1
|
Russell EL, McDannald MA. Ventral Pallidum Neurons Are Necessary to Generalize and Express Fear-Related Responding in a Minimal Threat Setting. eNeuro 2024; 11:ENEURO.0124-24.2024. [PMID: 39510838 PMCID: PMC11595600 DOI: 10.1523/eneuro.0124-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Fear generalization is a hallmark of anxiety disorders. Experimentally, fear generalization can be difficult to dissociate from its counterpart, fear discrimination. Here, we use minimal threat learning procedures to reveal such a dissociation. We show that in Long-Evans rats, an auditory threat cue predicting footshock on 10% of trials produces a discriminated fear response that does not generalize to a neutral auditory cue. In contrast, even slightly higher footshock probabilities (30 and 20%) produce fear generalization. AAV-mediated, caspase-3 deletion of ventral pallidum neurons abolishes fear generalization and reduces threat cue responding during extinction. The ventral pallidum's contribution to fear generalization and extinction threat responding does not depend on inputs from the nucleus accumbens. The results demonstrate a minimal threat learning approach to dissociate fear discrimination from fear generalization and a novel role for the ventral pallidum in generalizing and expressing fear.
Collapse
Affiliation(s)
- Emma L Russell
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, Massachusetts 02467
| | - Michael A McDannald
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, Massachusetts 02467
| |
Collapse
|
2
|
Venkatraman A, Bretl M, Kim SI, Christensen L, Kelm-Nelson CA, Ciucci MR, Thibeault SL. Stress-Induced Ultrasonic Vocalization in Laboratory Rats and Mice: A Scoping Review. Brain Sci 2024; 14:1109. [PMID: 39595872 PMCID: PMC11591760 DOI: 10.3390/brainsci14111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction: Ultrasonic vocalization (USV) can indicate affective states-including psychosocial stress-in mice and rats. However, stress-induced USV changes could be confounded by laboratory experimental variables such as the type of behavioral stress paradigm, the elicitation method, rodent strain, etc. We sought to provide a review of the current literature to delineate how psychosocial stress-altered rodent USVs may be affected by factors of age, sex, strain, species, elicitation paradigm, and stressor. Methods: We used PubMed, Scopus (Elsevier), PsycINFO (EBSCO), and the following Web of Science (Clarivate) databases: Biological Abstracts, CAB Abstracts, Science Citation Index-Expanded, and Emerging Sources Citation Index. The studies identified by our search strategy were independently screened by two authors with the following inclusion criteria: peer-reviewed, in English, reported original data, and described USV in response to stress in rats or mice. The data extracted included USV acoustic parameters (mean peak frequency and mean amplitude (loudness)), details of the stress and USV elicitation paradigms, rodent species, age, and sex variables. Results: The following screening of 5309 titles/abstracts and 687 full-text articles revealed 148 articles. Footshock (20%), cold exposure (14%), and maternal separation (23.5%) were the most commonly used stress paradigms (duration and type of stressor varied across studies), with the total number of USV calls being the most commonly reported acoustic outcome. In rats, 121 articles described stress-altered USVs, while 25 studies reported the same in mice, and two reported multiple rodent species (rats and mice, alongside other rodent species such as gerbils). With respect to stress-altered USV changes with age, mice and rats increase USV rates after birth, with a peak around 6 to 10 days, and decrease USVs until weanling age. Of the five studies that reported sex-related differences in stress-induced USVs, females had an increased number of calls and lower average peak frequency in response to stress when compared to males. Only two to four studies reported strain-related differences in stress-induced vocalizations in rats and mice, respectively. Conclusions: The data from this review lay the groundwork for better understanding rodent USVs in response to psychosocial stress with effects of elicitation paradigm, stressor, age, and sex.
Collapse
Affiliation(s)
- Anumitha Venkatraman
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Michelle Bretl
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Se-in Kim
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Leslie Christensen
- Ebling Library for the Health Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Cynthia A. Kelm-Nelson
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Michelle R. Ciucci
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Susan L. Thibeault
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| |
Collapse
|
3
|
Sladky R, Kargl D, Haubensak W, Lamm C. An active inference perspective for the amygdala complex. Trends Cogn Sci 2024; 28:223-236. [PMID: 38103984 DOI: 10.1016/j.tics.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
The amygdala is a heterogeneous network of subcortical nuclei with central importance in cognitive and clinical neuroscience. Various experimental designs in human psychology and animal model research have mapped multiple conceptual frameworks (e.g., valence/salience and decision making) to ever more refined amygdala circuitry. However, these predominantly bottom up-driven accounts often rely on interpretations tailored to a specific phenomenon, thus preventing comprehensive and integrative theories. We argue here that an active inference model of amygdala function could unify these fractionated approaches into an overarching framework for clearer empirical predictions and mechanistic interpretations. This framework embeds top-down predictive models, informed by prior knowledge and belief updating, within a dynamical system distributed across amygdala circuits in which self-regulation is implemented by continuously tracking environmental and homeostatic demands.
Collapse
Affiliation(s)
- Ronald Sladky
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, 1010 Vienna, Austria.
| | - Dominic Kargl
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Wulf Haubensak
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030 Vienna, Austria
| | - Claus Lamm
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
4
|
López-Moraga A, Luyten L, Beckers T. A history of avoidance does not impact extinction learning in male rats. NPJ SCIENCE OF LEARNING 2024; 9:11. [PMID: 38402221 PMCID: PMC10894225 DOI: 10.1038/s41539-024-00223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Pervasive avoidance is one of the central symptoms of all anxiety-related disorders. In treatment, avoidance behaviors are typically discouraged because they are assumed to maintain anxiety. Yet, it is not clear if engaging in avoidance is always detrimental. In this study, we used a platform-mediated avoidance task to investigate the influence of avoidance history on extinction learning in male rats. Our results show that having the opportunity to avoid during fear acquisition training does not significantly influence the extinction of auditory-cued fear in rats subjected to this platform-mediated avoidance procedure, which constitutes a realistic approach/avoidance conflict. This holds true irrespective of whether or not avoidance was possible during the extinction phase. This suggests that imposing a realistic cost on avoidance behavior prevents the adverse effects that avoidance has been claimed to have on extinction. However, avoidance does not appear to have clear positive effects on extinction learning nor on retention either.
Collapse
Affiliation(s)
- Alba López-Moraga
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Laura Luyten
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
McDannald MA. Pavlovian Fear Conditioning Is More than You Think It Is. J Neurosci 2023; 43:8079-8087. [PMID: 38030400 PMCID: PMC10697403 DOI: 10.1523/jneurosci.0256-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
A common neuroscience application of Pavlovian fear conditioning is to manipulate neuron-type activity, pair a cue with foot shock, then measure cue-elicited freezing in a novel context. If the manipulation reduces freezing, the neuron type is implicated in Pavlovian fear conditioning. This application reduces Pavlovian fear conditioning to a single concept. In this Viewpoint, I describe experiments supporting the view that Pavlovian fear conditioning refers to three distinct concepts: procedure, process, and behavior. An experimenter controls procedure, observes behavior, but infers process. Distinguishing these concepts is essential because: (1) a shock-paired cue can engage numerous processes and behaviors; (2) experimenter decisions about procedure influence the processes engaged and behaviors elicited; and (3) many processes are latent, imbuing the cue with properties that only manifest outside of the original conditioning setting. This means we could understand the complete neural basis of freezing, yet know little about the neural basis of fear. Neuroscientists can choose to use a variety of procedures to study a diversity of processes and behaviors. Manipulating neuron-type activity in multiple procedures can reveal specific, general, or complex neuron-type contributions to cue-elicited processes and behaviors. The results will be a broader and more detailed neural basis of fear with greater relevance to the spectrum of symptoms defining anxiety and stressor-related disorders.
Collapse
Affiliation(s)
- Michael A McDannald
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, Massachusetts 02467
| |
Collapse
|
6
|
Packheiser J, Soyman E, Paradiso E, Michon F, Ramaaker E, Sahin N, Muralidharan S, Wöhr M, Gazzola V, Keysers C. Audible pain squeaks can mediate emotional contagion across pre-exposed rats with a potential effect of auto-conditioning. Commun Biol 2023; 6:1085. [PMID: 37880354 PMCID: PMC10600148 DOI: 10.1038/s42003-023-05474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Footshock self-experience enhances rodents' reactions to the distress of others. Here, we tested one potential mechanism supporting this phenomenon, namely that animals auto-condition to their own pain squeaks during shock pre-exposure. In Experiment 1, shock pre-exposure increased freezing and 22 kHz distress vocalizations while animals listened to the audible pain-squeaks of others. In Experiment 2 and 3, to test the auto-conditioning theory, we weakened the noxious pre-exposure stimulus not to trigger pain squeaks, and compared pre-exposure protocols in which we paired it with squeak playback against unpaired control conditions. Although all animals later showed fear responses to squeak playbacks, these were weaker than following typical pre-exposure (Experiment 1) and not stronger following paired than unpaired pre-exposure. Experiment 1 thus demonstrates the relevance of audible pain squeaks in the transmission of distress but Experiment 2 and 3 highlight the difficulty to test auto-conditioning: stimuli weak enough to decouple pain experience from hearing self-emitted squeaks are too weak to trigger the experience-dependent increase in fear transmission that we aimed to study. Although our results do not contradict the auto-conditioning hypothesis, they fail to disentangle it from sensitization effects. Future studies could temporarily deafen animals during pre-exposure to further test this hypothesis.
Collapse
Affiliation(s)
- Julian Packheiser
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Efe Soyman
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Social Cognitive and Affective Neuroscience Lab, Koc University, Istanbul, Turkey
| | - Enrica Paradiso
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Frédéric Michon
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Eline Ramaaker
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Neslihan Sahin
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | | | - Markus Wöhr
- Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Kimm S, Kim JJ, Choi JS. The central amygdala modulates distinctive conflict-like behaviors in a naturalistic foraging task. Front Behav Neurosci 2023; 17:1212884. [PMID: 37600757 PMCID: PMC10433198 DOI: 10.3389/fnbeh.2023.1212884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Conflict situations elicit a diverse range of behaviors that extend beyond the simplistic approach or avoidance dichotomy. However, many conflict-related studies have primarily focused on approach suppression, neglecting the complexity of these behaviors. In our study, we exposed rats to a semi-naturalistic foraging task, presenting them with a trade-off between a food reward and a predatory threat posed by a robotic agent. We observed that rats displayed two conflict-like behaviors (CLBs)-diagonal approach and stretched posture-when facing a robotic predator guarding a food pellet. After electrolytic lesions to the central amygdala (CeA), both conflict behaviors were significantly reduced, accompanied by a decrease in avoidance behavior (hiding) and an increase in approach behavior (frequency of interactions with the robot). A significant negative correlation between avoidance and approach behaviors emerged after the CeA lesion; however, our data suggest that CLBs are not tightly coupled with either approach or avoidance behaviors, showing no significant correlation to those behaviors. Our findings indicate that the CeA plays a crucial role in modulating conflict behaviors, competing with approach suppression in risky situations.
Collapse
Affiliation(s)
- Sunwhi Kimm
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - Jeansok J. Kim
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - June-Seek Choi
- School of Psychology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Gonzalez-Palomares E, Boulanger-Bertolus J, Dupin M, Mouly AM, Hechavarria JC. Amplitude modulation pattern of rat distress vocalisations during fear conditioning. Sci Rep 2023; 13:11173. [PMID: 37429931 PMCID: PMC10333300 DOI: 10.1038/s41598-023-38051-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
In humans, screams have strong amplitude modulations (AM) at 30 to 150 Hz. These AM correspond to the acoustic correlate of perceptual roughness. In bats, distress calls can carry AMs, which elicit heart rate increases in playback experiments. Whether amplitude modulation occurs in fearful vocalisations of other animal species beyond humans and bats remains unknown. Here we analysed the AM pattern of rats' 22-kHz ultrasonic vocalisations emitted in a fear conditioning task. We found that the number of vocalisations decreases during the presentation of conditioned stimuli. We also observed that AMs do occur in rat 22-kHz vocalisations. AMs are stronger during the presentation of conditioned stimuli, and during escape behaviour compared to freezing. Our results suggest that the presence of AMs in vocalisations emitted could reflect the animal's internal state of fear related to avoidance behaviour.
Collapse
Affiliation(s)
| | - Julie Boulanger-Bertolus
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Maryne Dupin
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Anne-Marie Mouly
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France.
| | - Julio C Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Pate BS, Bouknight SJ, Harrington EN, Mott SE, Augenblick LM, Smiley CE, Morgan CG, Calatayud BM, Martínez-Muñiz GA, Thayer JF, Wood SK. Site-Specific knockdown of microglia in the locus coeruleus regulates hypervigilant responses to social stress in female rats. Brain Behav Immun 2023; 109:190-203. [PMID: 36682513 PMCID: PMC11195023 DOI: 10.1016/j.bbi.2023.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Women are at increased risk for psychosocial stress-related anxiety disorders, yet mechanisms regulating this risk are unknown. Psychosocial stressors activate microglia, and the resulting neuroimmune responses that females exhibit heightened sensitivity to may serve as an etiological factor in their elevated risk. However, studies examining the role of microglia during stress in females are lacking. METHODS Microglia were manipulated in the stress-sensitive locus coeruleus (LC) of female rats in the context of social stress in two ways. First, intra-LC lipopolysaccharide (LPS; 0 or 3 μg/side, n = 5-6/group), a potent TLR4 agonist and microglial activator, was administered. One hour later, rats were exposed to control or an aggressive social defeat encounter between two males (WS, 15-min). In a separate study, females were treated with intra-LC or intra-central amygdala mannosylated liposomes containing clodronate (m-CLD; 0 or 25 μg/side, n = 13-14/group), a compound toxic to microglia. WS-evoked burying, cardiovascular responses, and sucrose preference were measured. Brain and plasma cytokines were quantified, and cardiovascular telemetry assessed autonomic balance. RESULTS Intra-LC LPS augmented the WS-induced burying response and increased plasma corticosterone and interleukin-1β (IL-1β). Further, the efficacy and selectivity of microinjected m-CLD was fully characterized. In the context of WS, intra-LC m-CLD attenuated the hypervigilant burying response during WS as well as the accumulation of intra-LC IL-1β. Intra-central amygdala m-CLD had no effect on WS-evoked behavior. CONCLUSIONS These studies highlight an innovative method for depleting microglia in a brain region specific manner and indicate that microglia in the LC differentially regulate hypervigilant WS-evoked behavioral and autonomic responses.
Collapse
Affiliation(s)
- Brittany S Pate
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Samantha J Bouknight
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Evelynn N Harrington
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Sarah E Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lee M Augenblick
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Cora E Smiley
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC, USA
| | - Christopher G Morgan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brittney M Calatayud
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Gustavo A Martínez-Muñiz
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC, USA.
| |
Collapse
|
10
|
Tryon SC, Sakamoto IM, Kaigler KF, Gee G, Turner J, Bartley K, Fadel JR, Wilson MA. ChAT::Cre transgenic rats show sex-dependent altered fear behaviors, ultrasonic vocalizations and cholinergic marker expression. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12837. [PMID: 36636833 PMCID: PMC9994175 DOI: 10.1111/gbb.12837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
The cholinergic system is a critical regulator of Pavlovian fear learning and extinction. As such, we have begun investigating the cholinergic system's involvement in individual differences in cued fear extinction using a transgenic ChAT::Cre rat model. The current study extends behavioral phenotyping of a transgenic ChAT::Cre rat line by examining both freezing behavior and ultrasonic vocalizations (USVs) during a Pavlovian cued fear learning and extinction paradigm. Freezing, 22 kHz USVs, and 50 kHz USVs were compared between male and female transgenic ChAT::Cre+ rats and their wildtype (Cre-) littermates during fear learning, contextual and cue-conditioned fear recall, cued fear extinction, and generalization to a novel tone. During contextual and cued fear recall ChAT::Cre+ rats froze slightly more than their Cre- littermates, and displayed significant sex differences in contextual and cue-conditioned freezing, 22 kHz USVs, and 50 kHz USVs. Females showed more freezing than males in fear recall trials, but fewer 22 kHz distress calls during fear learning and recall. Females also produced more 50 kHz USVs during exposure to the testing chambers prior to tone (or shock) presentation compared with males, but this effect was blunted in ChAT::Cre+ females. Corroborating previous studies, ChAT::Cre+ transgenic rats overexpressed vesicular acetylcholine transporter immunolabeling in basal forebrain, striatum, basolateral amygdala, and hippocampus, but had similar levels of acetylcholinesterase and numbers of ChAT+ neurons as Cre- rats. This study suggests that variance in behavior between ChAT::Cre+ and wildtype rats is sex dependent and advances theories that distinct neural circuits and processes regulate sexually divergent fear responses.
Collapse
Affiliation(s)
- Sarah C. Tryon
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Iris M. Sakamoto
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Kris F. Kaigler
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Gabriella Gee
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Jarrett Turner
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Katherine Bartley
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Marlene A. Wilson
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
- Columbia VA Health Care SystemColumbiaSouth CarolinaUSA
| |
Collapse
|
11
|
Liu X, Feng X, Huang H, Huang K, Xu Y, Ye S, Tseng YT, Wei P, Wang L, Wang F. Male and female mice display consistent lifelong ability to address potential life-threatening cues using different post-threat coping strategies. BMC Biol 2022; 20:281. [PMID: 36522765 PMCID: PMC9753375 DOI: 10.1186/s12915-022-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sex differences ranging from physiological functions to pathological disorders are developmentally hard-wired in a broad range of animals, from invertebrates to humans. These differences ensure that animals can display appropriate behaviors under a variety of circumstances, such as aggression, hunting, sleep, mating, and parental care, which are often thought to be important in the acquisition of resources, including territory, food, and mates. Although there are reports of an absence of sexual dimorphism in the context of innate fear, the question of whether there is sexual dimorphism of innate defensive behavior is still an open question. Therefore, an in-depth investigation to determine whether there are sex differences in developmentally hard-wired innate defensive behaviors in life-threatening circumstances is warranted. RESULTS We found that innate defensive behavioral responses to potentially life-threatening stimuli between males and females were indistinguishable over their lifespan. However, by using 3 dimensional (3D)-motion learning framework analysis, we found that males and females showed different behavioral patterns after escaping to the refuge. Specifically, the defensive "freezing" occurred primarily in males, whereas females were more likely to return directly to exploration. Moreover, there were also no estrous phase differences in innate defensive behavioral responses after looming stimuli. CONCLUSIONS Our results demonstrate that visually-evoked innate fear behavior is highly conserved throughout the lifespan in both males and females, while specific post-threat coping strategies depend on sex. These findings indicate that innate fear behavior is essential to both sexes and as such, there are no evolutionary-driven sex differences in defensive ability.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolong Feng
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Hongren Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yang Xu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuwei Ye
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yu-Ting Tseng
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Pengfei Wei
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Liping Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Feng Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Willadsen M, Uengoer M, Sługocka A, Schwarting RK, Homberg JR, Wöhr M. Fear Extinction and Predictive Trait-Like Inter-Individual Differences in Rats Lacking the Serotonin Transporter. Int J Mol Sci 2021; 22:ijms22137088. [PMID: 34209318 PMCID: PMC8268876 DOI: 10.3390/ijms22137088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022] Open
Abstract
Anxiety disorders are associated with a failure to sufficiently extinguish fear memories. The serotonergic system (5-hydroxytryptamine, 5-HT) with the 5-HT transporter (5-HTT, SERT) is strongly implicated in the regulation of anxiety and fear. In the present study, we examined the effects of SERT deficiency on fear extinction in a differential fear conditioning paradigm in male and female rats. Fear-related behavior displayed during acquisition, extinction, and recovery, was measured through quantification of immobility and alarm 22-kHz ultrasonic vocalizations (USV). Trait-like inter-individual differences in novelty-seeking, anxiety-related behavior, habituation learning, cognitive performance, and pain sensitivity were examined for their predictive value in forecasting fear extinction. Our results show that SERT deficiency strongly affected the emission of 22-kHz USV during differential fear conditioning. During acquisition, extinction, and recovery, SERT deficiency consistently led to a reduction in 22-kHz USV emission. While SERT deficiency did not affect immobility during acquisition, genotype differences started to emerge during extinction, and during recovery rats lacking SERT showed higher levels of immobility than wildtype littermate controls. Recovery was reflected in increased levels of immobility but not 22-kHz USV emission. Prominent sex differences were evident. Among several measures for trait-like inter-individual differences, anxiety-related behavior had the best predictive quality.
Collapse
Affiliation(s)
- Maria Willadsen
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
| | - Metin Uengoer
- Associative Learning, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany;
| | - Anna Sługocka
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland;
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Rainer K.W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
- Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands;
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
- Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000 Leuven, Belgium
- KU Leuven, Leuven Brain Institute, B-3000 Leuven, Belgium
- Correspondence: ; Tel.: +32–16–19–45–57
| |
Collapse
|
13
|
Willadsen M, Uengoer M, Schwarting RKW, Homberg JR, Wöhr M. Reduced emission of alarm 22-kHz ultrasonic vocalizations during fear conditioning in rats lacking the serotonin transporter. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110072. [PMID: 32800867 DOI: 10.1016/j.pnpbp.2020.110072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
Rats display a rich social behavioral repertoire. An important component of this repertoire is the emission of whistle-like calls in the ultrasonic range, so-called ultrasonic vocalizations (USV). Long low-frequency 22-kHz USV occur in aversive situations, including aggressive interactions, predator exposure, and electric shocks during fear conditioning. They are believed to reflect a negative affective state akin to anxiety and fear. A prominent theory suggests that 22-kHz USV function as alarm calls to warn conspecifics. Serotonin (5-hydroxytryptamine, 5-HT) is strongly implicated in the regulation of affective states, particularly anxiety and fear. A key component of the system is the 5-HT transporter (5-HTT, also known as SERT), regulating 5-HT availability in the synaptic cleft. In the present experiment, we studied the effects of SERT deficiency on overt fear-related behavior and alarm 22-kHz USV during fear conditioning in male and female rats. While overt fear-related behavior was not affected by SERT deficiency and sex, the emission of alarm 22-kHz USV was clearly reduced in homozygous SERT-/- but not heterozygous SERT+/- mutants, as compared to their wildtype SERT+/+ littermate controls. Genotype effects were particularly prominent in females. Females in general emitted fewer alarm 22-kHz USV than males. This supports the view that 22-kHz USV are, at least partly, independently regulated from anxiety or fear and as socially mediated alarm calls do not simply express a negative affective state. Reduced 22-kHz USV emission in rats lacking SERT might be due to social deficits in the use of 22-kHz USV as a socio-affective signal to warn conspecifics about threats.
Collapse
Affiliation(s)
- Maria Willadsen
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany
| | - Metin Uengoer
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany; Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
14
|
Seo SY, Bang SK, Kang SY, Cho SJ, Choi KH, Ryu YH. Acupuncture Alleviates Anxiety and 22-kHz Ultrasonic Vocalizations in Rats Subjected to Repeated Alcohol Administration by Modulating the Brain-Derived Neurotrophic Factor/Corticotropin-Releasing Hormone Signaling Pathway. Int J Mol Sci 2021; 22:4037. [PMID: 33919862 PMCID: PMC8070810 DOI: 10.3390/ijms22084037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
The Shenmen point (acupuncture point heart 7: HT7), located in the heart meridian, is frequently used to treat mental disorders, including drug addiction, anxiety, and depression. This study aimed to determine how HT7 regulates anxiety and negative emotions caused by repeated alcohol administration, focusing on the amygdala and paraventricular nucleus (PVN). Repeated administration of alcohol (ETOH; 2 g/kg, i.p. injection, 16% v/v) for 14 days increased the corticosterone (CORT) levels, and HT7 stimulation reduced the plasma CORT levels. HT7 stimulation mitigated anxiety-like behaviors and reduced 22-kHz ultrasonic vocalizations in rats receiving repeated ETOH injections. HT7 stimulation increased the amygdala expression of mature brain-derived neurotropic factor (mBDNF) and phosphorylated tropomyosin receptor kinase B (pTrkB) and decreased the PVN corticotropin-releasing hormone (CRH) expression. Amygdala microinjections of the TrkB antagonist ANA-12 (0.1 pmol/1 μL) reversed the increase in PVN CRH levels. The reduced PVN CRH levels were regulated by CRH-expressing neurons in the amygdala, and the increased amygdala CRH levels were affected by the HT7-stimulation induced increases in mBDNF. HT7 stimulation alleviates increased stress hormone levels and mitigates anxiety and negative emotions caused by repeated ETOH administration. These results provide scientific support for the clinical use of acupuncture to treat various alcoholism-induced diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yeon Hee Ryu
- Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Korea; (S.Y.S.); (S.K.B.); (S.Y.K.); (S.J.C.); (K.H.C.)
| |
Collapse
|
15
|
Szeska C, Richter J, Wendt J, Weymar M, Hamm AO. Attentive immobility in the face of inevitable distal threat-Startle potentiation and fear bradycardia as an index of emotion and attention. Psychophysiology 2021; 58:e13812. [PMID: 33759212 DOI: 10.1111/psyp.13812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/05/2021] [Accepted: 03/02/2021] [Indexed: 11/27/2022]
Abstract
During fear conditioning, a cue (CS) signals an inevitable distal threat (US) and evokes a conditioned response that can be described as attentive immobility (freezing). The organism remains motionless and monitors the source of danger while startle responses are potentiated, indicating a state of defensive hypervigilance. Although in animals vagally mediated fear bradycardia is also reliably observed under such circumstances, results are mixed in human fear conditioning. Using a single-cue fear conditioning and extinction protocol, we tested cardiac reactivity and startle potentiation indexing low-level defensive strategies in a fear-conditioned (n = 40; paired presentations of CS and US) compared with a non-conditioned control group (n = 40; unpaired presentations of CS and US). Additionally, we assessed shock expectancy ratings on a trial-by-trial basis indexing declarative knowledge of the previous contingencies. Half of each group underwent extinction under sham or active transcutaneous vagus nerve stimulation (tVNS), serving as additional proof of concept. We found stronger cardiac deceleration during CS presentation in the fear learning relative to the control group. This learned fear bradycardia was positively correlated with conditioned startle potentiation but not with declarative knowledge of CS-US contingencies. TVNS abolished differences in heart rate changes between both groups and removed the significant correlation between late cardiac deceleration and startle potentiation in the fear learning group. Results suggest, fear-conditioned cues evoke attentive immobility in humans, characterized by cardiac deceleration and startle potentiation. Such defensive response pattern is elicited by cues predicting inevitable distal threat and resembles conditioned fear responses observed in rodents.
Collapse
Affiliation(s)
- Christoph Szeska
- Department of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Jan Richter
- Department of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Julia Wendt
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany.,Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Alfons O Hamm
- Department of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Wiktorowska L, Bilecki W, Tertil M, Kudla L, Szumiec L, Mackowiak M, Przewlocki R. Knockdown of the astrocytic glucocorticoid receptor in the central nucleus of the amygdala diminishes conditioned fear expression and anxiety. Behav Brain Res 2021; 402:113095. [PMID: 33359366 DOI: 10.1016/j.bbr.2020.113095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022]
Abstract
The amygdala is a key structure involved in both physiological and behavioural effects of fearful and stressful stimuli. The central stress response is controlled by the activity of the hypothalamic-pituitary-adrenal (HPA) axis via glucocorticoid hormones, acting mainly through glucocorticoid receptors (GR), widely expressed among different brain regions, including the central nucleus of the amygdala (CeA). Although to date, neuronal GR was postulated to be involved in the mediating stress effects, increasing evidence points to the vital role of glial GR. Here, we aimed to evaluate the role of astrocytic GR in CeA in various aspects of the stress response. We used a lentiviral vector to disrupt an astrocytic GR in the CeA of Aldh1l1-Cre transgenic mice. Astrocytic GR knockdown mice (GR KD) exhibited an attenuated expression of fear-related memory in the fear conditioning paradigm. Interestingly, the consolidation of non-stressful memory in the novel object recognition test remained unchanged. Moreover, GR KD group presented reduced anxiety, measured in the open field test. However, knockdown of astrocytic GR in the CeA did not affect an acute response to stress in the tail suspension test. Taken together, obtained results suggest that astrocytic GR in the CeA promotes aversive memory consolidation and some aspects of anxiety behaviour.
Collapse
Affiliation(s)
- Lucja Wiktorowska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wiktor Bilecki
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Tertil
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lucja Kudla
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marzena Mackowiak
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
17
|
Odour conditioning of positive affective states: Rats can learn to associate an odour with being tickled. PLoS One 2019; 14:e0212829. [PMID: 31188832 PMCID: PMC6561538 DOI: 10.1371/journal.pone.0212829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/30/2019] [Indexed: 12/03/2022] Open
Abstract
Most associative learning tests in rodents use negative stimuli, such as electric shocks. We investigated if young rats can learn to associate the presence of an odour with the experience of being tickled (i.e. using an experimenter’s hand to mimic rough-and-tumble play), shown to elicit 50 kHz ultrasonic vocalisations (USVs), which are indicative of positive affect. Male, pair-housed Wistar rats (N = 24) were all exposed to two neutral odours (A and B) presented in a perforated container on alternate days in a test arena. Following 60s of exposure, the rats were either tickled on days when odour A (n = 8) or odour B (n = 8) was present, or never tickled (n = 8). When tickled, rats produced significantly more 50 kHz USVs compared to the days when not being tickled, and compared to control rats. The level of anticipatory 50 kHz USVs in the 60s prior to tickling did not differ significantly between the tickled and control rats. As a retrieval test following the odour conditioning, rats were exposed successively in the same arena to three odours: an unknown neutral odour, extract of fox faeces, and either odours A or B. Compared to controls, 50 kHz USVs of tickled rats increased when exposed to the odour they had previously experienced when tickled, indicating that these rats had learned to associate the odour with the positive experience of being tickled. In a test with free access for 5 min to both arms of a T-maze, each containing one of the odours, rats tickled with odour A spent more time in the arm with this odour. This work is the first to test in a fully balanced design whether rats can learn to associate an odour with tickling, and indicates that positive odour conditioning has potential to be used as an alternative to negative conditioning tests.
Collapse
|
18
|
Evans DA, Stempel AV, Vale R, Branco T. Cognitive Control of Escape Behaviour. Trends Cogn Sci 2019; 23:334-348. [PMID: 30852123 PMCID: PMC6438863 DOI: 10.1016/j.tics.2019.01.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
When faced with potential predators, animals instinctively decide whether there is a threat they should escape from, and also when, how, and where to take evasive action. While escape is often viewed in classical ethology as an action that is released upon presentation of specific stimuli, successful and adaptive escape behaviour relies on integrating information from sensory systems, stored knowledge, and internal states. From a neuroscience perspective, escape is an incredibly rich model that provides opportunities for investigating processes such as perceptual and value-based decision-making, or action selection, in an ethological setting. We review recent research from laboratory and field studies that explore, at the behavioural and mechanistic levels, how elements from multiple information streams are integrated to generate flexible escape behaviour.
Collapse
Affiliation(s)
- Dominic A Evans
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - A Vanessa Stempel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - Ruben Vale
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK.
| |
Collapse
|
19
|
Calub CA, Furtak SC, Brown TH. Revisiting the autoconditioning hypothesis for acquired reactivity to ultrasonic alarm calls. Physiol Behav 2018; 194:380-386. [DOI: 10.1016/j.physbeh.2018.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
|
20
|
Tonelli LC, Wöhr M, Schwarting R, Melo-Thomas L. Paradoxical kinesia induced by appetitive 50-kHz ultrasonic vocalizations in rats depends on glutamatergic mechanisms in the inferior colliculus. Neuropharmacology 2018; 135:172-179. [PMID: 29550392 DOI: 10.1016/j.neuropharm.2018.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Paradoxical kinesia is a sudden transient ability of akinetic patients to perform motor tasks they are otherwise unable to perform. This phenomenon is known to depend on the patient's emotional state and external stimuli. Paradoxical kinesia can be induced by appetitive 50-kHz ultrasonic vocalizations (USV) in rats displaying catalepsy following systemic haloperidol. We investigated the role of the inferior colliculus (IC) in paradoxical kinesia induced by 50-kHz USV, since the IC modulates haloperidol-induced catalepsy. We focused on glutamatergic and GABAergic neurotransmission, with male rats receiving intracollicular NMDA or the GABA receptor agonist diazepam 10 min before systemic haloperidol. Catalepsy time was assessed by means of the bar test, during which rats were exposed to playback of 50-kHz USV, white noise, and background noise. Our results show that playback of 50-kHz USV induced paradoxical kinesia by reducing haloperidol-induced catalepsy in rats which had received saline intracollicular microinjection. This paradoxical kinesia effect of 50-kHz USV playback on haloperidol-induced catalepsy was prevented by intracollicular NMDA administration. Although intracollicular diazepam microinjection potentiated haloperidol-induced catalepsy, it did not affect the response to 50-kHz USV playback. Together, NMDA receptor agonist suppressed the effectiveness of 50-kHz USV playback, whereas diazepam did not. These findings suggest that the IC is a key structure involved in paradoxical kinesia, with relevant processes being glutamatergic rather than GABAergic. Our approach thus appears useful for uncovering neural mechanisms of paradoxical kinesia and it might help identifying novel therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
- Luan Castro Tonelli
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
| | - Markus Wöhr
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Rainer Schwarting
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Liana Melo-Thomas
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany; Behavioral Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil.
| |
Collapse
|
21
|
The function of ultrasonic vocalizations during territorial defence by pair-bonded male and female California mice. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Otta E. Brincar na perspectiva psicoetológica: implicações para pesquisa e prática. PSICOLOGIA USP 2017. [DOI: 10.1590/0103-656420160122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo Este ensaio trata do brincar a partir da perspectiva psicoetológica e examina implicações para a pesquisa e a prática. Ao longo das últimas décadas, crianças vêm ganhando oportunidades de escolarização e atividades dirigidas por adultos, mas perdendo oportunidades de brincadeira livre autogerenciada. Isto é preocupante, considerando as indicações de modelos animais de que a brincadeira social autogerenciada é importante para o desenvolvimento do cérebro social e da capacidade de autorregulação de emoções. Este estudo representa um convite-justificativa para que as crianças recuperem oportunidades de brincadeira natural das quais vêm sendo privadas. Quanto mais conhecermos sobre o brincar, mais adequados seremos nas oportunidades que poderemos oferecer a elas. Precisamos de mais pesquisa sobre este tema na academia, num ambiente intelectual que facilite a colaboração entre etólogos, psicólogos, educadores e neurocientistas, promovendo interação bidirecional entre teoria e prática.
Collapse
|
23
|
Bassi GS, Carvalho MC, Almada RC, Brandão ML. Inhibition of substance P-induced defensive behavior via neurokinin-1 receptor antagonism in the central and medial but not basolateral nuclei of the amygdala in male Wistar rats. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:146-154. [PMID: 28390968 DOI: 10.1016/j.pnpbp.2017.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
Abstract
RATIONALE The production of unconditioned defensive behaviors has been related to the amygdala, a key component of the encephalic aversion system. Microinjection of the neuropeptide substance P (SP) in the amygdala elicits defensive behaviors via the activation of type 1 neurokinin (NK-1) receptors. However, no studies have investigated whether intra-amygdala SP/NK-1 mechanisms can elicit other types of defensive responses, such as antinociception and ultrasonic vocalizations (USVs). METHODS The present study investigated the effects of SP-induced activation of the neurokininergic system in three main nuclei of the amygdala-basolateral (BLA), central (CeA), and medial (MeA) nuclei-in rats that were subjected to the elevated plus maze (EPM), tail-flick test, and USV recording. The effects of SP in these amygdaloid nuclei were challenged with combined injections of the NK-1 receptor antagonist spantide. RESULTS The present study showed that SP injections in the CeA and MeA but not BLA exerted anxiogenic-like effects. In contrast to the CeA, the anxiogenic-like effects of SP in the MeA were not dependent on NK-1 mechanisms. In the tail-flick test, SP microinjections produced antinociceptive effects only in the MeA through NK-1 receptor activation. No USV emissions were detected after the SP microinjections. CONCLUSIONS The present study showed that NK-1 receptors in the CeA and MeA but not BLA are involved in defensive reactions to conditions of fear. The present results may provide a better understanding of the neurochemical mediation of fear states.
Collapse
Affiliation(s)
- G S Bassi
- Instituto de Neurociências e Comportamento, Av. do Café, 2.450, Ribeirão Preto, SP 14050-220, Brazil; Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14040-901, Brazil.
| | - M C Carvalho
- Instituto de Neurociências e Comportamento, Av. do Café, 2.450, Ribeirão Preto, SP 14050-220, Brazil; Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14040-901, Brazil
| | - R C Almada
- Instituto de Neurociências e Comportamento, Av. do Café, 2.450, Ribeirão Preto, SP 14050-220, Brazil; Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14040-901, Brazil
| | - M L Brandão
- Instituto de Neurociências e Comportamento, Av. do Café, 2.450, Ribeirão Preto, SP 14050-220, Brazil; Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
24
|
Kagawa H, Seki Y, Okanoya K. Affective valence of neurons in the vicinity of the rat amygdala: Single unit activity in response to a conditioned behavior and vocal sound playback. Behav Brain Res 2017; 324:109-114. [DOI: 10.1016/j.bbr.2017.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 11/26/2022]
|
25
|
Franklin DJ, Grossberg S. A neural model of normal and abnormal learning and memory consolidation: adaptively timed conditioning, hippocampus, amnesia, neurotrophins, and consciousness. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 17:24-76. [PMID: 27905080 PMCID: PMC5272895 DOI: 10.3758/s13415-016-0463-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
How do the hippocampus and amygdala interact with thalamocortical systems to regulate cognitive and cognitive-emotional learning? Why do lesions of thalamus, amygdala, hippocampus, and cortex have differential effects depending on the phase of learning when they occur? In particular, why is the hippocampus typically needed for trace conditioning, but not delay conditioning, and what do the exceptions reveal? Why do amygdala lesions made before or immediately after training decelerate conditioning while those made later do not? Why do thalamic or sensory cortical lesions degrade trace conditioning more than delay conditioning? Why do hippocampal lesions during trace conditioning experiments degrade recent but not temporally remote learning? Why do orbitofrontal cortical lesions degrade temporally remote but not recent or post-lesion learning? How is temporally graded amnesia caused by ablation of prefrontal cortex after memory consolidation? How are attention and consciousness linked during conditioning? How do neurotrophins, notably brain-derived neurotrophic factor (BDNF), influence memory formation and consolidation? Is there a common output path for learned performance? A neural model proposes a unified answer to these questions that overcome problems of alternative memory models.
Collapse
Affiliation(s)
- Daniel J Franklin
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, and Departments of Mathematics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, 677 Beacon Street, Room 213, Boston, MA, 02215, USA
| | - Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, and Departments of Mathematics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, 677 Beacon Street, Room 213, Boston, MA, 02215, USA.
| |
Collapse
|
26
|
Air-puff induced vocalizations: A novel approach to detecting negative affective state following concussion in rats. J Neurosci Methods 2016; 275:45-49. [PMID: 27984100 DOI: 10.1016/j.jneumeth.2016.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Negative emotional states resulting from concussion are of increasing concern. In the current study, we developed a model to investigate negative affect following concussion in the projectile concussive impact (PCI) model. High frequency ultrasonic vocalizations (22kHz USVs) are associated with negative affective stimuli in rats. Changes in negative affective state were examined following PCI using a mild air-puff stimulus to elicit 22kHz USVs. NEW METHOD Forty-eight hours post-injury, animals were placed into a clean acrylic box lined with bedding. A 5min baseline recording was followed by 15 air puffs (55psi) spaced 15s apart aimed at the upper back and neck. RESULTS Injured animals produced on average 153.5±55.13 more vocalizations than shams, vocalizing on average 4min longer than shams. Additionally, concussed animals vocalized to fewer air-puffs, exhibiting a 1.5 fold lower threshold for the expression of negative affect. COMPARISON WITH EXISTING METHODS Studies currently used to test negative affective states following concussion in animals, such as the elevated plus maze and forced swim task have, as of yet, been unsuccessful in demonstrating injury effects in the PCI model. While the air-puff test has been applied in other fields, to our knowledge it has not been utilized to study traumatic brain injury. CONCLUSION The current study demonstrates that the air-puff vocalization test may be a valuable tool in assessing negative mood states following concussion in rat models and may be used to evaluate novel therapies following brain injury for the treatment of mood dysfunction.
Collapse
|
27
|
Keifer OP, Hurt RC, Ressler KJ, Marvar PJ. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning. Physiology (Bethesda) 2016; 30:389-401. [PMID: 26328883 DOI: 10.1152/physiol.00058.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively.
Collapse
Affiliation(s)
- Orion P Keifer
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Yerkes National Primate Research Center, Atlanta, Georgia
| | - Robert C Hurt
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kerry J Ressler
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Howard Hughes Medical Institute, Bethesda, Maryland; and Yerkes National Primate Research Center, Atlanta, Georgia
| | - Paul J Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C.;
| |
Collapse
|
28
|
|
29
|
Abstract
<p>A footnote (FN) originally submitted as a comment to the article "Parsing Reward" led me to write this essay. The comment was rejected by the editor of a prestigious scientific journal in the area of behavioral neuroscience with the suggestion that it would be more appropriate for an "idle talk". I believe that the core issues involved are important to address explicitly in a debate within the broad domain of the frontiers of human and biological sciences. The protagonists involved in the didactic episode of the FN, whose articles and books I have been reading over the years, are leaders in the field of neuroscience. In this essay the episode is historically contextualized and discussed in terms of potential implications for ethology, psychology and neuroscience.</p>
Collapse
|
30
|
Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nat Commun 2015; 6:7224. [PMID: 26068082 PMCID: PMC4467028 DOI: 10.1038/ncomms8224] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/20/2015] [Indexed: 12/19/2022] Open
Abstract
Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities. Defense against environmental threats is essential for survival, yet the neural circuits mediating innate defensive behaviours are not completely understood. Here the authors demonstrate that descending projections from the auditory cortex to the midbrain mediate innate, sound-evoked flight behaviour.
Collapse
|
31
|
Pro-social ultrasonic communication in rats: insights from playback studies. J Neurosci Methods 2014; 234:73-81. [PMID: 24508146 DOI: 10.1016/j.jneumeth.2014.01.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022]
Abstract
Rodent ultrasonic vocalizations (USV) serve as situation-dependent affective signals and convey important communicative functions. In the rat, three major USV types exist: (I) 40-kHz USV, which are emitted by pups during social isolation; (II) 22-kHz USV, which are produced by juvenile and adult rats in aversive situations, including social defeat; and (III) 50-kHz USV, which are uttered by juvenile and adult rats in appetitive situations, including rough-and-tumble play. Here, evidence for a communicative function of 50-kHz USV is reviewed, focusing on findings obtained in the recently developed 50-kHz USV radial maze playback paradigm. Up to now, the following five acoustic stimuli were tested in this paradigm: (A) natural 50-kHz USV, (B) natural 22-kHz USV, (C) artificial 50-kHz sine wave tones, (D) artificial time- and amplitude-matched white noise, and (E) background noise. All studies using the 50-kHz USV radial maze playback paradigm indicate that 50-kHz USV serve a pro-social affiliative function as social contact calls. While playback of the different kinds of acoustic stimuli used so far elicited distinct behavioral response patterns, 50-kHz USV consistently led to social approach behavior in the recipient, indicating that pro-social ultrasonic communication can be studied in a reliable and highly standardized manner by means of the 50-kHz USV radial maze playback paradigm. This appears to be particularly relevant for rodent models of neurodevelopmental disorders, as there is a tremendous need for reliable behavioral assays with face validity to social communication deficits seen in autism and schizophrenia in order to study underlying genetic and neurobiological alterations.
Collapse
|
32
|
Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behav Brain Res 2013; 251:5-17. [DOI: 10.1016/j.bbr.2013.05.047] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 12/14/2022]
|
33
|
Abstract
The N-methyl-D-aspartate receptor (NMDAR) is crucial for pain-related behaviors. D-Serine is synthesized from L-serine by serine racemase (SR) and modulates NMDAR functions by acting as an agonist at the glycine-binding site. We analyzed noxious stimulus-induced ultrasonic vocalization and locomotor activity in the open-field test using SR knockout (SR-KO) mice to examine the role of endogenous D-serine in mammalian behaviors. SR-KO mice emitted less ultrasonic vocalization after noxious stimulation (VAS) than wild-type (WT) mice. The locomotor activity of WT mice decreased with repeated daily exposures to the open field, whereas that of SR-KO mice remained unchanged. VAS was significantly enhanced during arthritis in WT mice, whereas it was not enhanced during arthritis in SR-KO mice. These results indicate that mice lacking the ability to produce D-serine endogenously in the brain differ from normal mice with respect to the chronic pain-induced behavioral changes.
Collapse
|
34
|
Wöhr M, Schwarting RKW. Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell Tissue Res 2013; 354:81-97. [DOI: 10.1007/s00441-013-1607-9] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
35
|
Poulin JF, Bérubé P, Laforest S, Drolet G. Enkephalin knockdown in the central amygdala nucleus reduces unconditioned fear and anxiety. Eur J Neurosci 2013; 37:1357-67. [DOI: 10.1111/ejn.12134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 12/25/2022]
Affiliation(s)
- Jean-François Poulin
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| | - Patrick Bérubé
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| | - Sylvie Laforest
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| | - Guy Drolet
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| |
Collapse
|
36
|
Yee N, Schwarting RKW, Fuchs E, Wöhr M. Juvenile stress potentiates aversive 22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats. Stress 2012; 15:533-44. [PMID: 22150360 DOI: 10.3109/10253890.2011.646348] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Traumatic experiences that occur during adolescence can render individuals vulnerable to mood and anxiety disorders. A model in juvenile rats (age: 27-29 days) was developed previously to study the long-term effects of adolescent stress exposure on behaviour and physiology. This paradigm, termed juvenile stress, involves subjecting juvenile rats to different stressors on consecutive days over a 3-day period. Here, we investigated the effects of the juvenile stress paradigm on freezing behaviour and aversive 22-kHz ultrasonic vocalizations (USVs) during auditory fear conditioning in adult male rats (age: 68-90 days). We found that rats previously subjected to juvenile stress increased aversive 22-kHz USVs (total calls and time spent calling) compared with controls during fear-conditioning training. The acoustic USV parameters between control and juvenile stress rats were largely equivalent, including duration, peak frequency and amplitude. While rats did not differ in freezing behaviour during fear conditioning, juvenile stress rats exhibited greater cue-conditioned freezing upon testing 24 h later. Our results show that juvenile stress elicited different long-term changes in freezing and aversive USVs during fear conditioning. Furthermore, they highlight the importance of assessing USVs to detect experience-dependent differences between control and stress-exposed animals which are not detectable by measuring visible behaviour.
Collapse
Affiliation(s)
- Nicole Yee
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany.
| | | | | | | |
Collapse
|
37
|
Kent BA, Brown TH. Dual functions of perirhinal cortex in fear conditioning. Hippocampus 2012; 22:2068-79. [PMID: 22903623 DOI: 10.1002/hipo.22058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2012] [Indexed: 11/09/2022]
Abstract
The present review examines the role of perirhinal cortex (PRC) in Pavlovian fear conditioning. The focus is on rats, partly because so much is known, behaviorally and neurobiologically, about fear conditioning in these animals. In addition, the neuroanatomy and neurophysiology of rat PRC have been described in considerable detail at the cellular and systems levels. The evidence suggests that PRC can serve at least two types of mnemonic functions in Pavlovian fear conditioning. The first function, termed "stimulus unitization," refers to the ability to treat two or more separate items or stimulus elements as a single entity. Supporting evidence for this perceptual function comes from studies of context conditioning as well as delay conditioning to discontinuous auditory cues. In a delay paradigm, the conditional stimulus (CS) and unconditional stimulus (US) overlap temporally and co-terminate. The second PRC function entails a type of "transient memory." Supporting evidence comes from studies of trace cue conditioning, where there is a temporal gap or trace interval between the CS offset and the US onset. For learning to occur, there must be a transient CS representation during the trace interval. We advance a novel neurophysiological mechanism for this transient representation. These two hypothesized functions of PRC are consistent with inferences based on non-aversive forms of learning.
Collapse
Affiliation(s)
- Brianne A Kent
- Department of Experimental Psychology, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | | |
Collapse
|
38
|
Testing social acoustic memory in rats: effects of stimulus configuration and long-term memory on the induction of social approach behavior by appetitive 50-kHz ultrasonic vocalizations. Neurobiol Learn Mem 2012; 98:154-64. [PMID: 22677211 DOI: 10.1016/j.nlm.2012.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 02/03/2023]
Abstract
Rats emit distinct types of ultrasonic vocalizations (USVs), which serve as situation-dependent affective signals. In appetitive situations, such as rough-and-tumble-play, high-frequency 50-kHz USVs occur, whereas low-frequency 22-kHz USVs can be observed in aversive situations, such as social defeat. USVs serve distinct communicative functions and induce call-specific behavioral responses in the receiver. While aversive 22-kHz USVs serve as alarm calls and induce behavioral inhibition, appetitive 50-kHz USVs have a pro-social communicative function and elicit social approach behavior, supporting the notion that they serve as social contact calls to (re)establish or maintain contact among conspecifics. The aim of the present study was to use the rat's ability to communicate in the ultrasonic range via high-frequency 50-kHz USVs in order to develop a test for social acoustic memory in rats with relevance for human verbal memory. Verbal learning and memory is among the seven cognitive domains identified as commonly deficient in human schizophrenia patients, but particularly difficult to model. We therefore tested whether the induction of social approach behavior by playback of appetitive 50-kHz USVs is dependent on (1) acoustic stimulus configuration and (2) social long-term memory, and whether (3) social long-term memory effects can be blocked by the administration of scopolamine, a muscarinic acetylcholine antagonist producing amnesia. Results show that social approach behavior in response to playback of natural 50-kHz USVs depends on acoustic stimulus configuration and occurs only when sound energy is concentrated to a critical frequency band in the ultrasonic range. Social approach behavior was detected during the first exposure to playback of 50-kHz USVs, whereas no such response was observed during the second exposure 1week later, indicating a stable memory trace. In contrast, when memory formation was blocked by i.p. administration of scopolamine (0.5mg/kg or 1.5mg/kg) immediately after the first exposure, rats displayed social approach behavior during the second exposure as well. Induction of social approach behavior in response to repeated playback of natural 50-kHz USVs may therefore provide a new and rather unique approach for testing social acoustic memory in rats with relevance to human verbal memory.
Collapse
|
39
|
Webber E, Harmon K, Beckwith T, Peña S, Burgdorf J, Panksepp J, Cromwell H. Selective breeding for 50kHz ultrasonic vocalization emission produces alterations in the ontogeny and regulation of rough-and-tumble play. Behav Brain Res 2012; 229:138-44. [DOI: 10.1016/j.bbr.2012.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/29/2011] [Accepted: 01/04/2012] [Indexed: 01/05/2023]
|
40
|
Parsana AJ, Moran EE, Brown TH. Rats learn to freeze to 22-kHz ultrasonic vocalizations through autoconditioning. Behav Brain Res 2012; 232:395-9. [PMID: 22475554 DOI: 10.1016/j.bbr.2012.03.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 02/07/2023]
Abstract
Rats emit ultrasonic vocalizations (USVs) at ∼22kHz and ∼50kHz, respectively, during negative and positive affective states. Among rats raised in a naturalistic social context, 22-kHz USVs serve as "alarm cries" that can elicit freezing behavior. By contrast, several studies show that naïve laboratory rats do not freeze in response to alarm cries. An obvious and consistent interpretation of these facts is that USV-elicited freezing depends on a type of social learning that ordinarily does not occur in the laboratory. However, the present study explored an alternative and explicitly non-social learning mechanism. Animals in the experimental group received multiple footshocks that elicited 22-kHz USVs. Animals in the control group were exposed to the same chamber but did not receive footshocks and, therefore, did not vocalize. When subsequently tested in a novel context, experimental animals froze in response to a novel 22-kHz USV but were unresponsive to a novel 50-kHz USV. Vocalizing during the aversive experience was predictive of subsequent freezing to the 22-kHz USV. As expected from previous studies, control animals failed to freeze to either USV. We propose that the experimental animals learned to associate their own 22-kHz USVs with an internal fear state and selectively generalized this "autoconditioning" to a novel 22-kHz USV. This non-social form of learning seems sufficiently rapid, reliable, and stimulus-specific to be ethologically adaptive.
Collapse
|
41
|
Schwarting RKW, Wöhr M. On the relationships between ultrasonic calling and anxiety-related behavior in rats. Braz J Med Biol Res 2012; 45:337-48. [PMID: 22437483 PMCID: PMC3854164 DOI: 10.1590/s0100-879x2012007500038] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/08/2012] [Indexed: 11/22/2022] Open
Abstract
In the present review, the phenomenon of ultrasonic vocalization in rats will be outlined, including the three classes of vocalizations, namely 40-kHz calls of pups, and 22- and 50-kHz calls of juvenile and adult rats, their general relevance to behavioral neuroscience, and their special relevance to research on anxiety, fear, and defense mechanisms. Here, the emphasis will be placed on 40- and 22-kHz calls, since they are typical for various situations with aversive properties. Among other topics, we will discuss whether such behavioral signals can index a certain affective state, and how these signals can be used in social neuroscience, especially with respect to communication. Furthermore, we will address the phenomenon of inter-individual variability in ultrasonic calling and what we currently know about the mechanisms, which may determine such variability. Finally, we will address the current knowledge on the neural and pharmacological mechanisms underlying 22-kHz ultrasonic vocalization, which show a substantial overlap with mechanisms known from other research on fear and anxiety, such as those involving the periaqueductal gray or the amygdala.
Collapse
Affiliation(s)
- R K W Schwarting
- Experimental and Physiological Psychology, Philipps-University of Marburg, Germany.
| | | |
Collapse
|
42
|
Abstract
I propose a reconceptualization of key phenomena important in the study of emotion-those phenomena that reflect functions and circuits related to survival, and that are shared by humans and other animals. The approach shifts the focus from questions about whether emotions that humans consciously feel are also present in other animals, and toward questions about the extent to which circuits and corresponding functions that are present in other animals (survival circuits and functions) are also present in humans. Survival circuit functions are not causally related to emotional feelings but obviously contribute to these, at least indirectly. The survival circuit concept integrates ideas about emotion, motivation, reinforcement, and arousal in the effort to understand how organisms survive and thrive by detecting and responding to challenges and opportunities in daily life.
Collapse
Affiliation(s)
- Joseph LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY 10003, USA.
| |
Collapse
|
43
|
In the Blink of an Eye: Investigating the Role of Awareness in Fear Responding by Measuring the Latency of Startle Potentiation. Brain Sci 2012; 2:61-84. [PMID: 24962686 PMCID: PMC4061786 DOI: 10.3390/brainsci2010061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/31/2012] [Accepted: 02/07/2012] [Indexed: 12/02/2022] Open
Abstract
The latency of startle reflex potentiation may shed light on the aware and unaware processes underlying associative learning, especially associative fear learning. We review research suggesting that single-cue delay classical conditioning is independent of awareness of the contingency between the conditioned stimulus (CS) and the unconditioned stimulus (US). Moreover, we discuss research that argues that conditioning independent of awareness has not been proven. Subsequently, three studies from our lab are presented that have investigated the role of awareness in classical conditioning, by measuring the minimum latency from CS onset to observed changes in reflexive behavior. In sum, research using this method shows that startle is potentiated 30 to 100 ms after CS onset following delay conditioning. Following trace fear conditioning, startle is potentiated 1500 ms after CS presentation. These results indicate that the process underlying delay conditioned responding is independent of awareness, and that trace fear conditioned responding is dependent on awareness. Finally, this method of investigating the role of awareness is discussed and future research possibilities are proposed.
Collapse
|
44
|
Parsana AJ, Li N, Brown TH. Positive and negative ultrasonic social signals elicit opposing firing patterns in rat amygdala. Behav Brain Res 2012; 226:77-86. [PMID: 21911010 PMCID: PMC3197767 DOI: 10.1016/j.bbr.2011.08.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 08/25/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
Abstract
Rat ultrasonic vocalizations (USVs) are ethologically-essential social signals. Under natural conditions, 22kHz USVs and 50kHz USVs are emitted in association with negative and positive emotional states, respectively. Our first experiment examined freezing behavior elicited in naïve Sprague-Dawley rats by a 22kHz USV, a 50kHz USV, and frequency-matched tones. None of the stimuli elicited freezing, which is the most commonly-used index of fear. The second experiment examined single-unit responses to these stimuli in the amygdala (AM), which is well-known for its role in innate and acquired fear responses. Among 127 well-discriminated single units, 82% were auditory-responsive. Elicited firing patterns were classified using a multi-dimensional scheme that included transient (phasic) responses to the stimulus onsets and/or offsets as well as sustained (tonic) responses during the stimulus. Tonic responses, which are not ordinarily evaluated in AM, were 4.4-times more common than phasic responses. The 22kHz stimuli tended to elicit tonic increases in the firing rates, whereas the 50kHz stimuli more often elicited tonic decreases in firing rates. These opposing tonic responses correspond with the ethological valence of USVs in the two frequency bands. Thus, a relatively-small sample of single-unit responses in AM furnished a more sensitive index of emotional valence than freezing behavior. Latency analysis suggested that stimuli in the two frequency bands are processed through different pathways to AM. One possible interpretation is that phasic responses in AM reflect the detection of a stimulus change, whereas tonic responses indicate the valence of the detected stimulus.
Collapse
Affiliation(s)
| | - Nanxin Li
- Department of Psychology, Yale University
| | - Thomas H. Brown
- Department of Psychology, Yale University
- Department of Cellular and Molecular Physiology, Yale University
| |
Collapse
|
45
|
Wang Z, Pang RD, Hernandez M, Ocampo MA, Holschneider DP. Anxiolytic-like effect of pregabalin on unconditioned fear in the rat: an autoradiographic brain perfusion mapping and functional connectivity study. Neuroimage 2011; 59:4168-88. [PMID: 22155030 DOI: 10.1016/j.neuroimage.2011.11.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 12/15/2022] Open
Abstract
Clinical and preclinical evidence suggests anxiolytic-like efficacy of pregabalin (PGB, Lyrica). However, its mechanism of action remains under investigation. The current study applied [(14)C]-iodoantipyrine cerebral blood flow (CBF) mapping to examine the effect of PGB on neural substrates underlying unconditioned fear in a rat model of footshock-induced fear. Regional CBF (rCBF) was analyzed by statistical parametric mapping. Functional connectivity and graph theoretical analysis were used to investigate how footshock and PGB affect brain activation at the network level. Pregabalin significantly attenuated footshock-induced ultrasonic vocalization, but showed no significant effect on freezing behavior. Footshock compared to no-shock controls elicited significant increases in rCBF in limbic/paralimbic regions implicated in the processing of unconditioned fear and ultrasonic vocalization, including the amygdala, hypothalamus, lateral septum, dorsal periaqueductal gray, the anterior insular (aINS) and medial prefrontal cortex (mPFC). The activation pattern was similar in vehicle- and PGB-treated subjects, with PGB significantly attenuating activation in the amygdala, hypothalamus, and aINS. The vehicle/no-shock group showed strong, positive intra-structural correlations within the cortex, hypothalamus, amygdala, thalamus, and brainstem. The cortex was negatively correlated with the hypothalamus and brainstem. Footshock reduced the total number of significant correlations, but induced greater intra-cortical connectivity of the aINS and mPFC, and new positive correlations between the hypothalamus and amygdala. In no-shock controls, PGB significantly reduced the positive intra-structural correlations within the cortex and amygdala, as well as the negative cortico-subcortical correlations. Following footshocks, PGB disrupted both the network recruitment of aINS and mPFC, and the positive hypothalamic-amygdaloid correlations. Our findings suggest that PGB may exert anxiolytic effect by attenuating cortico-cortical and cortico-subcortical communication and inhibiting network recruitment of the aINS, mPFC, amygdala, and hypothalamus following a fear-inducing stimulus. Functional brain mapping in rodents may provide new endpoints for preclinical evaluation of anxiolytic drug candidates with potentially improved translational power compared to behavioral measurements alone.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
46
|
Kim EJ, Kim ES, Covey E, Kim JJ. Social transmission of fear in rats: the role of 22-kHz ultrasonic distress vocalization. PLoS One 2010; 5:e15077. [PMID: 21152023 PMCID: PMC2995742 DOI: 10.1371/journal.pone.0015077] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/18/2010] [Indexed: 11/17/2022] Open
Abstract
Background Social alarm calls alert animals to potential danger and thereby promote group survival. Adult laboratory rats in distress emit 22-kHz ultrasonic vocalization (USV) calls, but the question of whether these USV calls directly elicit defensive behavior in conspecifics is unresolved. Methodology/Principal Findings The present study investigated, in pair-housed male rats, whether and how the conditioned fear-induced 22-kHz USVs emitted by the ‘sender’ animal affect the behavior of its partner, the ‘receiver’ animal, when both are placed together in a novel chamber. The sender rats’ conditioned fear responses evoked significant freezing (an overt evidence of fear) in receiver rats that had previously experienced an aversive event but not in naïve receiver rats. Permanent lesions and reversible inactivations of the medial geniculate nucleus (MGN) of the thalamus effectively blocked the receivers’ freeezing response to the senders' conditioned fear responses, and this occurred in absence of lesions/inactivations impeding the receiver animals' ability to freeze and emit 22-kHz USVs to the aversive event per se. Conclusions/Significance These results—that prior experience of fear and intact auditory system are required for receiver rats to respond to their conspecifics' conditioned fear responses—indicate that the 22-kHz USV is the main factor for social transmission of fear and that learning plays a crucial role in the development of social signaling of danger by USVs.
Collapse
Affiliation(s)
- Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | | | | | | |
Collapse
|
47
|
Akcali D, Sayin A, Sara Y, Bolay H. Does single cortical spreading depression elicit pain behaviour in freely moving rats? Cephalalgia 2010; 30:1195-206. [PMID: 20855365 DOI: 10.1177/0333102409360828] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Behavioural animal studies are critical, particularly to translate results to human beings. Cortical spreading depression (CSD) has been implicated in migraine pathogenesis. We aimed to investigate the effects of CSD on the behaviour of freely moving rats, since available CSD models do not include awake animals. MATERIALS AND METHODS We developed a new model to induce single CSD by applying topical N-methyl-D-aspartate (NMDA) and employed a combination of an automated behavioural analysis system, video camera and ultrasonic vocalisation (USV) calls for the first time. Electrocorticograms were also studied during CSD in freely moving rats. Behaviour associated with cephalic pain was assessed in a group of rats that received sumatriptan. Cortical c-fos immunoreactivity was performed in order to confirm CSD. RESULTS NMDA induced single CSD in ipsilateral cortex, evoked freezing behaviour (P < 0.01) and increased the number of wet dog shakes (WDS; P < 0.01). Grooming, locomotion, eating, drinking, and circling were not significantly altered among groups. Ultrasonic vocalisations compatible with pain calls (22-27 kHz) were only detected in 3 out of 25 rats. Sumatriptan did not significantly reduce the freezing behaviour. CSD induced significant c-fos expression in ipsilateral cerebral cortex and amygdala (P < 0.01). CONCLUSIONS CSD induces freezing behaviour by invoking anxiety/fear via amygdala activation in freely-moving rats. Single CSD is unlikely to lead to severe pain in freely-moving rats, though the development of mild or vague pain cannot be excluded. The relevance of rat behavioural responses triggered by CSD to migraine symptoms in humans needs further evaluation.
Collapse
Affiliation(s)
- Didem Akcali
- Gazi University Faculty of Medicine, Neuropsychiatry Centre, Ankara, Turkey
| | | | | | | |
Collapse
|
48
|
Choi JS, Cain CK, LeDoux JE. The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learn Mem 2010; 17:139-47. [PMID: 20189958 DOI: 10.1101/lm.1676610] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using a two-way signaled active avoidance (2-AA) learning procedure, where rats were trained in a shuttle box to avoid a footshock signaled by an auditory stimulus, we tested the contributions of the lateral (LA), basal (B), and central (CE) nuclei of the amygdala to the expression of instrumental active avoidance conditioned responses (CRs). Discrete or combined lesions of the LA and B, performed after the rats had reached an asymptotic level of avoidance performance, produced deficits in the CR, whereas CE lesions had minimal effect. Fiber-sparing excitotoxic lesions of the LA/B produced by infusions of N-methyl-d-aspartate (NMDA) also impaired avoidance performance, confirming that neurons in the LA/B are involved in mediating avoidance CRs. In a final series of experiments, bilateral electrolytic lesions of the CE were performed on a subgroup of animals that failed to acquire the avoidance CR after 3 d of training. CE lesions led to an immediate rescue of avoidance learning, suggesting that activity in CE was inhibiting the instrumental CR. Taken together, these results indicate that the LA and B are essential for the performance of a 2-AA response. The CE is not required, and may in fact constrain the instrumental avoidance response by mediating the generation of competing Pavlovian responses, such as freezing.
Collapse
Affiliation(s)
- June-Seek Choi
- Center for Neural Science, New York University, New York, New York 10003, USA.
| | | | | |
Collapse
|
49
|
Ultrasonic communication in rats: Effects of morphine and naloxone on vocal and behavioral responses to playback of 50-kHz vocalizations. Pharmacol Biochem Behav 2009; 94:285-95. [DOI: 10.1016/j.pbb.2009.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 02/05/2023]
|
50
|
Abstract
Trace and contextual fear conditioning were evaluated in adult (3-6 months), early middle-aged (8-12 months), late middle-aged (16-20 months), and aged (24-33 months) Sprague-Dawley rats. After trace conditioning, aged animals exhibited significantly less freezing to the tone conditioned stimulus and training context. Levels of trace-cue and context conditioning were negatively correlated with age (r = -0.56 and -0.59, respectively) and positively correlated with each other (r = +0.52). Aged rats showed robust conditioning in short- and long-delay fear paradigms, suggesting that the trace interval, rather than the use of a long interstimulus interval, is responsible for the aging-related deficits in trace fear conditioning. The authors suggest that these aging-related conditioning deficits furnish useful indices of functional changes within hippocampus or perirhinal cortex.
Collapse
|