Indexed: 12/29/2022]
|
25
|
Cai CY, Wu HY, Luo CX, Zhu DY, Zhang Y, Zhou QG, Zhang J. Extracellular regulated protein kinaseis critical for the role of 5-HT1a receptor in modulating nNOS expression and anxiety-related behaviors. Behav Brain Res 2017; 357-358:88-97. [PMID: 29246772 DOI: 10.1016/j.bbr.2017.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/04/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Our previous study found that serotonin 1A receptor (5-HT1aR) is an endogenous suppressor of nNOS expression in the hippocampus, which accounts for anxiolytic effect of fluoxetine. However, the precise molecular mechanism remains unknown. By using 8-OH-DPAT, a selective 5-HT1aR agonist, NAN-190, a selective 5-HT1aR antagonist, and U0126, an Extracellular Regulated Protein Kinases (ERK) phosphorylation inhibitor, we investigated the role of ERK in 5-HT1aR-nNOS pathway. Western blots analysis demonstrated that 5-HT1aR activation up-regulated the level of phosphorylated ERK (P-ERK) beginning at 5 min and down-regulated the expression of nNOS beginning at 20 min. Meanwhile, blockage of 5-HT1aR resulted in a decrease in P-ERK beginning at 20 min and caused an increase in nNOS expression beginning at 6 h. Although U0126 itself did not alter nNOS expression and activity, NO level, and anxiety-related behaviors, the treatment totally reversed 8-OH-DPAT-induced reduction in nNOS expression and function, and anxiolytic effect. Besides, our data showed that ERK phosphorylation was essential for 5-HT1aR activation-induced cAMP responsive element binding protein (CREB) phosphorylation, hippocampal neurogenesis and synaptogenesis of newborn neuron. Our study suggests a crucial role of ERK phosphorylation in the regulation of nNOS expression by 5-HT1aR, which is helpful for understanding the mechanism of 5-HT1aR-based anxiolytic treatment.
Collapse
Affiliation(s)
- Cheng-Yun Cai
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Hai-Yin Wu
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Chun-Xia Luo
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Dong-Ya Zhu
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China; The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, 211166, People's Republic of China
| | - Yu Zhang
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Qi-Gang Zhou
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Jing Zhang
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Departments of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
26
|
Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017; 18:ijms18081773. [PMID: 28809797 PMCID: PMC5578162 DOI: 10.3390/ijms18081773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/06/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Modulation between sleep and wake states is controlled by a number of heterogeneous neuron populations. Due to the topological proximity and genetic co-localization of the neurons underlying sleep-wake state modulation optogenetic methods offer a significant improvement in the ability to benefit from both the precision of genetic targeting and millisecond temporal control. Beginning with an overview of the neuron populations mediating arousal, this review outlines the progress that has been made in the investigation of arousal circuits since the incorporation of optogenetic techniques and the first in vivo application of optogenetic stimulation in hypocretin neurons in the lateral hypothalamus. This overview is followed by a discussion of the future progress that can be made by incorporating more recent technological developments into the research of neural circuits.
Collapse
|
27
|
Luppi PH, Peyron C, Fort P. Not a single but multiple populations of GABAergic neurons control sleep. Sleep Med Rev 2017; 32:85-94. [DOI: 10.1016/j.smrv.2016.03.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
|
28
|
Naumenko VS, Ponimaskin EG, Popova NK. 5-HT1A receptor: Role in the regulation of different types of behavior. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Lack of GSK3β activation and modulation of synaptic plasticity by dopamine in 5-HT1A-receptor KO mice. Neuropharmacology 2016; 113:124-136. [PMID: 27678414 DOI: 10.1016/j.neuropharm.2016.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022]
Abstract
Psychiatric disorders are associated with excitation-inhibition (E-I) balance impairment in the prefrontal cortex. However, how the E-I balance is regulated is poorly known. The E-I balance of neuronal networks is linked to the action of numerous neuromodulators such as dopamine and 5-HT. We investigated the role of D2-receptors in tuning the E-I balance in a mouse model of anxiety, the 5-HT1A-receptor KO mice. We focused on synaptic plasticity of excitation and inhibition on layer 5 pyramidal neurons. We show that D2-receptor activation decreases the excitation and favors HFS-induced LTD of excitatory synapses via the activation of GSK3β. This effect is absent in 5-HT1A-receptor KO mice. Our data show that the fine control of excitatory transmission by GSK3β requires recruitment of D2-receptors and depends on the presence of 5-HT1A-receptors. In psychiatric disorders in which the number of 5-HT1A-receptors decreased, therapies should reconsider how serotonin and dopamine receptors interact and control neuronal network activity.
Collapse
|
30
|
Lipford MC, Ramar K, Liang YJ, Lin CW, Chao YT, An J, Chiu CH, Tsai YJ, Shu CH, Lee FP, Chiang RPY. Serotnin as a possible biomarker in obstructive sleep apnea. Sleep Med Rev 2016; 28:125-32. [DOI: 10.1016/j.smrv.2015.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 01/21/2023]
|
31
|
Parmentier R, Zhao Y, Perier M, Akaoka H, Lintunen M, Hou Y, Panula P, Watanabe T, Franco P, Lin JS. Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: A study using a knockout mouse model. Neuropharmacology 2015; 106:20-34. [PMID: 26723880 DOI: 10.1016/j.neuropharm.2015.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Using knockout (KO) mice lacking the histamine (HA)-synthesizing enzyme (histidine decarboxylase, HDC), we have previously shown the importance of histaminergic neurons in maintaining wakefulness (W) under behavioral challenges. Since the central actions of HA are mediated by several receptor subtypes, it remains to be determined which one(s) could be responsible for such a role. We have therefore compared the cortical-EEG, sleep and W under baseline conditions or behavioral/pharmacological stimuli in littermate wild-type (WT) and H1-receptor KO (H1-/-) mice. We found that H1-/- mice shared several characteristics with HDC KO mice, i.e. 1) a decrease in W after lights-off despite its normal baseline daily amount; 2) a decreased EEG slow wave sleep (SWS)/W power ratio; 3) inability to maintain W in response to behavioral challenges demonstrated by a decreased sleep latency when facing various stimuli. These effects were mediated by central H1-receptors. Indeed, in WT mice, injection of triprolidine, a brain-penetrating H1-receptor antagonist increased SWS, whereas ciproxifan (H3-receptor antagonist/inverse agonist) elicited W; all these injections had no effect in H1-/- mice. Finally, H1-/- mice showed markedly greater changes in EEG power (notably in the 0.8-5 Hz band) and sleep-wake cycle than in WT mice after application of a cholinergic antagonist or an indirect agonist, i.e., scopolamine or physostigmine. Hence, the role of HA in wake-promotion is largely ensured by H1-receptors. An upregulated cholinergic system may account for a quasi-normal daily amount of W in HDC or H1-receptor KO mice and likely constitutes a major compensatory mechanism when the brain is facing deficiency of an activating system. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Régis Parmentier
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Yan Zhao
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France; Department of Physiology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | - Magali Perier
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Hideo Akaoka
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Minnamaija Lintunen
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Yiping Hou
- Department of Neuroscience, Anatomy, Histology & Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Takeshi Watanabe
- Unit for Immune Surveillance Research, Research Center for Allergy and Immunology, RIKEN Institute, Tsurumi-ku, Yokohama, Japan
| | - Patricia Franco
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Jian-Sheng Lin
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France.
| |
Collapse
|
32
|
Leiser SC, Iglesias-Bregna D, Westrich L, Pehrson AL, Sanchez C. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism. J Psychopharmacol 2015; 29:1092-105. [PMID: 26174134 PMCID: PMC4579402 DOI: 10.1177/0269881115592347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences.
Collapse
|
33
|
Cline BH, Costa-Nunes JP, Cespuglio R, Markova N, Santos AI, Bukhman YV, Kubatiev A, Steinbusch HWM, Lesch KP, Strekalova T. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression. Front Behav Neurosci 2015; 9:37. [PMID: 25767439 PMCID: PMC4341562 DOI: 10.3389/fnbeh.2015.00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/01/2015] [Indexed: 11/13/2022] Open
Abstract
Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies.
Collapse
Affiliation(s)
- Brandon H Cline
- Faculté de Médecine, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg Strasbourg, France
| | - Joao P Costa-Nunes
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Group of Behavioural Neuroscience and Pharmacology, Institute for Hygiene and Tropical Medicine, New University of Lisbon Lisbon, Portugal
| | - Raymond Cespuglio
- Faculty of Medicine, Neuroscience Research Center of Lyon, INSERM U1028, C. Bernard University Lyon, France
| | - Natalyia Markova
- Laboratory of Biomolecular Screening, Institute of Physiologically Active Compounds, Russian Academy of Sciences Moscow, Russia ; Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | - Ana I Santos
- Faculdade de Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa Lisboa, Portugal
| | - Yury V Bukhman
- Great Lakes Bioenergy Research Center, Computational Biology, Wisconsin Energy Institute, University of Wisconsin Madison, WI, USA
| | - Aslan Kubatiev
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | | | - Klaus-Peter Lesch
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg Wuerzburg, Germany
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Group of Behavioural Neuroscience and Pharmacology, Institute for Hygiene and Tropical Medicine, New University of Lisbon Lisbon, Portugal ; Laboratory of Biomolecular Screening, Institute of Physiologically Active Compounds, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
34
|
Abstract
Stress is considered to be an important cause of disrupted sleep and insomnia. However, controlled and experimental studies in rodents indicate that effects of stress on sleep-wake regulation are complex and may strongly depend on the nature of the stressor. While most stressors are associated with at least a brief period of arousal and wakefulness, the subsequent amount and architecture of recovery sleep can vary dramatically across conditions even though classical markers of acute stress such as corticosterone are virtually the same. Sleep after stress appears to be highly influenced by situational variables including whether the stressor was controllable and/or predictable, whether the individual had the possibility to learn and adapt, and by the relative resilience and vulnerability of the individual experiencing stress. There are multiple brain regions and neurochemical systems linking stress and sleep, and the specific balance and interactions between these systems may ultimately determine the alterations in sleep-wake architecture. Factors that appear to play an important role in stress-induced wakefulness and sleep changes include various monominergic neurotransmitters, hypocretins, corticotropin releasing factor, and prolactin. In addition to the brain regions directly involved in stress responses such as the hypothalamus, the locus coeruleus, and the amygdala, differential effects of stressor controllability on behavior and sleep may be mediated by the medial prefrontal cortex. These various brain regions interact and influence each other and in turn affect the activity of sleep-wake controlling centers in the brain. Also, these regions likely play significant roles in memory processes and participate in the way stressful memories may affect arousal and sleep. Finally, stress-induced changes in sleep-architecture may affect sleep-related neuronal plasticity processes and thereby contribute to cognitive dysfunction and psychiatric disorders.
Collapse
Affiliation(s)
- Larry D Sanford
- Department of Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA, 23507, USA,
| | | | | |
Collapse
|
35
|
Watson AJ, Henson K, Dorsey SG, Frank MG. The truncated TrkB receptor influences mammalian sleep. Am J Physiol Regul Integr Comp Physiol 2014; 308:R199-207. [PMID: 25502751 DOI: 10.1152/ajpregu.00422.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin hypothesized to play an important role in mammalian sleep expression and regulation. In order to investigate the role of the truncated receptor for BDNF, TrkB.T1, in mammalian sleep, we examined sleep architecture and sleep regulation in adult mice constitutively lacking this receptor. We find that TrkB.T1 knockout mice have increased REM sleep time, reduced REM sleep latency, and reduced sleep continuity. These results demonstrate a novel role for the TrkB.T1 receptor in sleep expression and provide new insights into the relationship between BDNF, psychiatric illness, and sleep.
Collapse
Affiliation(s)
- Adam J Watson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Henson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan G Dorsey
- School of Nursing, University of Maryland, Baltimore, Maryland; and
| | - Marcos G Frank
- College of Medical Sciences, Sleep and Performance Research Center, Washington State University Spokane, Spokane, Washington
| |
Collapse
|
36
|
Effects of lighting condition on circadian behavior in 5-HT1A receptor knockout mice. Physiol Behav 2014; 139:136-44. [PMID: 25446224 DOI: 10.1016/j.physbeh.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/21/2022]
Abstract
Serotonin (5-HT) is an important regulator of the mammalian circadian system, and has been implicated in modulating entrained and free-running rhythms, as well as photic and non-photic phase shifting. In general, 5-HT appears to oppose the actions of light on the circadian system of nocturnal rodents. As well, 5-HT mediates, at least in part, some non-photic responses. The 5-HT1A, 1B and 7 receptors regulate these acute responses to zeitgebers. 5-HT also regulates some entrained and free-running properties of the circadian clock. The receptors that contribute to these phenomena have not been fully examined. Here, we use 5-HT1A receptor knockout (KO) mice to examine the response of the mouse circadian system to a variety of lighting conditions, including a normal light-dark cycle (LD), T-cycles, phase advanced LD cycles, constant darkness (DD), constant light (LL) and a 6 hour dark pulse starting at CT5. Relative to wildtype mice, the 5-HT1A receptor KO mice have lower levels of activity during the first 8h of the night/subjective night in LD and LL, later activity onsets on transient days during re-entrainment, shorter free-running periods in LL when housed with wheels, and smaller phase shifts to dark pulses. No differences were noted in activity levels during DD, alpha under any light condition, free-running period in DD, or phase angle of entrainment in LD. While the 5-HT1A receptor plays an important role in regulating photic and non-photic phase shifting, its contribution to entrained and free-running properties of the circadian clock is relatively minor.
Collapse
|
37
|
Le Dantec Y, Hache G, Guilloux JP, Guiard BP, David DJ, Adrien J, Escourrou P. NREM sleep hypersomnia and reduced sleep/wake continuity in a neuroendocrine mouse model of anxiety/depression based on chronic corticosterone administration. Neuroscience 2014; 274:357-68. [PMID: 24909899 DOI: 10.1016/j.neuroscience.2014.05.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/01/2023]
Abstract
Sleep/wake disorders are frequently associated with anxiety and depression and to elevated levels of cortisol. Even though these alterations are increasingly sought in animal models, no study has investigated the specific effects of chronic corticosterone (CORT) administration on sleep. We characterized sleep/wake disorders in a neuroendocrine mouse model of anxiety/depression, based on chronic CORT administration in the drinking water (35 μg/ml for 4 weeks, "CORT model"). The CORT model was markedly affected during the dark phase by non-rapid eye movement sleep (NREM) increase without consistent alteration of rapid eye movement (REM) sleep. Total sleep duration (SD) and sleep efficiency (SE) increased concomitantly during both the 24h and the dark phase, due to the increase in the number of NREM sleep episodes without a change in their mean duration. Conversely, the total duration of wake decreased due to a decrease in the mean duration of wake episodes despite an increase in their number. These results reflect hypersomnia by intrusion of NREM sleep during the active period as well as a decrease in sleep/wake continuity. In addition, NREM sleep was lighter, with an increased electroencephalogram (EEG) theta activity. With regard to REM sleep, the number and the duration of episodes decreased, specifically during the first part of the light period. REM and NREM sleep changes correlated respectively with the anxiety and the anxiety/depressive-like phenotypes, supporting the notion that studying sleep could be of predictive value for altered emotional behavior. The chronic CORT model in mice that displays hallmark characteristics of anxiety and depression provides an insight into understanding the changes in overall sleep architecture that occur under pathological conditions.
Collapse
Affiliation(s)
- Y Le Dantec
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France.
| | - G Hache
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - J P Guilloux
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - B P Guiard
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - D J David
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - J Adrien
- UMR975, CRicm - INSERM/CNRS/UPMC, Neurotransmetteurs et Sommeil, Faculté de Médecine Pitié-Salpêtrière, Université Pierre et Marie Curie - Paris VI, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - P Escourrou
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France; Assistance Publique-Hôpitaux de Paris, Hôpital Antoine Béclère, Département de Physiologie, Centre de Médecine du Sommeil, 92141 Clamart cedex, France
| |
Collapse
|
38
|
Szentirmai É, Kapás L. Intact brown adipose tissue thermogenesis is required for restorative sleep responses after sleep loss. Eur J Neurosci 2013; 39:984-998. [PMID: 24372950 DOI: 10.1111/ejn.12463] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/11/2022]
Abstract
Metabolic signals related to feeding and body temperature regulation have profound effects on vigilance. Brown adipose tissue (BAT) is a key effector organ in the regulation of metabolism in several species, including rats and mice. Significant amounts of active BAT are also present throughout adulthood in humans. The metabolic activity of BAT is due to the tissue-specific presence of the uncoupling protein-1 (UCP-1). To test the involvement of BAT thermogenesis in sleep regulation, we investigated the effects of two sleep-promoting stimuli in UCP-1-deficient mice. Sleep deprivation by gentle handling increased UCP-1 mRNA expression in BAT and elicited rebound increases in non-rapid-eye-movement sleep and rapid-eye-movement sleep accompanied by elevated slow-wave activity of the electroencephalogram. The rebound sleep increases were significantly attenuated, by ~ 35-45%, in UCP-1-knockout (KO) mice. Wild-type (WT) mice with capsaicin-induced sensory denervation of the interscapular BAT pads showed similar impairments in restorative sleep responses after sleep deprivation, suggesting a role of neuronal sleep-promoting signaling from the BAT. Exposure of WT mice to 35 °C ambient temperature for 5 days led to increased sleep and body temperature and suppressed feeding and energy expenditure. Sleep increases in the warm environment were significantly suppressed, by ~ 50%, in UCP-1-KO animals while their food intake and energy expenditure did not differ from those of the WTs. These results suggest that the metabolic activity of the BAT plays a role in generating a metabolic environment that is permissive for optimal sleep. Impaired BAT function may be a common underlying cause of sleep insufficiency and metabolic disorders.
Collapse
Affiliation(s)
- Éva Szentirmai
- Washington, Wyoming, Alaska, Montana and Idaho (WWAMI) Medical Education Program, PO Box 1495, Spokane, WA 99210-1495, USA; Department of Integrative Physiology and Neuroscience, Pullman, WA, USA; Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| | | |
Collapse
|
39
|
Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, Narita M, Ikegami D, Sakai H, Yamazaki M, Narita M. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 2013; 6:59. [PMID: 24370235 PMCID: PMC3879646 DOI: 10.1186/1756-6606-6-59] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background Several etiological reports have shown that chronic pain significantly interferes with sleep. Inadequate sleep due to chronic pain may contribute to the stressful negative consequences of living with pain. However, the neurophysiological mechanism by which chronic pain affects sleep-arousal patterns is as yet unknown. Although serotonin (5-HT) was proposed to be responsible for sleep regulation, whether the activity of 5-HTergic neurons in the dorsal raphe nucleus (DRN) is affected by chronic pain has been studied only infrequently. On the other hand, the recent development of optogenetic tools has provided a valuable opportunity to regulate the activity in genetically targeted neural populations with high spatial and temporal precision. In the present study, we investigated whether chronic pain could induce sleep dysregulation while changing the activity of DRN-5-HTergic neurons. Furthermore, we sought to physiologically activate the DRN with channelrhodopsin-2 (ChR2) to identify a causal role for the DRN-5-HT system in promoting and maintaining wakefulness using optogenetics. Results We produced a sciatic nerve ligation model by tying a tight ligature around approximately one-third to one-half the diameter of the sciatic nerve. In mice with nerve ligation, we confirmed an increase in wakefulness and a decrease in non-rapid eye movement (NREM) sleep as monitored by electroencephalogram (EEG). Microinjection of the retrograde tracer fluoro-gold (FG) into the prefrontal cortex (PFC) revealed several retrogradely labeled-cells in the DRN. The key finding of the present study was that the levels of 5-HT released in the PFC by the electrical stimulation of DRN neurons were significantly increased in mice with sciatic nerve ligation. Using optogenetic tools in mice, we found a causal relationship among DRN neuron firing, cortical activity and sleep-to-wake transitions. In particular, the activation of DRN-5-HTergic neurons produced a significant increase in wakefulness and a significant decrease in NREM sleep. The duration of NREM sleep episodes was significantly decreased during photostimulation in these mice. Conclusions These results suggest that neuropathic pain accelerates the activity of DRN-5-HTergic neurons. Although further loss-of-function experiments are required, we hypothesize that this activation in DRN neurons may, at least in part, correlate with sleep dysregulation under a neuropathic pain-like state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mitsuaki Yamazaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | |
Collapse
|
40
|
5-HT1A receptors direct the orientation of plasticity in layer 5 pyramidal neurons of the mouse prefrontal cortex. Neuropharmacology 2013; 71:37-45. [DOI: 10.1016/j.neuropharm.2013.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/18/2013] [Accepted: 03/07/2013] [Indexed: 11/21/2022]
|
41
|
Bridoux A, Laloux C, Derambure P, Bordet R, Monaca Charley C. The acute inhibition of rapid eye movement sleep by citalopram may impair spatial learning and passive avoidance in mice. J Neural Transm (Vienna) 2012; 120:383-9. [DOI: 10.1007/s00702-012-0901-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/23/2012] [Indexed: 01/26/2023]
|
42
|
Kelly JM, Bianchi MT. Mammalian sleep genetics. Neurogenetics 2012; 13:287-326. [DOI: 10.1007/s10048-012-0341-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
|
43
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
44
|
Abstract
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts 02301, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Short sleep duration has been suggested to be a risk factor for weight gain and adiposity. Serotonin (5-HT) substantially contributes to the regulation of sleep and feeding behavior. Although 5-HT predominately promotes waking and satiety, the effects of 5-HT depend on 5-HT receptor function. The 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, 5-HT6, and 5-HT7 receptors reportedly contribute to sleep-waking regulation, whereas the 5-HT1B and 5-HT2C receptors contribute to the regulation of satiety. The 5-HT1B and 2C receptors may therefore be involved in the regulation of sleep-feeding. In genetic studies, 5-HT1B receptor mutant mice display greater amounts of rapid eye movement sleep (REMS) than wild-type mice, while displaying no effects on waking or slow wave sleep (SWS). On the other hand, 5-HT2C receptor mutant mice exhibit increased wakefulness and decreased SWS, without any effect on REMS. Moreover, the 5-HT2C receptor mutants display leptin-independent hyperphagia, leading to a middle-aged onset of obesity, whereas 5-HT1B receptor mutants do not display any effect on food intake. Thus, the genetic deletion of 5-HT2C receptors results in sleep loss-associated hyperphagia, leading to the late onset of obesity. This is a quite different pattern of sleep-feeding behavior than is observed in disturbed leptin signaling, which displays an increase in sleep-associated hyperphagia. In pharmacologic studies, 5-HT1B and 5-HT2C receptors upregulate wakefulness and downregulate SWS, REMS, and food intake. These findings suggest that 5-HT1B/2C receptor stimulation induces sleep loss-associated anorexia. Thus, the central 5-HT regulation of sleep-feeding can be dissociated. Functional hypothalamic proopiomelanocortin and orexin activities may contribute to the dissociated 5-HT regulation.
Collapse
Affiliation(s)
- Katsunori Nonogaki
- Department of Lifestyle Medicine, Translational Research Center, Tohoku University Hospital, Sendai, Miyagi, Japan
| |
Collapse
|
46
|
Esposito M, Pellinen J, Kapás L, Szentirmai É. Impaired wake-promoting mechanisms in ghrelin receptor-deficient mice. Eur J Neurosci 2011; 35:233-43. [PMID: 22211783 DOI: 10.1111/j.1460-9568.2011.07946.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ghrelin receptors are expressed by key components of the arousal system. Exogenous ghrelin induces behavioral activation, promotes wakefulness and stimulates eating. We hypothesized that ghrelin-sensitive mechanisms play a role in the arousal system. To test this, we investigated the responsiveness of ghrelin receptor knockout (KO) mice to two natural wake-promoting stimuli. Additionally, we assessed the integrity of their homeostatic sleep-promoting system using sleep deprivation. There was no significant difference in the spontaneous sleep-wake activity between ghrelin receptor KO and wild-type (WT) mice. WT mice mounted robust arousal responses to a novel environment and food deprivation. Wakefulness increased for 6 h after cage change accompanied by increases in body temperature and locomotor activity. Ghrelin receptor KO mice completely lacked the wake and body temperature responses to new environment. When subjected to 48 h food deprivation, WT mice showed marked increases in their waking time during the dark periods of both days. Ghrelin receptor KO mice failed to mount an arousal response on the first night and wake increases were attenuated on the second day. The responsiveness to sleep deprivation did not differ between the two genotypes. These results indicate that the ghrelin-receptive mechanisms play an essential role in the function of the arousal system but not in homeostatic sleep-promoting mechanisms.
Collapse
Affiliation(s)
- Matthew Esposito
- Washington, Wyoming, Alaska, Montana and Idaho (WWAMI) Medical Education Program, Washington State University, PO Box 1495, Spokane, WA 99210-1495, USA
| | | | | | | |
Collapse
|
47
|
Abstract
HPC-1/syntaxin1A (STX1A) is considered to regulate exocytosis in neurones and endocrine cells. Previously, we reported that STX1A null mutant (STX1A KO) mice unexpectedly showed normal glutamatergic and GABAergic fast synaptic transmission but exhibited disturbances in monoaminergic transmission, such as serotonin, 5-hydroxytryptamine (5-HT), which may induce attenuation of latent inhibition. These results suggest that STX1A may contribute to dense-core vesicle exocytosis in vivo. Thus, we hypothesised that the lack of STX1A might affect the secretion of several hormones, as also mediated by dense-core vesicles exocytosis. In the present study, we focused on the hypothalamic-pituitary-adrenal (HPA) axis, which is a neuroendocrine system that regulates responses to stress stimuli and is considered to be associated with neuropsychiatric disorders. Specifically, we examined whether the HPA axis is impaired in STX1A KO mice. Interestingly, plasma concentrations of both corticosterone (CORT) and adrenocorticotrophin hormone (ACTH) during the resting condition decreased in STX1A KO mice compared to WT mice. Additionally, elevated plasma CORT, ACTH and corticotrophin-releasing hormone (CRH) which were usually observed after acute restraint stress, were also reduced in STX1A KO mice. We also observed the suppression of 5-HT-induced CRH release in STX1A KO mice in vitro. Furthermore, an in vivo microdialysis study revealed that the elevation of extracellular 5-HT in the hypothalamus, which was induced by the selective serotonin reuptake inhibitor, fluoxetine, was significantly reduced in STX1A KO mice compared to WT mice. 5-HT elevation in the hypothalamus, which was induced by acute restraint stress, was also reduced in STX1A KO mice. Finally, STX1A KO mice showed abnormal behavioural responses after mild restraint stress. These results indicate that the lack of STX1A could induce dysfunction of the HPA axis, and the deficit may result in abnormal behavioural properties, such as unusual responses to stress stimuli.
Collapse
Affiliation(s)
- T Fujiwara
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | | | |
Collapse
|
48
|
Luppi PH, Clement O, Sapin E, Peyron C, Gervasoni D, Léger L, Fort P. Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Arch 2011; 463:43-52. [PMID: 22083642 DOI: 10.1007/s00424-011-1054-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 12/14/2022]
Abstract
Paradoxical sleep (PS) is characterized by EEG activation with a disappearance of muscle tone and the occurrence of rapid eye movements (REM) in contrast to slow-wave sleep (SWS, also known as non-REM sleep) identified by the presence of delta waves. Soon after the discovery of PS, it was demonstrated that the structures necessary and sufficient for its genesis are restricted to the brainstem. We review here recent results indicating that brainstem glutamatergic and GABAergic, rather than cholinergic and monoaminergic, neurons play a key role in the genesis of PS. We hypothesize that the entrance to PS from SWS is due to the activation of PS-on glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. The activation of these neurons would be due to a permanent glutamatergic input arising from the lateral and ventrolateral periaqueductal gray (vlPAG) and the removal at the onset of PS of a GABAergic inhibition present during W and SWS. Such inhibition would be coming from PS-off GABAergic neurons localized in the vlPAG and the adjacent deep mesencephalic reticular nucleus. The cessation of activity of these PS-off GABAergic neurons at the onset and during PS would be due to direct projections from intermingled GABAergic PS-on neurons. Activation of PS would depend on the reciprocal interactions between the GABAergic PS-on and PS-off neurons, intrinsic cellular and molecular events, and integration of multiple physiological parameters.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028, CNRS, UMR 5292, Lyon Neuroscience Research Center, Team Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ouyang X, Li P, Zhou S, Wang L, Qiao G, Tian S, Tang C. Rapid eye movement sleep deprivation disrupts context-modulated effects on morphine locomotor sensitization in mice. Neurosci Lett 2011; 504:73-7. [DOI: 10.1016/j.neulet.2011.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/15/2011] [Accepted: 09/02/2011] [Indexed: 11/26/2022]
|
50
|
|