1
|
Ghannam IAY, Hassan RM, Abdel-Maksoud MS. Peroxisome proliferator-activated receptors (PPARs) agonists as promising neurotherapeutics. Bioorg Chem 2025; 156:108226. [PMID: 39908735 DOI: 10.1016/j.bioorg.2025.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Neurodegenerative disorders are characterized by a continuous neurons loss resulting in a wide range of pathogenesis affecting the motor impairment. Several strategies are outlined for therapeutics of synthetic and natural PPARs agonists in some neurological disorders; Parkinson's disease (PD), Alzheimer's disease (AD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The aim of this review is to provide a recent update of the previously reported studies, and reviews dealing with the medicinal chemistry of PPARs and their agonists, and to highlight the outstanding advances in the development of both synthetic compounds including; PPARα agonists (fibrates), PPARγ agonists (thiazolidindiones), and PPARβ/δ agonists either as sole or dual acting PPAR full or pan agonists, in addition to the natural phytochemicals; acids, cannabinoids, and flavonoids for their different neuroprotection effects in the previously mentioned neurodegenerative disorders (PD, AD, MS, ALS, and HD). Moreover, this review reports the diverse pre-clinical and clinical studies of PPARs agonists in the neurodegenerative diseases via cellular, and animal models and human.
Collapse
Affiliation(s)
- Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
2
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2024:10.1038/s41577-024-01104-7. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
3
|
Bartholomew SK, Winslow W, Sharma R, Pathak KV, Tallino S, Judd JM, Leon H, Turk J, Pirrotte P, Velazquez R. Glyphosate exposure exacerbates neuroinflammation and Alzheimer's disease-like pathology despite a 6-month recovery period in mice. J Neuroinflammation 2024; 21:316. [PMID: 39633366 PMCID: PMC11619132 DOI: 10.1186/s12974-024-03290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Glyphosate use in the United States (US) has increased each year since the introduction of glyphosate-tolerant crops in 1996, yet little is known about its effects on the brain. We recently found that C57BL/6J mice dosed with glyphosate for 14 days showed glyphosate and its major metabolite aminomethylphosphonic acid present in brain tissue, with corresponding increases in pro-inflammatory cytokine tumor necrosis factor-⍺ (TNF-⍺) in the brain and peripheral blood plasma. Since TNF-⍺ is elevated in neurodegenerative disorders such as Alzheimer's Disease (AD), in this study, we asked whether glyphosate exposure serves as an accelerant of AD pathogenesis. Additionally, whether glyphosate and aminomethylphosphonic acid remain in the brain after a recovery period has yet to be examined. METHODS We hypothesized that glyphosate exposure would induce neuroinflammation in control mice, while exacerbating neuroinflammation in AD mice, causing elevated Amyloid-β and tau pathology and worsening spatial cognition after recovery. We dosed 4.5-month-old 3xTg-AD and non-transgenic (NonTg) control mice with either 0, 50 or 500 mg/kg of glyphosate daily for 13 weeks followed by a 6-month recovery period. RESULTS We found that aminomethylphosphonic acid was detectable in the brains of 3xTg-AD and NonTg glyphosate-dosed mice despite the 6-month recovery. Glyphosate-dosed 3xTg-AD mice showed reduced survival, increased thigmotaxia in the Morris water maze, significant increases in the beta secretase enzyme (BACE-1) of amyloidogenic processing, amyloid-β (Aβ) 42 insoluble fractions, Aβ 42 plaque load and plaque size, and phosphorylated tau (pTau) at epitopes Threonine 181, Serine 396, and AT8 (Serine 202, Threonine 205). Notably, we found increased pro- and anti-inflammatory cytokines and chemokines persisting in both 3xTg-AD and NonTg brain tissue and in 3xTg-AD peripheral blood plasma. CONCLUSION Taken together, our results are the first to demonstrate that despite an extended recovery period, exposure to glyphosate elicits long-lasting pathological consequences. As glyphosate use continues to rise, more research is needed to elucidate the impact of this herbicide and its metabolites on the human brain, and their potential to contribute to dysfunctions observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Samantha K Bartholomew
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ritin Sharma
- Integrated Mass Spectrometry Shared Resources, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Khyatiben V Pathak
- Integrated Mass Spectrometry Shared Resources, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Savannah Tallino
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jessica M Judd
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Hector Leon
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Julie Turk
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resources, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
4
|
Maggiore A, Latina V, D'Erme M, Amadoro G, Coccurello R. Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer's disease: A narrative review. Ageing Res Rev 2024; 102:102578. [PMID: 39542177 DOI: 10.1016/j.arr.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia among elderly people. This disease imposes a significant burden on the healthcare system, society, and economy due to the increasing global aging population. Current trials with drugs or bioactive compounds aimed at reducing cerebral Amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles, which are the two main hallmarks of this devastating neurodegenerative disease, have not provided significant results in terms of their neuropathological outcomes nor met the expected clinical end-points. Ageing, genetic and environmental risk factors, along with different clinical symptoms suggest that AD is a complex and heterogeneous disorder with multiple interconnected pathological pathways rather than a single disease entity. In the present review, we highlight and discuss various non-canonical, Aβ-independent mechanisms, like gliosis, unhealthy dietary intake, lipid and sugar signaling, and cerebrovascular damage that contribute to the onset and development of AD. We emphasize that challenging the traditional "amyloid cascade hypothesis" may improve our understanding of this age-related complex syndrome and help fight the progressive cognitive decline in AD.
Collapse
Affiliation(s)
- Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Maria D'Erme
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Coccurello
- Institute for Complex System (ISC) CNR, Via dei Taurini 19, Rome 00185, Italy; IRCSS Santa Lucia Foundation, European Center for Brain Research, Via Fosso del Fiorano 64-65, Rome 00143, Italy.
| |
Collapse
|
5
|
Wang YR, Zeng XQ, Wang J, Fowler CJ, Li QX, Bu XL, Doecke J, Maruff P, Martins RN, Rowe CC, Masters CL, Wang YJ, Liu YH. Autoantibodies to BACE1 promote Aβ accumulation and neurodegeneration in Alzheimer's disease. Acta Neuropathol 2024; 148:57. [PMID: 39448400 DOI: 10.1007/s00401-024-02814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
The profile of autoantibodies is dysregulated in patients with Alzheimer's disease (AD). Autoantibodies to beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) are present in human blood. This study aims to investigate the clinical relevance and pathophysiological roles of autoantibodies to BACE1 in AD. Clinical investigations were conducted in two independent cohorts, the Chongqing cohort, and the Australian Imaging, Biomarkers, and Lifestyle (AIBL) cohort. The Chongqing cohort included 55 AD patients, 28 patients with non-AD dementia, and 70 cognitively normal subjects (CN). The AIBL cohort included 162 Aβ-PET- CN, 169 Aβ-PET+ cognitively normal subjects (preclinical AD), and 31 Aβ-PET+ cognitively impaired subjects (Clinical AD). Plasma autoantibodies to BACE1 were determined by one-site Elisa. The associations of plasma autoantibodies to BACE1 with brain Aβ load and cognitive trajectory were investigated. The effects of autoantibodies to BACE1 on AD-type pathologies and underlying mechanisms were investigated in APP/PS1 mice and SH/APPswe/PS1wt cell lines. In the Chongqing cohort, plasma autoantibodies to BACE1 were higher in AD patients, in comparison with CN and non-AD dementia patients. In the AIBL cohort, plasma autoantibodies to BACE1 were highest in clinical AD patients, followed by preclinical AD and CN subjects. Higher autoantibodies to BACE1 were associated with an increased incidence of brain amyloid positivity conversion during follow-up. Autoantibodies to BACE1 exacerbated brain amyloid deposition and subsequent AD-type pathologies, including Tau hyperphosphorylation, neuroinflammation, and neurodegeneration in APP/PS1 mice. Autoantibodies to BACE1 increased Aβ production by promoting BACE1 expression through inhibiting PPARγ signaling. These findings suggest that autoantibodies to BACE1 are pathogenic in AD and the upregulation of these autoantibodies may promote the development of the disease. This study offers new insights into the mechanism of AD from an autoimmune perspective.
Collapse
Affiliation(s)
- Ye-Ran Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
- Centre of Health Management, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Qin Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | | | - Qiao-Xin Li
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | - James Doecke
- The Australian E-Health Research Centre, CSIRO, Herston, QLD, Australia
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
- CogState, Melbourne, VIC, Australia
| | - Ralph N Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Aging and Brain Disease, Chongqing, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Aging and Brain Disease, Chongqing, China.
| |
Collapse
|
6
|
Baluchnejadmojarad T, Roghani M. Exploring the molecular mechanisms underlying neuroprotective effect of ellagic acid in okadaic acid-induced Alzheimer's phenotype. Metab Brain Dis 2024; 39:1417-1432. [PMID: 39133454 DOI: 10.1007/s11011-024-01405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Pomegranate polyphenol ellagic acid has medicinal potential in neurodegenerative disorders. The advantageous effect of this polyphenol in improving cognition in okadaic acid (OA)-instigated murine model with unraveling some modes of its action was assessed. Rats received ICV okadaic acid (OA) and post-treated with oral ellagic acid for 3 weeks (25 and 100 mg/kg/day). Cognition was analyzed in behavioral tasks besides assessment of oxidative, apoptotic, and inflammatory factors in addition to hippocampal histochemical analysis. Ellagic acid at a dose of 100 mg/kg properly attenuated cognitive abnormalities in novel object recognition (NOR), Y maze, and Barnes maze tests. Additionally, ellagic acid diminished hippocampal changes of malondialdehyde (MDA), protein carbonyl, reactive oxygen species (ROS), glutathione (GSH), glutathione peroxidase, superoxide dismutase (SOD), apoptotic factors caspases 1 and 3, tumor necrosis factor α (TNFα), and acetylcholinesterase (AChE) and beta secretase 1 (BACE 1) besides reversal of AMP-activated protein kinase (AMPK) and hyperphosphorylated tau (p-tau). Moreover, lower glial fibrillary acidic protein (GFAP) and less injury of hippocampal CA1 pyramidal neurons were observed upon ellagic acid. To conclude, neuroprotective potential of ellagic acid was shown which is somewhat attributable to its reversal of oxidative, apoptotic, and neuroinflammatory events in addition to proper regulation of AMPK and p-tau.
Collapse
Affiliation(s)
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
7
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Catto F, Dadgar-Kiani E, Kirschenbaum D, Economides A, Reuss AM, Trevisan C, Caredio D, Mirzet D, Frick L, Weber-Stadlbauer U, Litvinov S, Koumoutsakos P, Hyung Lee J, Aguzzi A. Quantitative 3D histochemistry reveals region-specific amyloid-β reduction by the antidiabetic drug netoglitazone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608042. [PMID: 39185170 PMCID: PMC11343181 DOI: 10.1101/2024.08.15.608042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A hallmark of Alzheimer's disease (AD) is the extracellular aggregation of toxic amyloid-beta (Aβ) peptides in form of plaques. Here, we identify netoglitazone, an antidiabetic compound previously tested in humans, as an Aβ aggregation antagonist. Netoglitazone improved cognition and reduced microglia activity in a mouse model of AD. Using quantitative whole-brain three-dimensional histology (Q3D), we precisely identified brain regions where netoglitazone reduced the number and size of Aβ plaques. We demonstrate the utility of Q3D in preclinical drug evaluation for AD by providing a high-resolution brain-wide view of drug efficacy. Applying Q3D has the potential to improve pre-clinical drug evaluation by providing information that can help identify mechanisms leading to brain region-specific drug efficacy.
Collapse
Affiliation(s)
- Francesca Catto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
- IMAI MedTech, Wagistrasse 18, 8952 Schlieren, Zurich, Switzerland
| | - Ehsan Dadgar-Kiani
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 260, 8057 Zürich
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Athena Economides
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Anna Maria Reuss
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Davide Caredio
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Delic Mirzet
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Lukas Frick
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 260, 8057 Zürich
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Sergey Litvinov
- Computational Science and Engineering Laboratory, ETH Zürich, Clausiusstrasse 33, 8092, Zurich, Switzerland
- Computational Science and Engineering Laboratory, Harvard University, Cambridge, MA 02138, United States
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, Harvard University, Cambridge, MA 02138, United States
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| |
Collapse
|
9
|
Tong B, Ba Y, Li Z, Yang C, Su K, Qi H, Zhang D, Liu X, Wu Y, Chen Y, Ling J, Zhang J, Yin X, Yu P. Targeting dysregulated lipid metabolism for the treatment of Alzheimer's disease and Parkinson's disease: Current advancements and future prospects. Neurobiol Dis 2024; 196:106505. [PMID: 38642715 DOI: 10.1016/j.nbd.2024.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024] Open
Abstract
Alzheimer's and Parkinson's diseases are two of the most frequent neurological diseases. The clinical features of AD are memory decline and cognitive dysfunction, while PD mainly manifests as motor dysfunction such as limb tremors, muscle rigidity abnormalities, and slow gait. Abnormalities in cholesterol, sphingolipid, and glycerophospholipid metabolism have been demonstrated to directly exacerbate the progression of AD by stimulating Aβ deposition and tau protein tangles. Indirectly, abnormal lipids can increase the burden on brain vasculature, induce insulin resistance, and affect the structure of neuronal cell membranes. Abnormal lipid metabolism leads to PD through inducing accumulation of α-syn, dysfunction of mitochondria and endoplasmic reticulum, and ferroptosis. Great progress has been made in targeting lipid metabolism abnormalities for the treatment of AD and PD in recent years, like metformin, insulin, peroxisome proliferator-activated receptors (PPARs) agonists, and monoclonal antibodies targeting apolipoprotein E (ApoE). This review comprehensively summarizes the involvement of dysregulated lipid metabolism in the pathogenesis of AD and PD, the application of Lipid Monitoring, and emerging lipid regulatory drug targets. A better understanding of the lipidological bases of AD and PD may pave the way for developing effective prevention and treatment methods for neurodegenerative disorders.
Collapse
Affiliation(s)
- Bin Tong
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yaoqi Ba
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhengyang Li
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Caidi Yang
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Kangtai Su
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Haodong Qi
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Deju Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China; Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao Liu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuting Wu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China.
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|
10
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
11
|
Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, Prasansuklab A. Role of Epigenetic Modulation in Neurodegenerative Diseases: Implications of Phytochemical Interventions. Antioxidants (Basel) 2024; 13:606. [PMID: 38790711 PMCID: PMC11118909 DOI: 10.3390/antiox13050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that alterations in the gene expression did not always originate from changes in the genetic sequence, which has led to understanding the role of epigenetics in neurodegenerative diseases (NDDs) including Alzheimer's disease (AD) and Parkinson's disease (PD). Epigenetic alterations contribute to the aberrant expression of genes involved in neuroinflammation, protein aggregation, and neuronal death. Natural phytochemicals have shown promise as potential therapeutic agents against NDDs because of their antioxidant, anti-inflammatory, and neuroprotective effects in cellular and animal models. For instance, resveratrol (grapes), curcumin (turmeric), and epigallocatechin gallate (EGCG; green tea) exhibit neuroprotective effects through their influence on DNA methylation patterns, histone acetylation, and non-coding RNA expression profiles. Phytochemicals also aid in slowing disease progression, preserving neuronal function, and enhancing cognitive and motor abilities. The present review focuses on various epigenetic modifications involved in the pathology of NDDs, including AD and PD, gene expression regulation related to epigenetic alterations, and the role of specific polyphenols in influencing epigenetic modifications in AD and PD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Clerance Su Yee Cheong
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Czarnik W, Fularski P, Gajewska A, Jakubowska P, Uszok Z, Młynarska E, Rysz J, Franczyk B. The Role of Intestinal Microbiota and Diet as Modulating Factors in the Course of Alzheimer's and Parkinson's Diseases. Nutrients 2024; 16:308. [PMID: 38276546 PMCID: PMC10820408 DOI: 10.3390/nu16020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Many researchers propose manipulating microbiota to prevent and treat related diseases. The brain-gut axis is an object that remains the target of modern research, and it is not without reason that many researchers enrich it with microbiota and diet in its name. Numerous connections and mutual correlations have become the basis for seeking answers to many questions related to pathology as well as human physiology. Disorders of this homeostasis as well as dysbiosis itself accompany neurodegenerative diseases such as Alzheimer's and Parkinson's. Heavily dependent on external factors, modulation of the gut microbiome represents an opportunity to advance the treatment of neurodegenerative diseases. Probiotic interventions, synbiotic interventions, or fecal transplantation can undoubtedly support the biotherapeutic process. A special role is played by diet, which provides metabolites that directly affect the body and the microbiota. A holistic view of the human organism is therefore essential.
Collapse
Affiliation(s)
- Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Paulina Jakubowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Zofia Uszok
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
13
|
Gamache J, Gingerich D, Shwab EK, Barrera J, Garrett ME, Hume C, Crawford GE, Ashley-Koch AE, Chiba-Falek O. Integrative single-nucleus multi-omics analysis prioritizes candidate cis and trans regulatory networks and their target genes in Alzheimer's disease brains. Cell Biosci 2023; 13:185. [PMID: 37789374 PMCID: PMC10546724 DOI: 10.1186/s13578-023-01120-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The genetic underpinnings of late-onset Alzheimer's disease (LOAD) are yet to be fully elucidated. Although numerous LOAD-associated loci have been discovered, the causal variants and their target genes remain largely unknown. Since the brain is composed of heterogenous cell subtypes, it is imperative to study the brain on a cell subtype specific level to explore the biological processes underlying LOAD. METHODS Here, we present the largest parallel single-nucleus (sn) multi-omics study to simultaneously profile gene expression (snRNA-seq) and chromatin accessibility (snATAC-seq) to date, using nuclei from 12 normal and 12 LOAD brains. We identified cell subtype clusters based on gene expression and chromatin accessibility profiles and characterized cell subtype-specific LOAD-associated differentially expressed genes (DEGs), differentially accessible peaks (DAPs) and cis co-accessibility networks (CCANs). RESULTS Integrative analysis defined disease-relevant CCANs in multiple cell subtypes and discovered LOAD-associated cell subtype-specific candidate cis regulatory elements (cCREs), their candidate target genes, and trans-interacting transcription factors (TFs), some of which, including ELK1, JUN, and SMAD4 in excitatory neurons, were also LOAD-DEGs. Finally, we focused on a subset of cell subtype-specific CCANs that overlap known LOAD-GWAS regions and catalogued putative functional SNPs changing the affinities of TF motifs within LOAD-cCREs linked to LOAD-DEGs, including APOE and MYO1E in a specific subtype of microglia and BIN1 in a subpopulation of oligodendrocytes. CONCLUSIONS To our knowledge, this study represents the most comprehensive systematic interrogation to date of regulatory networks and the impact of genetic variants on gene dysregulation in LOAD at a cell subtype resolution. Our findings reveal crosstalk between epigenetic, genomic, and transcriptomic determinants of LOAD pathogenesis and define catalogues of candidate genes, cCREs, and variants involved in LOAD genetic etiology and the cell subtypes in which they act to exert their pathogenic effects. Overall, these results suggest that cell subtype-specific cis-trans interactions between regulatory elements and TFs, and the genes dysregulated by these networks contribute to the development of LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - E Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julio Barrera
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA
| | - Cordelia Hume
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, DUMC Box 3382, Durham, NC, 27708, USA.
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA.
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
| |
Collapse
|
14
|
Li Y, Zhang ZH, Huang SL, Yue ZB, Yin XS, Feng ZQ, Zhang XG, Song GL. Whey protein powder with milk fat globule membrane attenuates Alzheimer's disease pathology in 3×Tg-AD mice by modulating neuroinflammation through the peroxisome proliferator-activated receptor γ signaling pathway. J Dairy Sci 2023; 106:5253-5265. [PMID: 37414601 DOI: 10.3168/jds.2023-23254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 07/08/2023]
Abstract
Whey protein powder (PP), which is mainly derived from bovine milk, is rich in milk fat globule membrane (MFGM). The MGFM has been shown to play a role in promoting neuronal development and cognition in the infant brain. However, its role in Alzheimer's disease (AD) has not been elucidated. Here, we showed that the cognitive ability of 3×Tg-AD mice (a triple-transgenic mouse model of AD) could be improved by feeding PP to mice for 3 mo. In addition, PP ameliorated amyloid peptide deposition and tau hyperphosphorylation in the brains of AD mice. We found that PP could alleviate AD pathology by inhibiting neuroinflammation through the peroxisome proliferator-activated receptor γ (PPARγ)-nuclear factor-κB signaling pathway in the brains of AD mice. Our study revealed an unexpected role of PP in regulating the neuroinflammatory pathology of AD in a mouse model.
Collapse
Affiliation(s)
- Yu Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060; Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060; Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Shao-Ling Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060
| | - Zhong-Bao Yue
- ByHealth Institute of Nutrition and Health, Guangzhou, China, 510000
| | - Xue-Song Yin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060
| | - Zi-Qi Feng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060
| | - Xu-Guang Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060; ByHealth Institute of Nutrition and Health, Guangzhou, China, 510000.
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060; Shenzhen Bay Laboratory, Shenzhen, China, 518000; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China, 518000.
| |
Collapse
|
15
|
Mutti V, Carini G, Filippini A, Castrezzati S, Giugno L, Gennarelli M, Russo I. LRRK2 Kinase Inhibition Attenuates Neuroinflammation and Cytotoxicity in Animal Models of Alzheimer's and Parkinson's Disease-Related Neuroinflammation. Cells 2023; 12:1799. [PMID: 37443833 PMCID: PMC10340668 DOI: 10.3390/cells12131799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Chronic neuroinflammation plays a crucial role in the progression of several neurodegenerative diseases (NDDs), including Parkinson's disease (PD) and Alzheimer's disease (AD). Intriguingly, in the last decade, leucine-rich repeat kinase-2 (LRRK2), a gene mutated in familial and sporadic PD, was revealed as a key mediator of neuroinflammation. Therefore, the anti-inflammatory properties of LRRK2 inhibitors have started to be considered as a disease-modifying treatment for PD; however, to date, there is little evidence on the beneficial effects of targeting LRRK2-related neuroinflammation in preclinical models. In this study, we further validated LRRK2 kinase modulation as a pharmacological intervention in preclinical models of AD- and PD-related neuroinflammation. Specifically, we reported that LRRK2 kinase inhibition with MLi2 and PF-06447475 (PF) molecules attenuated neuroinflammation, gliosis and cytotoxicity in mice with intracerebral injection of Aβ1-42 fibrils or α-syn preformed fibrils (pffs). Moreover, for the first time in vivo, we showed that LRRK2 kinase activity participates in AD-related neuroinflammation and therefore might contribute to AD pathogenesis. Overall, our findings added evidence on the anti-inflammatory effects of LRRK2 kinase inhibition in preclinical models and indicate that targeting LRRK2 activity could be a disease-modifying treatment for NDDs with an inflammatory component.
Collapse
Affiliation(s)
- Veronica Mutti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.)
| | - Giulia Carini
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.)
- Biology and Genetics Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alice Filippini
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.)
- Biology and Genetics Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Stefania Castrezzati
- Human Anatomy Unit, Department of Biomedical Sciences and Biotechnologies, University of Brescia, 25123 Brescia, Italy
| | - Lorena Giugno
- Human Anatomy Unit, Department of Biomedical Sciences and Biotechnologies, University of Brescia, 25123 Brescia, Italy
| | - Massimo Gennarelli
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.)
- Biology and Genetics Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Isabella Russo
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.)
- Biology and Genetics Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
16
|
Martens N, Zhan N, Voortman G, Leijten FPJ, van Rheenen C, van Leerdam S, Geng X, Huybrechts M, Liu H, Jonker JW, Kuipers F, Lütjohann D, Vanmierlo T, Mulder MT. Activation of Liver X Receptors and Peroxisome Proliferator-Activated Receptors by Lipid Extracts of Brown Seaweeds: A Potential Application in Alzheimer's Disease? Nutrients 2023; 15:3004. [PMID: 37447330 DOI: 10.3390/nu15133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The nuclear liver X receptors (LXRα/β) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/β- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.
Collapse
Affiliation(s)
- Nikita Martens
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium
| | - Na Zhan
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Gardi Voortman
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Frank P J Leijten
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Connor van Rheenen
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Suzanne van Leerdam
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Xicheng Geng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Michiel Huybrechts
- Department of Environmental Biology, Center for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany
| | - Tim Vanmierlo
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
17
|
Kumar AP, P P, Mandal S, Kumar BRP, Raju RM, Dhanabal S, Rajagopal K, G R, X PN, Justin A. Computational studies, synthesis, in-vitro binding and transcription analysis of novel imidazolidine-2,4-dione and 2-thioxo thiazolidine-4-one based glitazones for central PPAR-γ agonism. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
18
|
Zhang X, Sun D, Zhou X, Zhang C, Yin Q, Chen L, Tang Y, Liu Y, Morozova-Roche LA. Proinflammatory S100A9 stimulates TLR4/NF-κB signaling pathways causing enhanced phagocytic capacity of microglial cells. Immunol Lett 2023; 255:54-61. [PMID: 36870421 DOI: 10.1016/j.imlet.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia, affecting the increasingly aging population. Growing evidence indicates that neuro-inflammation plays crucial roles, e.g., the association between AD risk genes with innate immune functions. In this study, we demonstrate that moderate concentrations of pro-inflammatory cytokine S100A9 regulate immune response of BV2 microglial cells, i.e., the phagocytic capacity, reflected by elevated number of 1 μm diameter Dsred-stained latex beads in the cytoplasm. In contrast, at high S100A9 concentrations, both the viability and phagocytic capacity of BV2 cells drop substantially. Furthermore, it is uncovered that S100A9 affects phagocytosis of microglia via NF-κB signaling pathways. Application of related target-specific drugs, i.e., IKK and TLR4 inhibitors, effectively suppresses BV2 cells' immune responses. These results suggest that pro-inflammatory S100A9 activates microglial phagocytosis, and possibly contributes to the clearance of amyloidogenic species at the early stage of AD.
Collapse
Affiliation(s)
- Xiaoyin Zhang
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon Technology, Northwest University, 710127, Xi'an, China
| | - Xin Zhou
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon Technology, Northwest University, 710127, Xi'an, China
| | - Qing Yin
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Li Chen
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yong Tang
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yonggang Liu
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China.
| | | |
Collapse
|
19
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
20
|
Wang C, Ye H, Zheng Y, Qi Y, Zhang M, Long Y, Hu Y. Phenylethanoid Glycosides of Cistanche Improve Learning and Memory Disorders in APP/PS1 Mice by Regulating Glial Cell Activation and Inhibiting TLR4/NF-κB Signaling Pathway. Neuromolecular Med 2023; 25:75-93. [PMID: 35781783 DOI: 10.1007/s12017-022-08717-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
Phenylethanoid Glycosides of Cistanche (PhGs) have a certain curative effect on AD animal model, Echinacea (ECH) and verbascoside (ACT), as the quality control standard of Cistanche deserticola Y. C. Ma and the main representative compounds of PhGs have been proved to have neuroprotective effects, but the specific mechanism needs to be further explored. This study explored the mechanisms of PhGs, ECH, and ACT in the treatment of Alzheimer's disease (AD) from the perspectives of glial cell activation, TLR4/NF-κB signaling pathway, and synaptic protein expression. We used APP/PS1 mice as AD models. After treatment with PhGs, ECH, and ACT, the learning and memory abilities of APP/PS1 mice were enhanced, and the pathological changes in brain tissue were alleviated. The expression of pro-inflammatory M1 microglia markers (CD11b, iNOS, and IL-1β) was decreased; the expression of M2 microglia markers (Arg-1 and TGF-β1) was increased, which promoted the transformation of microglia from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype. In addition, PhGs, ECH, and ACT could down-regulate the expression of proteins related to the TLR4/NF-κB signaling pathway and up-regulate the expression of synaptic proteins. The results indicated that PhGs, ECH, and ACT played a neuroprotective role by regulating the activation of glial cells and inhibiting the TLR4/NF-κB inflammatory pathway, and improving the expression levels of synapse-related proteins.
Collapse
Affiliation(s)
- Chunhui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Hongxia Ye
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Yanjie Zheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Yanqiang Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Mengyu Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Yan Long
- Central Laboratory, Shenzhen Sami Medical Center, Shenzhen, China
| | - Yanli Hu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China.
| |
Collapse
|
21
|
Exosomes: A missing link between chronic systemic inflammation and Alzheimer's disease? Biomed Pharmacother 2023; 159:114161. [PMID: 36641928 DOI: 10.1016/j.biopha.2022.114161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Exosomes are potent mediators of physiological and pathological processes. In Alzheimer's disease and inflammatory disorders, due to exosomes' distinctive ability to cross the blood-brain barrier, a bidirectional communication between the periphery and the central nervous system exists. Since exosomes can carry various biochemical molecules, this review investigates the role of exosomes as possible mediators between chronic systemic inflammatory diseases and Alzheimer's disease. Exosomes carry pro-inflammatory molecules generated in the periphery, travel to the central nervous system, and target glial and neuronal cells. Microglia and astrocytes then become activated, initiating chronic neuroinflammation. As the aging brain is more susceptible to such changes, this state of neuroinflammation can stimulate neuropathologies, impair amyloid-beta clearance capabilities, and generate dysregulated microRNAs that alter the expression of genes critical in Alzheimer's disease pathology. These processes, individually and collectively, become significant risk factors for the development of Alzheimer's disease.
Collapse
|
22
|
Lonnemann N, Korte M, Hosseini S. Repeated performance of spatial memory tasks ameliorates cognitive decline in APP/PS1 mice. Behav Brain Res 2023; 438:114218. [PMID: 36403672 DOI: 10.1016/j.bbr.2022.114218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a burden on the public health system because it is a neurodegenerative disease that is incurable and for which there is no successful treatment. AD patients suffer from symptoms for many years, with progressive loss of cognitive and functional abilities. In addition to the features of AD, described as amyloid plaques and neurofibrillary tangles, neuroinflammatory processes, genetic factors, and lifestyle also play important roles. Increasing evidence for lifestyle factors includes possible changes due to smoking, social engagement, and physical activity. METHODS Morris water maze behavioral tasks were performed to analyze the formation of spatial memory. APPswe/PS1dE9 mice with a remarkable increase in amyloid-β production associated with certain behavioral abnormalities comparable to AD symptoms and age-matched wild-type littermates were trained several times at 3, 6, 9, and 12 months of age and compared with untrained groups at 9 and 12 months of age. Performance during the acquisition phase, in the reference memory test, and in searching strategies were analyzed. RESULTS 9- and 12-month-old APP/PS1 mice showed cognitive impairment, especially in the reference memory test and searching strategies. This cognitive deterioration was reversed in 9- and 12-month-old APP/PS1 mice that had been previously trained several times. Even in the reversal test, in which memory formation must be adapted to the new platform position, several trained APP/PS1 mice performed better. CONCLUSION Repeated spatial memory training in the water maze showed positive effects on memory formation in APP/PS1 mice. Interestingly, the cohort that had been previously trained several times was able to use increased hippocampus-dependent strategies, similar to the WT mice. This may suggest that cognitively demanding and physically active tasks can improve cognitive function.
Collapse
Affiliation(s)
- Niklas Lonnemann
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, 38124 Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, 38124 Braunschweig, Germany.
| |
Collapse
|
23
|
Filippini A, Salvi V, Dattilo V, Magri C, Castrezzati S, Veerhuis R, Bosisio D, Gennarelli M, Russo I. LRRK2 Kinase Inhibition Attenuates Astrocytic Activation in Response to Amyloid β 1-42 Fibrils. Biomolecules 2023; 13:biom13020307. [PMID: 36830676 PMCID: PMC9953366 DOI: 10.3390/biom13020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Intracerebral accumulation of amyloid-β in the extracellular plaques of Alzheimer's disease (AD) brains represents the main cause of reactive astrogliosis and neuroinflammatory response. Of relevance, leucine-rich repeat kinase 2 (LRRK2), a kinase linked to genetic and sporadic Parkinson's disease (PD), has been identified as a positive mediator of neuroinflammation upon different inflammatory stimuli, however its pathogenicity in AD remains mainly unexplored. In this study, by using pharmacological inhibition of LRRK2 and murine primary astrocytes, we explored whether LRRK2 regulates astrocytic activation in response to amyloid-β1-42 (Aβ1-42). Our results showed that murine primary astrocytes become reactive and recruit serine 935 phosphorylated LRRK2 upon Aβ1-42 fibril exposure. Moreover, we found that pharmacological inhibition of LRRK2, with two different kinase inhibitors, can attenuate Aβ1-42-mediated inflammation and favor the clearance of Aβ1-42 fibrils in astrocytes. Overall, our findings report that LRRK2 kinase activity modulates astrocytic reactivity and functions in the presence of Aβ1-42 deposits and indicate that PD-linked LRRK2 might contribute to AD-related neuroinflammation and pathogenesis.
Collapse
Affiliation(s)
- Alice Filippini
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Valentina Salvi
- Oncology and Experimental Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Vincenzo Dattilo
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Chiara Magri
- Biology and Genetics Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Stefania Castrezzati
- Human Anatomy Unit, Department of Biomedical Sciences and Biotechnologies, University of Brescia, 25123 Brescia, Italy
| | - Robert Veerhuis
- Amsterdam UMC, Psychiatry, Amsterdam Public Health Research Institute and Neuroscience Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam UMC, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Daniela Bosisio
- Oncology and Experimental Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Massimo Gennarelli
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Biology and Genetics Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Isabella Russo
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Biology and Genetics Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-371-7461; Fax: +39-030-370-1157
| |
Collapse
|
24
|
Kumar S, Mehan S, Narula AS. Therapeutic modulation of JAK-STAT, mTOR, and PPAR-γ signaling in neurological dysfunctions. J Mol Med (Berl) 2023; 101:9-49. [PMID: 36478124 DOI: 10.1007/s00109-022-02272-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
The cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) cascade is a pleiotropic pathway that involves receptor subunit multimerization. The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine-threonine kinase that perceives and integrates a variety of intracellular and environmental stimuli to regulate essential activities such as cell development and metabolism. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a prototypical metabolic nuclear receptor involved in neural differentiation and axon polarity. The JAK-STAT, mTOR, and PPARγ signaling pathways serve as a highly conserved signaling hub that coordinates neuronal activity and brain development. Additionally, overactivation of JAK/STAT, mTOR, and inhibition of PPARγ signaling have been linked to various neurocomplications, including neuroinflammation, apoptosis, and oxidative stress. Emerging research suggests that even minor disruptions in these cellular and molecular processes can have significant consequences manifested as neurological and neuropsychiatric diseases. Of interest, target modulators have been proven to alleviate neuronal complications associated with acute and chronic neurological deficits. This research-based review explores the therapeutic role of JAK-STAT, mTOR, and PPARγ signaling modulators in preventing neuronal dysfunctions in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India.
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
25
|
Yang J, Shi X, Wang Y, Ma M, Liu H, Wang J, Xu Z. Multi-Target Neuroprotection of Thiazolidinediones on Alzheimer's Disease via Neuroinflammation and Ferroptosis. J Alzheimers Dis 2023; 96:927-945. [PMID: 37927258 PMCID: PMC10741341 DOI: 10.3233/jad-230593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in older age. The prevalence of AD is growing worldwide, causing a tremendous burden to societies and families. Due to the complexity of its pathogenesis, the current treatment of AD is not satisfactory, and drugs acting on a single target may not prevent AD progression. This review summarizes the multi-target pharmacological effects of thiazolidinediones (TZDs) on AD. TZDs act as peroxisome proliferator-activated receptor gamma (PPARγ) agonists and long-chain acyl-CoA synthetase family member 4 (ACSL4) inhibitors. TZDs ameliorated neuroinflammation and ferroptosis in preclinical models of AD. Here, we discussed recent findings from clinical trials of pioglitazone in the treatment of AD, ischemic stroke, and atherosclerosis. We also dissected the major limitations in the clinical application of pioglitazone and explained the potential benefit of pioglitazone in AD. We recommend the use of pioglitazone to prevent cognitive decline and lower AD risk in a specific group of patients.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingying Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ming Ma
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyu Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Xu TC, Lv Y, Liu QY, Chen HS. Long-term atorvastatin improves cognitive decline by regulating gut function in naturally ageing rats. IMMUNITY & AGEING 2022; 19:52. [DOI: 10.1186/s12979-022-00311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Background
Statins have been widely used to prevent cardiovascular disease in middle-aged and elderly populations; however, the effect of long-term treatment on cognitive function is controversial. To simulate clinical conditions, middle-aged rats were given atorvastatin for 9 consecutive months to investigate the effect on natural cognitive decline and the possible mechanisms.
Results
The results showed that compared with the control group, long-term atorvastatin treatment naturally improved cognitive decline. Furthermore, long-term treatment regulated intestinal retinoic acid (RA) metabolism and storage by altering retinol dehydrogenase 7 (Rdh7) expression in the intestine, while RA metabolism affected the proliferation of intestinal Treg cells and inhibited IL-17+γδ T-cell function. In addition, long-term atorvastatin increased intestinal flora richness and decreased IL-17 expression in hippocampal tissue.
Conclusion
Collectively, these findings provide the first evidence that long-term atorvastatin intervention may prevent cognitive decline in naturally ageing rats by inhibiting neuroinflammation via the gut-brain axis.
Collapse
|
27
|
Naseer S, Abelleira-Hervas L, Savani D, de Burgh R, Aleksynas R, Donat CK, Syed N, Sastre M. Traumatic Brain Injury Leads to Alterations in Contusional Cortical miRNAs Involved in Dementia. Biomolecules 2022; 12:1457. [PMID: 36291666 PMCID: PMC9599474 DOI: 10.3390/biom12101457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 09/29/2023] Open
Abstract
There is compelling evidence that head injury is a significant environmental risk factor for Alzheimer's disease (AD) and that a history of traumatic brain injury (TBI) accelerates the onset of AD. Amyloid-β plaques and tau aggregates have been observed in the post-mortem brains of TBI patients; however, the mechanisms leading to AD neuropathology in TBI are still unknown. In this study, we hypothesized that focal TBI induces changes in miRNA expression in and around affected areas, resulting in the altered expression of genes involved in neurodegeneration and AD pathology. For this purpose, we performed a miRNA array in extracts from rats subjected to experimental TBI, using the controlled cortical impact (CCI) model. In and around the contusion, we observed alterations of miRNAs associated with dementia/AD, compared to the contralateral side. Specifically, the expression of miR-9 was significantly upregulated, while miR-29b, miR-34a, miR-106b, miR-181a and miR-107 were downregulated. Via qPCR, we confirmed these results in an additional group of injured rats when compared to naïve animals. Interestingly, the changes in those miRNAs were concomitant with alterations in the gene expression of mRNAs involved in amyloid generation and tau pathology, such as β-APP cleaving enzyme (BACE1) and Glycogen synthase-3-β (GSK3β). In addition increased levels of neuroinflammatory markers (TNF-α), glial activation, neuronal loss, and tau phosphorylation were observed in pericontusional areas. Therefore, our results suggest that the secondary injury cascade in TBI affects miRNAs regulating the expression of genes involved in AD dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
28
|
Li J, Sun M, Cui X, Li C. Protective Effects of Flavonoids against Alzheimer's Disease: Pathological Hypothesis, Potential Targets, and Structure-Activity Relationship. Int J Mol Sci 2022; 23:ijms231710020. [PMID: 36077418 PMCID: PMC9456554 DOI: 10.3390/ijms231710020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with high morbidity and mortality, for which there is no available cure. Currently, it is generally believed that AD is a disease caused by multiple factors, such as amyloid-beta accumulation, tau protein hyperphosphorylation, oxidative stress, and inflammation. Multitarget prevention and treatment strategies for AD are recommended. Interestingly, naturally occurring dietary flavonoids, a class of polyphenols, have been reported to have multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this review, we summarize and discuss the existing multiple pathogenic factors of AD. Moreover, we further elaborate on the biological activities of natural flavonoids and their potential mode of action and targets in managing AD by presenting a wide range of experimental evidence. The gathered data indicate that flavonoids can be regarded as prophylactics to slow the advancement of AD or avert its onset. Different flavonoids have different activities and varying levels of activity. Further, this review summarizes the structure–activity relationship of flavonoids based on the existing literature and can provide guidance on the design and selection of flavonoids as anti-AD drugs.
Collapse
Affiliation(s)
- Jiao Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| | - Min Sun
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaodong Cui
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| |
Collapse
|
29
|
Ullah R, Ali G, Baseer A, Irum Khan S, Akram M, Khan S, Ahmad N, Farooq U, Kanwal Nawaz N, Shaheen S, Kumari G, Ullah I. Tannic acid inhibits lipopolysaccharide-induced cognitive impairment in adult mice by targeting multiple pathological features. Int Immunopharmacol 2022; 110:108970. [DOI: 10.1016/j.intimp.2022.108970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
|
30
|
I2-Imidazoline Ligand CR4056 Improves Memory, Increases ApoE Expression and Reduces BBB Leakage in 5xFAD Mice. Int J Mol Sci 2022; 23:ijms23137320. [PMID: 35806327 PMCID: PMC9266435 DOI: 10.3390/ijms23137320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Recent evidence suggests that I2-imidazoline ligands have neuroprotective properties in animal models of neurodegeneration, such as Alzheimer's disease (AD). We recently demonstrated that the I2-ligand BU224 reversed memory impairments in AD transgenic mice and this effect was not because of reductions in amyloid-β (Aβ) deposition. In this study, our aim was to determine the therapeutic potential of the powerful analgesic I2-imidazoline ligand CR4056 in the 5xFAD model of AD, since this ligand has been proven to be safely tolerated in humans. Sub-chronic oral administration of CR4056 (30 mg/kg for 10 days) led to an improvement in recognition memory in 6-month-old 5xFAD mice, but not in wild-type littermates, without affecting Aβ levels or deposition. Our results also revealed a change in the profile of microglia by CR4056, resulting in a suppression of pro-inflammatory activated microglia, but increased the density of astrocytes and the expression of ApoE, which is mainly produced by these glial cells. In addition, CR4056 restored fibrinogen extravasation, affecting the distribution of markers of astrocytic end feet in blood vessels. Therefore, these results suggest that CR4056 protects against Aβ-mediated neuroinflammation and vascular damage, and offers therapeutic potential at any stage of AD.
Collapse
|
31
|
Long-term low-dose acetylsalicylic use shows protective potential for the development of both vascular dementia and Alzheimer's disease in patients with coronary heart disease but not in other individuals from the general population: results from two large cohort studies. Alzheimers Res Ther 2022; 14:75. [PMID: 35624487 PMCID: PMC9145441 DOI: 10.1186/s13195-022-01017-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND No population-based cohort study investigated a potential inverse association between long-term low-dose acetylsalicylic acid (ASA) use and all-cause dementia and its two most common sub-types Alzheimer's disease (AD) and vascular dementia (VD) so far. METHODS Cox regression models with inverse probability of treatment weighting to model the underlying cardiovascular risk were used to assess the associations of low-dose ASA use with all-cause dementia, AD, and VD incidence in community-dwelling older adults from the German ESTHER study (N = 5258) and the UK Biobank (N = 305,394). Inclusion criteria were age of 55 years or older and completed drug assessment. Meta-analyses of the individual participant data from the two prospective cohort studies were performed. RESULTS Four hundred seventy-six cases of all-cause dementia, 157 cases of AD, and 183 cases of VD were diagnosed over a median of 14.3 years of follow-up in ESTHER. In the UK Biobank, 5584 participants were diagnosed with all-cause dementia, 2029 with AD, and 1437 with VD over a median of 11.6 years. The meta-analysis of both cohorts revealed a weak reduction in hazards for all-cause dementia (hazard ratio (HR) [95% confidence interval (CI)]: 0.96 [0.93 to 0.99]). The strongest protective effect of low-dose ASA was observed in participants with coronary heart disease (CHD) in both cohorts, and a significant interaction was detected. In particular, in meta-analysis, a 31% reduction in hazard for AD, 69% for VD and 34% for all-cause dementia were observed (HR [95% CI]: 0.69 [0.59 to 0.80], 0.31 [0.27 to 0.35], 0.46 [0.42 to 0.50], respectively). Furthermore, compared to non-users, users of low-dose ASA for 10 years or longer (who likely use it because they have CHD or a related diagnosis putting them at an increased risk for cardiovascular events) demonstrated a strong protective effect on all dementia outcomes, especially for VD (HR [95% CI]: 0.48 [0.42 to 0.56]) whereas no protective associations were observed with shorter low-dose ASA use. CONCLUSIONS The protective potential of low-dose ASA for all-cause dementia, AD, and VD seems to strongly depend on pre-existing CHD and the willingness of patients to take it for a minimum of ten years.
Collapse
|
32
|
SOCE-mediated NFAT1–NOX2–NLRP1 inflammasome involves in lipopolysaccharide-induced neuronal damage and Aβ generation. Mol Neurobiol 2022; 59:3183-3205. [DOI: 10.1007/s12035-021-02717-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
|
33
|
Hyun DH, Lee J. A New Insight into an Alternative Therapeutic Approach to Restore Redox Homeostasis and Functional Mitochondria in Neurodegenerative Diseases. Antioxidants (Basel) 2021; 11:antiox11010007. [PMID: 35052511 PMCID: PMC8772965 DOI: 10.3390/antiox11010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases are accompanied by oxidative stress and mitochondrial dysfunction, leading to a progressive loss of neuronal cells, formation of protein aggregates, and a decrease in cognitive or motor functions. Mitochondrial dysfunction occurs at the early stage of neurodegenerative diseases. Protein aggregates containing oxidatively damaged biomolecules and other misfolded proteins and neuroinflammation have been identified in animal models and patients with neurodegenerative diseases. A variety of neurodegenerative diseases commonly exhibits decreased activity of antioxidant enzymes, lower amounts of antioxidants, and altered cellular signalling. Although several molecules have been approved clinically, there is no known cure for neurodegenerative diseases, though some drugs are focused on improving mitochondrial function. Mitochondrial dysfunction is caused by oxidative damage and impaired cellular signalling, including that of peroxisome proliferator-activated receptor gamma coactivator 1α. Mitochondrial function can also be modulated by mitochondrial biogenesis and the mitochondrial fusion/fission cycle. Mitochondrial biogenesis is regulated mainly by sirtuin 1, NAD+, AMP-activated protein kinase, mammalian target of rapamycin, and peroxisome proliferator-activated receptor γ. Altered mitochondrial dynamics, such as increased fission proteins and decreased fusion products, are shown in neurodegenerative diseases. Due to the restrictions of a target-based approach, a phenotype-based approach has been performed to find novel proteins or pathways. Alternatively, plasma membrane redox enzymes improve mitochondrial function without the further production of reactive oxygen species. In addition, inducers of antioxidant response elements can be useful to induce a series of detoxifying enzymes. Thus, redox homeostasis and metabolic regulation can be important therapeutic targets for delaying the progression of neurodegenerative diseases.
Collapse
|
34
|
Abyadeh M, Gupta V, Gupta V, Chitranshi N, Wu Y, Amirkhani A, Meyfour A, Sheriff S, Shen T, Dhiman K, Ghasem HS, Paul AH, Stuart LG, Mirzaei M. Comparative Analysis of Aducanumab, Zagotenemab and Pioglitazone as Targeted Treatment Strategies for Alzheimer's Disease. Aging Dis 2021; 12:1964-1976. [PMID: 34881080 PMCID: PMC8612603 DOI: 10.14336/ad.2021.0719] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia that has remained a major medical, sociocultural and economical challenge globally. Previously developed treatments like anticholinesterase inhibitors (AChEIs) and N-methyl-D-aspartate receptor (NMDAR) antagonists only provide short-term symptomatic improvement and do not prevent progression. Repeated setbacks and failures over the past 25 years in AD clinical trials have hindered efforts to develop effective AD treatments. Fortunately, Aducanumab, a specific anti-amyloid β antibody, has shown promising clinical results and was recently approved by the Food and Drug Administration (FDA) through an accelerated approval pathway. This has raised hopes for AD patients; however post-approval trials are necessary to estimate the true scope of its clinical benefits. We have reviewed several AD clinical studies and summarized the experience to date with Aducanumab and two other potential AD drugs including Zagotenemab (an anti-tau antibody) and Pioglitazone (nuclear Peroxisome-Proliferator Activated Receptor γ (PPARγ) agonist). These have shown mixed results so far and the next few years will be critical to elucidate and interpret their broad long-term protective effects. A concerted effort is required to understand and strengthen the translation of pre-clinical findings from these drugs to routine clinical practice.
Collapse
Affiliation(s)
- Morteza Abyadeh
- 1Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vivek Gupta
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Veer Gupta
- 3School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Yunqi Wu
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Ardeshir Amirkhani
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Anna Meyfour
- 5Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samran Sheriff
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Ting Shen
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Kunal Dhiman
- 3School of Medicine, Deakin University, VIC, Australia
| | - H Salekdeh Ghasem
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - A Haynes Paul
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - L Graham Stuart
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Mehdi Mirzaei
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
35
|
Garbarino S, Lanteri P, Bragazzi NL, Magnavita N, Scoditti E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun Biol 2021; 4:1304. [PMID: 34795404 PMCID: PMC8602722 DOI: 10.1038/s42003-021-02825-4] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Modern societies are experiencing an increasing trend of reduced sleep duration, with nocturnal sleeping time below the recommended ranges for health. Epidemiological and laboratory studies have demonstrated detrimental effects of sleep deprivation on health. Sleep exerts an immune-supportive function, promoting host defense against infection and inflammatory insults. Sleep deprivation has been associated with alterations of innate and adaptive immune parameters, leading to a chronic inflammatory state and an increased risk for infectious/inflammatory pathologies, including cardiometabolic, neoplastic, autoimmune and neurodegenerative diseases. Here, we review recent advancements on the immune responses to sleep deprivation as evidenced by experimental and epidemiological studies, the pathophysiology, and the role for the sleep deprivation-induced immune changes in increasing the risk for chronic diseases. Gaps in knowledge and methodological pitfalls still remain. Further understanding of the causal relationship between sleep deprivation and immune deregulation would help to identify individuals at risk for disease and to prevent adverse health outcomes.
Collapse
Affiliation(s)
- Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, 16132, Genoa, Italy.
| | - Paola Lanteri
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada
| | - Nicola Magnavita
- Postgraduate School of Occupational Medicine, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Department of Woman/Child and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100, Lecce, Italy
| |
Collapse
|
36
|
Hambali A, Kumar J, Hashim NFM, Maniam S, Mehat MZ, Cheema MS, Mustapha M, Adenan MI, Stanslas J, Hamid HA. Hypoxia-Induced Neuroinflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Centella asiatica. Front Physiol 2021; 12:712317. [PMID: 34721056 PMCID: PMC8551388 DOI: 10.3389/fphys.2021.712317] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.
Collapse
Affiliation(s)
- Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
37
|
de Oliveira J, Kucharska E, Garcez ML, Rodrigues MS, Quevedo J, Moreno-Gonzalez I, Budni J. Inflammatory Cascade in Alzheimer's Disease Pathogenesis: A Review of Experimental Findings. Cells 2021; 10:cells10102581. [PMID: 34685563 PMCID: PMC8533897 DOI: 10.3390/cells10102581] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Most AD patients develop the disease in late life, named late onset AD (LOAD). Currently, the most recognized explanation for AD pathology is the amyloid cascade hypothesis. It is assumed that amyloid beta (Aβ) aggregation and deposition are critical pathogenic processes in AD, leading to the formation of amyloid plaques, as well as neurofibrillary tangles, neuronal cell death, synaptic degeneration, and dementia. In LOAD, the causes of Aβ accumulation and neuronal loss are not completely clear. Importantly, the blood–brain barrier (BBB) disruption seems to present an essential role in the induction of neuroinflammation and consequent AD development. In addition, we propose that the systemic inflammation triggered by conditions like metabolic diseases or infections are causative factors of BBB disruption, coexistent inflammatory cascade and, ultimately, the neurodegeneration observed in AD. In this regard, the use of anti-inflammatory molecules could be an interesting strategy to treat, delay or even halt AD onset and progression. Herein, we review the inflammatory cascade and underlying mechanisms involved in AD pathogenesis and revise the anti-inflammatory effects of compounds as emerging therapeutic drugs against AD.
Collapse
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - Ewa Kucharska
- Faculty of Education, Institute of Educational Sciences, Jesuit University Ignatianum in Krakow, 31-501 Krakow, Poland;
| | - Michelle Lima Garcez
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil;
| | - Matheus Scarpatto Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, MD Anderson Cancer Center, UTHealth, The University of Texas Houston, Houston, TX 77030, USA
- Graduate Program in Health Sciences, Translational Psychiatry Laboratory, University of Southern Santa Catarina (UNESC), Criciuma 88806-000, Brazil
| | - Ines Moreno-Gonzalez
- Department of Cell Biology, Faculty of Sciences, University of Malaga, IBIMA, 29010 Malaga, Spain;
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 29010 Malaga, Spain
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Josiane Budni
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Neurologia Experimental, Universidade do Extremo Sul Catarinense, Criciuma 88806-000, Brazil
- Correspondence: ; Tel.: +55-48431-2539
| |
Collapse
|
38
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
39
|
Rosell-Cardona C, Griñan-Ferré C, Pérez-Bosque A, Polo J, Pallàs M, Amat C, Moretó M, Miró L. Dietary Spray-Dried Porcine Plasma Reduces Neuropathological Alzheimer's Disease Hallmarks in SAMP8 Mice. Nutrients 2021; 13:2369. [PMID: 34371878 PMCID: PMC8308893 DOI: 10.3390/nu13072369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the aberrant processing of amyloid precursor protein (APP) and the accumulation of hyperphosphorylated tau, both of which are accompanied by neuroinflammation. Dietary supplementation with spray-dried porcine plasma (SDP) has anti-inflammatory effects in inflammation models. We investigated whether dietary supplementation with SDP prevents the neuropathological features of AD. The experiments were performed in 2- and 6-month-old SAMP8 mice fed a control diet, or a diet supplemented with 8% SDP, for 4 months. AD brain molecular markers were determined by Western blot and real-time PCR. Senescent mice showed reduced levels of p-GSK3β (Ser9) and an increase in p-CDK5, p-tau (Ser396), sAPPβ, and the concentration of Aβ40, (all p < 0.05). SDP prevented these effects of aging and reduced Bace1 levels (all p < 0.05). Senescence increased the expression of Mme1 and Ide1 and pro-inflammatory cytokines (Il-17 and Il-18; all p < 0.05); these changes were prevented by SDP supplementation. Moreover, SDP increased Tgf-β expression (p < 0.05). Furthermore, in aged mice, the gene expression levels of the microglial activation markers Trem2, Ym1, and Arg1 were increased, and SDP prevented these increases (all p < 0.05). Thus, dietary SDP might delay AD onset by reducing its hallmarks in senescent mice.
Collapse
Affiliation(s)
- Cristina Rosell-Cardona
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Christian Griñan-Ferré
- Department of Pharmacology, Toxicology, and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences, CIBERNED, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
| | - Anna Pérez-Bosque
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | | | - Mercè Pallàs
- Department of Pharmacology, Toxicology, and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences, CIBERNED, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
| | - Concepció Amat
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Miquel Moretó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Institute for Nutrition and Food Safety, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (C.R.-C.); (A.P.-B.); (C.A.); (M.M.)
- APC Europe S.L.U., 08403 Granollers, Spain;
| |
Collapse
|
40
|
Ries M, Watts H, Mota BC, Lopez MY, Donat CK, Baxan N, Pickering JA, Chau TW, Semmler A, Gurung B, Aleksynas R, Abelleira-Hervas L, Iqbal SJ, Romero-Molina C, Hernandez-Mir G, d’Amati A, Reutelingsperger C, Goldfinger MH, Gentleman SM, Van Leuven F, Solito E, Sastre M. Annexin A1 restores cerebrovascular integrity concomitant with reduced amyloid-β and tau pathology. Brain 2021; 144:1526-1541. [PMID: 34148071 PMCID: PMC8262982 DOI: 10.1093/brain/awab050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease, characterized by brain deposits of amyloid-β plaques and neurofibrillary tangles, is also linked to neurovascular dysfunction and blood-brain barrier breakdown, affecting the passage of substances into and out of the brain. We hypothesized that treatment of neurovascular alterations could be beneficial in Alzheimer's disease. Annexin A1 (ANXA1) is a mediator of glucocorticoid anti-inflammatory action that can suppress microglial activation and reduce blood-brain barrier leakage. We have reported recently that treatment with recombinant human ANXA1 (hrANXA1) reduced amyloid-β levels by increased degradation in neuroblastoma cells and phagocytosis by microglia. Here, we show the beneficial effects of hrANXA1 in vivo by restoring efficient blood-brain barrier function and decreasing amyloid-β and tau pathology in 5xFAD mice and Tau-P301L mice. We demonstrate that young 5xFAD mice already suffer cerebrovascular damage, while acute pre-administration of hrANXA1 rescued the vascular defects. Interestingly, the ameliorated blood-brain barrier permeability in young 5xFAD mice by hrANXA1 correlated with reduced brain amyloid-β load, due to increased clearance and degradation of amyloid-β by insulin degrading enzyme (IDE). The systemic anti-inflammatory properties of hrANXA1 were also observed in 5xFAD mice, increasing IL-10 and reducing TNF-α expression. Additionally, the prolonged treatment with hrANXA1 reduced the memory deficits and increased synaptic density in young 5xFAD mice. Similarly, in Tau-P301L mice, acute hrANXA1 administration restored vascular architecture integrity, affecting the distribution of tight junctions, and reduced tau phosphorylation. The combined data support the hypothesis that blood-brain barrier breakdown early in Alzheimer's disease can be restored by hrANXA1 as a potential therapeutic approach.
Collapse
Affiliation(s)
- Miriam Ries
- Department of Brain Sciences, Imperial College London, London, UK
| | - Helena Watts
- Department of Brain Sciences, Imperial College London, London, UK
| | - Bibiana C Mota
- Department of Brain Sciences, Imperial College London, London, UK
| | | | | | - Nicoleta Baxan
- Biological Imaging Centre, Imperial College London, London, UK
| | | | - Tsz Wing Chau
- Department of Brain Sciences, Imperial College London, London, UK
| | - Annika Semmler
- Department of Brain Sciences, Imperial College London, London, UK
| | - Brinda Gurung
- Department of Brain Sciences, Imperial College London, London, UK
| | | | | | | | | | | | - Antonio d’Amati
- William Harvey Research Institute, Queen Mary University London SMD, London, UK
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | - Fred Van Leuven
- Experimental Genetics Group-LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University London SMD, London, UK
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universitá degli Studi di Napoli “Federico II”, Naples, Italy
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
41
|
Kaduševičius E. Novel Applications of NSAIDs: Insight and Future Perspectives in Cardiovascular, Neurodegenerative, Diabetes and Cancer Disease Therapy. Int J Mol Sci 2021; 22:6637. [PMID: 34205719 PMCID: PMC8235426 DOI: 10.3390/ijms22126637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Once it became clear that inflammation takes place in the modulation of different degenerative disease including neurodegenerative, cardiovascular, diabetes and cancer the researchers has started intensive programs evaluating potential role of non-steroidal anti-inflammatory drugs (NSAIDs) in the prevention or therapy of these diseases. This review discusses the novel mechanism of action of NSAIDs and its potential use in the pharmacotherapy of neurodegenerative, cardiovascular, diabetes and cancer diseases. Many different molecular and cellular factors which are not yet fully understood play an important role in the pathogenesis of inflammation, axonal damage, demyelination, atherosclerosis, carcinogenesis thus further NSAID studies for a new potential indications based on precise pharmacotherapy model are warranted since NSAIDs are a heterogeneous group of medicines with relative different pharmacokinetics and pharmacodynamics profiles. Hopefully the new data from studies will fill in the gap between experimental and clinical results and translate our knowledge into successful disease therapy.
Collapse
Affiliation(s)
- Edmundas Kaduševičius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|
42
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
43
|
Lopes CR, Cunha RA, Agostinho P. Astrocytes and Adenosine A 2A Receptors: Active Players in Alzheimer's Disease. Front Neurosci 2021; 15:666710. [PMID: 34054416 PMCID: PMC8155589 DOI: 10.3389/fnins.2021.666710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes, through their numerous processes, establish a bidirectional communication with neurons that is crucial to regulate synaptic plasticity, the purported neurophysiological basis of memory. This evidence contributed to change the classic “neurocentric” view of Alzheimer’s disease (AD), being astrocytes increasingly considered a key player in this neurodegenerative disease. AD, the most common form of dementia in the elderly, is characterized by a deterioration of memory and of other cognitive functions. Although, early cognitive deficits have been associated with synaptic loss and dysfunction caused by amyloid-β peptides (Aβ), accumulating evidences support a role of astrocytes in AD. Astrocyte atrophy and reactivity occurring at early and later stages of AD, respectively, involve morphological alterations that translate into functional changes. However, the main signals responsible for astrocytic alterations in AD and their impact on synaptic function remain to be defined. One possible candidate is adenosine, which can be formed upon extracellular catabolism of ATP released by astrocytes. Adenosine can act as a homeostatic modulator and also as a neuromodulator at the synaptic level, through the activation of adenosine receptors, mainly of A1R and A2AR subtypes. These receptors are also present in astrocytes, being particularly relevant in pathological conditions, to control the morphofunctional responses of astrocytes. Here, we will focus on the role of A2AR, since they are particularly associated with neurodegeneration and also with memory processes. Furthermore, A2AR levels are increased in the AD brain, namely in astrocytes where they can control key astrocytic functions. Thus, unveiling the role of A2AR in astrocytes function might shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Cátia R Lopes
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
44
|
Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-Target-Directed Ligands as an Effective Strategy for the Treatment of Alzheimer's Disease. Curr Med Chem 2021; 29:1757-1803. [PMID: 33982650 DOI: 10.2174/0929867328666210512005508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder, and multiple pathological factors are believed to be involved in the genesis and progression of the disease. A number of hypotheses, including Acetylcholinesterase, Monoamine oxidase, β-Amyloid, Tau protein, etc., have been proposed for the initiation and progression of the disease. At present, acetylcholine esterase inhibitors and memantine (NMDAR antagonist) are the only approved therapies for the symptomatic management of AD. Most of these single-target drugs have miserably failed in the treatment or halting the progression of the disease. Multi-factorial diseases like AD require complex treatment strategies that involve simultaneous modulation of a network of interacting targets. Since the last few years, Multi-Target-Directed Ligands (MTDLs) strategy, drugs that can simultaneously hit multiple targets, is being explored as an effective therapeutic approach for the treatment of AD. In the current review article, the authors have briefly described various pathogenic pathways associated with AD. The importance of Multi-Target-Directed Ligands and their design strategies in recently reported articles have been discussed in detail. Potent leads are identified through various structure-activity relationship studies, and their drug-like characteristics are described. Recently developed promising compounds have been summarized in the article. Some of these MTDLs with balanced activity profiles against different targets have the potential to be developed as drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | - Amandeep Thakur
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | | | - Rakesh Kumar
- Central University of Punjab, Bathinda, Punjab-151001, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab-151001, India
| |
Collapse
|
45
|
Liu P, Zhao B, Wei M, Li Y, Liu J, Ma L, Shang S, Huo K, Wang J, Li R, Qu Q. Activation of Inflammation is Associated with Amyloid-β Accumulation Induced by Chronic Sleep Restriction in Rats. J Alzheimers Dis 2021; 74:759-773. [PMID: 32083588 DOI: 10.3233/jad-191317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common age-associated neurodegenerative disease featured by progressive learning and memory deficit, and Aβ was identified as playing a key role in the process of AD and was theorized to be caused by the imbalance of production and clearance. Increasing evidence suggested an association between sleep deprivation and AD. Our recent study found that chronic sleep restriction (CSR) caused cognitive impairment and Aβ accumulation in rats, but the underlining mechanism was unclear. In the present study, we investigated the effects of inflammation on Aβ accumulation induced by CSR. We found that CSR significantly increased the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) in brain, and the inflammatory factors levels were positively correlated with Aβ42 deposition. Additionally, the inflammatory factors were correlated with BACE1, LRP-1, and RAGE levels in both the hippocampus and the prefrontal cortex. Furthermore, the plasma levels of IL-1β, TNF-α, and NO were elevated after CSR, and the concentration of plasma inflammatory mediators were correlated with plasma levels of sLRP1 and sRAGE. These results suggested that the inflammation in brain and plasma might be involved in the CSR-induced Aβ accumulation.
Collapse
Affiliation(s)
- Peng Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Beiyu Zhao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanbo Li
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Louyan Ma
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Li
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
46
|
Leblhuber F, Steiner K, Geisler S, Fuchs D, Gostner JM. On the Possible Relevance of Bottom-up Pathways in the Pathogenesis of Alzheimer's Disease. Curr Top Med Chem 2021; 20:1415-1421. [PMID: 32407280 DOI: 10.2174/1568026620666200514090359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
Abstract
Dementia is an increasing health problem in older aged populations worldwide. Age-related changes in the brain can be observed decades before the first symptoms of cognitive decline appear. Cognitive impairment has chronic inflammatory components, which can be enhanced by systemic immune activation. There exist mutual interferences between inflammation and cognitive deficits. Signs of an activated immune system i.e. increases in the serum concentrations of soluble biomarkers such as neopterin or accelerated tryptophan breakdown along the kynurenine axis develop in a significant proportion of patients with dementia and correlate with the course of the disease, and they also have a predictive value. Changes in biomarker concentrations are reported to be associated with systemic infections by pathogens such as cytomegalovirus (CMV) and bacterial content in saliva. More recently, the possible influence of microbiome composition on Alzheimer's disease (AD) pathogenesis has been observed. These observations suggest that brain pathology is not the sole factor determining the pathogenesis of AD. Interestingly, patients with AD display drastic changes in markers of immune activation in the circulation and in the cerebrospinal fluid. Other data have suggested the involvement of factors extrinsic to the brain in the pathogenesis of AD. However, currently, neither the roles of these factors nor their importance has been clearly defined.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz, Austria
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz, Austria
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
47
|
Wan Yaacob WMH, Long I, Zakaria R, Othman Z. Tualang honey and its methanolic fraction ameliorate lipopolysaccharide-induced oxidative stress, amyloid deposition and neuronal loss of the rat hippocampus. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00449-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Abstract
Alzheimer’s disease (AD) is the leading cause of neurodegeneration in the elderly and is clinically characterized by slowly progressing cognitive decline, which most commonly affects episodic memory function. This eventually leads to difficulties in activities of daily living. Biomarker studies show that the underlying pathology of AD begins 20 years before clinical symptoms. This results in the need to define specific targets and preclinical stages in order to address the problems of this disease at an earlier point in time. Genetic studies are indispensable for gaining insight into the etiology of neurodegenerative diseases and can play a major role in the early definition of the individual disease risk. This review provides an overview of the currently known genetic features of AD.
Collapse
Affiliation(s)
- Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
49
|
Bacterial sepsis increases hippocampal fibrillar amyloid plaque load and neuroinflammation in a mouse model of Alzheimer's disease. Neurobiol Dis 2021; 152:105292. [PMID: 33556539 DOI: 10.1016/j.nbd.2021.105292] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/06/2020] [Accepted: 02/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sepsis, a leading cause for intensive care unit admissions, causes both an acute encephalopathy and chronic brain dysfunction in survivors. A history of sepsis is also a risk factor for future development of dementia symptoms. Similar neuropathologic changes are associated with the cognitive decline of sepsis and Alzheimer's disease (AD), including neuroinflammation, neuronal death, and synaptic loss. Amyloid plaque pathology is the earliest pathological hallmark of AD, appearing 10 to 20 years prior to cognitive decline, and is present in 30% of people over 65. As sepsis is also more common in older adults, we hypothesized that sepsis might exacerbate amyloid plaque deposition and plaque-related injury, promoting the progression of AD-related pathology. METHODS We evaluated whether the brain's response to sepsis modulates AD-related neurodegenerative changes by driving amyloid deposition and neuroinflammation in mice. We induced polymicrobial sepsis by cecal ligation and puncture (CLP) in APP/PS1-21 mice, a model of AD-related β-amyloidosis. We performed CLP or sham surgery at plaque onset (2 months of age) and examined pathology 2 months after CLP in surviving mice. RESULTS Sepsis significantly increased fibrillar amyloid plaque formation in the hippocampus of APP/PS1-21 mice. Sepsis enhanced plaque-related astrocyte activation and complement C4b gene expression in the brain, both of which may play a role in modulating amyloid formation. CLP also caused large scale changes in the gut microbiome of APP/PS1 mice, which have been associated with a pro-amyloidogenic and neuroinflammatory state. CONCLUSIONS Our results suggest that experimental sepsis can exacerbate amyloid plaque deposition and plaque-related inflammation, providing a potential mechanism for increased dementia in older sepsis survivors.
Collapse
|
50
|
Zhang Z, Li XG, Wang ZH, Song M, Ping Yu S, Su Kang S, Liu X, Zhang Z, Xie M, Liu GP, Wang JZ, Ye K. δ-Secretase-cleaved Tau stimulates Aβ production via upregulating STAT1-BACE1 signaling in Alzheimer's disease. Mol Psychiatry 2021; 26:586-603. [PMID: 30382187 PMCID: PMC6684859 DOI: 10.1038/s41380-018-0286-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022]
Abstract
δ-Secretase, an age-dependent asparagine protease, cleaves both amyloid precursor protein (APP) and Tau and is required for amyloid plaque and neurofibrillary tangle pathologies in Alzheimer's disease (AD). However, whether δ-secretase activation is sufficient to trigger AD pathogenesis remains unknown. Here we show that the fragments of δ-secretase-cleavage, APP (586-695) and Tau(1-368), additively drive AD pathogenesis and cognitive dysfunctions. Tau(1-368) strongly augments BACE1 expression and Aβ generation in the presence of APP. The Tau(1-368) fragment is more robust than full-length Tau in binding active STAT1, a BACE1 transcription factor, and promotes its nuclear translocation, upregulating BACE1 and Aβ production. Notably, Aβ-activated SGK1 or JAK2 kinase phosphorylates STAT1 and induces its association with Tau(1-368). Inhibition of these kinases diminishes stimulatory effect of Tau(1-368). Knockout of STAT1 abolishes AD pathologies induced by δ-secretase-generated APP and Tau fragments. Thus, we show that Tau may not only be a downstream effector of Aβ in the amyloid hypothesis, but also act as a driving force for Aβ, when cleaved by δ-secretase.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao-Guang Li
- Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA,Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingke Song
- Department of Aneasthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Aneasthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Manling Xie
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gong-Ping Liu
- Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jian-Zhi Wang
- Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|