1
|
Mourra D, Cavalieri AM, Casey MM, Sahin M, Lang EJ. Cerebellar Transcranial AC Stimulation Produces a Frequency-Dependent Bimodal Cerebellar Output Pattern. CEREBELLUM (LONDON, ENGLAND) 2025; 24:21. [PMID: 39745631 DOI: 10.1007/s12311-024-01756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 01/23/2025]
Abstract
Cerebellar transcranial alternating current stimulation (ctACS) has the potential to be an appealing, non-invasive treatment option for psychiatric and neurological disorders. However, realization of this potential has been limited by gaps in our knowledge of how ctACS affects cerebellar output on single cell and population levels. Previously, we showed that AC stimulation applied to the cerebellar surface produced a strong, frequency-dependent modulation of Purkinje cell (PC) and cerebellar nuclear (CN) cell activity. Here, to approximate more closely the ctACS conditions, we investigated how AC stimulation applied to the external skull surface overlying crus 1 altered PC and CN activity in anesthetized adult female Sprague-Dawley rats. PC and CN activity showed a frequency-dependent modulation in response to ctACS at frequencies ranging from 0.5 to 80 Hz. A unimodal response was seen for most PCs across all frequencies, whereas most CN cells transitioned to bimodal patterns as stimulus frequency increased. The frequency-dependence of the phases of the local minima of the CN cell modulation were consistent with CN cells being driven synaptically by PC activity. Furthermore, comparison of responses with ipsilateral and contralateral placement of the stimulus electrode with respect to the recording site showed that the strength and pattern of the entrainment depended on the stimulus electrode location, suggesting that ctACS electrode placement could be used to target specific cerebellar output channels. In sum, the results show that transcranial stimulation of the cerebellar cortex can modulate cerebellar output, which has potential implications for its use in treating neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Devry Mourra
- Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA
| | - Angela M Cavalieri
- Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA
| | - Madison M Casey
- Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Conti R, Auger C. Associative plasticity of granule cell inputs to cerebellar Purkinje cells. eLife 2024; 13:RP96140. [PMID: 39660722 PMCID: PMC11634063 DOI: 10.7554/elife.96140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.
Collapse
Affiliation(s)
- Rossella Conti
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the NeurosciencesParisFrance
| | - Céline Auger
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the NeurosciencesParisFrance
| |
Collapse
|
3
|
Mourra D, Cavalieri AM, Casey MM, Sahin M, Lang EJ. Cerebellar transcranial AC stimulation produces a frequency-dependent bimodal cerebellar output pattern. RESEARCH SQUARE 2024:rs.3.rs-5147104. [PMID: 39606464 PMCID: PMC11601861 DOI: 10.21203/rs.3.rs-5147104/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transcranial alternating current stimulation (ctACS) has the potential to be an appealing, non-invasive treatment option for psychiatric and neurological disorders. However, its potential has been limited by significant knowledge gaps in the details and mechanisms of how ctACS affects cerebellar output on single cell and population levels. We investigated this issue by making single-unit recordings of Purkinje cells (PC) and lateral cerebellar nuclear (Lat CN) cells in response to ctACS in anesthetized adult female Sprague-Dawley rats. The ctACS electrode was positioned directly on the skull above crus 1, either ipsilaterally just medial to the recording site or contralaterally. The return electrode was placed under the skin of the shoulder ipsilateral to the recorded cell. In response to ctACS at frequencies ranging from 0.5 to 80 Hz, PC and CN activity was modulated in a frequency-dependent manner. PC and CN entrainment strength increased with stimulation frequency. Moreover, a unimodal response was seen for most PCs across all frequencies, whereas most CN cells transitioned to bimodal patterns as stimulus frequency increased. The phase of the local minima CN cells, and its change with frequency, was consistent with CN cells being driven synaptically by PC activity. Furthermore, the nearer ctACS location to the recording site, the stronger the entrainment, suggesting that ctACS electrode placement could be used to target specific cerebellar output channels. In sum, the results show that transcranial stimulation of the cerebellar cortex can modulate cerebellar output, which has potential implications for its use in treating neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Devry Mourra
- New York University, Grossman School of Medicine
| | | | | | | | - Eric J Lang
- New York University, Grossman School of Medicine
| |
Collapse
|
4
|
Garcia-Garcia MG, Kapoor A, Akinwale O, Takemaru L, Kim TH, Paton C, Litwin-Kumar A, Schnitzer MJ, Luo L, Wagner MJ. A cerebellar granule cell-climbing fiber computation to learn to track long time intervals. Neuron 2024; 112:2749-2764.e7. [PMID: 38870929 PMCID: PMC11343686 DOI: 10.1016/j.neuron.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/31/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
In classical cerebellar learning, Purkinje cells (PkCs) associate climbing fiber (CF) error signals with predictive granule cells (GrCs) that were active just prior (∼150 ms). The cerebellum also contributes to behaviors characterized by longer timescales. To investigate how GrC-CF-PkC circuits might learn seconds-long predictions, we imaged simultaneous GrC-CF activity over days of forelimb operant conditioning for delayed water reward. As mice learned reward timing, numerous GrCs developed anticipatory activity ramping at different rates until reward delivery, followed by widespread time-locked CF spiking. Relearning longer delays further lengthened GrC activations. We computed CF-dependent GrC→PkC plasticity rules, demonstrating that reward-evoked CF spikes sufficed to grade many GrC synapses by anticipatory timing. We predicted and confirmed that PkCs could thereby continuously ramp across seconds-long intervals from movement to reward. Learning thus leads to new GrC temporal bases linking predictors to remote CF reward signals-a strategy well suited for learning to track the long intervals common in cognitive domains.
Collapse
Affiliation(s)
- Martha G Garcia-Garcia
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Akash Kapoor
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Oluwatobi Akinwale
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lina Takemaru
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tony Hyun Kim
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Casey Paton
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Ashok Litwin-Kumar
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Mark J Schnitzer
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
5
|
Fernández Santoro EM, Karim A, Warnaar P, De Zeeuw CI, Badura A, Negrello M. Purkinje cell models: past, present and future. Front Comput Neurosci 2024; 18:1426653. [PMID: 39049990 PMCID: PMC11266113 DOI: 10.3389/fncom.2024.1426653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
The investigation of the dynamics of Purkinje cell (PC) activity is crucial to unravel the role of the cerebellum in motor control, learning and cognitive processes. Within the cerebellar cortex (CC), these neurons receive all the incoming sensory and motor information, transform it and generate the entire cerebellar output. The relatively homogenous and repetitive structure of the CC, common to all vertebrate species, suggests a single computation mechanism shared across all PCs. While PC models have been developed since the 70's, a comprehensive review of contemporary models is currently lacking. Here, we provide an overview of PC models, ranging from the ones focused on single cell intracellular PC dynamics, through complex models which include synaptic and extrasynaptic inputs. We review how PC models can reproduce physiological activity of the neuron, including firing patterns, current and multistable dynamics, plateau potentials, calcium signaling, intrinsic and synaptic plasticity and input/output computations. We consider models focusing both on somatic and on dendritic computations. Our review provides a critical performance analysis of PC models with respect to known physiological data. We expect our synthesis to be useful in guiding future development of computational models that capture real-life PC dynamics in the context of cerebellar computations.
Collapse
Affiliation(s)
| | - Arun Karim
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Pascal Warnaar
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | | | - Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
6
|
Brown ST, Medina-Pizarro M, Holla M, Vaaga CE, Raman IM. Simple spike patterns and synaptic mechanisms encoding sensory and motor signals in Purkinje cells and the cerebellar nuclei. Neuron 2024; 112:1848-1861.e4. [PMID: 38492575 PMCID: PMC11156563 DOI: 10.1016/j.neuron.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
Whisker stimulation in awake mice evokes transient suppression of simple spike probability in crus I/II Purkinje cells. Here, we investigated how simple spike suppression arises synaptically, what it encodes, and how it affects cerebellar output. In vitro, monosynaptic parallel fiber (PF)-excitatory postsynaptic currents (EPSCs) facilitated strongly, whereas disynaptic inhibitory postsynaptic currents (IPSCs) remained stable, maximizing relative inhibitory strength at the onset of PF activity. Short-term plasticity thus favors the inhibition of Purkinje spikes before PFs facilitate. In vivo, whisker stimulation evoked a 2-6 ms synchronous spike suppression, just 6-8 ms (∼4 synaptic delays) after sensory onset, whereas active whisker movements elicited broadly timed spike rate increases that did not modulate sensory-evoked suppression. Firing in the cerebellar nuclei (CbN) inversely correlated with disinhibition from sensory-evoked simple spike suppressions but was decoupled from slow, non-synchronous movement-associated elevations of Purkinje firing rates. Synchrony thus allows the CbN to high-pass filter Purkinje inputs, facilitating sensory-evoked cerebellar outputs that can drive movements.
Collapse
Affiliation(s)
- Spencer T Brown
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Mauricio Medina-Pizarro
- Department of Neurobiology, Northwestern University, Evanston, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Meghana Holla
- Department of Neurobiology, Northwestern University, Evanston, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | | | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
7
|
Ohmae K, Ohmae S. Emergence of syntax and word prediction in an artificial neural circuit of the cerebellum. Nat Commun 2024; 15:927. [PMID: 38296954 PMCID: PMC10831061 DOI: 10.1038/s41467-024-44801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
The cerebellum, interconnected with the cerebral neocortex, plays a vital role in human-characteristic cognition such as language processing, however, knowledge about the underlying circuit computation of the cerebellum remains very limited. To gain a better understanding of the computation underlying cerebellar language processing, we developed a biologically constrained cerebellar artificial neural network (cANN) model, which implements the recently identified cerebello-cerebellar recurrent pathway. We found that while cANN acquires prediction of future words, another function of syntactic recognition emerges in the middle layer of the prediction circuit. The recurrent pathway of the cANN was essential for the two language functions, whereas cANN variants with further biological constraints preserved these functions. Considering the uniform structure of cerebellar circuitry across all functional domains, the single-circuit computation, which is the common basis of the two language functions, can be generalized to fundamental cerebellar functions of prediction and grammar-like rule extraction from sequences, that underpin a wide range of cerebellar motor and cognitive functions. This is a pioneering study to understand the circuit computation of human-characteristic cognition using biologically-constrained ANNs.
Collapse
Affiliation(s)
- Keiko Ohmae
- Neuroscience Department, Baylor College of Medicine, Houston, TX, USA
- Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Shogo Ohmae
- Neuroscience Department, Baylor College of Medicine, Houston, TX, USA.
- Chinese Institute for Brain Research (CIBR), Beijing, China.
| |
Collapse
|
8
|
Binda F, Spaeth L, Kumar A, Isope P. Excitation and Inhibition Delays within a Feedforward Inhibitory Pathway Modulate Cerebellar Purkinje Cell Output in Mice. J Neurosci 2023; 43:5905-5917. [PMID: 37495382 PMCID: PMC10436687 DOI: 10.1523/jneurosci.0091-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The cerebellar cortex computes sensorimotor information from many brain areas through a feedforward inhibitory (FFI) microcircuit between the input stage, the granule cell (GC) layer, and the output stage, the Purkinje cells (PCs). Although in other brain areas FFI underlies a precise excitation versus inhibition temporal correlation, recent findings in the cerebellum highlighted more complex behaviors at GC-molecular layer interneuron (MLI)-PC pathway. To dissect the temporal organization of this cerebellar FFI pathway, we combined ex vivo patch-clamp recordings of PCs in male mice with a viral-based strategy to express Channelrhodopsin2 in a subset of mossy fibers (MFs), the major excitatory inputs to GCs. We show that although light-mediated MF activation elicited pairs of excitatory and inhibitory postsynaptic currents in PCs, excitation (E) from GCs and inhibition (I) from MLIs reached PCs with a wide range of different temporal delays. However, when GCs were directly stimulated, a low variability in E/I delays was observed. Our results demonstrate that in many recordings MF stimulation recruited different groups of GCs that trigger E and/or I, and expanded PC temporal synaptic integration. Finally, using a computational model of the FFI pathway, we showed that this temporal expansion could strongly influence how PCs integrate GC inputs. Our findings show that specific E/I delays may help PCs encoding specific MF inputs.SIGNIFICANCE STATEMENT Sensorimotor information is conveyed to the cerebellar cortex by mossy fibers. Mossy fiber inputs activate granule cells that excite molecular interneurons and Purkinje cells, the sole output of the cerebellar cortex, leading to a sequence of synaptic excitation and inhibition in Purkinje cells, thus defining a feedforward inhibitory pathway. Using electrophysiological recordings, optogenetic stimulation, and mathematical modeling, we demonstrated that different groups of granule cells can elicit synaptic excitation and inhibition with various latencies onto Purkinje cells. This temporal variability controls how granule cells influence Purkinje cell discharge and may support temporal coding in the cerebellar cortex.
Collapse
Affiliation(s)
- Francesca Binda
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Arvind Kumar
- Division of Computational Science and Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
9
|
Nguyen TM, Thomas LA, Rhoades JL, Ricchi I, Yuan XC, Sheridan A, Hildebrand DGC, Funke J, Regehr WG, Lee WCA. Structured cerebellar connectivity supports resilient pattern separation. Nature 2023; 613:543-549. [PMID: 36418404 PMCID: PMC10324966 DOI: 10.1038/s41586-022-05471-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/20/2022] [Indexed: 11/25/2022]
Abstract
The cerebellum is thought to help detect and correct errors between intended and executed commands1,2 and is critical for social behaviours, cognition and emotion3-6. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise7. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer8-13. However, maximizing encoding capacity reduces the resilience to noise7. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.
Collapse
Affiliation(s)
- Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Logan A Thomas
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Jeff L Rhoades
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Ilaria Ricchi
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Xintong Cindy Yuan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Arlo Sheridan
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - David G C Hildebrand
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wei-Chung Allen Lee
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Cerminara NL, Garwicz M, Darch H, Houghton C, Marple‐Horvat DE, Apps R. Neuronal activity patterns in microcircuits of the cerebellar cortical C3 zone during reaching. J Physiol 2022; 600:5077-5099. [PMID: 36254104 PMCID: PMC10099968 DOI: 10.1113/jp282928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/07/2022] [Indexed: 01/06/2023] Open
Abstract
The cerebellum is the largest sensorimotor structure in the brain. A fundamental organizational feature of its cortex is its division into a series of rostrocaudally elongated zones. These are defined by their inputs from specific parts of the inferior olive and Purkinje cell output to specific cerebellar and vestibular nuclei. However, little is known about how patterns of neuronal activity in zones, and their microcircuit subdivisions, microzones, are related to behaviour in awake animals. In the present study, we investigated the organization of microzones within the C3 zone and their activity during a skilled forelimb reaching task in cats. Neurons in different microzones of the C3 zone, functionally determined by receptive field characteristics, differed in their patterns of activity during movement. Groups of Purkinje cells belonging to different receptive field classes, and therefore belonging to different microzones, were found to collectively encode different aspects of the reach controlled by the C3 zone. Our results support the hypothesis that the cerebellar C3 zone is organized and operates within a microzonal frame of reference, with a specific relationship between the sensory input to each microzone and its motor output. KEY POINTS: A defining feature of cerebellar organization is its division into a series of zones and smaller subunits termed microzones. Much of how zones and microzones are organized has been determined in anaesthetized preparations, and little is known about their function in awake animals. We recorded from neurons in the forelimb part of the C3 zone 'in action' by recording from single cerebellar cortical neurons located in different microzones defined by their peripheral receptive field properties during a forelimb reach-retrieval task in cats. Neurons from individual microzones had characteristic patterns of activity during movement, indicating that function is organized in relation to microcomplexes.
Collapse
Affiliation(s)
- Nadia L. Cerminara
- School of PhysiologyPharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Martin Garwicz
- Neuronano Research Centre and Birgit Rausing Centre for Medical HumanitiesDepartment of Experimental Medical ScienceLund UniversityLundSweden
| | - Henry Darch
- School of PhysiologyPharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Conor Houghton
- Department of Computer ScienceUniversity of BristolBristolUK
| | | | - Richard Apps
- School of PhysiologyPharmacology and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
11
|
Model simulations unveil the structure-function-dynamics relationship of the cerebellar cortical microcircuit. Commun Biol 2022; 5:1240. [PMCID: PMC9663576 DOI: 10.1038/s42003-022-04213-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractThe cerebellar network is renowned for its regular architecture that has inspired foundational computational theories. However, the relationship between circuit structure, function and dynamics remains elusive. To tackle the issue, we developed an advanced computational modeling framework that allows us to reconstruct and simulate the structure and function of the mouse cerebellar cortex using morphologically realistic multi-compartmental neuron models. The cerebellar connectome is generated through appropriate connection rules, unifying a collection of scattered experimental data into a coherent construct and providing a new model-based ground-truth about circuit organization. Naturalistic background and sensory-burst stimulation are used for functional validation against recordings in vivo, monitoring the impact of cellular mechanisms on signal propagation, inhibitory control, and long-term synaptic plasticity. Our simulations show how mossy fibers entrain the local neuronal microcircuit, boosting the formation of columns of activity travelling from the granular to the molecular layer providing a new resource for the investigation of local microcircuit computation and of the neural correlates of behavior.
Collapse
|
12
|
Salazar Leon LE, Sillitoe RV. Potential Interactions Between Cerebellar Dysfunction and Sleep Disturbances in Dystonia. DYSTONIA 2022; 1. [PMID: 37065094 PMCID: PMC10099477 DOI: 10.3389/dyst.2022.10691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Dystonia is the third most common movement disorder. It causes debilitating twisting postures that are accompanied by repetitive and sometimes intermittent co- or over-contractions of agonist and antagonist muscles. Historically diagnosed as a basal ganglia disorder, dystonia is increasingly considered a network disorder involving various brain regions including the cerebellum. In certain etiologies of dystonia, aberrant motor activity is generated in the cerebellum and the abnormal signals then propagate through a “dystonia circuit” that includes the thalamus, basal ganglia, and cerebral cortex. Importantly, it has been reported that non-motor defects can accompany the motor symptoms; while their severity is not always correlated, it is hypothesized that common pathways may nevertheless be disrupted. In particular, circadian dysfunction and disordered sleep are common non-motor patient complaints in dystonia. Given recent evidence suggesting that the cerebellum contains a circadian oscillator, displays sleep-stage-specific neuronal activity, and sends robust long-range projections to several subcortical regions involved in circadian rhythm regulation, disordered sleep in dystonia may result from cerebellum-mediated dysfunction of the dystonia circuit. Here, we review the evidence linking dystonia, cerebellar network dysfunction, and cerebellar involvement in sleep. Together, these ideas may form the basis for the development of improved pharmacological and surgical interventions that could take advantage of cerebellar circuitry to restore normal motor function as well as non-motor (sleep) behaviors in dystonia.
Collapse
Affiliation(s)
- Luis E. Salazar Leon
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030, USA
- Address correspondence to: Dr. Roy V. Sillitoe, Tel: 832-824-8913, Fax: 832-825-1251,
| |
Collapse
|
13
|
Spaeth L, Isope P. What Can We Learn from Synaptic Connectivity Maps about Cerebellar Internal Models? THE CEREBELLUM 2022; 22:468-474. [PMID: 35391650 PMCID: PMC10126018 DOI: 10.1007/s12311-022-01392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2022] [Indexed: 11/26/2022]
Abstract
Abstract
The cerebellum is classically associated with fine motor control, motor learning, and timing of actions. However, while its anatomy is well described and many synaptic plasticity have been identified, the computation performed by the cerebellar cortex is still debated. We, here, review recent advances on how the description of the functional synaptic connectivity between granule cells and Purkinje cells support the hypothesis that the cerebellum stores internal models of the body coordinates. We propose that internal models are specific of the task and of the locomotor context of each individual.
Collapse
Affiliation(s)
- Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
14
|
Tognolina M, Monteverdi A, D’Angelo E. Discovering Microcircuit Secrets With Multi-Spot Imaging and Electrophysiological Recordings: The Example of Cerebellar Network Dynamics. Front Cell Neurosci 2022; 16:805670. [PMID: 35370553 PMCID: PMC8971197 DOI: 10.3389/fncel.2022.805670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
The cerebellar cortex microcircuit is characterized by a highly ordered neuronal architecture having a relatively simple and stereotyped connectivity pattern. For a long time, this structural simplicity has incorrectly led to the idea that anatomical considerations would be sufficient to understand the dynamics of the underlying circuitry. However, recent experimental evidence indicates that cerebellar operations are much more complex than solely predicted by anatomy, due to the crucial role played by neuronal and synaptic properties. To be able to explore neuronal and microcircuit dynamics, advanced imaging, electrophysiological techniques and computational models have been combined, allowing us to investigate neuronal ensembles activity and to connect microscale to mesoscale phenomena. Here, we review what is known about cerebellar network organization, neural dynamics and synaptic plasticity and point out what is still missing and would require experimental assessments. We consider the available experimental techniques that allow a comprehensive assessment of circuit dynamics, including voltage and calcium imaging and extracellular electrophysiological recordings with multi-electrode arrays (MEAs). These techniques are proving essential to investigate the spatiotemporal pattern of activity and plasticity in the cerebellar network, providing new clues on how circuit dynamics contribute to motor control and higher cognitive functions.
Collapse
Affiliation(s)
| | - Anita Monteverdi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
15
|
Spaeth L, Bahuguna J, Gagneux T, Dorgans K, Sugihara I, Poulain B, Battaglia D, Isope P. Cerebellar connectivity maps embody individual adaptive behavior in mice. Nat Commun 2022; 13:580. [PMID: 35102165 PMCID: PMC8803868 DOI: 10.1038/s41467-022-27984-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
The cerebellar cortex encodes sensorimotor adaptation during skilled locomotor behaviors, however the precise relationship between synaptic connectivity and behavior is unclear. We studied synaptic connectivity between granule cells (GCs) and Purkinje cells (PCs) in murine acute cerebellar slices using photostimulation of caged glutamate combined with patch-clamp in developing or after mice adapted to different locomotor contexts. By translating individual maps into graph network entities, we found that synaptic maps in juvenile animals undergo critical period characterized by dissolution of their structure followed by the re-establishment of a patchy functional organization in adults. Although, in adapted mice, subdivisions in anatomical microzones do not fully account for the observed spatial map organization in relation to behavior, we can discriminate locomotor contexts with high accuracy. We also demonstrate that the variability observed in connectivity maps directly accounts for motor behavior traits at the individual level. Our findings suggest that, beyond general motor contexts, GC-PC networks also encode internal models underlying individual-specific motor adaptation.
Collapse
Affiliation(s)
- Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jyotika Bahuguna
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, CNRS, 13005, Marseille, France
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Theo Gagneux
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Kevin Dorgans
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
- Okinawa Institute of Science and Technology, Graduate University of Okinawa, Onna, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Demian Battaglia
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, CNRS, 13005, Marseille, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 67084, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
16
|
Loschky SS, Spano GM, Marshall W, Schroeder A, Nemec KM, Schiereck SS, de Vivo L, Bellesi M, Banningh SW, Tononi G, Cirelli C. Ultrastructural effects of sleep and wake on the parallel fiber synapses of the cerebellum. eLife 2022; 11:84199. [PMID: 36576248 PMCID: PMC9797193 DOI: 10.7554/elife.84199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple evidence in rodents shows that the strength of excitatory synapses in the cerebral cortex and hippocampus is greater after wake than after sleep. The widespread synaptic weakening afforded by sleep is believed to keep the cost of synaptic activity under control, promote memory consolidation, and prevent synaptic saturation, thus preserving the brain's ability to learn day after day. The cerebellum is highly plastic and the Purkinje cells, the sole output neurons of the cerebellar cortex, are endowed with a staggering number of excitatory parallel fiber synapses. However, whether these synapses are affected by sleep and wake is unknown. Here, we used serial block face scanning electron microscopy to obtain the full 3D reconstruction of more than 7000 spines and their parallel fiber synapses in the mouse posterior vermis. This analysis was done in mice whose cortical and hippocampal synapses were previously measured, revealing that average synaptic size was lower after sleep compared to wake with no major changes in synapse number. Here, instead, we find that while the average size of parallel fiber synapses does not change, the number of branched synapses is reduced in half after sleep compared to after wake, corresponding to ~16% of all spines after wake and ~8% after sleep. Branched synapses are harbored by two or more spines sharing the same neck and, as also shown here, are almost always contacted by different parallel fibers. These findings suggest that during wake, coincidences of firing over parallel fibers may translate into the formation of synapses converging on the same branched spine, which may be especially effective in driving Purkinje cells to fire. By contrast, sleep may promote the off-line pruning of branched synapses that were formed due to spurious coincidences.
Collapse
Affiliation(s)
- Sophia S Loschky
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - William Marshall
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States,Department of Mathematics and Statistics, Brock UniversitySt. CatharinesCanada
| | - Andrea Schroeder
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Kelsey Marie Nemec
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
17
|
Gilbert M. The Shape of Data: a Theory of the Representation of Information in the Cerebellar Cortex. THE CEREBELLUM 2021; 21:976-986. [PMID: 34902112 PMCID: PMC9596575 DOI: 10.1007/s12311-021-01352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
This paper presents a model of rate coding in the cerebellar cortex. The pathway of input to output of the cerebellum forms an anatomically repeating, functionally modular network, whose basic wiring is preserved across vertebrate taxa. Each network is bisected centrally by a functionally defined cell group, a microzone, which forms part of the cerebellar circuit. Input to a network may be from tens of thousands of concurrently active mossy fibres. The model claims to quantify the conversion of input rates into the code received by a microzone. Recoding on entry converts input rates into an internal code which is homogenised in the functional equivalent of an imaginary plane, occupied by the centrally positioned microzone. Homogenised means the code exists in any random sample of parallel fibre signals over a minimum number. The nature of the code and the regimented architecture of the cerebellar cortex mean that the threshold can be represented by space so that the threshold can be met by the physical dimensions of the Purkinje cell dendritic arbour and planar interneuron networks. As a result, the whole population of a microzone receives the same code. This is part of a mechanism which orchestrates functionally indivisible behaviour of the cerebellar circuit and is necessary for coordinated control of the output cells of the circuit. In this model, fine control of Purkinje cells is by input rates to the system and not by learning so that it is in conflict with the for-years-dominant supervised learning model.
Collapse
Affiliation(s)
- Mike Gilbert
- School of Psychology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
18
|
Transcranial direct current stimulation of cerebellum alters spiking precision in cerebellar cortex: A modeling study of cellular responses. PLoS Comput Biol 2021; 17:e1009609. [PMID: 34882680 PMCID: PMC8691604 DOI: 10.1371/journal.pcbi.1009609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 12/21/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) of the cerebellum has rapidly raised interest but the effects of tDCS on cerebellar neurons remain unclear. Assessing the cellular response to tDCS is challenging because of the uneven, highly stratified cytoarchitecture of the cerebellum, within which cellular morphologies, physiological properties, and function vary largely across several types of neurons. In this study, we combine MRI-based segmentation of the cerebellum and a finite element model of the tDCS-induced electric field (EF) inside the cerebellum to determine the field imposed on the cerebellar neurons throughout the region. We then pair the EF with multicompartment models of the Purkinje cell (PC), deep cerebellar neuron (DCN), and granule cell (GrC) and quantify the acute response of these neurons under various orientations, physiological conditions, and sequences of presynaptic stimuli. We show that cerebellar tDCS significantly modulates the postsynaptic spiking precision of the PC, which is expressed as a change in the spike count and timing in response to presynaptic stimuli. tDCS has modest effects, instead, on the PC tonic firing at rest and on the postsynaptic activity of DCN and GrC. In Purkinje cells, anodal tDCS shortens the repolarization phase following complex spikes (-14.7 ± 6.5% of baseline value, mean ± S.D.; max: -22.7%) and promotes burstiness with longer bursts compared to resting conditions. Cathodal tDCS, instead, promotes irregular spiking by enhancing somatic excitability and significantly prolongs the repolarization after complex spikes compared to baseline (+37.0 ± 28.9%, mean ± S.D.; max: +84.3%). tDCS-induced changes to the repolarization phase and firing pattern exceed 10% of the baseline values in Purkinje cells covering up to 20% of the cerebellar cortex, with the effects being distributed along the EF direction and concentrated in the area under the electrode over the cerebellum. Altogether, the acute effects of tDCS on cerebellum mainly focus on Purkinje cells and modulate the precision of the response to synaptic stimuli, thus having the largest impact when the cerebellar cortex is active. Since the spatiotemporal precision of the PC spiking is critical to learning and coordination, our results suggest cerebellar tDCS as a viable therapeutic option for disorders involving cerebellar hyperactivity such as ataxia. Transcranial direct current stimulation (tDCS) of the cerebellum is gaining momentum as a neuromodulation tool for the treatment of neurological diseases like movement disorders. Nonetheless, the response of cells in the cerebellum to tDCS is unclear and hardly generalizes from our understanding of tDCS of the cerebral cortex. We use computational models to investigate the response of several types of cerebellar neurons to the electric field induced by tDCS and show that, differently from the cerebral cortex, tDCS has significant acute effects on the cerebellar cortex. These effects (i) primarily alter the way Purkinje cells encode synaptic stimuli from the molecular layer and (ii) can help hyperactive cells regain postsynaptic spiking precision. Since the spatiotemporal precision of the Purkinje cell spiking is critical to learning and coordination, the study shows how tDCS can operate at the cellular level to treat movement disorders like tremor and ataxia.
Collapse
|
19
|
Gilbert M. Gating by Memory: a Theory of Learning in the Cerebellum. THE CEREBELLUM 2021; 21:926-943. [PMID: 34757585 DOI: 10.1007/s12311-021-01325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
This paper presents a model of learning by the cerebellar circuit. In the traditional and dominant learning model, training teaches finely graded parallel fibre synaptic weights which modify transmission to Purkinje cells and to interneurons that inhibit Purkinje cells. Following training, input in a learned pattern drives a training-modified response. The function is that the naive response to input rates is displaced by a learned one, trained under external supervision. In the proposed model, there is no weight-controlled graduated balance of excitation and inhibition of Purkinje cells. Instead, the balance has two functional states-a switch-at synaptic, whole cell and microzone level. The paper is in two parts. The first is a detailed physiological argument for the synaptic learning function. The second uses the function in a computational simulation of pattern memory. Against expectation, this generates a predictable outcome from input chaos (real-world variables). Training always forces synaptic weights away from the middle and towards the limits of the range, causing them to polarise, so that transmission is either robust or blocked. All conditions teach the same outcome, such that all learned patterns receive the same, rather than a bespoke, effect on transmission. In this model, the function of learning is gating-that is, to select patterns that trigger output merely, and not to modify output. The outcome is memory-operated gate activation which operates a two-state balance of weight-controlled transmission. Group activity of parallel fibres also simultaneously contains a second code contained in collective rates, which varies independently of the pattern code. A two-state response to the pattern code allows faithful, and graduated, control of Purkinje cell firing by the rate code, at gated times.
Collapse
Affiliation(s)
- Mike Gilbert
- School of Psychology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
20
|
Ho S, Lajaunie R, Lerat M, Le M, Crépel V, Loulier K, Livet J, Kessler JP, Marcaggi P. A stable proportion of Purkinje cell inputs from parallel fibers are silent during cerebellar maturation. Proc Natl Acad Sci U S A 2021; 118:e2024890118. [PMID: 34740966 PMCID: PMC8609448 DOI: 10.1073/pnas.2024890118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Cerebellar Purkinje neurons integrate information transmitted at excitatory synapses formed by granule cells. Although these synapses are considered essential sites for learning, most of them appear not to transmit any detectable electrical information and have been defined as silent. It has been proposed that silent synapses are required to maximize information storage capacity and ensure its reliability, and hence to optimize cerebellar operation. Such optimization is expected to occur once the cerebellar circuitry is in place, during its maturation and the natural and steady improvement of animal agility. We therefore investigated whether the proportion of silent synapses varies over this period, from the third to the sixth postnatal week in mice. Selective expression of a calcium indicator in granule cells enabled quantitative mapping of presynaptic activity, while postsynaptic responses were recorded by patch clamp in acute slices. Through this approach and the assessment of two anatomical features (the distance that separates adjacent planar Purkinje dendritic trees and the synapse density), we determined the average excitatory postsynaptic potential per synapse. Its value was four to eight times smaller than responses from paired recorded detectable connections, consistent with over 70% of synapses being silent. These figures remained remarkably stable across maturation stages. According to the proposed role for silent synapses, our results suggest that information storage capacity and reliability are optimized early during cerebellar maturation. Alternatively, silent synapses may have roles other than adjusting the information storage capacity and reliability.
Collapse
Affiliation(s)
- Shu Ho
- Aix-Marseille Université, INSERM, INMED, Marseille 13009, France
| | - Rebecca Lajaunie
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Marion Lerat
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Mickaël Le
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Valérie Crépel
- Aix-Marseille Université, INSERM, INMED, Marseille 13009, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Jean-Pierre Kessler
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille 13288, France
| | - Païkan Marcaggi
- Aix-Marseille Université, INSERM, INMED, Marseille 13009, France;
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
- Unité de Neurobiologie des Canaux Ioniques et de la Synapse, UMR 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| |
Collapse
|
21
|
Anatomy embroiders function in Purkinje cells. Lancet Neurol 2021; 20:793. [PMID: 34536402 PMCID: PMC7611860 DOI: 10.1016/s1474-4422(21)00281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Barmack NH, Pettorossi VE. Adaptive Balance in Posterior Cerebellum. Front Neurol 2021; 12:635259. [PMID: 33767662 PMCID: PMC7985352 DOI: 10.3389/fneur.2021.635259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
Vestibular and optokinetic space is represented in three-dimensions in vermal lobules IX-X (uvula, nodulus) and hemisphere lobule X (flocculus) of the cerebellum. Vermal lobules IX-X encodes gravity and head movement using the utricular otolith and the two vertical semicircular canals. Hemispheric lobule X encodes self-motion using optokinetic feedback about the three axes of the semicircular canals. Vestibular and visual adaptation of this circuitry is needed to maintain balance during perturbations of self-induced motion. Vestibular and optokinetic (self-motion detection) stimulation is encoded by cerebellar climbing and mossy fibers. These two afferent pathways excite the discharge of Purkinje cells directly. Climbing fibers preferentially decrease the discharge of Purkinje cells by exciting stellate cell inhibitory interneurons. We describe instances adaptive balance at a behavioral level in which prolonged vestibular or optokinetic stimulation evokes reflexive eye movements that persist when the stimulation that initially evoked them stops. Adaptation to prolonged optokinetic stimulation also can be detected at cellular and subcellular levels. The transcription and expression of a neuropeptide, corticotropin releasing factor (CRF), is influenced by optokinetically-evoked olivary discharge and may contribute to optokinetic adaptation. The transcription and expression of microRNAs in floccular Purkinje cells evoked by long-term optokinetic stimulation may provide one of the subcellular mechanisms by which the membrane insertion of the GABAA receptors is regulated. The neurosteroids, estradiol (E2) and dihydrotestosterone (DHT), influence adaptation of vestibular nuclear neurons to electrically-induced potentiation and depression. In each section of this review, we discuss how adaptive changes in the vestibular and optokinetic subsystems of lobule X, inferior olivary nuclei and vestibular nuclei may contribute to the control of balance.
Collapse
Affiliation(s)
- Neal H. Barmack
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Vito Enrico Pettorossi
- Section of Human Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
23
|
Tang Y, An L, Yuan Y, Pei Q, Wang Q, Liu JK. Modulation of the dynamics of cerebellar Purkinje cells through the interaction of excitatory and inhibitory feedforward pathways. PLoS Comput Biol 2021; 17:e1008670. [PMID: 33566820 PMCID: PMC7909957 DOI: 10.1371/journal.pcbi.1008670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/26/2021] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
The dynamics of cerebellar neuronal networks is controlled by the underlying building blocks of neurons and synapses between them. For which, the computation of Purkinje cells (PCs), the only output cells of the cerebellar cortex, is implemented through various types of neural pathways interactively routing excitation and inhibition converged to PCs. Such tuning of excitation and inhibition, coming from the gating of specific pathways as well as short-term plasticity (STP) of the synapses, plays a dominant role in controlling the PC dynamics in terms of firing rate and spike timing. PCs receive cascade feedforward inputs from two major neural pathways: the first one is the feedforward excitatory pathway from granule cells (GCs) to PCs; the second one is the feedforward inhibition pathway from GCs, via molecular layer interneurons (MLIs), to PCs. The GC-PC pathway, together with short-term dynamics of excitatory synapses, has been a focus over past decades, whereas recent experimental evidence shows that MLIs also greatly contribute to controlling PC activity. Therefore, it is expected that the diversity of excitation gated by STP of GC-PC synapses, modulated by strong inhibition from MLI-PC synapses, can promote the computation performed by PCs. However, it remains unclear how these two neural pathways are interacted to modulate PC dynamics. Here using a computational model of PC network installed with these two neural pathways, we addressed this question to investigate the change of PC firing dynamics at the level of single cell and network. We show that the nonlinear characteristics of excitatory STP dynamics can significantly modulate PC spiking dynamics mediated by inhibition. The changes in PC firing rate, firing phase, and temporal spike pattern, are strongly modulated by these two factors in different ways. MLIs mainly contribute to variable delays in the postsynaptic action potentials of PCs while modulated by excitation STP. Notably, the diversity of synchronization and pause response in the PC network is governed not only by the balance of excitation and inhibition, but also by the synaptic STP, depending on input burst patterns. Especially, the pause response shown in the PC network can only emerge with the interaction of both pathways. Together with other recent findings, our results show that the interaction of feedforward pathways of excitation and inhibition, incorporated with synaptic short-term dynamics, can dramatically regulate the PC activities that consequently change the network dynamics of the cerebellar circuit. It is well known that the dynamics of neuronal networks are controlled by various types of neural pathways that are interactively routing excitation and inhibition converged to postsynaptic neurons. In addition, gating of a specific neural pathway is enhanced by short-term plasticity of the synapses between neurons. However, it remains unclear how a combination of these factors, the strengths of excitation and inhibition, and their short-term dynamics respectively, contributes to the dynamics of single cells and neuronal networks. Using a network model of cerebellar Purkinje cells embedded with the feedforward excitatory pathway from granule cells and feedforward inhibition pathway of molecular layer interneurons. We show that the dynamics of firing rate, firing phase, and temporal spike pattern are notably yet differently modulated by these two pathways. At the single cell level, excitatory short-term plasticity nonlinearly modulates the input-output relationship of firing activity. At the network level, the diversity of synchronization and pause response is governed not only by the balance of excitation and inhibition, but also by synaptic short-term dynamics. Only when both neural pathways are incorporated, there is a strong pause response shown in the network. Our results, together with recent in vivo experimental observations in the cerebellum, show that the interaction of feedforward pathways of excitation and inhibition, together with synaptic short-term dynamics, can dramatically change the network dynamics of Purkinje cells.
Collapse
Affiliation(s)
- Yuanhong Tang
- School of Computer Science and Technology, Xidian University, Xi’an, China
| | - Lingling An
- School of Computer Science and Technology, Xidian University, Xi’an, China
- * E-mail: (LA); (JKL)
| | - Ye Yuan
- School of Computer Science and Technology, Xidian University, Xi’an, China
| | - Qingqi Pei
- School of Telecommunication Engineering, Xidian University, Xi’an, China
| | - Quan Wang
- School of Computer Science and Technology, Xidian University, Xi’an, China
| | - Jian K. Liu
- Centre for Systems Neuroscience, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
- * E-mail: (LA); (JKL)
| |
Collapse
|
24
|
Gilbert M, Chris Miall R. How and Why the Cerebellum Recodes Input Signals: An Alternative to Machine Learning. Neuroscientist 2021; 28:206-221. [PMID: 33559532 PMCID: PMC9136479 DOI: 10.1177/1073858420986795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mossy fiber input to the cerebellum is received by granule cells where it is thought to be recoded into internal signals received by Purkinje cells, which alone carry the output of the cerebellar cortex. In any neural network, variables are contained in groups of signals as well as signals themselves—which cells are active and how many, for example, and statistical variables coded in rates, such as the mean and range, and which rates are strongly represented, in a defined population. We argue that the primary function of recoding is to confine translation to an effect of some variables and not others—both where input is recoded into internal signals and the translation downstream of internal signals into an effect on Purkinje cells. The cull of variables is harsh. Internal signaling is group coded. This allows coding to exploit statistics for a reliable and precise effect despite needing to work with high-dimensional input which is a highly unpredictably variable. An important effect is to normalize eclectic input signals, so that the basic, repeating cerebellar circuit, preserved across taxa, does not need to specialize (within regional variations). With this model, there is no need to slavishly conserve or compute data coded in single signals. If we are correct, a learning algorithm—for years, a mainstay of cerebellar modeling—would be redundant.
Collapse
Affiliation(s)
- Mike Gilbert
- School of Psychology, University of Birmingham, Birmingham, UK
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Wilson ED, Assaf T, Rossiter JM, Dean P, Porrill J, Anderson SR, Pearson MJ. A multizone cerebellar chip for bioinspired adaptive robot control and sensorimotor processing. J R Soc Interface 2021; 18:20200750. [PMID: 33499769 DOI: 10.1098/rsif.2020.0750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cerebellum is a neural structure essential for learning, which is connected via multiple zones to many different regions of the brain, and is thought to improve human performance in a large range of sensory, motor and even cognitive processing tasks. An intriguing possibility for the control of complex robotic systems would be to develop an artificial cerebellar chip with multiple zones that could be similarly connected to a variety of subsystems to optimize performance. The novel aim of this paper, therefore, is to propose and investigate a multizone cerebellar chip applied to a range of tasks in robot adaptive control and sensorimotor processing. The multizone cerebellar chip was evaluated using a custom robotic platform consisting of an array of tactile sensors driven by dielectric electroactive polymers mounted upon a standard industrial robot arm. The results demonstrate that the performance in each task was improved by the concurrent, stable learning in each cerebellar zone. This paper, therefore, provides the first empirical demonstration that a synthetic, multizone, cerebellar chip could be embodied within existing robotic systems to improve performance in a diverse range of tasks, much like the cerebellum in a biological system.
Collapse
Affiliation(s)
- Emma D Wilson
- Lancaster University, School of Computing and Communications, Lancaster, UK
| | - Tareq Assaf
- University of Bath, Department of Electronic and Electrical Engineering, Bath, UK
| | | | - Paul Dean
- University of Sheffield, Department of Psychology, Sheffield, UK
| | - John Porrill
- University of Sheffield, Department of Psychology, Sheffield, UK
| | - Sean R Anderson
- University of Sheffield, Department of Automatic Control and Systems Engineering, Sheffield, UK
| | - Martin J Pearson
- University of the West of England, Bristol Robotics Laboratory, Bristol, UK
| |
Collapse
|
26
|
Gating by Functionally Indivisible Cerebellar Circuits: a Hypothesis. THE CEREBELLUM 2021; 20:518-532. [PMID: 33464470 PMCID: PMC8360902 DOI: 10.1007/s12311-020-01223-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 11/08/2022]
Abstract
The attempt to understand the cerebellum has been dominated for years by supervised learning models. The central idea is that a learning algorithm modifies transmission strength at repeatedly co-active synapses, creating memories stored as finely calibrated synaptic weights. As a result, Purkinje cells, usually the de facto output cells of these models, acquire a modified response to input in a remembered pattern. This paper proposes an alternative model of pattern memory in which the function of a match is permissive, allowing but not driving output, and accordingly controlling the timing of output but not the rate of firing by Purkinje cells. Learning does not result in graded synaptic weights. There is no supervised learning algorithm or memory of individual patterns, which, like graded weights, are unnecessary to explain the evidence. Instead, patterns are classed as simply either known or not, at the level of input to a functional population of 100s of Purkinje cells (a microzone). The standard is strict. If only a handful of Purkinje cells receive a mismatch output of the whole circuit is blocked. Only if there is a full and accurate match are projection neurons in deep nuclei, which carry the output of most circuits, released from default inhibitory restraint. Purkinje cell firing at those times is a linear function of input rates. There is no effect of modification of synaptic transmission except to either allow or block output.
Collapse
|
27
|
Lévesque M, Gao H, Southward C, Langlois JMP, Léna C, Courtemanche R. Cerebellar Cortex 4-12 Hz Oscillations and Unit Phase Relation in the Awake Rat. Front Syst Neurosci 2020; 14:475948. [PMID: 33240052 PMCID: PMC7683574 DOI: 10.3389/fnsys.2020.475948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
Oscillations in the granule cell layer (GCL) of the cerebellar cortex have been related to behavior and could facilitate communication with the cerebral cortex. These local field potential (LFP) oscillations, strong at 4–12 Hz in the rodent cerebellar cortex during awake immobility, should also be an indicator of an underlying influence on the patterns of the cerebellar cortex neuronal firing during rest. To address this hypothesis, cerebellar cortex LFPs and simultaneous single-neuron activity were collected during LFP oscillatory periods in the GCL of awake resting rats. During these oscillatory episodes, different types of units across the GCL and Purkinje cell layers showed variable phase-relation with the oscillatory cycles. Overall, 74% of the Golgi cell firing and 54% of the Purkinje cell simple spike (SS) firing were phase-locked with the oscillations, displaying a clear phase relationship. Despite this tendency, fewer Golgi cells (50%) and Purkinje cell’s SSs (25%) showed an oscillatory firing pattern. Oscillatory phase-locked spikes for the Golgi and Purkinje cells occurred towards the peak of the LFP cycle. GCL LFP oscillations had a strong capacity to predict the timing of Golgi cell spiking activity, indicating a strong influence of this oscillatory phenomenon over the GCL. Phase-locking was not as prominent for the Purkinje cell SS firing, indicating a weaker influence over the Purkinje cell layer, yet a similar phase relation. Overall, synaptic activity underlying GCL LFP oscillations likely exert an influence on neuronal population firing patterns in the cerebellar cortex in the awake resting state and could have a preparatory neural network shaping capacity serving as a neural baseline for upcoming cerebellar operations.
Collapse
Affiliation(s)
- Maxime Lévesque
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - HongYing Gao
- Institut de Biologie, CNRS UMR 8197-U 1024, École Normale Supérieure, Paris, France
| | - Carla Southward
- Department of Health, Kinesiology and Applied Physiology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada
| | - J M Pierre Langlois
- Département de Génie Informatique et Génie Logiciel, Polytechnique Montréal, Montréal, QC, Canada
| | - Clément Léna
- Institut de Biologie, CNRS UMR 8197-U 1024, École Normale Supérieure, Paris, France
| | - Richard Courtemanche
- Department of Health, Kinesiology and Applied Physiology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada
| |
Collapse
|
28
|
Fossati M, Charrier C. Trans-synaptic interactions of ionotropic glutamate receptors. Curr Opin Neurobiol 2020; 66:85-92. [PMID: 33130410 DOI: 10.1016/j.conb.2020.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 01/29/2023]
Abstract
Trans-synaptic interactions organize the multiple steps of synaptic development and are critical to generate fully functional neuronal circuits. While trans-synaptic interactions are primarily mediated by cell adhesion molecules (CAMs), some directly involve ionotropic glutamate receptors (iGluRs). Here, we review the expanding extracellular and trans-synaptic proteome of iGluRs. We discuss the role of these molecular networks in specifying the formation of excitatory and inhibitory circuits and in the input-specific recruitment of iGluRs at synapses in various cell types and brain regions. We also shed light on human-specific mutations affecting iGluR-mediated trans-synaptic interactions that may provide unique features to the human brain and contribute to its susceptibility to neurodevelopmental disorders. Together, these data support a view in which iGluR function goes far beyond fast excitatory synaptic transmission by shaping the wiring and the functional properties of neural circuits.
Collapse
Affiliation(s)
- Matteo Fossati
- CNR - Institute of Neuroscience, via Manzoni 56, Rozzano (MI), 20089, Italy; Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano (MI), 20089, Italy.
| | - Cécile Charrier
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, Inserm, École Normale Supérieure, PSL Research University, Paris, 75005, France.
| |
Collapse
|
29
|
Calame DJ, Xiao J, Khan MM, Hollingsworth TJ, Xue Y, Person AL, LeDoux MS. Presynaptic PRRT2 Deficiency Causes Cerebellar Dysfunction and Paroxysmal Kinesigenic Dyskinesia. Neuroscience 2020; 448:272-286. [PMID: 32891704 DOI: 10.1016/j.neuroscience.2020.08.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
PRRT2 loss-of-function mutations have been associated with familial paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions and choreoathetosis, and benign familial infantile seizures. Dystonia is the foremost involuntary movement disorder manifest by patients with PKD. Using a lacZ reporter and quantitative reverse-transcriptase PCR, we mapped the temporal and spatial distribution of Prrt2 in mouse brain and showed the highest levels of expression in cerebellar cortex. Further investigation into PRRT2 localization within the cerebellar cortex revealed that Prrt2 transcripts reside in granule cells but not Purkinje cells or interneurons within cerebellar cortex, and PRRT2 is presynaptically localized in the molecular layer. Analysis of synapses in the cerebellar molecular layer via electron microscopy showed that Prrt2-/- mice have increased numbers of docked vesicles but decreased vesicle numbers overall. In addition to impaired performance on several motor tasks, approximately 5% of Prrt2-/- mice exhibited overt PKD with clear face validity manifest as dystonia. In Prrt2 mutants, we found reduced parallel fiber facilitation at parallel fiber-Purkinje cell synapses, reduced Purkinje cell excitability, and normal cerebellar nuclear excitability, establishing a potential mechanism by which altered cerebellar activity promotes disinhibition of the cerebellar nuclei, driving motor abnormalities in PKD. Overall, our findings replicate, refine, and expand upon previous work with PRRT2 mouse models, contribute to understanding of paroxysmal disorders of the nervous system, and provide mechanistic insight into the role of cerebellar cortical dysfunction in dystonia.
Collapse
Affiliation(s)
- Dylan J Calame
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Jianfeng Xiao
- Department of Neurology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Division of Rehabilitation Sciences, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - T J Hollingsworth
- Department of Ophthalmology and Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yi Xue
- Department of Neurology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Abigail L Person
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Mark S LeDoux
- Department of Psychology and School of Health Studies, University of Memphis, Memphis, TN 38152, USA; Veracity Neuroscience LLC, Memphis, TN 38157, USA.
| |
Collapse
|
30
|
Ohtsuki G, Shishikura M, Ozaki A. Synergistic excitability plasticity in cerebellar functioning. FEBS J 2020; 287:4557-4593. [PMID: 32367676 DOI: 10.1111/febs.15355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
The cerebellum, a universal processor for sensory acquisition and internal models, and its association with synaptic and nonsynaptic plasticity have been envisioned as the biological correlates of learning, perception, and even thought. Indeed, the cerebellum is no longer considered merely as the locus of motor coordination and its learning. Here, we introduce the mechanisms underlying the induction of multiple types of plasticity in cerebellar circuit and give an overview focusing on the plasticity of nonsynaptic intrinsic excitability. The discovery of long-term potentiation of synaptic responsiveness in hippocampal neurons led investigations into changes of their intrinsic excitability. This activity-dependent potentiation of neuronal excitability is distinct from that of synaptic efficacy. Systematic examination of excitability plasticity has indicated that the modulation of various types of Ca2+ - and voltage-dependent K+ channels underlies the phenomenon, which is also triggered by immune activity. Intrinsic plasticity is expressed specifically on dendrites and modifies the integrative processing and filtering effect. In Purkinje cells, modulation of the discordance of synaptic current on soma and dendrite suggested a novel type of cellular learning mechanism. This property enables a plausible synergy between synaptic efficacy and intrinsic excitability, by amplifying electrical conductivity and influencing the polarity of bidirectional synaptic plasticity. Furthermore, the induction of intrinsic plasticity in the cerebellum correlates with motor performance and cognitive processes, through functional connections from the cerebellar nuclei to neocortex and associated regions: for example, thalamus and midbrain. Taken together, recent advances in neuroscience have begun to shed light on the complex functioning of nonsynaptic excitability and the synergy.
Collapse
Affiliation(s)
- Gen Ohtsuki
- The Hakubi Center for Advanced Research, Kyoto University, Japan.,Department of Biophysics, Kyoto University Graduate School of Science, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Mari Shishikura
- Department of Biophysics, Kyoto University Graduate School of Science, Japan
| | - Akitoshi Ozaki
- Department of Biophysics, Kyoto University Graduate School of Science, Japan
| |
Collapse
|
31
|
Lin YC, Hsu CCH, Wang PN, Lin CP, Chang LH. The Relationship Between Zebrin Expression and Cerebellar Functions: Insights From Neuroimaging Studies. Front Neurol 2020; 11:315. [PMID: 32390933 PMCID: PMC7189018 DOI: 10.3389/fneur.2020.00315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
The cerebellum has long been known to play an important role in motor and balance control, and accumulating evidence has revealed that it is also involved in multiple cognitive functions. However, the evidence from neuroimaging studies and clinical observations is not well-integrated at the anatomical or molecular level. The goal of this review is to summarize and link different aspects of the cerebellum, including molecular patterning, functional topography images, and clinical cerebellar disorders. More specifically, we explored the potential relationships between the cerebrocerebellar connections and the expression of particular molecules and, in particular, zebrin stripe (a Purkinje cell-specific antibody molecular marker, which is a glycolytic enzyme expressed in cerebellar Purkinje cells). We hypothesized that the zebrin patterns contribute to cerebellar functional maps—especially when cerebrocerebellar circuit changes exist in cerebellar-related diseases. The zebrin stripe receives input from climbing fibers and project to different parts of the cerebral cortex through its cerebrocerebellar connection. Since zebrin-positive cerebellar Purkinje cells are resistant to excitotoxicity and cell injury while zebrin-negative zones are more prone to damage, we suggest that motor control dysfunction symptoms such as ataxia and dysmetria present earlier and are easier to observe than non-ataxia symptoms due to zebrin-negative cell damage by cerebrocerebellar connections. In summary, we emphasize that the molecular zebrin patterns provide the basis for a new viewpoint from which to investigate cerebellar functions and clinico-neuroanatomic correlations.
Collapse
Affiliation(s)
- Yi-Cheng Lin
- Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chin Heather Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Li-Hung Chang
- Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan.,Education Center for Humanities and Social Sciences, School of Humanities and Social Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
32
|
Yamaura H, Igarashi J, Yamazaki T. Simulation of a Human-Scale Cerebellar Network Model on the K Computer. Front Neuroinform 2020; 14:16. [PMID: 32317955 PMCID: PMC7146068 DOI: 10.3389/fninf.2020.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Computer simulation of the human brain at an individual neuron resolution is an ultimate goal of computational neuroscience. The Japanese flagship supercomputer, K, provides unprecedented computational capability toward this goal. The cerebellum contains 80% of the neurons in the whole brain. Therefore, computer simulation of the human-scale cerebellum will be a challenge for modern supercomputers. In this study, we built a human-scale spiking network model of the cerebellum, composed of 68 billion spiking neurons, on the K computer. As a benchmark, we performed a computer simulation of a cerebellum-dependent eye movement task known as the optokinetic response. We succeeded in reproducing plausible neuronal activity patterns that are observed experimentally in animals. The model was built on dedicated neural network simulation software called MONET (Millefeuille-like Organization NEural neTwork), which calculates layered sheet types of neural networks with parallelization by tile partitioning. To examine the scalability of the MONET simulator, we repeatedly performed simulations while changing the number of compute nodes from 1,024 to 82,944 and measured the computational time. We observed a good weak-scaling property for our cerebellar network model. Using all 82,944 nodes, we succeeded in simulating a human-scale cerebellum for the first time, although the simulation was 578 times slower than the wall clock time. These results suggest that the K computer is already capable of creating a simulation of a human-scale cerebellar model with the aid of the MONET simulator.
Collapse
Affiliation(s)
- Hiroshi Yamaura
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Jun Igarashi
- Head Office for Information Systems and Cybersecurity, RIKEN, Saitama, Japan
| | - Tadashi Yamazaki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
33
|
Qi G, Yang D, Ding C, Feldmeyer D. Unveiling the Synaptic Function and Structure Using Paired Recordings From Synaptically Coupled Neurons. Front Synaptic Neurosci 2020; 12:5. [PMID: 32116641 PMCID: PMC7026682 DOI: 10.3389/fnsyn.2020.00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/22/2020] [Indexed: 11/24/2022] Open
Abstract
Synaptic transmission between neurons is the basic mechanism for information processing in cortical microcircuits. To date, paired recording from synaptically coupled neurons is the most widely used method which allows a detailed functional characterization of unitary synaptic transmission at the cellular and synaptic level in combination with a structural characterization of both pre- and postsynaptic neurons at the light and electron microscopic level. In this review, we will summarize the many applications of paired recordings to investigate synaptic function and structure. Paired recordings have been used to study the detailed electrophysiological and anatomical properties of synaptically coupled cell pairs within a synaptic microcircuit; this is critical in order to understand the connectivity rules and dynamic properties of synaptic transmission. Paired recordings can also be adopted for quantal analysis of an identified synaptic connection and to study the regulation of synaptic transmission by neuromodulators such as acetylcholine, the monoamines, neuropeptides, and adenosine etc. Taken together, paired recordings from synaptically coupled neurons will remain a very useful approach for a detailed characterization of synaptic transmission not only in the rodent brain but also that of other species including humans.
Collapse
Affiliation(s)
- Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-10, Jülich Research Centre, Jülich, Germany
| | - Danqing Yang
- Institute of Neuroscience and Medicine, INM-10, Jülich Research Centre, Jülich, Germany
| | - Chao Ding
- Institute of Neuroscience and Medicine, INM-10, Jülich Research Centre, Jülich, Germany
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-10, Jülich Research Centre, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany.,Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
| |
Collapse
|
34
|
Straub I, Witter L, Eshra A, Hoidis M, Byczkowicz N, Maas S, Delvendahl I, Dorgans K, Savier E, Bechmann I, Krueger M, Isope P, Hallermann S. Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity. eLife 2020; 9:e51771. [PMID: 32022688 PMCID: PMC7002074 DOI: 10.7554/elife.51771] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter (inner-zone GCs) had higher firing thresholds and could sustain firing with larger current inputs than GCs closer to the Purkinje cell layer (outer-zone GCs). Dynamic Clamp experiments showed that inner- and outer-zone GCs preferentially respond to high- and low-frequency mossy fiber inputs, respectively, enabling dispersion of the mossy fiber input into its frequency components as performed by a Fourier transformation. Furthermore, inner-zone GCs have faster axonal conduction velocity and elicit faster synaptic potentials in Purkinje cells. Neuronal network modeling revealed that these gradients improve spike-timing precision of Purkinje cells and decrease the number of GCs required to learn spike-sequences. Thus, our study uncovers biophysical gradients in the cerebellar cortex enabling a Fourier-like transformation of mossy fiber inputs.
Collapse
Affiliation(s)
- Isabelle Straub
- Carl-Ludwig-Institute for Physiology, Medical FacultyLeipzig UniversityLeipzigGermany
| | - Laurens Witter
- Carl-Ludwig-Institute for Physiology, Medical FacultyLeipzig UniversityLeipzigGermany
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR)VU UniversityAmsterdamNetherlands
| | - Abdelmoneim Eshra
- Carl-Ludwig-Institute for Physiology, Medical FacultyLeipzig UniversityLeipzigGermany
| | - Miriam Hoidis
- Carl-Ludwig-Institute for Physiology, Medical FacultyLeipzig UniversityLeipzigGermany
| | - Niklas Byczkowicz
- Carl-Ludwig-Institute for Physiology, Medical FacultyLeipzig UniversityLeipzigGermany
| | - Sebastian Maas
- Carl-Ludwig-Institute for Physiology, Medical FacultyLeipzig UniversityLeipzigGermany
| | - Igor Delvendahl
- Carl-Ludwig-Institute for Physiology, Medical FacultyLeipzig UniversityLeipzigGermany
| | - Kevin Dorgans
- Institut des Neurosciences Cellulaires et IntégrativesCNRS, Université de StrasbourgStrasbourgFrance
| | - Elise Savier
- Institut des Neurosciences Cellulaires et IntégrativesCNRS, Université de StrasbourgStrasbourgFrance
| | - Ingo Bechmann
- Institute of Anatomy, Medical FacultyLeipzig UniversityLeipzigGermany
| | - Martin Krueger
- Institute of Anatomy, Medical FacultyLeipzig UniversityLeipzigGermany
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et IntégrativesCNRS, Université de StrasbourgStrasbourgFrance
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical FacultyLeipzig UniversityLeipzigGermany
| |
Collapse
|
35
|
Prestori F, Mapelli L, D'Angelo E. Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit. Front Mol Neurosci 2019; 12:267. [PMID: 31787879 PMCID: PMC6854908 DOI: 10.3389/fnmol.2019.00267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Neuronal inhibition can be defined as a spatiotemporal restriction or suppression of local microcircuit activity. The importance of inhibition relies in its fundamental role in shaping signal processing in single neurons and neuronal circuits. In this context, the activity of inhibitory interneurons proved the key to endow networks with complex computational and dynamic properties. In the last 50 years, the prevailing view on the functional role of cerebellar cortical inhibitory circuits was that excitatory and inhibitory inputs sum spatially and temporally in order to determine the motor output through Purkinje cells (PCs). Consequently, cerebellar inhibition has traditionally been conceived in terms of restricting or blocking excitation. This assumption has been challenged, in particular in the cerebellar cortex where all neurons except granule cells (and unipolar brush cells in specific lobules) are inhibitory and fire spontaneously at high rates. Recently, a combination of electrophysiological recordings in vitro and in vivo, imaging, optogenetics and computational modeling, has revealed that inhibitory interneurons play a much more complex role in regulating cerebellar microcircuit functions: inhibition shapes neuronal response dynamics in the whole circuit and eventually regulate the PC output. This review elaborates current knowledge on cerebellar inhibitory interneurons [Golgi cells, Lugaro cells (LCs), basket cells (BCs) and stellate cells (SCs)], starting from their ontogenesis and moving up to their morphological, physiological and plastic properties, and integrates this knowledge with that on the more renown granule cells and PCs. We will focus on the circuit loops in which these interneurons are involved and on the way they generate feed-forward, feedback and lateral inhibition along with complex spatio-temporal response dynamics. In this perspective, inhibitory interneurons emerge as the real controllers of cerebellar functioning.
Collapse
Affiliation(s)
- Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
36
|
Distinct Nanoscale Calcium Channel and Synaptic Vesicle Topographies Contribute to the Diversity of Synaptic Function. Neuron 2019; 104:693-710.e9. [PMID: 31558350 DOI: 10.1016/j.neuron.2019.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/31/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
Abstract
The nanoscale topographical arrangement of voltage-gated calcium channels (VGCC) and synaptic vesicles (SVs) determines synaptic strength and plasticity, but whether distinct spatial distributions underpin diversity of synaptic function is unknown. We performed single bouton Ca2+ imaging, Ca2+ chelator competition, immunogold electron microscopic (EM) localization of VGCCs and the active zone (AZ) protein Munc13-1, at two cerebellar synapses. Unexpectedly, we found that weak synapses exhibited 3-fold more VGCCs than strong synapses, while the coupling distance was 5-fold longer. Reaction-diffusion modeling could explain both functional and structural data with two strikingly different nanotopographical motifs: strong synapses are composed of SVs that are tightly coupled (∼10 nm) to VGCC clusters, whereas at weak synapses VGCCs were excluded from the vicinity (∼50 nm) of docked vesicles. The distinct VGCC-SV topographical motifs also confer differential sensitivity to neuromodulation. Thus, VGCC-SV arrangements are not canonical, and their diversity could underlie functional heterogeneity across CNS synapses.
Collapse
|
37
|
An opposing function of paralogs in balancing developmental synapse maturation. PLoS Biol 2018; 16:e2006838. [PMID: 30586380 PMCID: PMC6324823 DOI: 10.1371/journal.pbio.2006838] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/08/2019] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
The disc-large (DLG)-membrane-associated guanylate kinase (MAGUK) family of proteins forms a central signaling hub of the glutamate receptor complex. Among this family, some proteins regulate developmental maturation of glutamatergic synapses, a process vulnerable to aberrations, which may lead to neurodevelopmental disorders. As is typical for paralogs, the DLG-MAGUK proteins postsynaptic density (PSD)-95 and PSD-93 share similar functional domains and were previously thought to regulate glutamatergic synapses similarly. Here, we show that they play opposing roles in glutamatergic synapse maturation. Specifically, PSD-95 promoted, whereas PSD-93 inhibited maturation of immature α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptor (AMPAR)-silent synapses in mouse cortex during development. Furthermore, through experience-dependent regulation of its protein levels, PSD-93 directly inhibited PSD-95's promoting effect on silent synapse maturation in the visual cortex. The concerted function of these two paralogs governed the critical period of juvenile ocular dominance plasticity (jODP), and fine-tuned visual perception during development. In contrast to the silent synapse-based mechanism of adjusting visual perception, visual acuity improved by different mechanisms. Thus, by controlling the pace of silent synapse maturation, the opposing but properly balanced actions of PSD-93 and PSD-95 are essential for fine-tuning cortical networks for receptive field integration during developmental critical periods, and imply aberrations in either direction of this process as potential causes for neurodevelopmental disorders.
Collapse
|
38
|
Abstract
The climbing fiber-Purkinje cell circuit is one of the most powerful and highly conserved in the central nervous system. Climbing fibers exert a powerful excitatory action that results in a complex spike in Purkinje cells and normal functioning of the cerebellum depends on the integrity of climbing fiber-Purkinje cell synapse. Over the last 50 years, multiple hypotheses have been put forward on the role of the climbing fibers and complex spikes in cerebellar information processing and motor control. Central to these theories is the nature of the interaction between the low-frequency complex spike discharge and the high-frequency simple spike firing of Purkinje cells. This review examines the major hypotheses surrounding the action of the climbing fiber-Purkinje cell projection, discussing both supporting and conflicting findings. The review describes newer findings establishing that climbing fibers and complex spikes provide predictive signals about movement parameters and that climbing fiber input controls the encoding of behavioral information in the simple spike firing of Purkinje cells. Finally, we propose the dynamic encoding hypothesis for complex spike function that strives to integrate established and newer findings.
Collapse
Affiliation(s)
- Martha L Streng
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth Street S.E, Minneapolis, MN, 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth Street S.E, Minneapolis, MN, 55455, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth Street S.E, Minneapolis, MN, 55455, USA.
| |
Collapse
|
39
|
Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH. Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper [corrected]. CEREBELLUM (LONDON, ENGLAND) 2018; 17:654-682. [PMID: 29876802 PMCID: PMC6132822 DOI: 10.1007/s12311-018-0952-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.
Collapse
Affiliation(s)
- Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Hawkes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sho Aoki
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Fredrik Bengtsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Amanda M. Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Henrik Jörntell
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elizabeth P. Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Charlotte Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bridget Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Antoine Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jan Voogd
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Douglas R. Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB Canada
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
40
|
Popa LS, Streng ML, Ebner TJ. Purkinje Cell Representations of Behavior: Diary of a Busy Neuron. Neuroscientist 2018; 25:241-257. [PMID: 29985093 DOI: 10.1177/1073858418785628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fundamental for understanding cerebellar function is determining the representations in Purkinje cell activity, the sole output of the cerebellar cortex. Up to the present, the most accurate descriptions of the information encoded by Purkinje cells were obtained in the context of motor behavior and reveal a high degree of heterogeneity of kinematic and performance error signals encoded. The most productive framework for organizing Purkinje cell firing representations is provided by the forward internal model hypothesis. Direct tests of this hypothesis show that individual Purkinje cells encode two different forward models simultaneously, one for effector kinematics and one for task performance. Newer results demonstrate that the timing of simple spike encoding of motor parameters spans an extend interval of up to ±2 seconds. Furthermore, complex spike discharge is not limited to signaling errors, can be predictive, and dynamically controls the information in the simple spike firing to meet the demands of upcoming behavior. These rich, diverse, and changing representations highlight the integrative aspects of cerebellar function and offer the opportunity to generalize the cerebellar computational framework over both motor and non-motor domains.
Collapse
Affiliation(s)
- Laurentiu S Popa
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Martha L Streng
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Ebner
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
41
|
Modulation of sensory prediction error in Purkinje cells during visual feedback manipulations. Nat Commun 2018; 9:1099. [PMID: 29545572 PMCID: PMC5854574 DOI: 10.1038/s41467-018-03541-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/21/2018] [Indexed: 11/09/2022] Open
Abstract
It is hypothesized that the cerebellum implements a forward internal model that transforms motor commands into predictions about upcoming movements. The predictions are compared with sensory feedback to generate sensory prediction errors critical to controlling movements. The simple spike firing of cerebellar Purkinje cells both lead and lag movement consistent with representations of motor predictions and sensory feedback. This study tests whether this leading and lagging modulation provides the prediction and sensory feedback necessary to compute sensory prediction errors. Two manipulations of the visual feedback are used in rhesus monkeys performing pseudo-random tracking. Consistent with a forward model, delaying the visual feedback demonstrates that the leading simple spike modulation with position error is time-locked to the hand movement. Reducing the feedback shows that the lagged modulation is directly driven by visual inputs. Therefore, Purkinje cell discharge carries both the motor predictions and sensory feedback required of a forward internal model.
Collapse
|
42
|
Doussau F, Schmidt H, Dorgans K, Valera AM, Poulain B, Isope P. Frequency-dependent mobilization of heterogeneous pools of synaptic vesicles shapes presynaptic plasticity. eLife 2017; 6:28935. [PMID: 28990927 PMCID: PMC5648531 DOI: 10.7554/elife.28935] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/06/2017] [Indexed: 12/03/2022] Open
Abstract
The segregation of the readily releasable pool of synaptic vesicles (RRP) in sub-pools that are differentially poised for exocytosis shapes short-term plasticity. However, the frequency-dependent mobilization of these sub-pools is poorly understood. Using slice recordings and modeling of synaptic activity at cerebellar granule cell to Purkinje cell synapses of mice, we describe two sub-pools in the RRP that can be differentially recruited upon ultrafast changes in the stimulation frequency. We show that at low-frequency stimulations, a first sub-pool is gradually silenced, leading to full blockage of synaptic transmission. Conversely, a second pool of synaptic vesicles that cannot be released by a single stimulus is recruited within milliseconds by high-frequency stimulation and support an ultrafast recovery of neurotransmitter release after low-frequency depression. This frequency-dependent mobilization or silencing of sub-pools in the RRP in terminals of granule cells may play a role in the filtering of sensorimotor information in the cerebellum.
Collapse
Affiliation(s)
- Frédéric Doussau
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Hartmut Schmidt
- Carl-Ludwig Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Kevin Dorgans
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Antoine M Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
43
|
Masoli S, D'Angelo E. Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Front Cell Neurosci 2017; 11:278. [PMID: 28955206 PMCID: PMC5602117 DOI: 10.3389/fncel.2017.00278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 01/24/2023] Open
Abstract
The dendritic processing in cerebellar Purkinje cells (PCs), which integrate synaptic inputs coming from hundreds of thousands granule cells and molecular layer interneurons, is still unclear. Here we have tested a leading hypothesis maintaining that the significant PC output code is represented by burst-pause responses (BPRs), by simulating PC responses in a biophysically detailed model that allowed to systematically explore a broad range of input patterns. BPRs were generated by input bursts and were more prominent in Zebrin positive than Zebrin negative (Z+ and Z-) PCs. Different combinations of parallel fiber and molecular layer interneuron synapses explained type I, II and III responses observed in vivo. BPRs were generated intrinsically by Ca-dependent K channel activation in the somato-dendritic compartment and the pause was reinforced by molecular layer interneuron inhibition. BPRs faithfully reported the duration and intensity of synaptic inputs, such that synaptic conductance tuned the number of spikes and release probability tuned their regularity in the millisecond range. Interestingly, the burst and pause of BPRs depended on the stimulated dendritic zone reflecting the different input conductance and local engagement of voltage-dependent channels. Multiple local inputs combined their actions generating complex spatio-temporal patterns of dendritic activity and BPRs. Thus, local control of intrinsic dendritic mechanisms by synaptic inputs emerges as a fundamental PC property in activity regimens characterized by bursting inputs from granular and molecular layer neurons.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| |
Collapse
|
44
|
Fujii M, Ohashi K, Karasawa Y, Hikichi M, Kuroda S. Small-Volume Effect Enables Robust, Sensitive, and Efficient Information Transfer in the Spine. Biophys J 2017; 112:813-826. [PMID: 28256240 DOI: 10.1016/j.bpj.2016.12.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022] Open
Abstract
Why is the spine of a neuron so small that it can contain only small numbers of molecules and reactions inevitably become stochastic? We previously showed that, despite such noisy conditions, the spine exhibits robust, sensitive, and efficient features of information transfer using the probability of Ca2+ increase; however, the mechanisms are unknown. In this study, we show that the small volume effect enables robust, sensitive, and efficient information transfer in the spine volume, but not in the cell volume. In the spine volume, the intrinsic noise in reactions becomes larger than the extrinsic noise of input, resulting in robust information transfer despite input fluctuation. In the spine volume, stochasticity makes the Ca2+ increase occur with a lower intensity of input, causing higher sensitivity to lower intensity of input. The volume-dependency of information transfer increases its efficiency in the spine volume. Thus, we propose that the small-volume effect is the functional reason why the spine has to be so small.
Collapse
Affiliation(s)
- Masashi Fujii
- Department of Biological Sciences, University of Tokyo, Bukyo-ku, Tokyo, Japan; Molecular Genetics Research Laboratory, Graduate School of Sciences, University of Tokyo, Bukyo-ku, Tokyo, Japan
| | - Kaoru Ohashi
- Department of Biological Sciences, University of Tokyo, Bukyo-ku, Tokyo, Japan
| | - Yasuaki Karasawa
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Bukyo-ku, Tokyo, Japan
| | - Minori Hikichi
- Department of Biological Sciences, University of Tokyo, Bukyo-ku, Tokyo, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, University of Tokyo, Bukyo-ku, Tokyo, Japan; Molecular Genetics Research Laboratory, Graduate School of Sciences, University of Tokyo, Bukyo-ku, Tokyo, Japan; CREST, Japan Science and Technology Agency, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
45
|
Scheuer T, Sharkovska Y, Tarabykin V, Marggraf K, Brockmöller V, Bührer C, Endesfelder S, Schmitz T. Neonatal Hyperoxia Perturbs Neuronal Development in the Cerebellum. Mol Neurobiol 2017; 55:3901-3915. [PMID: 28547531 DOI: 10.1007/s12035-017-0612-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Impaired postnatal brain development of preterm infants often results in neurological deficits. Besides pathologies of the forebrain, maldeveolopment of the cerebellum is increasingly recognized to contribute to psychomotor impairments of many former preterm infants. However, causes are poorly defined. We used a hyperoxia model to define neonatal damage in cerebellar granule cell precursors (GCPs) and in Purkinje cells (PCs) known to be essential for interaction with GCPs during development. We exposed newborn rats to 24 h 80% O2 from age P6 to P7 to identify postnatal and long-term damage in cerebellar GCPs at age P7 after hyperoxia and also after recovery in room air thereafter until P11 and P30. We determined proliferation and apoptosis of GCPs and immature neurons by immunohistochemistry, quantified neuronal damage by qPCR and Western blots for neuronal markers, and measured dendrite outgrowth of PCs by CALB1 immunostainings and by Sholl analysis of Golgi stainings. After hyperoxia, proliferation of PAX6+ GCPs was decreased at P7, while DCX + CASP3+ cells were increased at P11. Neuronal markers Pax6, Tbr2, and Prox1 were downregulated at P11 and P30. Neuronal damage was confirmed by reduced NeuN protein expression at P30. Sonic hedgehog (SHH) was significantly decreased at P7 and P11 after hyperoxia and coincided with lower CyclinD2 and Hes1 expression at P7. The granule cell injury was accompanied by hampered PC maturation with delayed dendrite formation and impaired branching. Neonatal injury induced by hyperoxia inhibits PC functioning and impairs granule cell development. As a conclusion, maldevelopment of the cerebellar neurons found in preterm infants could be caused by postnatal oxygen toxicity.
Collapse
Affiliation(s)
- Till Scheuer
- Department for Neonatology, Charité University Medical Center, Berlin, Germany. .,Institute of Bioanalytics, Technische Universität Berlin, 13355, Berlin, Germany. .,Klinik für Neonatologie, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yuliya Sharkovska
- Department for Neonatology, Charité University Medical Center, Berlin, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité University Medical Center, Berlin, Germany
| | - Victor Tarabykin
- Institute for Cell and Neurobiology, Center for Anatomy, Charité University Medical Center, Berlin, Germany
| | - Katharina Marggraf
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Vivien Brockmöller
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Christoph Bührer
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | | | - Thomas Schmitz
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| |
Collapse
|
46
|
Exact firing time statistics of neurons driven by discrete inhibitory noise. Sci Rep 2017; 7:1577. [PMID: 28484244 PMCID: PMC5431561 DOI: 10.1038/s41598-017-01658-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Neurons in the intact brain receive a continuous and irregular synaptic bombardment from excitatory and inhibitory pre- synaptic neurons, which determines the firing activity of the stimulated neuron. In order to investigate the influence of inhibitory stimulation on the firing time statistics, we consider Leaky Integrate-and-Fire neurons subject to inhibitory instantaneous post- synaptic potentials. In particular, we report exact results for the firing rate, the coefficient of variation and the spike train spectrum for various synaptic weight distributions. Our results are not limited to stimulations of infinitesimal amplitude, but they apply as well to finite amplitude post-synaptic potentials, thus being able to capture the effect of rare and large spikes. The developed methods are able to reproduce also the average firing properties of heterogeneous neuronal populations.
Collapse
|
47
|
Ly R, Bouvier G, Szapiro G, Prosser HM, Randall AD, Kano M, Sakimura K, Isope P, Barbour B, Feltz A. Contribution of postsynaptic T-type calcium channels to parallel fibre-Purkinje cell synaptic responses. J Physiol 2016; 594:915-36. [PMID: 26627919 DOI: 10.1113/jp271623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/01/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS At the parallel fibre-Purkinje cell glutamatergic synapse, little or no Ca(2+) entry takes place through postsynaptic neurotransmitter receptors, although postsynaptic calcium increases are clearly involved in the synaptic plasticity. Postsynaptic voltage-gated Ca(2+) channels therefore constitute the sole rapid postsynaptic Ca(2+) signalling mechanism, making it essential to understand how they contribute to the synaptic signalling. Using a selective T-type calcium channel antagonist, we describe a T-type component of the EPSC that is activated by the AMPA receptor-mediated depolarization of the spine and thus will contribute to the local calcium dynamics. This component can amount up to 20% of the EPSC, and this fraction is maintained even at the high frequencies sometimes encountered in sensory processing. Modelling based on our biophysical characterization of T-type calcium channels in Purkinje cells suggests that the brief spine EPSCs cause the activated T-type channels to deactivate rather than inactivate, enabling repetitive activation. ABSTRACT In the cerebellum, sensory information is conveyed to Purkinje cells (PC) via the granule cell/parallel fibre (PF) pathway. Plasticity at the PF-PC synapse is considered to be a mechanism of information storage in motor learning. The induction of synaptic plasticity in the cerebellum and elsewhere usually involves intracellular Ca(2+) signals. Unusually, postsynaptic Ca(2+) signalling in PF-PC spines does not involve ionotropic glutamatergic receptors because postsynaptic NMDA receptors are absent and the AMPA receptors are Ca(2+) -impermeable; postsynaptic voltage-gated Ca(2+) channels therefore constitute the sole rapid Ca(2+) signalling mechanism. Low-threshold activated T-type calcium channels are present at the synapse, although their contribution to PF-PC synaptic responses is unknown. Taking advantage of 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide, a selective T-type channel antagonist, we show in the mouse that inhibition of these channels reduces PF-PC excitatory postsynaptic currents and excitatory postsynaptic potentials by 15-20%. This contribution was preserved during sparse input and repetitive activity. We characterized the biophysical properties of native T-type channels in young animals and modelled their activation during simulated dendritic excitatory postsynaptic potential waveforms. The comparison of modelled and observed synaptic responses suggests that T-type channels only activate in spines that are strongly depolarized by their synaptic input, a process requiring a high spine neck resistance. This brief and local activation ensures that T-type channels rapidly deactivate, thereby limiting inactivation during repetitive synaptic activity. T-type channels are therefore ideally situated to provide synaptic Ca(2+) entry at PF-PC spines.
Collapse
Affiliation(s)
- Romain Ly
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS UMR 8197 and INSERM U1024, Paris, France
| | - Guy Bouvier
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS UMR 8197 and INSERM U1024, Paris, France
| | - German Szapiro
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS UMR 8197 and INSERM U1024, Paris, France
| | - Haydn M Prosser
- GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, UK., Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Andrew D Randall
- GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, UK.,School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol, UK
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Philippe Isope
- INCI, CNRS UPR 3212, Centre de Neurochimie, Strasbourg, France
| | - Boris Barbour
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS UMR 8197 and INSERM U1024, Paris, France
| | - Anne Feltz
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS UMR 8197 and INSERM U1024, Paris, France
| |
Collapse
|
48
|
Hoxha E, Tempia F, Lippiello P, Miniaci MC. Modulation, Plasticity and Pathophysiology of the Parallel Fiber-Purkinje Cell Synapse. Front Synaptic Neurosci 2016; 8:35. [PMID: 27857688 PMCID: PMC5093118 DOI: 10.3389/fnsyn.2016.00035] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/19/2016] [Indexed: 12/24/2022] Open
Abstract
The parallel fiber-Purkinje cell (PF-PC) synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fiber activity generates fast postsynaptic currents via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression (LTD) and long-term potentiation (LTP) have been widely described for the PF-PC synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The PF-PC synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the PF-PC synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, PF-PC synapse dysfunctions have been identified in several murine models of spino-cerebellar ataxia (SCA) types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27), while in others the mGlu1 pathway is affected (SCA1, 3, 5). Interestingly, the PF-PC synapse has been shown to be hyper-functional in a mutant mouse model of autism spectrum disorder, with a selective deletion of Pten in Purkinje cells. However, the full range of methodological approaches, that allowed the discovery of the physiological principles of PF-PC synapse function, has not yet been completely exploited to investigate the pathophysiological mechanisms of diseases involving the cerebellum. We, therefore, propose to extend the spectrum of experimental investigations to tackle this problem.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and Department of Neuroscience, University of TorinoTorino, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and Department of Neuroscience, University of TorinoTorino, Italy
| | | | | |
Collapse
|
49
|
Jörntell H. Cerebellar physiology: links between microcircuitry properties and sensorimotor functions. J Physiol 2016; 595:11-27. [PMID: 27388692 DOI: 10.1113/jp272769] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/29/2016] [Indexed: 11/08/2022] Open
Abstract
Existing knowledge of the cerebellar microcircuitry structure and physiology allows a rather detailed description of what it in itself can and cannot do. Combined with a known mapping of different cerebellar regions to afferent systems and motor output target structures, there are several constraints that can be used to describe how specific components of the cerebellar microcircuitry may work during sensorimotor control. In fact, as described in this review, the major factor that hampers further progress in understanding cerebellar function is the limited insights into the circuitry-level function of the targeted motor output systems and the nature of the information in the mossy fiber afferents. The cerebellar circuitry in itself is here summarized as a gigantic associative memory element, primarily consisting of the parallel fiber synapses, whereas most other circuitry components, including the climbing fiber system, primarily has the role of maintaining activity balance in the intracerebellar and extracerebellar circuitry. The review explores the consistency of this novel interpretational framework with multiple diverse observations at the synaptic and microcircuitry level within the cerebellum.
Collapse
Affiliation(s)
- Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
50
|
Barmack NH, Yakhnitsa V. Climbing fibers mediate vestibular modulation of both "complex" and "simple spikes" in Purkinje cells. THE CEREBELLUM 2016; 14:597-612. [PMID: 26424151 DOI: 10.1007/s12311-015-0725-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Climbing and mossy fibers comprise two distinct afferent paths to the cerebellum. Climbing fibers directly evoke a large multispiked action potential in Purkinje cells termed a "complex spike" (CS). By logical exclusion, the other class of Purkinje cell action potential, termed "simple spike" (SS), has often been attributed to activity conveyed by mossy fibers and relayed to Purkinje cells through granule cells. Here, we investigate the relative importance of climbing and mossy fiber pathways in modulating neuronal activity by recording extracellularly from Purkinje cells, as well as from mossy fiber terminals and interneurons in folia 8-10. Sinusoidal roll-tilt vestibular stimulation vigorously modulates the discharge of climbing and mossy fiber afferents, Purkinje cells, and interneurons in folia 9-10 in anesthetized mice. Roll-tilt onto the side ipsilateral to the recording site increases the discharge of both climbing fibers (CSs) and mossy fibers. However, the discharges of SSs decrease during ipsilateral roll-tilt. Unilateral microlesions of the beta nucleus (β-nucleus) of the inferior olive blocks vestibular modulation of both CSs and SSs in contralateral Purkinje cells. The blockage of SSs occurs even though primary and secondary vestibular mossy fibers remain intact. When mossy fiber afferents are damaged by a unilateral labyrinthectomy (UL), vestibular modulation of SSs in Purkinje cells ipsilateral to the UL remains intact. Two inhibitory interneurons, Golgi and stellate cells, could potentially contribute to climbing fiber-induced modulation of SSs. However, during sinusoidal roll-tilt, only stellate cells discharge appropriately out of phase with the discharge of SSs. Golgi cells discharge in phase with SSs. When the vestibularly modulated discharge is blocked by a microlesion of the inferior olive, the modulated discharge of CSs and SSs is also blocked. When the vestibular mossy fiber pathway is destroyed, vestibular modulation of ipsilateral CSs and SSs persists. We conclude that climbing fibers are primarily responsible for the vestibularly modulated discharge of both CSs and SSs. Modulation of the discharge of SSs is likely caused by climbing fiber-evoked stellate cell inhibition.
Collapse
Affiliation(s)
- N H Barmack
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - V Yakhnitsa
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| |
Collapse
|