1
|
Bevan RJ, Cimaglia G, Morgan JE, Taylor PR. Improved DiOlistic labelling technique for neurons in situ: Detailed visualisation of dendritic spines and concurrent histochemical-detection in fixed tissue. Methods 2024; 229:82-93. [PMID: 38917961 DOI: 10.1016/j.ymeth.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
DiOlistic labelling is a robust, unbiased ballistic method that utilises lipophilic dyes to morphologically label neurons. While its efficacy on freshly dissected tissue specimens is well-documented, applying DiOlistic labelling to stored, fixed brain tissue and its use in polychromatic multi-marker studies poses significant technical challenges. Here, we present an improved, step-by-step protocol for DiOlistic labelling of dendrites and dendritic spines in fixed mouse tissue. Our protocol encompasses the five key stages: Tissue Preparation, Dye Bullet Preparation, DiOlistic Labelling, Confocal Imaging, and Image Analysis. This method ensures reliable and consistent labelling of dendritic spines in fixed mouse tissue, combined with increased throughput of samples and multi-parameter staining and visualisation of tissue, thereby offering a valuable approach for neuroscientific research.
Collapse
Affiliation(s)
- Ryan J Bevan
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Gloria Cimaglia
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff CF24 4HQ, UK; School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK; University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Philip R Taylor
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff CF24 4HQ, UK; Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
2
|
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, Faull RLM, Jayadev S, Yednock T, Yang XW, Stevens B. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nat Med 2023; 29:2866-2884. [PMID: 37814059 PMCID: PMC10667107 DOI: 10.1038/s41591-023-02566-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Huntington's disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from patients with HD that is associated with the increased activation and localization of complement proteins, innate immune molecules, to these synaptic elements. We also found that levels of these secreted innate immune molecules are elevated in the cerebrospinal fluid of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD, we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis, marking them for removal by microglia, the brain's resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons. Inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function-blocking antibody or genetic ablation of a complement receptor on microglia prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD; they also provide new preclinical data to support complement as a therapeutic target for early intervention.
Collapse
Affiliation(s)
- Daniel K Wilton
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
| | - Kevin Mastro
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Molly D Heller
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Frederick W Gergits
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Carly Rose Willing
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Jaclyn B Fahey
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Arnaud Frouin
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Anthony Daggett
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Yejin A Kim
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Richard L M Faull
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Beth Stevens
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
- Stanley Center, Broad Institute, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Rueda‐Carrasco J, Sokolova D, Lee S, Childs T, Jurčáková N, Crowley G, De Schepper S, Ge JZ, Lachica JI, Toomey CE, Freeman OJ, Hardy J, Barnes SJ, Lashley T, Stevens B, Chang S, Hong S. Microglia-synapse engulfment via PtdSer-TREM2 ameliorates neuronal hyperactivity in Alzheimer's disease models. EMBO J 2023; 42:e113246. [PMID: 37575021 PMCID: PMC10548173 DOI: 10.15252/embj.2022113246] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aβ oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aβ oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aβ-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.
Collapse
Affiliation(s)
- Javier Rueda‐Carrasco
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| | - Dimitra Sokolova
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
- Neuroscience BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Sang‐Eun Lee
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
- Department of Physiology and Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
| | - Thomas Childs
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| | - Natália Jurčáková
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Gerard Crowley
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| | | | - Judy Z Ge
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| | - Joanne I Lachica
- The Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | - Christina E Toomey
- The Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | | | - John Hardy
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain SciencesImperial College LondonLondonUK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Beth Stevens
- F.M. Kirby Neurobiology CenterBoston Children's HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMAUSA
- Howard Hughes Medical Institute, Boston Children's HospitalBostonMAUSA
| | - Sunghoe Chang
- Department of Physiology and Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
| | - Soyon Hong
- UK Dementia Research Institute, Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
4
|
Lamanna J, Ferro M, Spadini S, Malgaroli A. Exploiting the molecular diversity of the synapse to investigate neuronal communication: A guide through the current toolkit. Eur J Neurosci 2022; 56:6141-6161. [PMID: 36239030 PMCID: PMC10100385 DOI: 10.1111/ejn.15848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022]
Abstract
Chemical synapses are tiny and overcrowded environments, deeply embedded inside brain tissue and enriched with thousands of protein species. Many efforts have been devoted to developing custom approaches for evaluating and modifying synaptic activity. Most of these methods are based on the engineering of one or more synaptic protein scaffolds used to target active moieties to the synaptic compartment or to manipulate synaptic functioning. In this review, we summarize the most recent methodological advances and provide a description of the involved proteins as well as the operation principle. Furthermore, we highlight their advantages and limitations in relation to studies of synaptic transmission in vitro and in vivo. Concerning the labelling methods, the most important challenge is how to extend the available approaches to the in vivo setting. On the other hand, for those methods that allow manipulation of synaptic function, this limit has been overcome using optogenetic approaches that can be more easily applied to the living brain. Finally, future applications of these methods to neuroscience, as well as new potential routes for development, are discussed.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Turro, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
5
|
Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms. Mol Cell Neurosci 2020; 109:103564. [DOI: 10.1016/j.mcn.2020.103564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
|
6
|
Tanaka S, Masuda Y, Harada A, Okabe S. Impaired actin dynamics and suppression of Shank2-mediated spine enlargement in cortactin knockout mice. ACTA ACUST UNITED AC 2020; 69:44-52. [PMID: 31990031 DOI: 10.1093/jmicro/dfaa001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Cortactin regulates actin polymerization and stabilizes branched actin network. In neurons, cortactin is enriched in dendritic spines that contain abundant actin polymers. To explore the function of cortactin in dendritic spines, we examined spine morphology and dynamics in cultured neurons taken from cortactin knockout (KO) mice. Histological analysis revealed that the density and morphology of dendritic spines were not significantly different between wild-type (WT) and cortactin KO neurons. Time-lapse imaging of hippocampal slice cultures showed that the extent of spine volume change was similar between WT and cortactin KO neurons. Despite little effect of cortactin deletion on spine morphology and dynamics, actin turnover in dendritic spines was accelerated in cortactin KO neurons. Furthermore, we detected a suppressive effect of cortactin KO on spine head size under the condition of excessive spine enlargement induced by overexpression of a prominent postsynaptic density protein Shank2. These results suggest that cortactin may have a role in maintaining actin organization by stabilizing actin filaments near the postsynaptic density.
Collapse
Affiliation(s)
- Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasutaka Masuda
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Iwasaki K, Obashi K, Okabe S. Vasodilator‐stimulated phosphoprotein (VASP) is recruited into dendritic spines via G‐actin‐dependent mechanism and contributes to spine enlargement and stabilization. Eur J Neurosci 2019; 51:806-821. [DOI: 10.1111/ejn.14634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Kanako Iwasaki
- Department of Cellular Neurobiology Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Kazuki Obashi
- Department of Cellular Neurobiology Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology Graduate School of Medicine The University of Tokyo Tokyo Japan
| |
Collapse
|
8
|
New Alzheimer's disease model mouse specialized for analyzing the function and toxicity of intraneuronal Amyloid β oligomers. Sci Rep 2019; 9:17368. [PMID: 31757975 PMCID: PMC6874556 DOI: 10.1038/s41598-019-53415-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/29/2019] [Indexed: 11/11/2022] Open
Abstract
Oligomers of intracellular amyloid β protein (Aβ) are strongly cytotoxic and play crucial roles in synaptic transmission and cognitive function in Alzheimer’s disease (AD). However, there is currently no AD model mouse in which to specifically analyze the function of Aβ oligomers only. We have now developed a novel AD model mouse, an Aβ-GFP transgenic mouse (Aβ-GFP Tg), that expresses the GFP-fused human Aβ1-42 protein, which forms only Aβ oligomers within neurons throughout their life. The fusion proteins are expressed mainly in the hippocampal CA1-CA2 region and cerebral cortex, and are not secreted extracellularly. The Aβ-GFP Tg mice exhibit increased tau phosphorylation, altered spine morphology, decreased expressions of the GluN2B receptor and neuroligin in synaptic regions, attenuated hippocampal long-term potentiation, and impaired object recognition memory compared with non-Tg littermates. Interestingly, these dysfunctions have already appeared in 2–3-months-old animals. The Aβ-GFP fusion protein is bioactive and highly toxic, and induces the similar synaptic dysfunctions as the naturally generated Aβ oligomer derived from postmortem AD patient brains and synthetic Aβ oligomers. Thus, Aβ-GFP Tg mouse is a new tool specialized to analyze the function of Aβ oligomers in vivo and to find subtle changes in synapses in early symptoms of AD.
Collapse
|
9
|
Zhang X, Yin X, Zhang J, Li A, Gong H, Luo Q, Zhang H, Gao Z, Jiang H. High-resolution mapping of brain vasculature and its impairment in the hippocampus of Alzheimer's disease mice. Natl Sci Rev 2019; 6:1223-1238. [PMID: 34692000 PMCID: PMC8291402 DOI: 10.1093/nsr/nwz124] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 01/24/2023] Open
Abstract
Accumulating evidence indicates the critical importance of cerebrovascular dysfunction in the pathogenesis of Alzheimer's disease (AD). However, systematic comparative studies on the precise brain vasculature of wild-type and AD model mice are still rare. Using an image-optimization method for analysing Micro-Optical Sectioning Tomography (MOST) data, we generated cross-scale whole-brain 3D atlases that cover the entire vascular system from large vessels down to smallest capillaries at submicron resolution, for both wild-type mice and a transgenic (APP/PS1) mouse model of AD. In addition to distinct vascular patterns in different brain regions, we found that the main vessels of the molecular layer of the hippocampal dentate gyrus (DG-ml) undergo abrupt changes in both diameter and branch angle, spreading a unique comb-like pattern of capillaries. By using a quantitative analysis workflow, we identified in the hippocampus of AD mice an overall reduction of the mean vascular diameter, volume fraction and branch angle, with most significant impairment in the DG-ml. In addition, virtual endoscopy revealed irregular morphological features in the vessel lumen of the AD mice, potentially contributing to the impairment of blood flow. Our results demonstrate the capability of high-resolution cross-scale evaluation of brain vasculature and underscore the importance of studying hippocampal microcirculation for understanding AD pathogenesis.
Collapse
Affiliation(s)
- Xiaochuan Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xianzhen Yin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingjing Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
10
|
Li J, Sekine‐Aizawa Y, Ebrahimi S, Tanaka S, Okabe S. Tumor suppressor protein
CYLD
regulates morphogenesis of dendrites and spines. Eur J Neurosci 2019; 50:2722-2739. [DOI: 10.1111/ejn.14421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jun Li
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Yoko Sekine‐Aizawa
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Saman Ebrahimi
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Shinji Tanaka
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| |
Collapse
|
11
|
Obashi K, Matsuda A, Inoue Y, Okabe S. Precise Temporal Regulation of Molecular Diffusion within Dendritic Spines by Actin Polymers during Structural Plasticity. Cell Rep 2019; 27:1503-1515.e8. [DOI: 10.1016/j.celrep.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/22/2019] [Accepted: 03/29/2019] [Indexed: 10/26/2022] Open
|
12
|
Sato C, Yamazawa T, Ohtani A, Maruyama Y, Memtily N, Sato M, Hatano Y, Shiga T, Ebihara T. Primary cultured neuronal networks and type 2 diabetes model mouse fatty liver tissues in aqueous liquid observed by atmospheric SEM (ASEM): Staining preferences of metal solutions. Micron 2019; 118:9-21. [DOI: 10.1016/j.micron.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 01/25/2023]
|
13
|
Cornelia Koeberle S, Tanaka S, Kuriu T, Iwasaki H, Koeberle A, Schulz A, Helbing DL, Yamagata Y, Morrison H, Okabe S. Developmental stage-dependent regulation of spine formation by calcium-calmodulin-dependent protein kinase IIα and Rap1. Sci Rep 2017; 7:13409. [PMID: 29042611 PMCID: PMC5645322 DOI: 10.1038/s41598-017-13728-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
The roles of calcium-calmodulin-dependent protein kinase II-alpha (CaMKIIα) in the expression of long-term synaptic plasticity in the adult brain have been extensively studied. However, how increased CaMKIIα activity controls the maturation of neuronal circuits remains incompletely understood. Herein, we show that pyramidal neurons without CaMKIIα activity upregulate the rate of spine addition, resulting in elevated spine density. Genetic elimination of CaMKIIα activity specifically eliminated the observed maturation-dependent suppression of spine formation. Enhanced spine formation was associated with the stabilization of actin in the spine and could be reversed by increasing the activity of the small GTPase Rap1. CaMKIIα activity was critical in the phosphorylation of synaptic Ras GTPase-activating protein (synGAP), the dispersion of synGAP from postsynaptic sites, and the activation of postsynaptic Rap1. CaMKIIα is already known to be essential in learning and memory, but our findings suggest that CaMKIIα plays an important activity-dependent role in restricting spine density during postnatal development.
Collapse
Affiliation(s)
- Solveigh Cornelia Koeberle
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Institute of Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,CREST, JST, Japan
| | - Toshihiko Kuriu
- Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan
| | - Hirohide Iwasaki
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,CREST, JST, Japan
| | - Andreas Koeberle
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Alexander Schulz
- Institute of Age Research, Fritz Lipmann Institute, Jena, Germany
| | | | - Yoko Yamagata
- Division of Neural Signaling, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Helen Morrison
- Institute of Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan. .,CREST, JST, Japan.
| |
Collapse
|
14
|
OKABE S. Fluorescence imaging of synapse dynamics in normal circuit maturation and in developmental disorders. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:483-497. [PMID: 28769018 PMCID: PMC5713177 DOI: 10.2183/pjab.93.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
One of the most fundamental questions in neurobiology is how proper synaptic connections are established in the developing brain. Live-cell imaging of the synaptic structure and functional molecules can reveal the time course of synapse formation, molecular dynamics, and functional maturation. Using postsynaptic scaffolding proteins as a marker of synapse development, fluorescence time-lapse imaging revealed rapid formation of individual synapses that occurred within hours and their remodeling in culture preparations. In vivo two-photon excitation microscopy development enabled us to directly measure synapse turnover in living animals. In vivo synapse dynamics were suppressed in the adult rodent brain, but were maintained at a high level during the early postnatal period. This transition in synapse dynamics is biologically important and can be linked to the pathology of juvenile-onset psychiatric diseases. Indeed, the upregulation of synapse dynamics was observed in multiple mouse models of autism spectrum disorders. Fluorescence imaging of synapses provides new information regarding the physiology and pathology of neural circuit construction.
Collapse
Affiliation(s)
- Shigeo OKABE
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016; 352:712-716. [PMID: 27033548 PMCID: PMC5094372 DOI: 10.1126/science.aad8373] [Citation(s) in RCA: 2040] [Impact Index Per Article: 255.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
Synapse loss in Alzheimer's disease (AD) correlates with cognitive decline. Involvement of microglia and complement in AD has been attributed to neuroinflammation, prominent late in disease. Here we show in mouse models that complement and microglia mediate synaptic loss early in AD. C1q, the initiating protein of the classical complement cascade, is increased and associated with synapses before overt plaque deposition. Inhibition of C1q, C3, or the microglial complement receptor CR3 reduces the number of phagocytic microglia, as well as the extent of early synapse loss. C1q is necessary for the toxic effects of soluble β-amyloid (Aβ) oligomers on synapses and hippocampal long-term potentiation. Finally, microglia in adult brains engulf synaptic material in a CR3-dependent process when exposed to soluble Aβ oligomers. Together, these findings suggest that the complement-dependent pathway and microglia that prune excess synapses in development are inappropriately activated and mediate synapse loss in AD.
Collapse
Affiliation(s)
- Soyon Hong
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Victoria F Beja-Glasser
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bianca M Nfonoyim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Arnaud Frouin
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Saranya Ramakrishnan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Katherine M Merry
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Qiaoqiao Shi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Arnon Rosenthal
- Alector Inc., 953 Indiana St, San Francisco, California 94107, USA
- Annexon Biosciences, 280 Utah Avenue Suite 110, South San Francisco, California 94080, USA
- Department of Anatomy, University of California San Francisco, California 94143, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Prothena Biosciences, Dublin, Ireland
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
16
|
Ochiishi T, Doi M, Yamasaki K, Hirose K, Kitamura A, Urabe T, Hattori N, Kinjo M, Ebihara T, Shimura H. Development of new fusion proteins for visualizing amyloid-β oligomers in vivo. Sci Rep 2016; 6:22712. [PMID: 26982553 PMCID: PMC4793674 DOI: 10.1038/srep22712] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/18/2016] [Indexed: 12/30/2022] Open
Abstract
The intracellular accumulation of amyloid-β (Aβ) oligomers critically contributes to disease progression in Alzheimer’s disease (AD) and can be the potential target of AD therapy. Direct observation of molecular dynamics of Aβ oligomers in vivo is key for drug discovery research, however, it has been challenging because Aβ aggregation inhibits the fluorescence from fusion proteins. Here, we developed Aβ1-42-GFP fusion proteins that are oligomerized and visualize their dynamics inside cells even when aggregated. We examined the aggregation states of Aβ-GFP fusion proteins using several methods and confirmed that they did not assemble into fibrils, but instead formed oligomers in vitro and in live cells. By arranging the length of the liker between Aβ and GFP, we generated two fusion proteins with “a long-linker” and “a short-linker”, and revealed that the aggregation property of fusion proteins can be evaluated by measuring fluorescence intensities using rat primary culture neurons transfected with Aβ-GFP plasmids and Aβ-GFP transgenic C. elegans. We found that Aβ-GFP fusion proteins induced cell death in COS7 cells. These results suggested that novel Aβ-GFP fusion proteins could be utilized for studying the physiological functions of Aβ oligomers in living cells and animals, and for drug screening by analyzing Aβ toxicity.
Collapse
Affiliation(s)
- Tomoyo Ochiishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Keiko Hirose
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Akira Kitamura
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, 2-1-1, Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Tatsuhiko Ebihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hideki Shimura
- Department of Neurology, Juntendo University Urayasu Hospital, 2-1-1, Tomioka, Urayasu, Chiba 279-0021, Japan
| |
Collapse
|
17
|
Ochiishi T, Itakura A, Liu L, Akatsu H, Kohno H, Nishimura M, Yoshimune K. Immunohistochemical detection of the delayed formation of nonfibrillar large amyloid-β aggregates. Genes Cells 2016; 21:200-11. [DOI: 10.1111/gtc.12332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/27/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Tomoyo Ochiishi
- Biomedical Research Institute; DAILAB, National Institute of Advanced Industrial Science and Technology (AIST); 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Akira Itakura
- Department of Applied Molecular Chemistry; Graduate School of Industrial Technology; Nihon University; 1-2-1, Izumichou Narashino Chiba 275-8575 Japan
| | - Lei Liu
- Molecular Neuroscience Research Center; Shiga University of Medical Science; Seta Tsukinowa-cho Otsu Shiga 520-2192 Japan
| | - Hiroyasu Akatsu
- Choju Medical Institute; Fukushimura Hospital; 19-14, Aza-Yamanaka, Noyori Toyohashi Aichi 441-8124 Japan
- Department of Medicine for Aging in Place and Community-Based Medical Education; Nagoya City University Graduate School of Medical Sciences; Nagoya Aichi 466-8550 Japan
| | - Hideki Kohno
- Hoshi University; 2-4-41, Ebara, Shinagawa Tokyo 142-8501 Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Center; Shiga University of Medical Science; Seta Tsukinowa-cho Otsu Shiga 520-2192 Japan
| | - Kazuaki Yoshimune
- Department of Applied Molecular Chemistry; Graduate School of Industrial Technology; Nihon University; 1-2-1, Izumichou Narashino Chiba 275-8575 Japan
| |
Collapse
|
18
|
Berry RH, Qu J, John SWM, Howell GR, Jakobs TC. Synapse Loss and Dendrite Remodeling in a Mouse Model of Glaucoma. PLoS One 2015; 10:e0144341. [PMID: 26637126 PMCID: PMC4670161 DOI: 10.1371/journal.pone.0144341] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 11/17/2015] [Indexed: 01/05/2023] Open
Abstract
It has been hypothesized that synaptic pruning precedes retinal ganglion cell degeneration in glaucoma, causing early dysfunction to retinal ganglion cells. To begin to assess this, we studied the excitatory synaptic inputs to individual ganglion cells in normal mouse retinas and in retinas with ganglion cell degeneration from glaucoma (DBA/2J), or following an optic nerve crush. Excitatory synapses were labeled by AAV2-mediated transfection of ganglion cells with PSD-95-GFP. After both insults the linear density of synaptic inputs to ganglion cells decreased. In parallel, the dendritic arbors lost complexity. We did not observe any cells that had lost dendritic synaptic input while preserving a normal or near-normal morphology. Within the temporal limits of these observations, dendritic remodeling and synapse pruning thus appear to occur near-simultaneously.
Collapse
Affiliation(s)
- Ryan H. Berry
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, United States of America
| | - Juan Qu
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, United States of America
| | - Simon W. M. John
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, United States of America
- The Howard Hughes Medical Institute, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, United States of America
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Gareth R. Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, United States of America
- * E-mail: (TJ); (GH)
| | - Tatjana C. Jakobs
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, United States of America
- * E-mail: (TJ); (GH)
| |
Collapse
|
19
|
Huang YB, Hu CR, Zhang L, Yin W, Hu B. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles. PLoS One 2015; 10:e0140752. [PMID: 26485435 PMCID: PMC4617280 DOI: 10.1371/journal.pone.0140752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 09/30/2015] [Indexed: 01/27/2023] Open
Abstract
Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo.
Collapse
Affiliation(s)
- Yu-Bin Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Chun-Rui Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Li Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Wu Yin
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
- * E-mail:
| |
Collapse
|
20
|
Fujiwara T, Inoue T, Maruo T, Rikitake Y, Ieki N, Mandai K, Kimura K, Kayahara T, Wang S, Itoh Y, Sai K, Mori M, Mori K, Takai Y, Mizoguchi A. Nectin-1 spots regulate the branching of olfactory mitral cell dendrites. Mol Cell Neurosci 2015; 68:143-50. [DOI: 10.1016/j.mcn.2015.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/22/2015] [Accepted: 07/01/2015] [Indexed: 12/25/2022] Open
|
21
|
Matlashov ME, Bogdanova YA, Ermakova GV, Mishina NM, Ermakova YG, Nikitin ES, Balaban PM, Okabe S, Lukyanov S, Enikolopov G, Zaraisky AG, Belousov VV. Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology. Biochim Biophys Acta Gen Subj 2015; 1850:2318-28. [PMID: 26259819 DOI: 10.1016/j.bbagen.2015.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND SypHer is a genetically encoded fluorescent pH-indicator with a ratiometric readout, suitable for measuring fast intracellular pH shifts. However, the relatively low brightness of the indicator limits its use. METHODS Here we designed a new version of pH-sensor called SypHer-2, which has up to three times brighter fluorescence in cultured mammalian cells compared to the SypHer. RESULTS Using the new indicator we registered activity-associated pH oscillations in neuronal cell culture. We observed prominent transient neuronal cytoplasm acidification that occurs in parallel with calcium entry. Furthermore, we monitored pH in presynaptic and postsynaptic termini by targeting SypHer-2 directly to these compartments and revealed marked differences in pH dynamics between synaptic boutons and dendritic spines. Finally, we were able to reveal for the first time the intracellular pH drop that occurs within an extended region of the amputated tail of the Xenopus laevis tadpole before it begins to regenerate. CONCLUSIONS SypHer2 is suitable for quantitative monitoring of pH in biological systems of different scales, from small cellular subcompartments to animal tissues in vivo. GENERAL SIGNIFICANCE The new pH-sensor will help to investigate pH-dependent processes in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mikhail E Matlashov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Yulia A Bogdanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Faculty of Biology, Moscow State University, 119991 Moscow, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Natalia M Mishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Yulia G Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, 117485 Moscow, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, 117485 Moscow, Russia
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Sergey Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Grigori Enikolopov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, NY 11794, USA; Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA; NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia.
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia.
| |
Collapse
|
22
|
Enhanced synapse remodelling as a common phenotype in mouse models of autism. Nat Commun 2014; 5:4742. [DOI: 10.1038/ncomms5742] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/21/2014] [Indexed: 01/19/2023] Open
|
23
|
Chen YP, Chiao CC. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina. PLoS One 2014; 9:e86159. [PMID: 24465934 PMCID: PMC3895034 DOI: 10.1371/journal.pone.0086159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1–2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.
Collapse
Affiliation(s)
- Yin-Peng Chen
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chuan-Chin Chiao
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Shin E, Kashiwagi Y, Kuriu T, Iwasaki H, Tanaka T, Koizumi H, Gleeson JG, Okabe S. Doublecortin-like kinase enhances dendritic remodelling and negatively regulates synapse maturation. Nat Commun 2013; 4:1440. [PMID: 23385585 PMCID: PMC4017031 DOI: 10.1038/ncomms2443] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/03/2013] [Indexed: 11/09/2022] Open
Abstract
Dendritic morphogenesis and formation of synapses at appropriate dendritic locations are essential for the establishment of proper neuronal connectivity. Recent imaging studies provide evidence for stabilization of dynamic distal branches of dendrites by the addition of new synapses. However, molecules involved in both dendritic growth and suppression of synapse maturation remain to be identified. Here we report two distinct functions of doublecortin-like kinases, chimeric proteins containing both a microtubule-binding domain and a kinase domain in postmitotic neurons. First, doublecortin-like kinases localize to the distal dendrites and promote their growth by enhancing microtubule bundling. Second, doublecortin-like kinases suppress maturation of synapses through multiple pathways, including reduction of PSD-95 by the kinase domain and suppression of spine structural maturation by the microtubule-binding domain. Thus, doublecortin-like kinases are critical regulators of dendritic development by means of their specific targeting to the distal dendrites, and their local control of dendritic growth and synapse maturation.
Collapse
Affiliation(s)
- Euikyung Shin
- Department of Cellular Neurobiology, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Obashi K, Okabe S. Regulation of mitochondrial dynamics and distribution by synapse position and neuronal activity in the axon. Eur J Neurosci 2013; 38:2350-63. [DOI: 10.1111/ejn.12263] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Kazuki Obashi
- Department of Cellular Neurobiology; Graduate School of Medicine; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology; Graduate School of Medicine; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
26
|
|
27
|
Immuno EM–OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM). J Struct Biol 2012; 180:259-70. [DOI: 10.1016/j.jsb.2012.08.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
|
28
|
Kawabata I, Kashiwagi Y, Obashi K, Ohkura M, Nakai J, Wynshaw-Boris A, Yanagawa Y, Okabe S. LIS1-dependent retrograde translocation of excitatory synapses in developing interneuron dendrites. Nat Commun 2012; 3:722. [PMID: 22395613 PMCID: PMC3316883 DOI: 10.1038/ncomms1736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/07/2012] [Indexed: 11/30/2022] Open
Abstract
Synaptic remodelling coordinated with dendritic growth is essential for proper development of neural connections. After establishment of synaptic contacts, synaptic junctions are thought to become stationary and provide fixed anchoring points for further dendritic growth. However, the possibility of active translocation of synapses along dendritic protrusions, to guide the proper arrangement of synaptic distribution, has not yet been fully investigated. Here we show that immature dendrites of γ-aminobutyric acid-positive interneurons form long protrusions and that these protrusions serve as conduits for retrograde translocation of synaptic contacts to the parental dendrites. This translocation process is dependent on microtubules and the activity of LIS1, an essential regulator of dynein-mediated motility. Suppression of this retrograde translocation results in disorganized synaptic patterns on interneuron dendrites. Taken together, these findings suggest the existence of an active microtubule-dependent mechanism for synaptic translocation that helps in the establishment of proper synaptic distribution on dendrites. Maturation of synaptic junctions is important for proper neuronal connections. Using live cell imaging, Okabe et al. show that interneuron dendrites extend filopodia-like projections and use microtubule-dependent retrograde transport to guide proper synaptic distribution on dendrites.
Collapse
Affiliation(s)
- Izumi Kawabata
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kuriu T, Yanagawa Y, Konishi S. Activity-dependent coordinated mobility of hippocampal inhibitory synapses visualized with presynaptic and postsynaptic tagged-molecular markers. Mol Cell Neurosci 2012; 49:184-95. [DOI: 10.1016/j.mcn.2011.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/17/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022] Open
|
30
|
Kondo S, Okabe S. Turnover of synapse and dynamic nature of synaptic molecules in vitro and in vivo. Acta Histochem Cytochem 2011; 44:9-15. [PMID: 21448313 PMCID: PMC3061450 DOI: 10.1267/ahc.10035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 01/14/2011] [Indexed: 11/22/2022] Open
Abstract
Recent advances of imaging techniques have enabled us to investigate the dynamics of synapses in living neurons. The synapse is constructed of presynaptic and postsynaptic elements which contain various kinds of structural and functional molecules. The postsynaptic density (PSD) is the most prominent structure among the excitatory postsynaptic elements. One of the main components of PSD is the scaffolding proteins which interact with multiple proteins in the synapse. Scaffolding proteins are suggested to play key roles in the emergence, maintenance, and remodeling of the excitatory synapses. Several kinds of scaffolding proteins are known to be present in the mammalian and also other vertebrate brains. These proteins were labeled with green fluorescent protein (GFP) and expressed in cultured neurons to analyze the dynamics and turnover of molecules in the synapses. In this review we describe how these molecules behave when the synapse is newly added or eliminated in the steady state and also when neuronal activity is changed.
Collapse
Affiliation(s)
- Satoru Kondo
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo
| |
Collapse
|
31
|
Abstract
Although the lifelong addition of new neurons to the olfactory bulb and dentate gyrus of mammalian brains is by now an accepted fact, the function of adult-generated neurons still largely remains a mystery. The ability of new neurons to form synapses with preexisting neurons without disrupting circuit function is central to the hypothesized role of adult neurogenesis as a substrate for learning and memory. With the development of several new genetic labeling and imaging techniques, the study of synapse development and integration of these new neurons into mature circuits both in vitro and in vivo is rapidly advancing our insight into their structural plasticity. Investigators' observation of synaptogenesis occurring in the adult brain is beginning to shed light on the flexibility that adult neurogenesis offers to mature circuits and the potential contribution of the transient plasticity that new neurons provide toward circuit refinement and adaptation to changing environmental demands.
Collapse
Affiliation(s)
- Wolfgang Kelsch
- Picower Institute of Learning and Memory, Department of Biology and Brain, Massachussetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
32
|
Appelbaum L, Wang G, Yokogawa T, Skariah GM, Smith SJ, Mourrain P, Mignot E. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 2010; 68:87-98. [PMID: 20920793 DOI: 10.1016/j.neuron.2010.09.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2010] [Indexed: 12/12/2022]
Abstract
Neurons exhibit rhythmic activity that ultimately affects behavior such as sleep. In living zebrafish larvae, we used time-lapse two-photon imaging of the presynaptic marker synaptophysin in hypocretin/orexin (HCRT) neurons to determine the dynamics of synaptic modifications during the day and night. We observed circadian rhythmicity in synapse number in HCRT axons. This rhythm is regulated primarily by the circadian clock but is also affected by sleep deprivation. Furthermore, NPTX2, a protein implicated in AMPA receptor clustering, modulates circadian synaptic changes. In zebrafish, nptx2b is a rhythmic gene that is mostly expressed in hypothalamic and pineal gland cells. Arrhythmic transgenic nptx2b overexpression (hcrt:NPTX2b) increases synapse number and abolishes rhythmicity in HCRT axons. Finally, hcrt:NPTX2b fish are resistant to the sleep-promoting effects of melatonin. This behavioral effect is consistent with NPTX2b-mediated increased activity of HCRT circuitry. These data provide real-time in vivo evidence of circadian and homeostatic regulation of structural synaptic plasticity.
Collapse
Affiliation(s)
- Lior Appelbaum
- Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Long-term relationships between synaptic tenacity, synaptic remodeling, and network activity. PLoS Biol 2009; 7:e1000136. [PMID: 19554080 PMCID: PMC2693930 DOI: 10.1371/journal.pbio.1000136] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 05/13/2009] [Indexed: 12/28/2022] Open
Abstract
Long term time-lapse imaging reveals that individual synapses undergo significant structural remodeling not only when driven by activity, but also when network activity is absent, raising questions about how reliably individual synapses maintain connections. Synaptic plasticity is widely believed to constitute a key mechanism for modifying functional properties of neuronal networks. This belief implicitly implies, however, that synapses, when not driven to change their characteristics by physiologically relevant stimuli, will maintain these characteristics over time. How tenacious are synapses over behaviorally relevant time scales? To begin to address this question, we developed a system for continuously imaging the structural dynamics of individual synapses over many days, while recording network activity in the same preparations. We found that in spontaneously active networks, distributions of synaptic sizes were generally stable over days. Following individual synapses revealed, however, that the apparently static distributions were actually steady states of synapses exhibiting continual and extensive remodeling. In active networks, large synapses tended to grow smaller, whereas small synapses tended to grow larger, mainly during periods of particularly synchronous activity. Suppression of network activity only mildly affected the magnitude of synaptic remodeling, but dependence on synaptic size was lost, leading to the broadening of synaptic size distributions and increases in mean synaptic size. From the perspective of individual neurons, activity drove changes in the relative sizes of their excitatory inputs, but such changes continued, albeit at lower rates, even when network activity was blocked. Our findings show that activity strongly drives synaptic remodeling, but they also show that significant remodeling occurs spontaneously. Whereas such spontaneous remodeling provides an explanation for “synaptic homeostasis” like processes, it also raises significant questions concerning the reliability of individual synapses as sites for persistently modifying network function. Neurons communicate via synapses, and it is believed that activity-dependent modifications to synaptic connections—synaptic plasticity—is a fundamental mechanism for stably altering the function of neuronal networks. This belief implies that synapses, when not driven to change their properties by physiologically relevant stimuli, should preserve their individual properties over time. Otherwise, physiologically relevant modifications to network function would be gradually lost or become inseparable from stochastically occurring changes in the network. So do synapses actually preserve their properties over behaviorally relevant time scales? To begin to address this question, we examined the structural dynamics of individual postsynaptic densities for several days, while recording and manipulating network activity levels in the same networks. We found that as expected in highly active networks, individual synapses undergo continual and extensive remodeling over time scales of many hours to days. However, we also observed, that synaptic remodeling continues at very significant rates even when network activity is completely blocked. Our findings thus indicate that the capacity of synapses to preserve their specific properties might be more limited than previously thought, raising intriguing questions about the long-term reliability of individual synapses.
Collapse
|
34
|
Sequential development of synapses in dendritic domains during adult neurogenesis. Proc Natl Acad Sci U S A 2008; 105:16803-8. [PMID: 18922783 DOI: 10.1073/pnas.0807970105] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During the process of integration into brain circuits, new neurons develop both input and output synapses with their appropriate targets. The vast majority of neurons in the mammalian brain are generated before birth and integrate into immature circuits while these are being assembled. In contrast, adult-generated neurons face an additional challenge as they integrate into a mature, fully functional circuit. Here, we examined how synapses of a single neuronal type, the granule cell in the olfactory bulb, develop during their integration into the immature circuit of the newborn and the fully mature circuit of the adult rat. We used a genetic method to label pre and postsynaptic sites in granule neurons and observed a stereotypical development of synapses in specific dendritic domains. In adult-generated neurons, synapses appeared sequentially in different dendritic domains with glutamatergic input synapses that developed first at the proximal dendritic domain, followed several days later by the development of input-output synapses in the distal domain and additional input synapses in the basal domain. In contrast, for neurons generated in neonatal animals, input and input-output synapses appeared simultaneously in the proximal and distal domains, respectively, followed by the later appearance of input synapses to the basal domain. The sequential formation of synapses in adult-born neurons, with input synapses appearing before output synapses, may represent a cellular mechanism to minimize the disruption caused by the integration of new neurons into a mature circuit in the adult brain.
Collapse
|
35
|
Jakobs TC, Koizumi A, Masland RH. The spatial distribution of glutamatergic inputs to dendrites of retinal ganglion cells. J Comp Neurol 2008; 510:221-36. [PMID: 18623177 DOI: 10.1002/cne.21795] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The spatial pattern of excitatory glutamatergic input was visualized in a large series of ganglion cells of the rabbit retina, by using particle-mediated gene transfer of an expression plasmid for postsynaptic density 95-green fluorescent protein (PSD95-GFP). PSD95-GFP was confirmed as a marker of excitatory input by co-localization with synaptic ribbons (RIBEYE and kinesin II) and glutamate receptor subunits. Despite wide variation in the size, morphology, and functional complexity of the cells, the distribution of excitatory synaptic inputs followed a single set of rules: 1) the linear density of synaptic inputs (PSD95 sites/linear mum) varied surprisingly little and showed little specialization within the arbor; 2) the total density of excitatory inputs across individual arbors peaked in a ring-shaped region surrounding the soma, which is in accord with high-resolution maps of receptive field sensitivity in the rabbit; and 3) the areal density scaled inversely with the total area of the dendritic arbor, so that narrow dendritic arbors receive more synapses per unit area than large ones. To achieve sensitivity comparable to that of large cells, those that report upon a small region of visual space may need to receive a denser synaptic input from within that space.
Collapse
Affiliation(s)
- Tatjana C Jakobs
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
36
|
Structural plasticity with preserved topology in the postsynaptic protein network. Proc Natl Acad Sci U S A 2008; 105:12587-92. [PMID: 18723686 DOI: 10.1073/pnas.0711669105] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The size, shape, and molecular arrangement of the postsynaptic density (PSD) determine the function of excitatory synapses in the brain. Here, we directly measured the internal dynamics of scaffold proteins within single living PSDs, focusing on the principal scaffold protein PSD-95. We found that individual PSDs undergo rapid, continuous changes in morphology driven by the actin cytoskeleton and regulated by synaptic activity. This structural plasticity is accompanied by rapid fluctuations in internal scaffold density over submicron distances. Using targeted photobleaching and photoactivation of PSD subregions, we show that PSD-95 is nearly immobile within the PSD, and PSD subdomains can be maintained over long periods. We propose a flexible matrix model of the PSD based on stable molecular positioning of PSD-95 scaffolds.
Collapse
|
37
|
Stephenson DT, Arneric SP. Neuroimaging of Pain: Advances and Future Prospects. THE JOURNAL OF PAIN 2008; 9:567-79. [DOI: 10.1016/j.jpain.2008.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 02/07/2008] [Accepted: 02/27/2008] [Indexed: 11/29/2022]
|
38
|
Pratt KG, Taft CE, Burbea M, Turrigiano GG. Dynamics underlying synaptic gain between pairs of cortical pyramidal neurons. Dev Neurobiol 2008; 68:143-51. [PMID: 17948240 DOI: 10.1002/dneu.20577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changes in connectivity between pairs of neurons can serve as a substrate for information storage and for experience-dependent changes in neuronal circuitry. Early in development, synaptic contacts form and break, but how these dynamics influence the connectivity between pairs of neurons is not known. Here we used time-lapse imaging to examine the synaptic interactions between pairs of cultured cortical pyramidal neurons, and found that the axon-dendrite contacts between each neuronal pair were composed of both a relatively stable and a more labile population. Under basal conditions, loss and gain of contacts within this labile population was well balanced and there was little net change in connectivity. Selectively increasing the levels of activated CaMKII in the postsynaptic neuron increased connectivity between pairs of neurons by increasing the rate of gain of new contacts without affecting the probability of contact loss, or the proportion of stable and labile contacts, and this increase required Calcium/calmodulin binding to CaMKII. Our data suggest that activating CaMKII can increase synaptic connectivity through a CaM-dependent increase in contact formation, followed by stabilization of a constant fraction of new contacts.
Collapse
Affiliation(s)
- Kara G Pratt
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
39
|
Szumlinski KK, Ary AW, Lominac KD. Homers regulate drug-induced neuroplasticity: implications for addiction. Biochem Pharmacol 2008; 75:112-33. [PMID: 17765204 PMCID: PMC2204062 DOI: 10.1016/j.bcp.2007.07.031] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 12/20/2022]
Abstract
Drug addiction is a chronic, relapsing disorder, characterized by an uncontrollable motivation to seek and use drugs. Converging clinical and preclinical observations implicate pathologies within the corticolimbic glutamate system in the genetic predisposition to, and the development of, an addicted phenotype. Such observations pose cellular factors regulating glutamate transmission as likely molecular candidates in the etiology of addiction. Members of the Homer family of proteins regulate signal transduction through, and the trafficking of, glutamate receptors, as well as maintain and regulate extracellular glutamate levels in corticolimbic brain regions. This review summarizes the existing data implicating the Homer family of protein in acute behavioral and neurochemical sensitivity to drugs of abuse, the development of drug-induced neuroplasticity, as well as other behavioral and cognitive pathologies associated with an addicted state.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Behavioral and Neural Genetics Laboratory, Department of Psychology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, USA.
| | | | | |
Collapse
|
40
|
Cortés RY, Arévalo JC, Magby JP, Chao MV, Plummer MR. Developmental and activity-dependent regulation of ARMS/Kidins220 in cultured rat hippocampal neurons. Dev Neurobiol 2007; 67:1687-98. [PMID: 17587220 DOI: 10.1002/dneu.20542] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neurotrophin activation of Trk receptors elicits diverse effects on neuronal survival, differentiation, and synaptic plasticity. One of the central questions is how specificity is encoded in neurotrophin receptor signaling and actions. A unique downstream protein is the Ankyrin-Repeat Rich Membrane Spanning (ARMS)/Kinase D-interacting substrate-220 kDa (Kidins220), a very abundant scaffold protein in the hippocampus. To determine the roles of ARMS/Kidins220 in hippocampal neurons, we have analyzed the effects of synaptic activity upon the regulation and distribution of ARMS/Kidins220. At early times in vitro (<7 DIV), synaptic activity was low and ARMS/Kidins220 levels were high. As synaptic activity and markers for synapse maturation, such as PSD-95, increased, ARMS/Kidins220 significantly decreased to a plateau by later times in vitro (>12 DIV). Immunocytochemistry showed ARMS/Kidins220 to be concentrated at the tips of growing processes in immature cultures, and more diffusely distributed in older cultures. To examine the apparent inverse relationship between activity and ARMS/Kidins220 levels, neuronal firing was manipulated pharmacologically. Chronic exposure to TTX increased ARMS/Kidins220 levels, whereas bicuculline caused the opposite effect. Moreover, using shRNA to decrease ARMS/Kidins220 levels produced a corresponding increase in synaptic activity. We find that ARMS/Kidins220 may function in neuronal development as an indicator and potentially as a homeostatic regulator of overall synaptic strength in hippocampal neurons.
Collapse
Affiliation(s)
- Rosa Y Cortés
- Department of Cell Biology and Neuroscience, Rutgers University, Nelson Laboratories, Piscataway, New Jersey
| | | | | | | | | |
Collapse
|
41
|
Kossel AH. Neuronal sandwiches: A method for rapid and controlled initiation of synapses. J Neurosci Methods 2007; 166:241-9. [PMID: 17765978 DOI: 10.1016/j.jneumeth.2007.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 07/09/2007] [Accepted: 07/19/2007] [Indexed: 11/26/2022]
Abstract
Synapse formation is a fast, dynamic process that involves the assembly of many molecules following axodendritic contact. Neuronal cultures are often used to study the insertion of fluorescently tagged pre- and postsynaptic molecules in vitro. However, this task still remains challenging, since the time-point and location of newly forming synapses are largely unpredictable and rely on random contact events. We developed a technique that controls the time-point of interaction between axons and dendrites, and thus the onset of synapse formation. Dissociated hippocampal neurons were cultivated on two different coverslips, allowing for the separate outgrowth of axonal networks and of neurons with sparsely innervated dendrites. Pre- and postsynaptic partners were brought in contact as coverslips were merged. Time-lapse imaging showed clustering of GFP/PSD-95 in postsynaptic neurons within 1-3h, indicating the rapid formation of new synaptic sites. Localization of DsRed, as a control protein, remained unchanged. Imaging of neuronal activity using calcium sensitive dyes revealed that in a number of cases neurons of the pre- and postsynaptic layer were synchronously active, suggesting the functionality of newly formed synapses across layers. Therefore, our new method is a valuable tool to control synapse formation and for investigating the temporal role of signaling molecules during this process.
Collapse
Affiliation(s)
- A H Kossel
- Max Planck Institute of Neurobiology, Department of Cellular and Systems Neurobiology, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
42
|
Waataja JJ, Kim HJ, Roloff AM, Thayer SA. Excitotoxic loss of post-synaptic sites is distinct temporally and mechanistically from neuronal death. J Neurochem 2007; 104:364-75. [PMID: 17944868 DOI: 10.1111/j.1471-4159.2007.04973.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dendritic degeneration and loss of synaptic proteins are early events correlated with functional decline in neurodegenerative disease. The temporal and mechanistic relationship between synapse loss and cell death, however, remains unclear. We used confocal microscopy and image processing to count post-synaptic sites on rat hippocampal neurons by expressing post-synaptic density protein 95 fused to green fluorescent protein. Fluorescent puncta co-localized with neurotransmitter release sites, NMDA-induced Ca2+ increases and NMDA receptor immunoreactivity. During excitotoxic neurodegeneration, synaptic sites were lost and synaptic transmission impaired. These changes were mediated by NMDA receptors and required Ca2+-dependent activation of the proteasome pathway. Tracking synapses from the same cell following brief neurotoxic insult revealed transient loss followed by recovery. The time-course, concentration-dependence and mechanism for loss of post-synaptic sites were distinct from those leading to cell death. Cells expressing p14ARF, which inhibits ubiquitination of post-synaptic density protein 95 and prevents loss of synaptic sites, displayed an increased sensitivity to glutamate-induced cell death. Thus, excitotoxic synapse loss may be a disease-modifying process rather than an obligatory step leading to cell death. These results demonstrate the importance of assessing synaptic function independent of neuronal survival during neurodegeneration and indicate that this approach will be useful for identifying toxins that degrade synaptic connections and for screening for agents that protect synaptic function.
Collapse
Affiliation(s)
- Jonathan J Waataja
- Department of Pharmacology and Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
43
|
Szklarczyk A, Conant K, Owens DF, Ravin R, McKay RD, Gerfen C. Matrix metalloproteinase-7 modulates synaptic vesicle recycling and induces atrophy of neuronal synapses. Neuroscience 2007; 149:87-98. [PMID: 17826919 DOI: 10.1016/j.neuroscience.2007.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/02/2007] [Accepted: 08/02/2007] [Indexed: 12/01/2022]
Abstract
Matrix metalloproteinase-7 (MMP-7) belongs to a family of zinc dependent endopeptidases that are expressed in a variety of tissues including the brain. MMPs are known to be potent mediators of pericellular proteolysis and likely mediators of dynamic remodelling of neuronal connections. While an association between proteases and the neuronal synapse is emerging, a full understanding of this relationship is lacking. Here, we show that MMP-7 alters the structure and function of presynaptic terminals without affecting neuronal survival. Bath application of recombinant MMP-7 to cultured rat neurons induced long-lasting inhibition of vesicular recycling as measured by synaptotagmin 1 antibody uptake assays and FM4-64 optical imaging. MMP-7 application resulted in reduced abundance of vesicular and active zone proteins locally within synaptic terminals although their general levels remained unaltered. Finally, chronic application of the protease resulted in synaptic atrophy, including smaller terminals and fewer synaptic vesicles, as determined by electron microscopy. Together these results suggest that MMP-7 is a potent modulator of synaptic vesicle recycling and synaptic ultrastructure and that elevated levels of the enzyme, as may occur with brain inflammation, may adversely influence neurotransmission.
Collapse
Affiliation(s)
- A Szklarczyk
- Laboratory of Systems Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Yi JJ, Ehlers MD. Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev 2007; 59:14-39. [PMID: 17329546 DOI: 10.1124/pr.59.1.4] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alterations in cellular structure and synapse composition are central to proper nervous system function. Recent work has identified the ubiquitin-proteasome system (UPS) as a key regulator of neuronal biology. The UPS is essential for the growth and development of immature neurons and is a critical mediator of synaptic adaptability in mature neurons. Furthermore, proteinaceous deposits that accumulate in diverse neurodegenerative disorders are enriched in components of the UPS, suggesting that UPS dysfunction may be pivotal for pathogenesis. Here, we summarize existing knowledge about the role of the UPS in brain function, highlighting recent work delineating its importance in neuronal development, plasticity, and degeneration.
Collapse
Affiliation(s)
- Jason J Yi
- Program in Cell and Molecular Biology, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
45
|
Grant SGN. Toward a molecular catalogue of synapses. ACTA ACUST UNITED AC 2007; 55:445-9. [PMID: 17572504 DOI: 10.1016/j.brainresrev.2007.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 04/30/2007] [Accepted: 05/07/2007] [Indexed: 11/30/2022]
Abstract
1906 was a landmark year in the history of the study of the nervous system, most notably for the first 'neuroscience' Nobel prize given to the anatomists Ramon Y Cajal and Camillo Golgi. 1906 is less well known for another event, also of great significance for neuroscience, namely the publication of Charles Sherrington's book 'The Integrative Action of the Nervous system'. It was Cajal and Golgi who debated the anatomical evidence for the synapse and it was Sherrington who laid its foundation in electrophysiological function. In tribute to these pioneers in synaptic biology, this article will address the issue of synapse diversity from the molecular point of view. In particular I will reflect upon efforts to obtain a complete molecular characterisation of the synapse and the unexpectedly high degree of molecular complexity found within it. A case will be made for developing approaches that can be used to generate a general catalogue of synapse types based on molecular markers, which should have wide application.
Collapse
Affiliation(s)
- Seth G N Grant
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
46
|
Garner CC, Waites CL, Ziv NE. Synapse development: still looking for the forest, still lost in the trees. Cell Tissue Res 2006; 326:249-62. [PMID: 16909256 DOI: 10.1007/s00441-006-0278-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 01/23/2023]
Abstract
Synapse development in the vertebrate central nervous system is a highly orchestrated process occurring not only during early stages of brain development, but also (to a lesser extent) in the mature nervous system. During development, the formation of synapses is intimately linked to the differentiation of neuronal cells, the extension of their axons and dendrites, and the course wiring of the nervous system. Subsequently, the stabilization, elimination, and strengthening of synaptic contacts is coupled to the refinement of axonal and dendritic arbors, to the establishment of functionally meaningful connections, and probably also to the day-to-day acquisition, storage, and retrieval of memories, higher order thought processes, and behavioral patterns.
Collapse
Affiliation(s)
- Craig C Garner
- Department of Psychiatry and Behavioral Science, Nancy Pritzer Laboratory, Stanford University, Palo Alto, CA 94304-5485, USA.
| | | | | |
Collapse
|
47
|
Sanchez AL, Matthews BJ, Meynard MM, Hu B, Javed S, Cohen Cory S. BDNF increases synapse density in dendrites of developing tectal neurons in vivo. Development 2006; 133:2477-86. [PMID: 16728478 DOI: 10.1242/dev.02409] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronal connections are established through a series of developmental events that involve close communication between pre- and postsynaptic neurons. In the visual system, BDNF modulates the development of neuronal connectivity by influencing presynaptic retinal ganglion cell (RGC) axons. Increasing BDNF levels in the optic tectum of Xenopus tadpoles significantly increases both axon arborization and synapse density per axon terminal within a few hours of treatment. Here, we have further explored the mechanisms by which BDNF shapes synaptic connectivity by imaging tectal neurons, the postsynaptic partners of RGCs. Individual neurons were co-labeled with DsRed2 and a GFP-tagged postsynaptic density protein (PSD95-GFP) to visualize dendritic morphology and postsynaptic specializations simultaneously in vivo. Immunoelectron microscopy confirmed that PSD95-GFP predominantly localized to ultrastructurally identified synapses. Time-lapse confocal microscopy of individual, double-labeled neurons revealed a coincident, activity-dependent mechanism of synaptogenesis and axon and dendritic arbor growth, which is differentially modulated by BDNF. Microinjection of BDNF into the optic tectum significantly increased synapse number in tectal neuron dendritic arbors within 24 hours, without significantly influencing arbor morphology. BDNF function-blocking antibodies had opposite effects. The BDNF-elicited increase in synapse number complements the previously observed increase in presynaptic sites on RGC axons. These results, together with the timescale of the response by tectal neurons, suggest that the effects of BDNF on dendritic synaptic connectivity are secondary to its effects on presynaptic RGCs. Thus, BDNF influences synaptic connectivity in multiple ways: it enhances axon arbor complexity expanding the synaptic territory of the axon, while simultaneously coordinating synapse formation and stabilization with individual postsynaptic cells.
Collapse
Affiliation(s)
- Analiza L Sanchez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
48
|
Craig AM, Graf ER, Linhoff MW. How to build a central synapse: clues from cell culture. Trends Neurosci 2005; 29:8-20. [PMID: 16337695 PMCID: PMC2820512 DOI: 10.1016/j.tins.2005.11.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/31/2005] [Accepted: 11/10/2005] [Indexed: 01/10/2023]
Abstract
Central neurons develop and maintain molecularly distinct synaptic specializations for excitatory and inhibitory transmitters, often only microns apart on their dendritic arbor. Progress towards understanding the molecular basis of synaptogenesis has come from several recent studies using a coculture system of non-neuronal cells expressing molecules that generate presynaptic or postsynaptic "hemi-synapses" on contacting neurons. Together with molecular properties of these protein families, such studies have yielded interesting clues to how glutamatergic and GABAergic synapses are assembled. Other clues come from heterochronic cultures, manipulations of activity in subsets of neurons in a network, and of course many in vivo studies. Taking into account these data, we consider here how basic parameters of synapses--competence, placement, composition, size and longevity--might be determined.
Collapse
Affiliation(s)
- Ann Marie Craig
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, Canada V6T 2B5.
| | | | | |
Collapse
|
49
|
Iki J, Inoue A, Bito H, Okabe S. Bi-directional regulation of postsynaptic cortactin distribution by BDNF and NMDA receptor activity. Eur J Neurosci 2005; 22:2985-94. [PMID: 16367765 DOI: 10.1111/j.1460-9568.2005.04510.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract Cortactin is an F-actin-associated protein which interacts with the postsynaptic scaffolding protein Shank at the SH3 domain and is localized within the dendritic spine in the mouse neuron. Green fluorescent protein (GFP)-based time-lapse imaging revealed cortactin redistribution from dendritic cytoplasm to postsynaptic sites by application of brain-derived neurotrophic factor (BDNF). This response was mediated by mitogen-activated protein (MAP) kinase activation and was dependent on the C-terminal SH3 domain. In contrast, activation of N-methyl-D-aspartate (NMDA) receptors induced loss of cortactin from postsynaptic sites. This NMDA-dependent redistribution was blocked by an Src family kinase inhibitor. Conversely, increasing Src family kinase activity induced cortactin phosphorylation and loss of cortactin from the postsynaptic sites. Finally, blocking of endogenous BDNF reduced the amount of cortactin at the postsynaptic sites and an NMDA receptor antagonist prevented this reduction. These results indicate the importance of counterbalance between BDNF and NMDA receptor-mediated signalling in the reorganization of the postsynaptic actin cytoskeleton during neuronal development.
Collapse
Affiliation(s)
- Junko Iki
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | |
Collapse
|
50
|
Szumlinski KK, Lominac KD, Kleschen MJ, Oleson EB, Dehoff MH, Schwarz MK, Schwartz MK, Seeburg PH, Seeberg PH, Worley PF, Kalivas PW. Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia. GENES BRAIN AND BEHAVIOR 2005; 4:273-88. [PMID: 16011574 DOI: 10.1111/j.1601-183x.2005.00120.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Homer proteins are involved in the functional assembly of postsynaptic density proteins at glutamatergic synapses and are implicated in learning, memory and drug addiction. Here, we report that Homer1-knockout (Homer1-KO) mice exhibit behavioral and neurochemical abnormalities that are consistent with the animal models of schizophrenia. Relative to wild-type mice, Homer1-KO mice exhibited deficits in radial arm maze performance, impaired prepulse inhibition, enhanced 'behavioral despair', increased anxiety in a novel objects test, enhanced reactivity to novel environments, decreased instrumental responding for sucrose and enhanced MK-801- and methamphetamine-stimulated motor behavior. No-net-flux in vivo microdialysis revealed a decrease in extracellular glutamate content in the nucleus accumbens and an increase in the prefrontal cortex. Moreover, in Homer1-KO mice, cocaine did not stimulate a rise in frontal cortex extracellular glutamate levels, suggesting hypofrontality. These behavioral and neurochemical data derived from Homer1 mutant mice are consistent with the recent association of schizophrenia with a single-nucleotide polymorphism in the Homer1 gene and suggest that the regulation of extracellular levels of glutamate within limbo-corticostriatal structures by Homer1 gene products may be involved in the pathogenesis of this neuropsychiatric disorder.
Collapse
Affiliation(s)
- K K Szumlinski
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|