1
|
DeMarco AT, van der Stelt C, Paul S, Dvorak E, Lacey E, Snider S, Turkeltaub PE. Absence of Perilesional Neuroplastic Recruitment in Chronic Poststroke Aphasia. Neurology 2022; 99:e119-e128. [PMID: 35508398 PMCID: PMC9280993 DOI: 10.1212/wnl.0000000000200382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES A prominent theory proposes that neuroplastic recruitment of perilesional tissue supports aphasia recovery, especially when language-capable cortex is spared by smaller lesions. This theory has rarely been tested directly and findings have been inconclusive. We tested the perilesional plasticity hypothesis using 2 fMRI tasks in 2 groups of patients with previous aphasia diagnosis. METHODS Two cohorts totaling 82 patients with chronic left-hemisphere stroke with previous aphasia diagnosis and 82 control participants underwent fMRI using either a naming task or a reliable semantic decision task. Individualized perilesional tissue was defined by dilating anatomical lesions and language regions were defined using meta-analyses. Mixed modeling examined differences in activity between groups. Relationships with lesion size and aphasia severity were examined. RESULTS Patients exhibited reduced activity in perilesional language tissue relative to controls in both tasks. Although a few cortical regions exhibited greater activity irrespective of distance from the lesion, or only when distant from the lesion, no regions exhibited increased activity only when near the lesion. Larger lesions were associated with reduced language activity irrespective of distance from the lesion. Using the reliable fMRI task, reduced language activity was related to aphasia severity independent of lesion size. DISCUSSION We found no evidence for neuroplastic recruitment of perilesional tissue in aphasia beyond its typical role in language. Rather, our findings are consistent with alternative hypotheses that changes in left-hemisphere activation during recovery relate to normalization of language network dysfunction and possibly recruitment of alternate cortical processors. These findings clarify left-hemisphere neuroplastic mechanisms supporting language recovery after stroke.
Collapse
Affiliation(s)
- Andrew Tesla DeMarco
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Candace van der Stelt
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Sachi Paul
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Elizabeth Dvorak
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Elizabeth Lacey
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Sarah Snider
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Peter E Turkeltaub
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC.
| |
Collapse
|
2
|
Bradley SS, Howe E, Bailey CDC, Vickaryous MK. The dendrite arbor of Purkinje cells is altered following to tail regeneration in the leopard gecko. Integr Comp Biol 2021; 61:370-384. [PMID: 34038505 DOI: 10.1093/icb/icab098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Purkinje cells of the cerebellum have a complex arborized arrangement of dendrites and are amongst the most distinctive cell types of the nervous system. Although the neuromorphology of Purkinje cells has been well described for some mammals and teleost fish, for most vertebrates less is known. Here we used a modified Golgi-Cox method to investigate the neuromorphology of Purkinje cells from the lizard Eublepharis macularius, the leopard gecko. Using Sholl and Branch Structure Analyses, we sought to investigate whether the neuromorphology of gecko Purkinje cells was altered is response to tail loss and regeneration. Tail loss is an evolved mechanism commonly used by geckos to escape predation. Loss of the tail represents a significant and sudden change in body length and mass, which is only partially recovered as the tail is regenerated. We predicted that tail loss and regeneration would induce a quantifiable change in Purkinje cell dendrite arborization. Post hoc comparisons of Sholl analyses data showed that geckos with regenerated tails have significant changes in dendrite diameter and the number of dendrite intersections in regions corresponding to the position of parallel fiber synapses. We propose that the neuromorphological alterations observed in gecko Purkinje cells represent a compensatory response to tail regrowth, and perhaps a role in motor learning.
Collapse
Affiliation(s)
| | - Erika Howe
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | | | | |
Collapse
|
3
|
Manns M, Basbasse YE, Freund N, Ocklenburg S. Paw preferences in mice and rats: Meta-analysis. Neurosci Biobehav Rev 2021; 127:593-606. [PMID: 34004244 DOI: 10.1016/j.neubiorev.2021.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Mice and rats are among the most common animal model species in both basic and clinical neuroscience. Despite their ubiquity as model species, many clinically relevant brain-behaviour relationships in rodents are not well understood. In particular, data on hemispheric asymmetries, an important organizational principle in the vertebrate brain, are conflicting as existing studies are often statistically underpowered due to small sample sizes. Paw preference is one of the most frequently investigated forms of hemispheric asymmetries on the behavioural level. Here, we used meta-analysis to statistically integrate findings on paw preferences in rats and mice. For both species, results indicate significant hemispheric asymmetries on the individual level. In mice, 81 % of animals showed a preference for either the left or the right paw, while 84 % of rats showed this preference. However, contrary to what has been reported in humans, population level asymmetries were not observed. These results are particularly significant as they point out that paying attention to potential individual hemispheric differences is important in both basic and clinical neuroscience.
Collapse
Affiliation(s)
- Martina Manns
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany.
| | - Yasmin El Basbasse
- Institute of Cognitive Neuroscience, Department Biopsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany
| | - Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Department Biopsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| |
Collapse
|
4
|
Cavaleri R, Chipchase LS, Massé-Alarie H, Schabrun SM, Shraim MA, Hodges PW. Corticomotor reorganization during short-term visuomotor training in the lower back: A randomized controlled study. Brain Behav 2020; 10:e01702. [PMID: 32633899 PMCID: PMC7428511 DOI: 10.1002/brb3.1702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Accumulating evidence suggests that motor skill training is associated with structural and functional reorganization of the primary motor cortex. However, previous studies have focussed primarily upon the upper limb, and it is unclear whether comparable reorganization occurs following training of other regions, such as the lower back. Although this holds important implications for rehabilitation, no studies have examined corticomotor adaptations following short-term motor training in the lower back. METHOD The aims of this study were to (a) determine whether a short-term lumbopelvic tilt visuomotor task induced reorganization of the corticomotor representations of lower back muscles, (b) quantify the variability of corticomotor responses to motor training, and (c) determine whether any improvements in task performance were correlated with corticomotor reorganization. Participants were allocated randomly to perform a lumbopelvic tilt motor training task (n = 15) or a finger abduction control task involving no lumbopelvic movement (n = 15). Transcranial magnetic stimulation was used to map corticomotor representations of the lumbar erector spinae before, during, and after repeated performance of the allocated task. RESULTS No relationship between corticomotor reorganization and improved task performance was identified. Substantial variability was observed in terms of corticomotor responses to motor training, with approximately 50% of participants showing no corticomotor reorganization despite significant improvements in task performance. CONCLUSION These findings suggest that short-term improvements in lower back visuomotor task performance may be driven by changes in remote subcortical and/or spinal networks rather than adaptations in corticomotor pathways. However, further research using tasks of varying complexities and durations is required to confirm this hypothesis.
Collapse
Affiliation(s)
- Rocco Cavaleri
- School of Health Sciences, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Lucy S Chipchase
- School of Health Sciences, Western Sydney University, Campbelltown, New South Wales, Australia.,College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Hugo Massé-Alarie
- CIRRIS Research Centre, Department of Rehabilitation, Laval University, Quebec, Canada.,Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Muath A Shraim
- Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul W Hodges
- Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
DeMarco AT, Turkeltaub PE. Functional anomaly mapping reveals local and distant dysfunction caused by brain lesions. Neuroimage 2020; 215:116806. [PMID: 32278896 DOI: 10.1016/j.neuroimage.2020.116806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/28/2023] Open
Abstract
The lesion method has been important for understanding brain-behavior relationships in humans, but has previously used maps based on structural damage. Lesion measurement based on structural damage may label partly damaged but functional tissue as abnormal, and moreover, ignores distant dysfunction in structurally intact tissue caused by deafferentation, diaschisis, and other processes. A reliable method to map functional integrity of tissue throughout the brain would provide a valuable new approach to measuring lesions. Here, we use machine learning on four dimensional resting state fMRI data obtained from left-hemisphere stroke survivors in the chronic period of recovery and control subjects to generate graded maps of functional anomaly throughout the brain in individual patients. These functional anomaly maps identify areas of obvious structural lesions and are stable across multiple measurements taken months and even years apart. Moreover, the maps identify functionally anomalous regions in structurally intact tissue, providing a direct measure of remote effects of lesions on the function of distant brain structures. Multivariate lesion-behavior mapping using functional anomaly maps replicates classic behavioral localization, identifying inferior frontal regions related to speech fluency, lateral temporal regions related to auditory comprehension, parietal regions related to phonology, and the hand area of motor cortex and descending corticospinal pathways for hand motor function. Further, this approach identifies relationships between tissue function and behavior distant from the structural lesions, including right premotor dysfunction related to ipsilateral hand movement, and right cerebellar regions known to contribute to speech fluency. Brain-wide maps of the functional effects of focal lesions could have wide implications for lesion-behavior association studies and studies of recovery after brain injury.
Collapse
Affiliation(s)
- Andrew T DeMarco
- Department of Neurology, Georgetown University, Washington, DC, 20057, United States.
| | - Peter E Turkeltaub
- Department of Neurology, Georgetown University, Washington, DC, 20057, United States; MedStar National Rehabilitation Hospital, Washington, DC, 20010, United States
| |
Collapse
|
6
|
Darling WG, Pizzimenti MA, Rotella DL, Ge J, Stilwell-Morecraft KS, Morecraft RJ. Changes in ipsilesional hand motor function differ after unilateral injury to frontal versus frontoparietal cortices in Macaca mulatta. Exp Brain Res 2019; 238:205-220. [PMID: 31834452 DOI: 10.1007/s00221-019-05690-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/07/2019] [Indexed: 01/29/2023]
Abstract
We tested the hypothesis that injury to frontoparietal sensorimotor areas causes greater initial impairments in performance and poorer recovery of ipsilesional dexterous hand/finger movements than lesions limited to frontal motor areas in rhesus monkeys. Reaching and grasping/manipulation of small targets with the ipsilesional hand were assessed for 6-12 months post-injury using two motor tests. Initial post-lesion motor skill and long-term recovery of motor skill were compared in two groups of monkeys: (1) F2 group-five cases with lesions of arm areas of primary motor cortex (M1) and lateral premotor cortex (LPMC) and (2) F2P2 group-five cases with F2 lesions + lesions of arm areas of primary somatosensory cortex and the anterior portion of area 5. Initial post-lesion reach and manipulation skills were similar to or better than pre-lesion skills in most F2 lesion cases in a difficult fine motor task but worse than pre-lesion skill in most F2P2 lesion cases in all tasks. Subsequently, reaching and manipulation skills improved over the post-lesion period to higher than pre-lesion skills in both groups, but improvements were greater in the F2 lesion group, perhaps due to additional task practice and greater ipsilesional limb use for daily activities. Poorer and slower post-lesion improvement of ipsilesional upper limb motor skill in the F2P2 cases may be due to impaired somatosensory processing. The persistent ipsilesional upper limb motor deficits frequently observed in humans after stroke are probably caused by greater subcortical white and gray matter damage than in the localized surgical injuries studied here.
Collapse
Affiliation(s)
- Warren G Darling
- Motor Control Laboratory, Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Marc A Pizzimenti
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Diane L Rotella
- Motor Control Laboratory, Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Jizhi Ge
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA
| | - Kimberly S Stilwell-Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA
| | - Robert J Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA
| |
Collapse
|
7
|
Brain Activation During Passive and Volitional Pedaling After Stroke. Motor Control 2019; 23:52-80. [PMID: 30012052 PMCID: PMC6685765 DOI: 10.1123/mc.2017-0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/06/2018] [Accepted: 02/25/2018] [Indexed: 11/18/2022]
Abstract
Background: Prior work indicates that pedaling-related brain activation is lower in people with stroke than in controls. We asked whether this observation could be explained by between-group differences in volitional motor commands and pedaling performance. Methods: Individuals with and without stroke performed passive and volitional pedaling while brain activation was recorded with functional magnetic resonance imaging. The passive condition eliminated motor commands to pedal and minimized between-group differences in pedaling performance. Volume, intensity, and laterality of brain activation were compared across conditions and groups. Results: There were no significant effects of condition and no Group × Condition interactions for any measure of brain activation. Only 53% of subjects could minimize muscle activity for passive pedaling. Conclusions: Altered motor commands and pedaling performance are unlikely to account for reduced pedaling-related brain activation poststroke. Instead, this phenomenon may be due to functional or structural brain changes. Passive pedaling can be difficult to achieve and may require inhibition of excitatory descending drive.
Collapse
|
8
|
Neumann M, Liu W, Sun C, Yang SY, Noble-Haeusslein LJ, Liu J. Training of the impaired forelimb after traumatic brain injury enhances hippocampal neurogenesis in the Emx1 null mice lacking a corpus callosum. Behav Brain Res 2018; 340:165-171. [PMID: 27614007 PMCID: PMC5342952 DOI: 10.1016/j.bbr.2016.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 01/02/2023]
Abstract
Unilateral brain injury is known to disrupt the balance between the two cortices, as evidenced by an abnormally high interhemispheric inhibitory drive from motor cortex M1intact to M1lesioned transmitted transcallosally. Our previous work has shown that the deletion of homeobox gene Emx1 not only led to the agenesis of the corpus callosum (cc), but also to reduced hippocampal neurogenesis. The current study sought to determine whether lacking the cc affected the recovery of forelimb function and hippocampal plasticity following training of the affected limb in mice with unilateral traumatic brain injuries (TBI). One week after TBI, produced by a controlled cortical impact to impair the preferred limb, Emx1 wild type (WT) and knock out (KO) mice were subjected to the single-pellet reaching task with the affected limb for 4 weeks. Both TBI and Emx1 deletion had overall adverse effects on the successful rate of reaching. However, TBI significantly affected reaching performance only in the WT mice and not in the KO mice. Both TBI and Emx1 gene deletion also negatively affected hippocampal neurogenesis, demonstrated by a reduction in doublecortin (DCX)-expressing immature neurons, while limb training enhanced DCX expression. However, limb training increased DCX cells in KO mice only in the TBI-treated group, whereas it induced neurogenesis in both WT mice groups regardless of the treatment. Our finding also suggests that limb training enhances neuroplasticity after brain injury at functionally remote regions including the hippocampus, which may have implications for promoting overall recovery of function after TBI.
Collapse
Affiliation(s)
- Melanie Neumann
- San Francisco Veteran's Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA; Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| | - Wei Liu
- San Francisco Veteran's Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA; Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Chongran Sun
- San Francisco Veteran's Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA; Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, Second Affiliated Hospital of Zhejiang University Medical College, Hangzhou, China
| | - Shih Yen Yang
- San Francisco Veteran's Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA; Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| | - Linda J Noble-Haeusslein
- Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA; Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA 94121, USA
| | - Jialing Liu
- San Francisco Veteran's Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA; Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Abstract
Stroke instigates a dynamic process of repair and remodelling of remaining neural circuits, and this process is shaped by behavioural experiences. The onset of motor disability simultaneously creates a powerful incentive to develop new, compensatory ways of performing daily activities. Compensatory movement strategies that are developed in response to motor impairments can be a dominant force in shaping post-stroke neural remodelling responses and can have mixed effects on functional outcome. The possibility of selectively harnessing the effects of compensatory behaviour on neural reorganization is still an insufficiently explored route for optimizing functional outcome after stroke.
Collapse
Affiliation(s)
- Theresa A Jones
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Texas 78712, USA
| |
Collapse
|
10
|
Son AI, Fu X, Suto F, Liu JS, Hashimoto-Torii K, Torii M. Proteome dynamics during postnatal mouse corpus callosum development. Sci Rep 2017; 7:45359. [PMID: 28349996 PMCID: PMC5368975 DOI: 10.1038/srep45359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023] Open
Abstract
Formation of cortical connections requires the precise coordination of numerous discrete phases. This is particularly significant with regard to the corpus callosum, whose development undergoes several dynamic stages including the crossing of axon projections, elimination of exuberant projections, and myelination of established tracts. To comprehensively characterize the molecular events in this dynamic process, we set to determine the distinct temporal expression of proteins regulating the formation of the corpus callosum and their respective developmental functions. Mass spectrometry-based proteomic profiling was performed on early postnatal mouse corpus callosi, for which limited evidence has been obtained previously, using stable isotope of labeled amino acids in mammals (SILAM). The analyzed corpus callosi had distinct proteomic profiles depending on age, indicating rapid progression of specific molecular events during this period. The proteomic profiles were then segregated into five separate clusters, each with distinct trajectories relevant to their intended developmental functions. Our analysis both confirms many previously-identified proteins in aspects of corpus callosum development, and identifies new candidates in understudied areas of development including callosal axon refinement. We present a valuable resource for identifying new proteins integral to corpus callosum development that will provide new insights into the development and diseases afflicting this structure.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Xiaoqin Fu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Fumikazu Suto
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Judy S Liu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA.,Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA.,Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
11
|
Woodlee MT, Schallert T. The Impact of Motor Activity and Inactivity on the Brain. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1111/j.1467-8721.2006.00436.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since Donald Hebb's pioneering observations in the 1940s, much research has focused on the effects of variations in physical activity and environmental complexity on behavioral performance and brain structure. Beneficial effects on brain health have been linked to physical fitness, skilled training, and exposure to complex environments, though in rodents these effects may be negated by sudden changes in social structure. Such manipulations can alleviate the deficits associated with several nervous-system disorders and aging. But how increased activity produces its beneficial effects is still not fully understood. How does unskilled physical activity (e.g., repetitive exercise) compare to training in skilled activities or exposure to complex environments? In injury states, is task-specific training a better rehabilitative strategy than general exercise? How do changes in motor activity affect specific brain regions, and can the intensity and timing of therapeutic movement be adjusted to produce optimal outcomes? Are the beneficial effects of motor enrichment banked over periods of inactivity and can they be called upon with booster training to treat a later neurological disorder? Are there circumstances in which increased activity is harmful? Enrichment of physical activity shows promise as an easy and healthful means for improving or restoring brain function, and questions like these are now being investigated so that the full potential of increased activity may be harnessed.
Collapse
Affiliation(s)
| | - Timothy Schallert
- Institute for Neuroscience
- Department of Psychology, The University of Texas at Austin
- Department of Neurosurgery, University of Michigan
| |
Collapse
|
12
|
Ribeiro RP, Santos DB, Colle D, Naime AA, Gonçalves CL, Ghizoni H, Hort MA, Godoi M, Dias PF, Braga AL, Farina M. Decreased forelimb ability in mice intracerebroventricularly injected with low dose 6-hydroxidopamine: A model on the dissociation of bradykinesia from hypokinesia. Behav Brain Res 2016; 305:30-6. [PMID: 26921691 DOI: 10.1016/j.bbr.2016.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
Abstract
Bradykinesia and hypokinesia represent well-known motor symptoms of Parkinson's disease (PD). While bradykinesia (slow execution of movements) is present in less affected PD patients and aggravates as the disease severity increases, hypokinesia (reduction of movement) seems to emerge prominently only in the more affected patients. Here we developed a model based on the central infusion of low dose (40μg) 6-hydroxydopamine (6-OHDA) in mice in an attempt to discriminate bradykinesia (accessed through forelimb inability) from hypokinesia (accessed through locomotor and exploratory activities). The potential beneficial effects of succinobucol against 6-OHDA-induced forelimb inability were also evaluated. One week after the beginning of treatment with succinobucol (i.p. injections, 10mg/kg/day), mice received a single i.c.v. infusion of 6-OHDA (40μg/site). One week after 6-OHDA infusion, general locomotor/exploratory activities (open field test), muscle strength (grid test), forelimb skill (single pellet task), as well as striatal biochemical parameters related to oxidative stress and cellular homeostasis (glutathione peroxidase, glutathione reductase and NADH dehydrogenases activities, lipid peroxidation and TH levels), were evaluated. 6-OHDA infusions did not change locomotor/exploratory activities and muscle strength, as well as the evaluated striatal biochemical parameters. However, 6-OHDA infusions caused significant reductions (50%) in the single pellet reaching task performance, which detects forelimb skill inability and can be used to experimentally identify bradykinesia. Succinobucol partially protected against 6-OHDA-induced forelimb inability. The decreased forelimb ability with no changes in locomotor/exploratory behavior indicates that our 6-OHDA-based protocol represents a useful tool to mechanistically study the dissociation of bradykinesia and hypokinesia in PD.
Collapse
Affiliation(s)
- Renata Pietsch Ribeiro
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil; Departamento Acadêmico de Saúde e Serviço, Instituto Federal de Santa Catarina, 88020030 Florianópolis, Santa Catarina, Brazil
| | - Danúbia Bonfanti Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Dirleise Colle
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Aline Aita Naime
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Cinara Ludvig Gonçalves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Heloisa Ghizoni
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Mariana Appel Hort
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Marcelo Godoi
- Escola de Química e Alimentos, Universidade Federal de Rio Grande, Campus Santo Antônio da Patrulha, Rio Grande do Sul, Brazil
| | - Paulo Fernando Dias
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Antonio Luiz Braga
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Marcelo Farina
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
13
|
O'Bryant AJ, Adkins DL, Sitko AA, Combs HL, Nordquist SK, Jones TA. Enduring Poststroke Motor Functional Improvements by a Well-Timed Combination of Motor Rehabilitative Training and Cortical Stimulation in Rats. Neurorehabil Neural Repair 2016; 30:143-54. [PMID: 25527486 PMCID: PMC4474792 DOI: 10.1177/1545968314562112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND In animal stroke models, peri-infarct cortical stimulation (CS) combined with rehabilitative reach training (RT) enhances motor functional outcome and cortical reorganization, compared with RT alone. It was unknown whether the effects of CS + RT (a) persist long after treatment, (b) can be enhanced by forcing greater use of the paretic limb, and (C) vary with treatment onset time. OBJECTIVE To test the endurance, time sensitivity, and the potential for augmentation by forced forelimb use of CS + RT treatment effects following ischemic stroke. METHODS Adult rats that were proficient in skilled reaching received unilateral ischemic motor cortical lesions. RT was delivered for 3 weeks alone or concurrently with 100-Hz cathodal epidural CS, delivered at 50% of movement thresholds. In study 1, this treatment was initiated at 14 days postinfarct, with some subgroups receiving an overlapping period of continuous constraint of the nonparetic forelimb to force use of the paretic limb. The function of the paretic limb was assessed weekly for 9 to 10 months posttreatment. In study 2, rats underwent CS, RT, and the combination during the chronic postinfarct period. RESULTS Early onset CS + RT resulted in greater functional improvements than RT alone. The CS-related gains persisted for 9 to 10 months posttreatment and were not significantly influenced by forced use of the paretic limb. When treatment onset was delayed until 3 months post-infarct, RT alone improved function, but CS + RT was no more effective than RT alone. CONCLUSION CS can enhance the persistence, as well as the magnitude of RT-driven functional improvements, but its effectiveness in doing so may vary with time postinfarct.
Collapse
|
14
|
Willed-movement training reduces brain damage and enhances synaptic plasticity related proteins synthesis after focal ischemia. Brain Res Bull 2016; 120:90-6. [DOI: 10.1016/j.brainresbull.2015.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022]
|
15
|
Khodaparast N, Kilgard MP, Casavant R, Ruiz A, Qureshi I, Ganzer PD, Rennaker RL, Hays SA. Vagus Nerve Stimulation During Rehabilitative Training Improves Forelimb Recovery After Chronic Ischemic Stroke in Rats. Neurorehabil Neural Repair 2015; 30:676-84. [PMID: 26542082 DOI: 10.1177/1545968315616494] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Stroke is a leading cause of long-term disability. Currently, there are no consistently effective rehabilitative treatments for chronic stroke patients. Our recent studies demonstrate that vagus nerve stimulation (VNS) paired with rehabilitative training improves recovery of function in multiple models of stroke. Here, we evaluated the ability of VNS paired with rehabilitative training to improve recovery of forelimb strength when initiated many weeks after a cortical and subcortical ischemic lesion in subjects with stable, chronic motor deficits. METHODS Rats were trained to perform an automated, quantitative measure of voluntary forelimb strength. Once proficient, rats received injections of endothelin-1 to cause a unilateral cortical and subcortical ischemic lesion. Then, 6 weeks after the lesion, rats underwent rehabilitative training paired with VNS (Paired VNS; n = 10), rehabilitative training with equivalent VNS delivered 2 hours after daily rehabilitative training (Delayed VNS; n = 10), or rehabilitative training without VNS (Rehab, n = 9). RESULTS VNS paired with rehabilitative training significantly improved recovery of forelimb function compared with control groups. The Paired VNS group displayed an 86% recovery of strength, the Rehab group exhibited 47% recovery, and the Delayed VNS group exhibited 42% recovery. Improvement in forelimb function was sustained in the Paired VNS group after the cessation of stimulation, potentially indicating lasting benefits. No differences in intensity of rehabilitative training, lesion size, or MAP-2 expression were observed between groups. CONCLUSION VNS paired with rehabilitative training confers significantly greater recovery of forelimb function after chronic ischemic stroke in rats.
Collapse
Affiliation(s)
| | | | | | - Andrea Ruiz
- The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| | - Iqra Qureshi
- The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| | - Patrick D Ganzer
- The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| | | | - Seth A Hays
- The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| |
Collapse
|
16
|
Jones TA, Adkins DL. Motor System Reorganization After Stroke: Stimulating and Training Toward Perfection. Physiology (Bethesda) 2015; 30:358-70. [PMID: 26328881 PMCID: PMC4556825 DOI: 10.1152/physiol.00014.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stroke instigates regenerative responses that reorganize connectivity patterns among surviving neurons. The new connectivity patterns can be suboptimal for behavioral function. This review summarizes current knowledge on post-stroke motor system reorganization and emerging strategies for shaping it with manipulations of behavior and cortical activity to improve functional outcome.
Collapse
Affiliation(s)
- Theresa A Jones
- Psychology Department, Neuroscience Institute, University of Texas at Austin, Austin, Texas; and
| | - DeAnna L Adkins
- Neurosciences Department, and Health Sciences & Research Department, Colleges of Medicine & Health Professions, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
17
|
Touvykine B, Mansoori BK, Jean-Charles L, Deffeyes J, Quessy S, Dancause N. The Effect of Lesion Size on the Organization of the Ipsilesional and Contralesional Motor Cortex. Neurorehabil Neural Repair 2015; 30:280-92. [PMID: 25967757 PMCID: PMC4766967 DOI: 10.1177/1545968315585356] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres. In rats, we induced lesions of different sizes in the caudal forelimb area (CFA), the equivalent of M1. The effective lesion volume in each animal was quantified histologically. Behavioral recovery was evaluated with the Montoya Staircase task for 28 days after the lesion. Then, the organization of the CFA and the rostral forelimb area (RFA)—the putative premotor area in rats—in the 2 cerebral hemispheres was studied with intracortical microstimulation mapping techniques. The distal forelimb representation in the RFA of both the ipsilesional and contralesional hemispheres was positively correlated with the size of the lesion. In contrast, lesion size had no effect on the contralesional CFA, and there was no relationship between movement representations in the 2 hemispheres. Finally, only the contralesional RFA was negatively correlated with chronic motor deficits of the paretic forelimb. Our data show that lesion size has comparable effects on motor representations in premotor areas of both hemispheres and suggest that the contralesional premotor cortex may play a greater role in the recovery of the paretic forelimb following large lesions.
Collapse
Affiliation(s)
- Boris Touvykine
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Babak K Mansoori
- Département de Biologie moléculaire, Biochimie médicale et pathologie, Université Laval, Québec, QC, Canada
| | - Loyda Jean-Charles
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Joan Deffeyes
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Stephan Quessy
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Numa Dancause
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Young J, Pionk T, Hiatt I, Geeck K, Smith JS. Environmental enrichment aides in functional recovery following unilateral controlled cortical impact of the forelimb sensorimotor area however intranasal administration of nerve growth factor does not. Brain Res Bull 2015; 115:17-22. [PMID: 25889001 DOI: 10.1016/j.brainresbull.2015.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 11/27/2022]
Abstract
PURPOSE An injury to the forelimb sensorimotor cortex results in the impairment of motor function in animals. Recent research has suggested that intranasal administration of nerve growth factor (NGF), a protein naturally found in the brain, and placement into enriched environments (EE) improves motor and cognitive function after traumatic brain injury (TBI). The purpose of this study was to determine whether NGF, EE, or the combination of both was beneficial in the recovery of motor function following TBI. RESULTS Uninjured animals had fewer foot faults than injured animals, displaying a lesion effect. Injured animals housed in EE were shown to have fewer foot faults whether or not they received NGF. Injured animals also displayed an increased reliance on the non-impaired limb further validating a lesion effect. CONCLUSION EE is an effective treatment on the recovery of motor function after a TBI. Intranasal administration of NGF was found to not be an effective treatment for functional motor recovery after a TBI.
Collapse
Affiliation(s)
- Jennica Young
- The Brain Research Laboratory, Saginaw Valley State University, University Center, MI, USA.
| | - Timothy Pionk
- The Brain Research Laboratory, Saginaw Valley State University, University Center, MI, USA.
| | - Ivy Hiatt
- The Brain Research Laboratory, Saginaw Valley State University, University Center, MI, USA.
| | - Katalin Geeck
- The Brain Research Laboratory, Saginaw Valley State University, University Center, MI, USA.
| | - Jeffrey S Smith
- The Brain Research Laboratory, Saginaw Valley State University, University Center, MI, USA.
| |
Collapse
|
19
|
Abstract
Reorganization of the cortex post stroke is dependent not only on the lesion site but also on remote brain areas that have structural connections with the area damaged by the stroke. Motor recovery is largely dependent on the intact cortex adjacent to the infarct, which points out the importance of preserving the penumbral areas. There appears to be a priority setting with contralateral and ipsilateral motor pathways, with ipsilateral (unaffected hemisphere) pathways only becoming prominent after more severe strokes where functional contralateral (affected hemisphere) pathways are unable to recover. Ipsilateral or unaffected hemisphere motor pathway activation is therefore associated with a worse prognosis.
Collapse
Affiliation(s)
- Robert Teasell
- Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care and the University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
20
|
Interplay between intra- and interhemispheric remodeling of neural networks as a substrate of functional recovery after stroke: Adaptive versus maladaptive reorganization. Neuroscience 2014; 283:178-201. [DOI: 10.1016/j.neuroscience.2014.06.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022]
|
21
|
Bell JA, Wolke ML, Ortez RC, Jones TA, Kerr AL. Training Intensity Affects Motor Rehabilitation Efficacy Following Unilateral Ischemic Insult of the Sensorimotor Cortex in C57BL/6 Mice. Neurorehabil Neural Repair 2014; 29:590-8. [PMID: 25323461 DOI: 10.1177/1545968314553031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Motor rehabilitative training improves behavioral functionality and promotes beneficial neural reorganization following stroke but is often insufficient to normalize function. Rodent studies have relied on skilled reaching tasks to model motor rehabilitation and explore factors contributing to its efficacy. It has been found that greater training intensity (sessions/day) and duration (training days) facilitates motor skill learning in intact animals. Whether rehabilitative training efficacy varies with intensity following stroke is unclear. METHODS Mice were trained preoperatively on a skilled reaching task. Following focal ischemic lesions, mice received rehabilitative training either twice daily (high intensity [HI]), once daily (low intensity [LI]), or not at all (control) to determine the effects of rehabilitative training intensity on skilled motor performance. RESULTS Within 7 days, the HI-trained mice achieved preischemic levels of performance. Mice receiving LI training eventually reached similar performance levels but required a greater quantity of training. Training intensity did not consistently affect the maintenance of performance gains, which were partially lost over time in both groups. DISCUSSION These data indicate that increased training intensity increases the rate of functional improvements per time and per training session following ischemic insult. Thus, training intensity is an important variable to consider in efforts to optimize rehabilitation efficacy.
Collapse
|
22
|
Abstract
Limited evidence to date has demonstrated changes in excitability that develops over the contralateral motor cortex after a cerebellar infarct. As such, the present study investigated changes in excitability over the contra- (contraM1) and ipsilateral motor cortices (ipsiM1), in patients with acute cerebellar infarct, to determine whether the changes may have functional relevance. Paired-pulse transcranial magnetic stimulation, combined with detailed clinical assessment, was undertaken in ten patients presenting with acute unilateral cerebellar infarct. Studies were undertaken within 1 week of ictus and followed longitudinally at 3-, 6-, and 12-month periods. Comparisons were made with 15 age-matched controls. Immediately following a stroke, short-interval intracortical inhibition (SICI) was significantly reduced over the contraM1 in all patients (P = 0.01), while reduced over the ipsiM1 in those with severe functional impairment (P = 0.01). Moreover, ipsiM1 SICI correlated with impairment (r = 0.69, P = 0.03), such that less SICI was observed in those patients with most impairment. Cortical excitability changes persisted over the follow-up period in the context of clinical improvement. Following an acute cerebellar infarct, excitability abnormalities develop over both motor cortices, more prominently in patients with severe functional impairment. The cortical changes, particularly over the ipsilateral motor cortex, may represent a functionally relevant plastic process that may guide future therapeutic strategies to better facilitate recovery.
Collapse
|
23
|
Mansoori BK, Jean-Charles L, Touvykine B, Liu A, Quessy S, Dancause N. Acute inactivation of the contralesional hemisphere for longer durations improves recovery after cortical injury. Exp Neurol 2014; 254:18-28. [DOI: 10.1016/j.expneurol.2014.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/07/2014] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
|
24
|
Umarova RM, Reisert M, Beier TU, Kiselev VG, Klöppel S, Kaller CP, Glauche V, Mader I, Beume L, Hennig J, Weiller C. Attention-network specific alterations of structural connectivity in the undamaged white matter in acute neglect. Hum Brain Mapp 2014; 35:4678-92. [PMID: 24668692 DOI: 10.1002/hbm.22503] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/30/2014] [Accepted: 02/22/2014] [Indexed: 11/10/2022] Open
Abstract
Visual neglect results from dysfunction within the spatial attention network. The structural connectivity in undamaged brain tissue in neglect has barely been investigated until now. In the present study, we explored the microstructural white matter characteristics of the contralesional hemisphere in relation to neglect severity and recovery in acute stroke patients. We compared age-matched healthy subjects and three groups of acute stroke patients (9 ± 0.5 days after stroke): (i) patients with nonrecovered neglect (n = 12); (ii) patients with rapid recovery from initial neglect (within the first week post-stroke, n = 7), (iii) stroke patients without neglect (n = 17). We analyzed the differences between groups in grey and white matter density and fractional anisotropy (FA) and used fiber tracking to identify the affected fibers. Patients with nonrecovered neglect differed from those with rapid recovery by FA-reduction in the left inferior parietal lobe. Fibers passing through this region connect the left-hemispheric analogues of the ventral attention system. Compared with healthy subjects, neglect patients with persisting neglect had FA-reduction in the left superior parietal lobe, optic radiation, and left corpus callosum/cingulum. Fibers passing through these regions connect centers of the left dorsal attention system. FA-reduction in the identified regions correlated with neglect severity. The study shows for the first time white matter changes within the spatial attention system remote from the lesion and correlating with the extent and persistence of neglect. The data support the concept of neglect as disintegration within the whole attention system and illustrate the dynamics of structural-functional correlates in acute stroke.
Collapse
Affiliation(s)
- Roza M Umarova
- Department of Neurology, University Medical Centre Freiburg, Freiburg, Germany; Freiburg Brain Imaging, University Medical Centre Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Neuronal mechanisms underlying transhemispheric diaschisis following focal cortical injuries. Brain Struct Funct 2014; 220:1649-64. [DOI: 10.1007/s00429-014-0750-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 03/03/2014] [Indexed: 12/18/2022]
|
26
|
Profice P, Pilato F, Dileone M, Ranieri F, Capone F, Musumeci G, A Tonali P, Di Lazzaro V. Use of transcranial magnetic stimulation of the brain in stroke rehabilitation. Expert Rev Neurother 2014; 7:249-58. [PMID: 17341173 DOI: 10.1586/14737175.7.3.249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Preliminary studies suggest that stimulation of the motor cortex enhances motor recovery after stroke. Most of these studies employed transcranial magnetic stimulation of the brain and two different approaches have been evaluated. The first approach is based on the use of protocols of stimulation that increase cortical excitability, targeting the hemisphere in which the stroke occurred in order to enhance the output of the motor cortex and the response to physiotherapy. The second approach is based on the use of protocols of stimulation that suppress cortical excitability, targeting the intact hemisphere in order to counteract the imbalance due to the increased interhemispheric inhibition onto the lesioned cortex, and reducing the potential negative interference of the intact hemisphere with the function of the affected one. Cumulatively, preliminary studies suggest that transcranial magnetic stimulation might be a suitable method to combine with physiotherapy and improve recovery of useful limb function in stroke patients. However, further studies are needed to determine the best stimulation parameters and how to select patients who are likely to respond to this treatment.
Collapse
Affiliation(s)
- Paolo Profice
- Istituto di Neurologia, Università Cattolica, L.go A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is emerging as a potentially valuable intervention to augment the effects of behavioral therapy for stroke. When used in conjunction with other therapies, rTMS embraces the concept of metaplasticity. Due to homeostatic mechanisms inherent to metaplasticity, interventions known to be in isolation to enhance excitability can interact when applied successively under certain timing conditions and produce enhanced or opposite effects. Similar to "muscular wisdom," with its self-protective mechanisms, there also appears to be "synaptic wisdom" in neural networks with homeostatic processes that prevent over- and under-excitability. These processes have implications for both enhancing and suppressing the excitability effects from behavioral therapy. The purpose of this article is to relate the concept of metaplasticity, as derived from studies in humans who are healthy, to stroke rehabilitation and consider how it can be leveraged to maximize stroke outcomes.
Collapse
|
28
|
Kerr AL, Wolke ML, Bell JA, Jones TA. Post-stroke protection from maladaptive effects of learning with the non-paretic forelimb by bimanual home cage experience in C57BL/6 mice. Behav Brain Res 2013; 252:180-7. [PMID: 23756140 DOI: 10.1016/j.bbr.2013.05.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 01/24/2023]
Abstract
Behavioral experience, in the form of skilled limb use, has been found to impact the structure and function of the central nervous system, affecting post-stroke behavioral outcome in both adaptive and maladaptive ways. Learning to rely on the less-affected, or non-paretic, body side is common following stroke in both humans and rodent models. In rats, it has been observed that skilled learning with the non-paretic forelimb following ischemic insult leads to impaired or delayed functional recovery of the paretic limb. Here we used a mouse model of focal motor cortical ischemic injury to examine the effects of non-paretic limb training following unilateral stroke. In addition, we exposed some mice to increased bimanual experience in the home cage following stroke to investigate the impact of coordinated dexterous limb use on the non-paretic limb training effect. Our results confirmed that skilled learning with the non-paretic limb impaired functional recovery following stroke in C56BL/6 mice, as it does in rats. Further, this effect was avoided when the skill learning of the non-paretic limb was coupled with increased dexterous use of both forelimbs in the home cage. These findings further establish the mouse as an appropriate model in which to study the neural mechanisms of recovery following stroke and extend previous findings to suggest that the dexterous coordinated use of the paretic and non-paretic limb can promote functional outcome following injury.
Collapse
Affiliation(s)
- Abigail L Kerr
- University of Texas at Austin, Psychology Department, 1 University Station, A8000, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
29
|
Kent K, Deng Q, McNeill TH. Unilateral skill acquisition induces bilateral NMDA receptor subunit composition shifts in the rat sensorimotor striatum. Brain Res 2013; 1517:77-86. [PMID: 23603403 DOI: 10.1016/j.brainres.2013.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
The sensorimotor striatum is critical for the acquisition and consolidation of skilled learning-related motor sequences. Excitatory corticostriatal synapses undergo neuroplastic changes that impact signal transmission efficacy. Modification of N-methyl d-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit composition and phosphorylation is critical for bidirectional experience-driven plasticity observed at these synapses. Metaplastic regulation of the ratio of NR2A to NR2B subunits of the NMDA receptor controls the threshold for the induction of subsequent plasticity. However, little is known about how repeated practice effects the differential regulation of glutamate receptors during the acquisition of a unilateral motor skill. Using immunoblot analysis, we assessed changes in NMDA and AMPA receptors during the associative stage of skill acquisition in synaptoneurosome preparations from the rat sensorimotor striatum. We found that the NR2A/B subunit ratio in the striatum contralateral to the trained limb decreased during skill acquisition optimizing the threshold for inducing subsequent synaptic plasticity during learning of the lateralized motor skill. In contrast, there was a significant increase in the NR2A/B subunit ratio in the ipsilateral striatum making the induction of subsequent plasticity more difficult. In addition, there was a selective decrease in AMPAR phosphorylation levels at serine site 831 but not 845 on the GluR1 subunit ipsilaterally with a trend toward a decrease contralaterally. These findings suggest that the successful acquisition of a lateralized motor skill necessitates the integration of motor programs in both striata, each of which reflects unique changes in the NR2A/B ratio that modulate the different task demands on the associated limb.
Collapse
Affiliation(s)
- Kelly Kent
- Department of Cell and Neurobiology, Keck School of Medicine, 1333 San Pablo St., University of Southern California, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
30
|
Zheng J, Liu L, Xue X, Li H, Wang S, Cao Y, Zhao J. Cortical electrical stimulation promotes neuronal plasticity in the peri-ischemic cortex and contralesional anterior horn of cervical spinal cord in a rat model of focal cerebral ischemia. Brain Res 2013; 1504:25-34. [DOI: 10.1016/j.brainres.2013.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/18/2012] [Accepted: 01/04/2013] [Indexed: 12/14/2022]
|
31
|
Kozlowski DA, Leasure JL, Schallert T. The Control of Movement Following Traumatic Brain Injury. Compr Physiol 2013; 3:121-39. [DOI: 10.1002/cphy.c110005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Sharma N, Classen J, Cohen LG. Neural plasticity and its contribution to functional recovery. HANDBOOK OF CLINICAL NEUROLOGY 2013; 110:3-12. [PMID: 23312626 DOI: 10.1016/b978-0-444-52901-5.00001-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this chapter we address the phenomena of neural plasticity, operationally defined as the ability of the central nervous system to adapt in response to changes in the environment or lesions. At the cellular level, we discuss basic changes in membrane excitability, synaptic plasticity as well as structural changes in dendritic and axonal anatomy that support behavioral expressions of plasticity and functional recovery. We consider the different levels at which these changes can occur and possible links with modification of cognitive strategies, recruitment of new/different neural networks, or changes in strength of such connections or specific brain areas in charge of carrying out a particular task (i.e., movement, language, vision, hearing). The study of neuroplasticity has wide-reaching implications for understanding reorganization of action and cognition in the healthy and lesioned brain.
Collapse
Affiliation(s)
- Nikhil Sharma
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
33
|
Vonder Haar C, Friend DM, Mudd DB, Smith JS. Successive bilateral frontal controlled cortical impact injuries show behavioral savings. Behav Brain Res 2012. [PMID: 23201357 DOI: 10.1016/j.bbr.2012.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Traumatic brain injuries (TBIs) affect millions of people each year. Research investigating repeated or serial damage in the form of lesions indicates that behavioral deficits are reduced in animals given sequential lesions separated by a sufficient period of recovery. In the lesion literature, this phenomenon is known as the serial lesion effect (SLE). Although the SLE phenomenon is established in the lesion literature, it has not been thoroughly investigated under current models of brain injury. In the current study, a controlled cortical impact of the bilateral frontal cortex was performed in either a single procedure or a serial procedure separated by two weeks. Rats were tested on the Morris water maze, bilateral tactile adhesive removal task, rotarod and Barnes maze task to determine behavioral deficits. Histology was performed to determine lesion size and astrocyte and microglial response. A serial lesion effect was demonstrated across a majority of the behavioral tasks. However, histological analyses did not suggest a clear mechanistic link to the behavioral phenomena. This is the first study to demonstrate the SLE in a model of TBI, suggesting that behavioral deficits may actually be reduced in repeated head injuries, given an adequate time window between injuries.
Collapse
Affiliation(s)
- Cole Vonder Haar
- Restorative Neuroscience Laboratory, Center for Integrated Research in Cognitive and Neural Sciences, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | | | | | | |
Collapse
|
34
|
de Fátima Dos Santos Sampaio M, Marcilio FDS, Giraldi-Guimarães A. Does treatment with bone marrow mononuclear cells recover skilled motor function after focal cortical ischemia? Analysis with a forelimb skilled motor task in rats. Brain Res 2012. [PMID: 23178695 DOI: 10.1016/j.brainres.2012.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have shown sensorimotor recovery by treatment with bone marrow mononuclear cells (BMMCs) after focal brain ischemia. However, sensorimotor tests commonly used are designed to examine motor patterns that do not involve skill or training. We evaluated whether BMMCs treatment was able to recover forelimb skilled movements. Reaching chamber/pellet retrieval (RCPR) task was used, in which animals had to learn to grasp a single food pellet and lead it to its mouth. We also evaluated therapeutic effect of this training on unskilled sensorimotor function. Adult male Wistar rats suffered unilateral cortical ischemia by thermocoagulation in motor and somesthetic primary areas. A day later, they received i.v. injection of 3×10(7) BMMCs or vehicle (saline), forming four experimental groups: BMMCs+RCPR; saline+RCPR; BMMCs and saline. Cylinder and adhesive tests were applied in all experimental groups, and all behavioral tests were performed before and along post-ischemic weeks after induction of ischemia. Results from RCPR task showed no significant difference between BMMCs+RCPR and saline+RCPR groups. In cylinder test, BMMCs-treated groups showed significant recovery, but no significant effect of RCPR training was observed. In adhesive test, BMMCs treatment promoted significant recovery. Synergistic effect was found since only together they were able to accelerate recovery. The results showed that BMMCs treatment promoted increased recovery of unsophisticated sensorimotor function, but not of skilled forepaw movements. Thus, BMMCs might not be able to recover all aspects of sensorimotor functions, although further studies are still needed to investigate this treatment in ischemic lesions with different locations and extensions.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | | | | |
Collapse
|
35
|
Huynh W, Vucic S, Krishnan AV, Lin CSY, Hornberger M, Kiernan MC. Longitudinal plasticity across the neural axis in acute stroke. Neurorehabil Neural Repair 2012; 27:219-29. [PMID: 23077145 DOI: 10.1177/1545968312462071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND With the advent of novel brain stimulation techniques aimed at improving functional outcome, understanding poststroke plasticity becomes critical for the appropriate selection of patients and optimal timing to introduce neuromodulatory interventions. OBJECTIVE To better define the temporal evolution of central and peripheral neuroplastic changes in the first 3 months after stroke and their clinical implications. METHODS Transcranial magnetic stimulation, peripheral nerve excitability, and clinical assessments were undertaken longitudinally in 31 acute stroke patients, comprising a total of 384 clinical studies. RESULTS During the hyperacute phase (<7 days), short-interval intracortical inhibition (SICI) was significantly reduced in lesioned (4.3% ± 1.3%) and contralesional hemispheres (3.6% ± 1.9%) compared with controls (11.4% ± 1.3%, P = .001). There were also significant alterations in accommodative properties of motor axons in the affected limb. At follow-up, SICI remained suppressed in both hemispheres in the context of significant clinical improvement. CONCLUSION Simultaneous assessment of central and peripheral motor pathways has identified bilateral plastic changes that develop throughout the neural axis in acute stroke patients. It is proposed that these changes represent an adaptive response and that the persistent bihemispheric reduction in SICI may act to promote stroke recovery through cortical reorganization.
Collapse
Affiliation(s)
- William Huynh
- Neuroscience Research Australia, Randwick, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast 2012; 2012:359728. [PMID: 22792492 PMCID: PMC3391905 DOI: 10.1155/2012/359728] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/01/2012] [Accepted: 05/27/2012] [Indexed: 01/12/2023] Open
Abstract
Many studies in human and animal models have shown that neural plasticity compensates for the loss of motor function after stroke. However, neural plasticity concerning compensatory movement, activated ipsilateral motor projections and competitive interaction after stroke contributes to maladaptive plasticity, which negatively affects motor recovery. Compensatory movement on the less-affected side helps to perform self-sustaining activity but also creates an inappropriate movement pattern and ultimately limits the normal motor pattern. The activated ipsilateral motor projections after stroke are unable to sufficiently support the disruption of the corticospinal motor projections and induce the abnormal movement linked to poor motor ability. The competitive interaction between both hemispheres induces abnormal interhemispheric inhibition that weakens motor function in stroke patients. Moreover, widespread disinhibition increases the risk of competitive interaction between the hand and the proximal arm, which results in an incomplete motor recovery. To minimize this maladaptive plasticity, rehabilitation programs should be selected according to the motor impairment of stroke patients. Noninvasive brain stimulation might also be useful for correcting maladaptive plasticity after stroke. Here, we review the underlying mechanisms of maladaptive plasticity after stroke and propose rehabilitation approaches for appropriate cortical reorganization.
Collapse
|
37
|
Young NA, Vuong J, Teskey GC. Development of motor maps in rats and their modulation by experience. J Neurophysiol 2012; 108:1309-17. [PMID: 22723681 DOI: 10.1152/jn.01045.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While a substantial literature demonstrates the effect of differential experience on development of mammalian sensory cortices and plasticity of adult motor cortex, characterization of differential experience on the functional development of motor cortex is meager. We first determined when forelimb movement representations (motor maps) could be detected in rats during postnatal development and then whether their motor map expression could be altered with rearing in an enriched environment consisting of group housing and novel toys or skilled learning by training on the single pellet reaching task. All offspring had high-resolution intracortical microstimulation (ICMS)-derived motor maps using methodologies previously optimized for the adult rat. First, cortical GABA-mediated inhibition was depressed by bicuculline infusion directly into layer V of motor cortex and ICMS-responsive points were first reliably detected on postnatal day (PND) 13. Without relying on bicuculline disinhibition of cortex, motor maps emerged on PND 35 and then increased in size until PND 60 and had progressively lower movement thresholds. Second, environmental enrichment did not affect initial detection of responsive points and motor maps in non-bicuculline-treated pups on PND 35. However, motor maps were larger on PND 45 in enriched rat pups relative to pups in the standard housing condition. Rats in both conditions had similar map sizes on PNDs 60, 75, and 90. Third, reach training in rat pups resulted in an internal reorganization of the map in the hemisphere contralateral, but not ipsilateral, to the trained forelimb. The map reorganization was expressed as proportionately more distal (digit and wrist) representations on PND 45. Our data indicate that both environmental enrichment and skilled reach training experience can differentially modify expression of motor maps during development.
Collapse
Affiliation(s)
- Nicole A Young
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
38
|
Hunsaker MR. Comprehensive neurocognitive endophenotyping strategies for mouse models of genetic disorders. Prog Neurobiol 2012; 96:220-41. [PMID: 22266125 PMCID: PMC3289520 DOI: 10.1016/j.pneurobio.2011.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023]
Abstract
There is a need for refinement of the current behavioral phenotyping methods for mouse models of genetic disorders. The current approach is to perform a behavioral screen using standardized tasks to define a broad phenotype of the model. This phenotype is then compared to what is known concerning the disorder being modeled. The weakness inherent in this approach is twofold: First, the tasks that make up these standard behavioral screens do not model specific behaviors associated with a given genetic mutation but rather phenotypes affected in various genetic disorders; secondly, these behavioral tasks are insufficiently sensitive to identify subtle phenotypes. An alternate phenotyping strategy is to determine the core behavioral phenotypes of the genetic disorder being studied and develop behavioral tasks to evaluate specific hypotheses concerning the behavioral consequences of the genetic mutation. This approach emphasizes direct comparisons between the mouse and human that facilitate the development of neurobehavioral biomarkers or quantitative outcome measures for studies of genetic disorders across species.
Collapse
Affiliation(s)
- Michael R Hunsaker
- Department of Neurological Surgery, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
39
|
Abstract
Abstract Stroke often leads to impairment of hand function. Over the following months a variable amount of recovery can be seen. The evidence from animal and human studies suggests that reorganization rather than repair is the key. Surviving neural networks are important for recovery of function and non-invasive techniques such as functional magnetic resonance imaging allow us to study them in humans. For example, initial attempts to move a paretic limb following stroke are associated with widespread activity within the distributed motor system in both cerebral hemispheres, more so in patients with greater impairment. Disruption of activity in premotor areas using transcranial magnetic stimulation prior to movement can impair motor performance in stroke patients but not in controls suggesting that these new patterns of brain activity can support recovered function. In other words, this reorganisation is functionally relevant. More recently, research has been directed at understanding how surviving brain regions influence one another during movement. This opens the way for functional brain imaging to become a clinically useful tool in rehabilitation. Understanding the dynamic process of systems level reorganization will allow greater understanding of the mechanisms of recovery and potentially improve our ability to deliver effective restorative therapy.
Collapse
Affiliation(s)
- Nick Ward
- UCL Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
40
|
Krisa L, Frederick KL, Canver JC, Stackhouse SK, Shumsky JS, Murray M. Amphetamine-enhanced motor training after cervical contusion injury. J Neurotrauma 2011; 29:971-89. [PMID: 21651384 DOI: 10.1089/neu.2011.1767] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Individually, motor training, pharmacological interventions, and housing animals in an enriched environment (EE) following spinal cord injury (SCI) result in limited functional improvement but, when combined, may enhance motor function. Here, we tested amphetamine (AMPH)-enhanced skilled motor training following a unilateral C3-C4 contusion injury on the qualitative components of reaching and on skilled forelimb function, as assessed using single-pellet and staircase reaching tasks. Kinematic analysis evaluated the quality of the reach, and unskilled locomotor function was also tested. Animals receiving AMPH and skilled forelimb training performed better than operated control animals on qualitative reaching, but not on skilled reaching. Those that received the combination treatment and were housed in EE cages showed significantly less improvement in qualitative reaching and grasping. Kinematic analysis revealed a decrease in digit abduction during skilled reaching among all groups, with no differences among groups. Kinematics provided no evidence that improved function was related to improved quality of reach. There was no evidence of neuroprotection in the cervical spinal cord. The absence of evidence for kinematic improvement or neuroprotection suggested that AMPH-enhanced motor training is due primarily to supraspinal effects, an enhancement of attention during skilled motor training, or plasticity in supraspinal circuitry involved with motor control.
Collapse
Affiliation(s)
- Laura Krisa
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | |
Collapse
|
41
|
Kerr AL, Cheng SY, Jones TA. Experience-dependent neural plasticity in the adult damaged brain. JOURNAL OF COMMUNICATION DISORDERS 2011; 44:538-48. [PMID: 21620413 PMCID: PMC3162127 DOI: 10.1016/j.jcomdis.2011.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
UNLABELLED Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper extremity (hand and arm) impairments. A prolonged and widespread process of repair and reorganization of surviving neural circuits is instigated by injury to the adult brain. When experience impacts these same neural circuits, it interacts with degenerative and regenerative cascades to shape neural reorganization and functional outcome. This is evident in the cortical plasticity resulting from compensatory reliance on the "good" forelimb in rats with unilateral sensorimotor cortical infarcts. Behavioral interventions (e.g., rehabilitative training) can drive functionally beneficial neural reorganization in the injured hemisphere. However, experience can have both behaviorally beneficial and detrimental effects. The interactions between experience-dependent and injury-induced neural plasticity are complex, time-dependent, and varied with age and other factors. A better understanding of these interactions is needed to understand how to optimize brain remodeling and functional outcome. LEARNING OUTCOMES Readers will be able to describe (a) experience effects that are maladaptive for behavioral outcome after brain damage, (b) manipulations of experience that drive functionally beneficial neural plasticity, and (c) reasons why rehabilitative training effects can be expected to vary with age, training duration and timing.
Collapse
Affiliation(s)
- Abigail L. Kerr
- Psychology Department and Neuroscience Institute, The University of Texas at Austin, Austin, TX, USA
| | - Shao-Ying Cheng
- Psychology Department and Neuroscience Institute, The University of Texas at Austin, Austin, TX, USA
| | - Theresa A. Jones
- Psychology Department and Neuroscience Institute, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
42
|
Schaefer SY, Mutha PK, Haaland KY, Sainburg RL. Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Cereb Cortex 2011; 22:1407-19. [PMID: 21878488 DOI: 10.1093/cercor/bhr237] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this study, we examine whether corrections made during an ongoing movement are differentially affected by left hemisphere damage (LHD) and right hemisphere damage (RHD). Our hypothesis of motor lateralization proposes that control mechanisms specialized to the right hemisphere rely largely on online processes, while the left hemisphere primarily utilizes predictive mechanisms to specify optimal coordination patterns. We therefore predict that RHD, but not LHD, should impair online correction when task goals are unexpectedly changed. Fourteen stroke subjects (7 LHD, 7 RHD) and 14 healthy controls reached to 1 of the 3 targets that unexpectedly "jumped" during movement onset. RHD subjects showed a considerable delay in initiating the corrective response relative to controls and LHD subjects. However, both stroke groups made large final position errors on the target jump trials. Position deficits following LHD were associated with poor intersegmental coordination, while RHD subjects had difficulty terminating their movements appropriately. These findings confirm that RHD, but not LHD, produces a deficit in the timing of online corrections and also indicate that both stroke groups show position deficits that are related to the specialization of their damaged hemisphere. Further research is needed to identify specific neural circuits within each hemisphere critical for these processes.
Collapse
Affiliation(s)
- Sydney Y Schaefer
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO 63108, USA
| | | | | | | |
Collapse
|
43
|
Jones TA, Jefferson SC. Reflections of experience-expectant development in repair of the adult damaged brain. Dev Psychobiol 2011; 53:466-75. [PMID: 21678394 PMCID: PMC6645382 DOI: 10.1002/dev.20557] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Behavioral experience has long been known to influence functional outcome after brain injury, but only recently has its pervasive role in the reorganization of the adult brain after damage become appreciated. We briefly review findings from animal models on the role of experience in shaping neuronal events after stroke-like injury. Experience-dependent neural plasticity can be enhanced or impaired by brain damage, depending upon injury parameters and timing. The neuronal growth response to some experiences is heightened due to interactions with denervation-induced plasticity. This includes compensatory behavioral strategies developed in response to functional impairments. Early behavioral experiences can constrain later experience-dependent plasticity, leading to suboptimal functional outcome. Time dependencies and facets of neural growth patterns are reminiscent of experience-expectant processes that shape brain development. As with sensitive periods in brain development, this process may establish behavioral patterns early after brain injury which are relatively resistant to later change.
Collapse
Affiliation(s)
- Theresa A Jones
- Psychology Department and Neuroscience Institute, University of Texas at Austin, USA.
| | | |
Collapse
|
44
|
Darling WG, Pizzimenti MA, Hynes SM, Rotella DL, Headley G, Ge J, Stilwell-Morecraft KS, McNeal DW, Solon-Cline KM, Morecraft RJ. Volumetric effects of motor cortex injury on recovery of ipsilesional dexterous movements. Exp Neurol 2011; 231:56-71. [PMID: 21703261 DOI: 10.1016/j.expneurol.2011.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 04/26/2011] [Accepted: 05/22/2011] [Indexed: 12/17/2022]
Abstract
Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating that larger lesions were associated with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage.
Collapse
Affiliation(s)
- Warren G Darling
- Department of Integrative Physiology, Motor Control Laboratory, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
O'Bryant AJ, Allred RP, Maldonado MA, Cormack LK, Jones TA. Breeder and batch-dependent variability in the acquisition and performance of a motor skill in adult Long-Evans rats. Behav Brain Res 2011; 224:112-20. [PMID: 21664381 DOI: 10.1016/j.bbr.2011.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022]
Abstract
Reaching tasks are popular tools for investigating the neural mechanisms of motor skill learning and recovery from brain damage in rodents, but there is considerable unexplained variability across studies using these tasks. We investigated whether breeder, batch effects, experimenter, time of year, weight and other factors contribute to differences in the acquisition and performance of a skilled reaching task, the single pellet retrieval task, in adult male Long-Evans hooded rats. First, we retrospectively analyzed task acquisition and performance in rats from different breeding colonies that were used in several studies spanning a 3 year period in our laboratory. Second, we compared reaching variables in age-matched rats from different breeders that were trained together as a batch by the same experimenters. All rats had received daily training on the reaching task until they reached a criterion of successful reaches per attempt. We found significant breeder-dependent differences in learning rate and final performance level. This was found even when age-matched rats from different breeders were trained together by the same experimenters. There was also significant batch-to-batch variability within rats from the same breeder trained by the same experimenter. Other factors, including weight, paw preference and the experimenter, were not as strong or consistent in their contributions to differences across studies. The breeder and batch effects found within the same rat strain may reflect genetic and environmental influences on the neural substrates of motor skill learning. This is an important consideration when comparing baseline performance across studies and for controlling variability within studies.
Collapse
Affiliation(s)
- Amber J O'Bryant
- Neuroscience Institute, University of Texas at Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
46
|
Warraich Z, Kleim JA. Neural plasticity: the biological substrate for neurorehabilitation. PM R 2011; 2:S208-19. [PMID: 21172683 DOI: 10.1016/j.pmrj.2010.10.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 11/26/2022]
Abstract
Decades of basic science have clearly demonstrated the capacity of the central nervous system (CNS) to structurally and functionally adapt in response to experience. The field of neurorehabilitation has begun to use this body of work to develop neurobiologically informed therapies that harness the key behavioral and neural signals that drive neural plasticity. The present review describes how neural plasticity supports both learning in the intact CNS and functional improvement in the damaged or diseased CNS. A pragmatic, interdisciplinary definition of neural plasticity is presented that may be used by both clinical and basic scientists studying neurorehabilitation. Furthermore, a description of how neural plasticity may act to drive different neural strategies underlying functional improvement after CNS injury or disease is provided. The understanding of the relationship between these different neural strategies, mechanisms of neural plasticity, and changes in behavior may facilitate the development of novel, more effective rehabilitation interventions.
Collapse
Affiliation(s)
- Zuha Warraich
- McKnight Brain Institute, Department of Neuroscience, University of Florida, PO Box 100244, Gainesville, FL 32610, USA
| | | |
Collapse
|
47
|
Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proc Natl Acad Sci U S A 2011; 108:2545-50. [PMID: 21257908 DOI: 10.1073/pnas.1014335108] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cortical networks undergo adaptations during learning, including increases in dendritic complexity and spines. We hypothesized that structural elaborations during learning are restricted to discrete subsets of cells preferentially activated by, and relevant to, novel experience. Accordingly, we examined corticospinal motor neurons segregated on the basis of their distinct descending projection patterns, and their contribution to specific aspects of motor control during a forelimb skilled grasping task in adult rats. Learning-mediated structural adaptations, including extensive expansions of spine density and dendritic complexity, were restricted solely to neurons associated with control of distal forelimb musculature required for skilled grasping; neurons associated with control of proximal musculature were unchanged by the experience. We further found that distal forelimb-projecting and proximal forelimb-projecting neurons are intermingled within motor cortex, and that this distribution does not change as a function of skill acquisition. These findings indicate that representations of novel experience in the adult motor cortex are associated with selective structural expansion in networks of functionally related, active neurons that are distributed across a single cortical domain. These results identify a distinct parcellation of cortical resources in support of learning.
Collapse
|
48
|
Young NA, Vuong J, Flynn C, Teskey GC. Optimal parameters for microstimulation derived forelimb movement thresholds and motor maps in rats and mice. J Neurosci Methods 2011; 196:60-9. [PMID: 21219927 DOI: 10.1016/j.jneumeth.2010.12.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/28/2010] [Accepted: 12/29/2010] [Indexed: 11/29/2022]
Abstract
Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representations (motor maps) of the motor cortex, and was originally used in cats and the capuchin monkey. In more modern experiments, ICMS has been used in rats and mice to assess and interpret plasticity of motor maps in response to experimental manipulation; however, a systematic determination of the optimal ICMS parameters necessary to derive baseline motor maps in rats and mice has not been published. In the present manuscript, we describe two experiments. We first determined the optimal stimulation frequency, pulse number, neocortical depth, and current polarity to achieve the minimum current intensity (movement threshold) to elicit forelimb movements in rats and mice. We show that experimentally naïve rats and mice differ on several of these ICMS parameters. In the second experiment, we measured movement thresholds and map size in states of enhanced neocortical inhibition by the administration of diazepam, as well as neocortical sensitization as the result of repeated seizures. We conclude that movement thresholds are inversely related to motor map size, and that treatments result in a widespread shift the balance between excitation and inhibition in motor neocortical layer 5 influences both movement thresholds and map size.
Collapse
Affiliation(s)
- Nicole A Young
- Department of Psychology, University of Calgary, Calgary, AB, Canada T2N 1N4.
| | | | | | | |
Collapse
|
49
|
Abstract
The past decade of neuroscience research has provided considerable evidence that the adult brain can undergo substantial reorganization following injury. For example, following an ischemic lesion, such as occurs following a stroke, there is a cascade of molecular, genetic, physiological and anatomical events that allows the remaining structures in the brain to reorganize. Often, these events are associated with recovery, suggesting that they contribute to it. Indeed, the term plasticity in stroke research has had a positive connotation historically. But more recently, efforts have been made to differentiate beneficial from detrimental changes. These notions are timely now that neurorehabilitative research is developing novel treatments to modulate, increase, or inhibit plasticity in targeted brain regions. We will review basic principles of plasticity and some of the new and exciting approaches that are currently being investigated to shape plasticity following injury in the central nervous system.
Collapse
Affiliation(s)
- Numa Dancause
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
50
|
Nishibe M, Barbay S, Guggenmos D, Nudo RJ. Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery. J Neurotrauma 2010; 27:2221-32. [PMID: 20873958 DOI: 10.1089/neu.2010.1456] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report the results of controlled cortical impact (CCI) centered on the caudal forelimb area (CFA) of rat motor cortex to determine the feasibility of examining cortical plasticity in a spared cortical motor area (rostral forelimb area, RFA). We compared the effects of three CCI parameter sets (groups CCI-1, CCI-2, and CCI-3) that differed in impactor surface shape, size, and location, on behavioral recovery and RFA structural and functional integrity. Forelimb deficits in the limb contralateral to the injury were evident in all three CCI groups assessed by skilled reach and footfault tasks that persisted throughout the 35-day post-CCI assessment period. Nissl-stained coronal sections revealed that the RFA was structurally intact. Intracortical microstimulation experiments conducted at 7 weeks post-CCI demonstrated that RFA was functionally viable. However, the size of the forelimb representation decreased significantly in CCI-1 compared to the control group. Subdivided into component movement categories, there was a significant group effect for proximal forelimb movements. The RFA area reduction and reorganization are discussed in relation to possible diaschisis, and to compensatory functional behavior, respectively. Also, an inverse correlation between the anterior extent of the lesion and the size of the RFA was identified and is discussed in relation to corticocortical connectivity. The results suggest that CCI can be applied to rat CFA while sparing RFA. This CCI model can contribute to our understanding of neural plasticity in premotor cortex as a substrate for functional motor recovery.
Collapse
Affiliation(s)
- Mariko Nishibe
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | |
Collapse
|