1
|
Osanai Y, Xing YL, Mochizuki S, Kobayashi K, Homman-Ludiye J, Cooray A, Poh J, Inutsuka A, Ohno N, Merson TD. 5' Transgenes drive leaky expression of 3' transgenes in Cre-inducible bi-cistronic vectors. Mol Ther Methods Clin Dev 2024; 32:101288. [PMID: 39104576 PMCID: PMC11298883 DOI: 10.1016/j.omtm.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
Molecular cloning techniques enabling contemporaneous expression of two or more protein-coding sequences provide an invaluable tool for understanding the molecular regulation of cellular functions. The Cre-lox system is used for inducing the expression of recombinant proteins encoded within a bi-/poly-cistronic cassette. However, leak expression of transgenes is often observed in the absence of Cre recombinase activity, compromising the utility of this approach. To investigate the mechanism of leak expression, we generated Cre-inducible bi-cistronic vectors to monitor the expression of transgenes positioned either 5' or 3' of a 2A peptide or internal ribosomal entry site (IRES) sequence. Cells transfected with these bi-cistronic vectors exhibited Cre-independent leak expression specifically of transgenes positioned 3' of the 2A peptide or IRES sequence. Similarly, AAV-FLEX vectors encoding bi-cistronic cassettes or fusion proteins revealed the selective Cre-independent leak expression of transgenes positioned at the 3' end of the open reading frame. Our data demonstrate that 5' transgenes confer promoter-like activity that drives the expression of 3' transgenes. An additional lox-STOP-lox cassette between the 2A sequence and 3' transgene dramatically decreased Cre-independent transgene expression. Our findings highlight the need for appropriate experimental controls when using Cre-inducible bi-/poly-cistronic constructs and inform improved design of vectors for more tightly regulated inducible transgene expression.
Collapse
Affiliation(s)
- Yasuyuki Osanai
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
| | - Yao Lulu Xing
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Shinya Mochizuki
- Department of Anatomy, Bioimaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Amali Cooray
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Jasmine Poh
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
- Division of Ultrastructure Research, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Tobias D. Merson
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
- Oligodendroglial Interactions Group, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Oizumi H, Miyamoto Y, Seiwa C, Yamamoto M, Yoshioka N, Iizuka S, Torii T, Ohbuchi K, Mizoguchi K, Yamauchi J, Asou H. Lethal adulthood myelin breakdown by oligodendrocyte-specific Ddx54 knockout. iScience 2023; 26:107448. [PMID: 37720086 PMCID: PMC10502337 DOI: 10.1016/j.isci.2023.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a leading disease that causes disability in young adults. We have previously shown that a DEAD-box RNA helicase Ddx54 binds to mRNA and protein isoforms of myelin basic protein (MBP) and that Ddx54 siRNA blocking abrogates oligodendrocyte migration and myelination. Herein, we show that MBP-driven Ddx54 knockout mice (Ddx54 fl/fl;MBP-Cre), after the completion of normal postnatal myelination, gradually develop abnormalities in behavioral profiles and learning ability, inner myelin sheath breakdown, loss of myelinated axons, apoptosis of oligodendrocytes, astrocyte and microglia activation, and they die within 7 months but show minimal peripheral immune cell infiltration. Myelin in Ddx54fl/fl;MBP-Cre is highly vulnerable to the neurotoxicant cuprizone and Ddx54 knockdown greatly impairs myelination in vitro. Ddx54 expression in oligodendrocyte-lineage cells decreased in corpus callosum of MS patients. Our results demonstrate that Ddx54 is indispensable for myelin homeostasis, and they provide a demyelinating disease model based on intrinsic disintegration of adult myelin.
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chika Seiwa
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Masahiro Yamamoto
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Katsuya Ohbuchi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | | | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Asou
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| |
Collapse
|
3
|
Deconvolution of the MBP-Bri2 Interaction by a Yeast Two Hybrid System and Synergy of the AlphaFold2 and High Ambiguity Driven Protein-Protein Docking. CRYSTALS 2022. [DOI: 10.3390/cryst12020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myelin basic protein (MBP) is one of the key proteins in the development of multiple sclerosis (MS). However, very few intracellular MBP partners have been identified up to now. In order to find proteins interacting with MBP in the brain, an expression library from the human brain was screened using a yeast two-hybrid system. Here we showed that MBP interacts with the C-terminal 24-residue peptide of Integral transmembrane protein II associated with familial British and Danish dementia (ITM2B/Bri2 or Bri2). This peptide (Bri23R) was one residue longer than the known Bri23 peptide, which is cleaved from the C-terminus of Bri2 during its maturation in the Golgi and has physiological activity as a modulator of amyloid precursor protein processing. Since the spatial structures for both MBP and Bri2 were not known, we used computational methods of structural biology including an artificial intelligence system AlphaFold2 and high ambiguity driven protein-protein docking (HADDOCK 2.1) to gain a mechanistic explanation of the found protein-protein interaction and elucidate a possible structure of the complex of MBP with Bri23R peptide. As expected, MBP was mostly unstructured, although it has well-defined α-helical regions, while Bri23R forms a stable β-hairpin. Simulation of the interaction between MBP and Bri23R in two different environments, as parts of the two-hybrid system fusion proteins and in the form of single polypeptides, showed that MBP twists around Bri23R. The observed interaction results in the adjustment of the size of the internal space between MBP α-helices to the size of the β-hairpin of Bri23R. Since Bri23 is known to inhibit aggregation of amyloid oligomers, and the association of MBP to the inner leaflet of the membrane bilayer shares features with amyloid fibril formation, Bri23 may serve as a peptide chaperon for MBP, thus participating in myelin membrane assembly.
Collapse
|
4
|
Sargiannidou I, Kagiava A, Kleopa KA. Gene therapy approaches targeting Schwann cells for demyelinating neuropathies. Brain Res 2020; 1728:146572. [PMID: 31790684 DOI: 10.1016/j.brainres.2019.146572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses numerous genetically heterogeneous inherited neuropathies, which together are one of the commonest neurogenetic disorders. Axonal CMT types result from mutations in neuronally expressed genes, whereas demyelinating CMT forms mostly result from mutations in genes expressed by myelinating Schwann cells. The demyelinating forms are the most common, and may be caused by dominant mutations and gene dosage effects (as in CMT1), as well as by recessive mutations and loss of function mechanisms (as in CMT4). The discovery of causative genes and increasing insights into molecular mechanisms through the study of experimental disease models has provided the basis for the development of gene therapy approaches. For demyelinating CMT, gene silencing or gene replacement strategies need to be targeted to Schwann cells. Progress in gene replacement for two different CMT forms, including CMT1X caused by GJB1 gene mutations, and CMT4C, caused by SH3TC2 gene mutations, has been made through the use of a myelin-specific promoter to restrict expression in Schwann cells, and by lumbar intrathecal delivery of lentiviral viral vectors to achieve more widespread biodistribution in the peripheral nervous system. This review summarizes the molecular-genetic mechanisms of selected demyelinating CMT neuropathies and the progress made so far, as well as the remaining challenges in the path towards a gene therapy to treat these disorders through the use of optimal gene therapy tools including clinically translatable delivery methods and adeno-associated viral (AAV) vectors.
Collapse
Affiliation(s)
- Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus; Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
5
|
Kim D, An H, Shearer RS, Sharif M, Fan C, Choi JO, Ryu S, Park Y. A principled strategy for mapping enhancers to genes. Sci Rep 2019; 9:11043. [PMID: 31363138 PMCID: PMC6667464 DOI: 10.1038/s41598-019-47521-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Mapping enhancers to genes is a fundamental goal of modern biology. We have developed an innovative strategy that maps enhancers to genes in a principled manner. We illustrate its power by applying it to Myrf. Despite being a master regulator of oligodendrocytes, oligodendrocyte enhancers governing Myrf expression remain elusive. Since chromatin conformation capture studies have shown that a gene and its enhancer tend to be found in the same topologically associating domain (TAD), we started with the delineation of the Myrf TAD. A genome-wide map of putative oligodendrocyte enhancers uncovered 6 putative oligodendrocyte enhancers in the Myrf TAD, narrowing down the search space for Myrf enhancers from the entire genome to 6 loci in a principled manner. Epigenome editing experiments revealed that two of them govern Myrf expression for oligodendrocyte development. Our new method is simple, principled, and powerful, providing a systematic way to find enhancers that regulate the expression of a gene of interest. Since it can be applied to most cell types, it would greatly facilitate our effort to unravel transcriptional regulatory networks of diverse cell types.
Collapse
Affiliation(s)
- Dongkyeong Kim
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Hongjoo An
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Randall S Shearer
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mohamed Sharif
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Chuandong Fan
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Jin-Ok Choi
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Sun Ryu
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Yungki Park
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
6
|
Cao J, Hu Y, Shazeeb MS, Pedraza CE, Pande N, Weinstock D, Polites GH, Zhang W, Chandross KJ, Ying X. In Vivo Optical Imaging of Myelination Events in a Myelin Basic Protein Promoter-Driven Luciferase Transgenic Mouse Model. ASN Neuro 2019; 10:1759091418777329. [PMID: 29806482 PMCID: PMC5987236 DOI: 10.1177/1759091418777329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The compact myelin sheath is important for axonal function, and its loss
can lead to neuronal cell death and irreversible functional deficits.
Myelin is vulnerable to a variety of metabolic, toxic, and autoimmune
insults. In diseases like multiple sclerosis, there is currently no
therapy to stop myelin loss, underscoring the need for neuroprotective
and remyelinating therapies. Noninvasive, robust techniques are also
needed to confirm the effect of such therapies in animal models. This
article describes the generation, characterization, and potential uses
for a myelin basic protein-luciferase (MBP-luci) transgenic mouse
model, in which the firefly luciferase reporter gene is selectively
controlled by the MBP promoter. In vivo
bioluminescence imaging can be used to visualize and quantify
demyelination and remyelination at the transcriptional level,
noninvasively, and in real time. Transgenic mice were assessed in the
cuprizone-induced model of demyelination, and luciferase activity
highly correlated with demyelination and remyelination events as
confirmed by both magnetic resonance imaging and postmortem
histological analysis. Furthermore, MBP-luci mice demonstrated
enhanced luciferase signal and remyelination in the cuprizone model
after treatment with a peroxisome proliferator activated
receptor-delta selective agonist and quetiapine. Imaging sensitivity
was further enhanced by using CycLuc 1, a luciferase substrate, which
has greater blood–brain barrier penetration. We demonstrated the
utility of MBP-luci model in tracking myelin changes in real time and
supporting target and therapeutic validation efforts.
Collapse
Affiliation(s)
- James Cao
- 1 Translational In Vivo Model, Global Research Platform, Sanofi R&D, Framingham, MA, USA
| | - Yanping Hu
- 2 Multiple Sclerosis Cluster, Neuroscience Research, Sanofi R&D, Framingham, MA, USA
| | | | - Carlos E Pedraza
- 2 Multiple Sclerosis Cluster, Neuroscience Research, Sanofi R&D, Framingham, MA, USA
| | - Nilesh Pande
- 2 Multiple Sclerosis Cluster, Neuroscience Research, Sanofi R&D, Framingham, MA, USA
| | | | | | - Wenfei Zhang
- 5 Biostatistics and Programming, Sanofi R&D, Framingham, MA, USA
| | | | - Xiaoyou Ying
- 1 Translational In Vivo Model, Global Research Platform, Sanofi R&D, Framingham, MA, USA
| |
Collapse
|
7
|
Twenty-Seven Tamoxifen-Inducible iCre-Driver Mouse Strains for Eye and Brain, Including Seventeen Carrying a New Inducible-First Constitutive-Ready Allele. Genetics 2019; 211:1155-1177. [PMID: 30765420 PMCID: PMC6456315 DOI: 10.1534/genetics.119.301984] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
To understand gene function, the cre/loxP conditional system is the most powerful available for temporal and spatial control of expression in mouse. However, the research community requires more cre recombinase expressing transgenic mouse strains (cre-drivers) that restrict expression to specific cell types. To address these problems, a high-throughput method for large-scale production that produces high-quality results is necessary. Further, endogenous promoters need to be chosen that drive cell type specific expression, or we need to further focus the expression by manipulating the promoter. Here we test the suitability of using knock-ins at the docking site 5′ of Hprt for rapid development of numerous cre-driver strains focused on expression in adulthood, using an improved cre tamoxifen inducible allele (icre/ERT2), and testing a novel inducible-first, constitutive-ready allele (icre/f3/ERT2/f3). In addition, we test two types of promoters either to capture an endogenous expression pattern (MaxiPromoters), or to restrict expression further using minimal promoter element(s) designed for expression in restricted cell types (MiniPromoters). We provide new cre-driver mouse strains with applicability for brain and eye research. In addition, we demonstrate the feasibility and applicability of using the locus 5′ of Hprt for the rapid generation of substantial numbers of cre-driver strains. We also provide a new inducible-first constitutive-ready allele to further speed cre-driver generation. Finally, all these strains are available to the research community through The Jackson Laboratory.
Collapse
|
8
|
Radecki DZ, Johnson EL, Brown AK, Meshkin NT, Perrine SA, Gow A. Corticohippocampal Dysfunction In The OBiden Mouse Model Of Primary Oligodendrogliopathy. Sci Rep 2018; 8:16116. [PMID: 30382234 PMCID: PMC6208344 DOI: 10.1038/s41598-018-34414-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
Despite concerted efforts over decades, the etiology of multiple sclerosis (MS) remains unclear. Autoimmunity, environmental-challenges, molecular mimicry and viral hypotheses have proven equivocal because early-stage disease is typically presymptomatic. Indeed, most animal models of MS also lack defined etiologies. We have developed a novel adult-onset oligodendrogliopathy using a delineated metabolic stress etiology in myelinating cells, and our central question is, “how much of the pathobiology of MS can be recapitulated in this model?” The analyses described herein demonstrate that innate immune activation, glial scarring, cortical and hippocampal damage with accompanying electrophysiological, behavioral and memory deficits naturally emerge from disease progression. Molecular analyses reveal neurofilament changes in normal-appearing gray matter that parallel those in cortical samples from MS patients with progressive disease. Finally, axon initial segments of deep layer pyramidal neurons are perturbed in entorhinal/frontal cortex and hippocampus from OBiden mice, and computational modeling provides insight into vulnerabilities of action potential generation during demyelination and early remyelination. We integrate these findings into a working model of corticohippocampal circuit dysfunction to predict how myelin damage might eventually lead to cognitive decline.
Collapse
Affiliation(s)
- Daniel Z Radecki
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, 48201, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Elizabeth L Johnson
- Institute of Gerontology, Wayne State University, Detroit, MI, 48202, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Ashley K Brown
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Nicholas T Meshkin
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, 48201, USA.,Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, 48201, USA. .,Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI, 48201, USA. .,Department of Neurology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
9
|
Groh J, Friedman HC, Orel N, Ip CW, Fischer S, Spahn I, Schäffner E, Hörner M, Stadler D, Buttmann M, Varallyay C, Solymosi L, Sendtner M, Peterson AC, Martini R. Pathogenic inflammation in the CNS of mice carrying human PLP1 mutations. Hum Mol Genet 2018; 25:4686-4702. [PMID: 28173160 DOI: 10.1093/hmg/ddw296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/12/2016] [Accepted: 08/21/2016] [Indexed: 01/03/2023] Open
Abstract
Progressive forms of multiple sclerosis lead to chronic disability, substantial decline in quality of life and reduced longevity. It is often suggested that they occur independently of inflammation. Here we investigated the disease progression in mouse models carrying PLP1 point mutations previously found in patients displaying clinical features of multiple sclerosis. These mouse models show loss-of-function of PLP1 associated with neuroinflammation; the latter leading to clinically relevant axonal degeneration, neuronal loss and brain atrophy as demonstrated by inactivation of the recombination activating gene 1. Moreover, these pathological hallmarks were substantially amplified when we attenuated immune regulation by inactivation of the programmed cell death-1 gene. Our observations support the view that primary oligodendroglial abnormalities can evoke pathogenically relevant neuroinflammation that drives neurodegeneration, as observed in some forms of multiple sclerosis but also in other, genetically-mediated neurodegenerative disorders of the human nervous system. As many potent immunomodulatory drugs have emerged during the last years, it is tempting to consider immunomodulation as a treatment option not only for multiple sclerosis, but also for so far non-treatable, genetically-mediated disorders of the nervous system accompanied by pathogenic neuroinflammation.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Hana C Friedman
- Laboratory of Developmental Biology, Ludmer Research and Training Building, McGill University, Montreal, QC, Canada
| | - Nadiya Orel
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Stefan Fischer
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Irene Spahn
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Erik Schäffner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Michaela Hörner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - David Stadler
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, Multiple Sclerosis and Neuroimmunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Csanad Varallyay
- Division of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - László Solymosi
- Division of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Alan C Peterson
- Laboratory of Developmental Biology, Ludmer Research and Training Building, McGill University, Montreal, QC, Canada
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| |
Collapse
|
10
|
Kobayashi S, Hosoi Y, Shiura H, Yamagata K, Takahashi S, Fujihara Y, Kohda T, Okabe M, Ishino F. Live imaging of X chromosome reactivation dynamics in early mouse development can discriminate naïve from primed pluripotent stem cells. Development 2016; 143:2958-64. [PMID: 27471261 DOI: 10.1242/dev.136739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/08/2016] [Indexed: 02/04/2023]
Abstract
Pluripotent stem cells can be classified into two distinct states, naïve and primed, which show different degrees of potency. One difficulty in stem cell research is the inability to distinguish these states in live cells. Studies on female mice have shown that reactivation of inactive X chromosomes occurs in the naïve state, while one of the X chromosomes is inactivated in the primed state. Therefore, we aimed to distinguish the two states by monitoring X chromosome reactivation. Thus far, X chromosome reactivation has been analysed using fixed cells; here, we inserted different fluorescent reporter gene cassettes (mCherry and eGFP) into each X chromosome. Using these knock-in 'Momiji' mice, we detected X chromosome reactivation accurately in live embryos, and confirmed that the pluripotent states of embryos were stable ex vivo, as represented by embryonic and epiblast stem cells in terms of X chromosome reactivation. Thus, Momiji mice provide a simple and accurate method for identifying stem cell status based on X chromosome reactivation.
Collapse
Affiliation(s)
- Shin Kobayashi
- Department of Epigenetics, Medical Research Institute, Tokyo Medical & Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yusuke Hosoi
- Department of Epigenetics, Medical Research Institute, Tokyo Medical & Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hirosuke Shiura
- Department of Epigenetics, Medical Research Institute, Tokyo Medical & Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazuo Yamagata
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| | - Saori Takahashi
- Department of Epigenetics, Medical Research Institute, Tokyo Medical & Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| | - Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical & Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical & Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
11
|
Crawford AH, Tripathi RB, Foerster S, McKenzie I, Kougioumtzidou E, Grist M, Richardson WD, Franklin RJM. Pre-Existing Mature Oligodendrocytes Do Not Contribute to Remyelination following Toxin-Induced Spinal Cord Demyelination. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:511-6. [PMID: 26773350 DOI: 10.1016/j.ajpath.2015.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/12/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Remyelination is the regenerative response to demyelination. Although the oligodendrocyte progenitor is established as the major source of remyelinating cells, there is no conclusive evidence on whether mature, differentiated oligodendrocytes can also contribute to remyelination. Using two different inducible myelin-CreER mouse strains in which mature oligodendrocytes were prelabeled by the expression of membrane-bound Green fluorescent protein, we found that after focal spinal cord demyelination, the surrounding surviving labeled oligodendrocytes did not proliferate but remained at a consistent density. Furthermore, existing (prelabeled) oligodendrocytes showed no evidence of incorporation or migration into the lesioned area, or of process extension from the peripheral margins into the lesion. Thus, mature oligodendrocytes do not normally contribute to remyelination and are therefore not a promising target for regenerative therapy.
Collapse
Affiliation(s)
- Abbe H Crawford
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Richa B Tripathi
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah Foerster
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Ian McKenzie
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Eleni Kougioumtzidou
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Matthew Grist
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - William D Richardson
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Robin J M Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
12
|
Lopez-Anido C, Sun G, Koenning M, Srinivasan R, Hung HA, Emery B, Keles S, Svaren J. Differential Sox10 genomic occupancy in myelinating glia. Glia 2015; 63:1897-1914. [PMID: 25974668 PMCID: PMC4644515 DOI: 10.1002/glia.22855] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/22/2015] [Indexed: 11/11/2022]
Abstract
Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type-specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP-Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type-specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells and are found within super-enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type-specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. GLIA 2015;63:1897-1914.
Collapse
Affiliation(s)
- Camila Lopez-Anido
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Guannan Sun
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthias Koenning
- Department of Anatomy and Neuroscience and the Centre for Neuroscience Research, University of Melbourne, Melbourne, Australia
| | - Rajini Srinivasan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Holly A. Hung
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ben Emery
- Department of Anatomy and Neuroscience and the Centre for Neuroscience Research, University of Melbourne, Melbourne, Australia
| | - Sunduz Keles
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
13
|
Dionne N, Dib S, Finsen B, Denarier E, Kuhlmann T, Drouin R, Kokoeva M, Hudson TJ, Siminovitch K, Friedman HC, Peterson AC. Functional organization of anMbpenhancer exposes striking transcriptional regulatory diversity within myelinating glia. Glia 2015; 64:175-94. [DOI: 10.1002/glia.22923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Nancy Dionne
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Samar Dib
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Bente Finsen
- Department of Neurobiology Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Eric Denarier
- Institut National De La Santé Et De La Recherche Médicale, U836-GIN iRTSV-GPC; Site Santé La Tronche, BP170 Grenoble Cedex 9 France
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital, Münster; Pottkamp 2 Münster Germany
| | - Régen Drouin
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences; Université De Sherbrooke; Sherbrooke Quebec Canada
| | - Maia Kokoeva
- Department of Medicine; McGill University/MUHC Research Institute; Montreal Quebec Canada
| | - Thomas J. Hudson
- Ontario Institute for Cancer Research, MaRS Centre; South Tower Toronto Ontario Canada
| | - Kathy Siminovitch
- Department of Medicine; University of Toronto, Samuel Lunenfeld and Toronto General Research Institutes; Toronto Ontario Canada
- Department of Immunology and Molecular Genetics; University of Toronto; Toronto Ontario Canada
| | - Hana C Friedman
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Alan C. Peterson
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| |
Collapse
|
14
|
Stolt CC, Wegner M. Schwann cells and their transcriptional network: Evolution of key regulators of peripheral myelination. Brain Res 2015; 1641:101-110. [PMID: 26423937 DOI: 10.1016/j.brainres.2015.09.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Abstract
As derivatives of the neural crest, Schwann cells represent a vertebrate invention. Their development and differentiation is under control of a newly constructed, vertebrate-specific regulatory network that contains Sox10, Oct6 and Krox20 as cornerstones and central regulators of peripheral myelination. In this review, we discuss the function and relationship of these transcription factors among each other and in the context of their regulatory network, and present ideas of how neofunctionalization may have helped to recruit them to their novel task in Schwann cells. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- C Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany.
| |
Collapse
|
15
|
Dumas L, Heitz-Marchaland C, Fouquet S, Suter U, Livet J, Moreau-Fauvarque C, Chédotal A. Multicolor analysis of oligodendrocyte morphology, interactions, and development with Brainbow. Glia 2014; 63:699-717. [PMID: 25530205 DOI: 10.1002/glia.22779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 12/08/2014] [Indexed: 11/12/2022]
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system. Multiple markers are available to analyze the populations of oligodendroglial cells and their precursors during development and in pathological conditions. However, the behavior of oligodendrocytes remains poorly characterized in vivo, especially at the level of individual cells. Studying this aspect has been impaired so far by the lack of suitable methods for visualizing single oligodendrocytes, their processes, and their interactions during myelination. Here, we have used multicolor labeling technology to single-out simultaneously many individual oligodendrocytes in the postnatal mouse optic nerve. This method is based on Brainbow, a transgenic system for stochastic expression of multiple fluorescent protein genes through Cre-lox recombination, previously used for visualizing axons and neurons. We used tamoxifen-inducible recombination in myelinating cells of Brainbow transgenic mice to obtain multicolor labeling of oligodendrocytes. We show that the palette of colors expressed by labeled oligodendrocytes is tamoxifen dependent, with the highest doses producing the densest and most colorful labeling. At low doses of tamoxifen, the morphology of single or small clusters of fluorescent oligodendrocytes can be studied during postnatal development and in adult. Internodes are labeled to their extremities, revealing nodes of Ranvier. The new mouse model presented here opens new possibilities to explore the organization and development of the oligodendrocyte network with single-cell resolution.
Collapse
Affiliation(s)
- Laura Dumas
- INSERM, UMRS_U968, Institut de la Vision, Paris, F-75012, France; Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, F-75012, France; CNRS, UMR_7210, Paris, F-75012, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Mitew S, Hay C, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014; 276:29-47. [DOI: 10.1016/j.neuroscience.2013.11.029] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
|
17
|
Castelo-Branco G, Lilja T, Wallenborg K, Falcão AM, Marques SC, Gracias A, Solum D, Paap R, Walfridsson J, Teixeira AI, Rosenfeld MG, Jepsen K, Hermanson O. Neural stem cell differentiation is dictated by distinct actions of nuclear receptor corepressors and histone deacetylases. Stem Cell Reports 2014; 3:502-15. [PMID: 25241747 PMCID: PMC4266002 DOI: 10.1016/j.stemcr.2014.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 01/16/2023] Open
Abstract
Signaling factors including retinoic acid (RA) and thyroid hormone (T3) promote neuronal, oligodendrocyte, and astrocyte differentiation of cortical neural stem cells (NSCs). However, the functional specificity of transcriptional repressor checkpoints controlling these differentiation programs remains unclear. Here, we show by genome-wide analysis that histone deacetylase (HDAC)2 and HDAC3 show overlapping and distinct promoter occupancy at neuronal and oligodendrocyte-related genes in NSCs. The absence of HDAC3, but not HDAC2, initiated a neuronal differentiation pathway in NSCs. The ablation of the corepressor NCOR or HDAC2, in conjunction with T3 treatment, resulted in increased expression of oligodendrocyte genes, revealing a direct HDAC2-mediated repression of Sox8 and Sox10 expression. Interestingly, Sox10 was required also for maintaining the more differentiated state by repression of stem cell programming factors such as Sox2 and Sox9. Distinct and nonredundant actions of NCORs and HDACs are thus critical for control of lineage progression and differentiation programs in neural progenitors. ChIP-seq reveals distinct and overlapping occupancy of HDAC2 and HDAC3 in NSCs Absence of NCOR promotes oligodendrocyte differentiation of NSCs HDAC2 controls Sox10 expression in OL differentiation via a SOX2-occupied enhancer Sox10 is required for maintaining the differentiated state in late OL precursors
Collapse
Affiliation(s)
- Gonçalo Castelo-Branco
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Tobias Lilja
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karolina Wallenborg
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ana M Falcão
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sueli C Marques
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Aileen Gracias
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Derek Solum
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093-0648, USA
| | - Ricardo Paap
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julian Walfridsson
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ana I Teixeira
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093-0648, USA
| | - Kristen Jepsen
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093-0648, USA
| | - Ola Hermanson
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
18
|
de Leeuw CN, Dyka FM, Boye SL, Laprise S, Zhou M, Chou AY, Borretta L, McInerny SC, Banks KG, Portales-Casamar E, Swanson MI, D’Souza CA, Boye SE, Jones SJM, Holt RA, Goldowitz D, Hauswirth WW, Wasserman WW, Simpson EM. Targeted CNS Delivery Using Human MiniPromoters and Demonstrated Compatibility with Adeno-Associated Viral Vectors. Mol Ther Methods Clin Dev 2014; 1:5. [PMID: 24761428 PMCID: PMC3992516 DOI: 10.1038/mtm.2013.5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/05/2013] [Indexed: 01/21/2023]
Abstract
Critical for human gene therapy is the availability of small promoter tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters using computational biology and phylogenetic conservation. MiniPromoters were tested in mouse as single-copy knock-ins at the Hprt locus on the X Chromosome, and evaluated for lacZ reporter expression in CNS and non-CNS tissue. Eighteen novel MiniPromoters driving expression in mouse brain were identified, two MiniPromoters for driving pan-neuronal expression, and 17 MiniPromoters for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPromoters exhibit similar cell-type specificity when delivered via adeno-associated virus (AAV) vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy number effects or genomic location, and results in constructs predisposed to success in AAV. These MiniPromoters are immediately applicable for pre-clinical studies towards gene therapy in humans, and are publicly available to facilitate basic and clinical research, and human gene therapy.
Collapse
Affiliation(s)
- Charles N de Leeuw
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank M Dyka
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sanford L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Stéphanie Laprise
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Zhou
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice Y Chou
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Borretta
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simone C McInerny
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathleen G Banks
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elodie Portales-Casamar
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Magdalena I Swanson
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cletus A D’Souza
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Shannon E Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Steven JM Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Robert A Holt
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Hornig J, Fröb F, Vogl MR, Hermans-Borgmeyer I, Tamm ER, Wegner M. The transcription factors Sox10 and Myrf define an essential regulatory network module in differentiating oligodendrocytes. PLoS Genet 2013; 9:e1003907. [PMID: 24204311 PMCID: PMC3814293 DOI: 10.1371/journal.pgen.1003907] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/03/2013] [Indexed: 01/31/2023] Open
Abstract
Myelin is essential for rapid saltatory conduction and is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. In both cell types the transcription factor Sox10 is an essential component of the myelin-specific regulatory network. Here we identify Myrf as an oligodendrocyte-specific target of Sox10 and map a Sox10 responsive enhancer to an evolutionarily conserved element in intron 1 of the Myrf gene. Once induced, Myrf cooperates with Sox10 to implement the myelination program as evident from the physical interaction between both proteins and the synergistic activation of several myelin-specific genes. This is strongly reminiscent of the situation in Schwann cells where Sox10 first induces and then cooperates with Krox20 during myelination. Our analyses indicate that the regulatory network for myelination in oligodendrocytes is organized along similar general principles as the one in Schwann cells, but is differentially implemented.
Collapse
Affiliation(s)
- Julia Hornig
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael R. Vogl
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Ernst R. Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, Regensburg, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
20
|
Schmouth JF, Castellarin M, Laprise S, Banks KG, Bonaguro RJ, McInerny SC, Borretta L, Amirabbasi M, Korecki AJ, Portales-Casamar E, Wilson G, Dreolini L, Jones SJM, Wasserman WW, Goldowitz D, Holt RA, Simpson EM. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice. BMC Biol 2013; 11:106. [PMID: 24124870 PMCID: PMC4015596 DOI: 10.1186/1741-7007-11-106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/30/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. RESULTS In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. CONCLUSIONS We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.
Collapse
Affiliation(s)
- Jean-François Schmouth
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Mauro Castellarin
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Stéphanie Laprise
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Kathleen G Banks
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Russell J Bonaguro
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Simone C McInerny
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Lisa Borretta
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Mahsa Amirabbasi
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Elodie Portales-Casamar
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Gary Wilson
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Lisa Dreolini
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Steven JM Jones
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Robert A Holt
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| |
Collapse
|
21
|
Pereira GB, Meng F, Kockara NT, Yang B, Wight PA. Targeted deletion of the antisilencer/enhancer (ASE) element from intron 1 of the myelin proteolipid protein gene (Plp1) in mouse reveals that the element is dispensable for Plp1 expression in brain during development and remyelination. J Neurochem 2012; 124:454-65. [PMID: 23157328 DOI: 10.1111/jnc.12092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 01/16/2023]
Abstract
Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1-lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion-transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (antisilencer/enhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. Although removal of the ASE from Plp1-lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli-neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone-induced (acute) demyelination. Thus, it is possible that the ASE is non-functional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene.
Collapse
Affiliation(s)
- Glauber B Pereira
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
BACKGROUND Interaction of Schwann cells with axons triggers signal transduction that drives expression of Pou3f1 and Egr2 transcription factors, which in turn promote myelination. Signal transduction appears to be mediated, at least in part, by cyclic adenosine monophosphate (cAMP) because elevation of cAMP levels can stimulate myelination in the absence of axon contact. The mechanisms by which the myelinating signal is conveyed remain unclear. RESULTS By analyzing mutations that disrupt myelination in zebrafish, we learned that Dynein cytoplasmic 1 heavy chain 1 (Dync1h1), which functions as a motor for intracellular molecular trafficking, is required for peripheral myelination. In dync1h1 mutants, Schwann cell progenitors migrated to peripheral nerves but then failed to express Pou3f1 and Egr2 or make myelin membrane. Genetic mosaic experiments revealed that robust Myelin Basic Protein expression required Dync1h1 function within both Schwann cells and axons. Finally, treatment of dync1h1 mutants with a drug to elevate cAMP levels stimulated myelin gene expression. CONCLUSION Dync1h1 is required for retrograde transport in axons and mutations of Dync1h1 have been implicated in axon disease. Our data now provide evidence that Dync1h1 is also required for efficient myelination of peripheral axons by Schwann cells, perhaps by facilitating signal transduction necessary for myelination.
Collapse
Affiliation(s)
- Melissa M Langworthy
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, MS 8108, Aurora, CO, 80045, USA
| | - Bruce Appel
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, MS 8108, Aurora, CO, 80045, USA
| |
Collapse
|
23
|
Na SY, Hermann A, Sanchez-Ruiz M, Storch A, Deckert M, Hünig T. Oligodendrocytes enforce immune tolerance of the uninfected brain by purging the peripheral repertoire of autoreactive CD8+ T cells. Immunity 2012; 37:134-46. [PMID: 22683122 DOI: 10.1016/j.immuni.2012.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 03/27/2012] [Accepted: 04/30/2012] [Indexed: 12/31/2022]
Abstract
Myelin-specific CD8(+) T cells are thought to contribute to the pathogenesis of multiple sclerosis. Here we modeled this contribution in mice with CD8(+) T cells recognizing ovalbumin (OVA) expressed in oligodendrocytes (ODCs). Surprisingly, even very high numbers of activated OVA-reactive CD8(+) T cells failed to induce disease and were cleared from the immune system after antigen encounter in the central nervous system (CNS). Peripheral infection with OVA-expressing Listeria (Lm-OVA) enabled CD8(+) T cells to enter the CNS, leading to the deletion of OVA-specific clones after OVA recognition on ODCs. In contrast, intracerebral infection allowed OVA-reactive CD8(+) T cells to cause demyelinating disease. Thus, in response to infection, CD8(+) T cells also patrol the CNS. If the CNS itself is infected, they destroy ODCs upon cognate antigen recognition in pursuit of pathogen eradication. In the sterile brain, however, antigen recognition on ODCs results in their deletion, thereby maintaining tolerance.
Collapse
Affiliation(s)
- Shin-Young Na
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Turchetta R, Orlando MP, Cammeresi MG, Altissimi G, Celani T, Mazzei F, Giacomello P, Cianfrone G. Modifications of auditory brainstem responses (ABR): observations in full-term and pre-term newborns. J Matern Fetal Neonatal Med 2011; 25:1342-7. [PMID: 22122007 DOI: 10.3109/14767058.2011.634457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In this study, we have evaluated by means of auditory brainstem responses (ABR), in a population derived from a newborn hearing screening protocol, some aspects of maturation of the auditory pathways in the first months after birth, and the possible repercussions on early treatment. MATERIALS AND METHODS In this retrospective study newborns were recruited through our hearing screening program, and an ABR evaluation was performed on 339 newborns, that had risk factors or had failed the screening, or both. Such population was divided in two groups for statistical analysis purposes: full-term and pre-term. The initial ABR was pathological in 70 infants. RESULTS We observed an improvement over time of the estimated hearing threshold in follow-up ABRs in 43 newborns (26 in the full-term group, mean improvement 27.9 dB SPL, and 17 in the pre-term group, mean improvement 34.6 dB SPL); such an improvement might be related to a maturation of the auditory pathways that was not complete at birth. CONCLUSIONS The auditory system might not be completely developed at birth, and might require some months to complete; hence any early clinical approach should consider the possibility of an overtreatment, and any therapeutic strategy should only be considered once the diagnosis is certain and definitive.
Collapse
Affiliation(s)
- Rosaria Turchetta
- Department of Sensory System, Policlinico Umberto I, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang L, Chopp M, Szalad A, Liu Z, Bolz M, Alvarez FM, Lu M, Zhang L, Cui Y, Zhang RL, Zhang ZG. Phosphodiesterase-5 is a therapeutic target for peripheral neuropathy in diabetic mice. Neuroscience 2011; 193:399-410. [PMID: 21820491 DOI: 10.1016/j.neuroscience.2011.07.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/17/2011] [Accepted: 07/19/2011] [Indexed: 12/16/2022]
Abstract
Peripheral neuropathy is a common and major complication of diabetes, the underlying mechanisms of which are not fully understood. Using a mouse model of type II diabetes, the present study investigated the role of phosphodiesterase-5 (PDE5) in peripheral neuropathy. BKS.Cg-m+/+Leprdb/J (db/db) mice were treated with sildenafil, a specific inhibitor of PDE5, at doses of 2 and 10 mg/kg or saline. Levels of PDE5 and morphometric parameters in sciatic nerve tissue as well as the motor and sensory function were measured in these mice. In diabetic mice, PDE5 expression in sciatic nerve tissue was significantly upregulated, whereas the myelin sheath thickness, myelin basic protein (MBP), and subcutaneous nerve fibers were significantly reduced. Treatment with sildenafil significantly improved neurological function, assayed by motor and sensory conducting velocities and thermal and mechanical noxious stimuli, concomitantly with increases in myelin sheath thickness, MBP levels, and subcutaneous nerve fibers. In vitro, hyperglycemia upregulated PDE5 in Schwann cells and reduced Schwann cell proliferation, migration, and expression of brain-derived neurotrophic factor (BDNF). Blockage of PDE5 with sildenafil increased cyclic guanosine monophosphate (cGMP) and completely abolished the effect of hyperglycemia on Schwann cells. Sildenafil upregulated cGMP-dependent protein kinase G I (PKGI), whereas inhibition of PKGI with a PKG inhibitor, KT5823, suppressed the inhibitory effect of sildenafil on Schwann cells. These data indicate that hyperglycemia substantially upregulates PDE5 expression and that the cGMP/PKG signaling pathway activated by sildenafil mediates the beneficial effects of sildenafil on diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- L Wang
- Department of Neurology, Henry Ford Health Sciences Center, 2799 W. Grand Boulevard, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pickell L, Wu Q, Wang XL, Leclerc D, Friedman H, Peterson AC, Rozen R. Targeted insertion of two Mthfr promoters in mice reveals temporal- and tissue-specific regulation. Mamm Genome 2011; 22:635-47. [PMID: 21769670 DOI: 10.1007/s00335-011-9351-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/07/2011] [Indexed: 11/30/2022]
Abstract
Methylenetetrahydrofolate reductase (MTHFR), a key enzyme in folate metabolism, synthesizes 5-methyltetrahydrofolate, the main circulatory form of folate which is required for maintaining nontoxic levels of homocysteine and providing one-carbon units for methylation. A common 677C → T variant in MTHFR confers mild MTHFR deficiency and has been associated with a number of human disorders, including neural tube defects and vascular disease. Two promoters of Mthfr, designated as upstream and downstream promoters, are located upstream of a transcription start site cluster and have previously demonstrated cell-specific activities. In this study we used a unique approach for targeted, single-copy transgene insertion to generate transgenic mice carrying a Mthfr upstream or Mthfr downstream promoter-reporter construct located 5' to the endogenous Hprt (hypoxanthine-guanine phosphoribosyltransferase) locus. The Mthfr downstream promoter demonstrated activity in the neural tube, neural crest cells, dorsal root ganglia, heart, and endothelial cells of blood vessels in 10.5-days post coitum embryos and placentas. Upstream promoter activity was absent at this developmental stage. Postnatally, both promoters demonstrated activity in the brain stem, hippocampus, and thalamus of 1-week-old brain that became stronger in the adult. The Mthfr upstream promoter also showed activity in the cerebellum and cerebral cortex. Both promoters were active in male reproductive tissues, including 1-week-old epididymides, and there was upstream promoter-specific activity in the adult testis. Our investigation of Mthfr regulation in an in vivo mouse model revealed temporal- and tissue-specific regulation that supports important roles for MTHFR in the developing embryo, and in postnatal brain and male reproductive tissues.
Collapse
Affiliation(s)
- Laura Pickell
- Departments of Human Genetics and Pediatrics, McGill University and Montreal Children's Hospital Research Institute, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Fulton DL, Denarier E, Friedman HC, Wasserman WW, Peterson AC. Towards resolving the transcription factor network controlling myelin gene expression. Nucleic Acids Res 2011; 39:7974-91. [PMID: 21729871 PMCID: PMC3185407 DOI: 10.1093/nar/gkr326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the central nervous system (CNS), myelin is produced from spirally-wrapped oligodendrocyte plasma membrane and, as exemplified by the debilitating effects of inherited or acquired myelin abnormalities in diseases such as multiple sclerosis, it plays a critical role in nervous system function. Myelin sheath production coincides with rapid up-regulation of numerous genes. The complexity of their subsequent expression patterns, along with recently recognized heterogeneity within the oligodendrocyte lineage, suggest that the regulatory networks controlling such genes drive multiple context-specific transcriptional programs. Conferring this nuanced level of control likely involves a large repertoire of interacting transcription factors (TFs). Here, we combined novel strategies of computational sequence analyses with in vivo functional analysis to establish a TF network model of coordinate myelin-associated gene transcription. Notably, the network model captures regulatory DNA elements and TFs known to regulate oligodendrocyte myelin gene transcription and/or oligodendrocyte development, thereby validating our approach. Further, it links to numerous TFs with previously unsuspected roles in CNS myelination and suggests collaborative relationships amongst both known and novel TFs, thus providing deeper insight into the myelin gene transcriptional network.
Collapse
Affiliation(s)
- Debra L Fulton
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | | | | | | | | |
Collapse
|
28
|
When needles look like hay: how to find tissue-specific enhancers in model organism genomes. Dev Biol 2010; 350:239-54. [PMID: 21130761 DOI: 10.1016/j.ydbio.2010.11.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/11/2010] [Accepted: 11/22/2010] [Indexed: 01/22/2023]
Abstract
A major prerequisite for the investigation of tissue-specific processes is the identification of cis-regulatory elements. No generally applicable technique is available to distinguish them from any other type of genomic non-coding sequence. Therefore, researchers often have to identify these elements by elaborate in vivo screens, testing individual regions until the right one is found. Here, based on many examples from the literature, we summarize how functional enhancers have been isolated from other elements in the genome and how they have been characterized in transgenic animals. Covering computational and experimental studies, we provide an overview of the global properties of cis-regulatory elements, like their specific interactions with promoters and target gene distances. We describe conserved non-coding elements (CNEs) and their internal structure, nucleotide composition, binding site clustering and overlap, with a special focus on developmental enhancers. Conflicting data and unresolved questions on the nature of these elements are highlighted. Our comprehensive overview of the experimental shortcuts that have been found in the different model organism communities and the new field of high-throughput assays should help during the preparation phase of a screen for enhancers. The review is accompanied by a list of general guidelines for such a project.
Collapse
|
29
|
Dib S, Denarier E, Dionne N, Beaudoin M, Friedman HH, Peterson AC. Regulatory modules function in a non-autonomous manner to control transcription of the mbp gene. Nucleic Acids Res 2010; 39:2548-58. [PMID: 21131280 PMCID: PMC3074125 DOI: 10.1093/nar/gkq1160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Multiple regulatory modules contribute to the complex expression programs realized by many loci. Although long thought of as isolated components, recent studies demonstrate that such regulatory sequences can physically associate with promoters and with each other and may localize to specific sub-nuclear transcription factories. These associations provide a substrate for putative interactions and have led to the suggested existence of a transcriptional interactome. Here, using a controlled strategy of transgenesis, we analyzed the functional consequences of regulatory sequence interaction within the myelin basic protein (mbp) locus. Interactions were revealed through comparisons of the qualitative and quantitative expression programs conferred by an allelic series of 11 different enhancer/inter-enhancer combinations ligated to a common promoter/reporter gene. In a developmentally contextual manner, the regulatory output of all modules changed markedly in the presence of other sequences. Predicted by transgene expression programs, deletion of one such module from the endogenous locus reduced oligodendrocyte expression levels but unexpectedly, also attenuated expression of the overlapping golli transcriptional unit. These observations support a regulatory architecture that extends beyond a combinatorial model to include frequent interactions capable of significantly modulating the functions conferred through regulatory modules in isolation.
Collapse
Affiliation(s)
- Samar Dib
- Department of Human Genetics, Laboratory of Developmental Biology, Royal Victoria Hospital, H-5, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Küspert M, Hammer A, Bösl MR, Wegner M. Olig2 regulates Sox10 expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer. Nucleic Acids Res 2010; 39:1280-93. [PMID: 20959288 PMCID: PMC3045606 DOI: 10.1093/nar/gkq951] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The HMG-domain transcription factor Sox10 is expressed throughout oligodendrocyte development and is an important component of the transcriptional regulatory network in these myelin-forming CNS glia. Of the known Sox10 regulatory regions, only the evolutionary conserved U2 enhancer in the distal 5'-flank of the Sox10 gene exhibits oligodendroglial activity. We found that U2 was active in oligodendrocyte precursors, but not in mature oligodendrocytes. U2 activity also did not mediate the initial Sox10 induction after specification arguing that Sox10 expression during oligodendroglial development depends on the activity of multiple regulatory regions. The oligodendroglial bHLH transcription factor Olig2, but not the closely related Olig1 efficiently activated the U2 enhancer. Olig2 bound U2 directly at several sites including a highly conserved one in the U2 core. Inactivation of this site abolished the oligodendroglial activity of U2 in vivo. In contrast to Olig2, the homeodomain transcription factor Nkx6.2 repressed U2 activity. Repression may involve recruitment of Nkx6.2 to U2 and inactivation of Olig2 and other activators by protein-protein interactions. Considering the selective expression of Nkx6.2 at the time of specification and in differentiated oligodendrocytes, Nkx6.2 may be involved in limiting U2 activity to the precursor stage during oligodendrocyte development.
Collapse
Affiliation(s)
- Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
31
|
A regulatory toolbox of MiniPromoters to drive selective expression in the brain. Proc Natl Acad Sci U S A 2010; 107:16589-94. [PMID: 20807748 DOI: 10.1073/pnas.1009158107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination "knockins" in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5' of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type-specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies.
Collapse
|
32
|
Nanba R, Fujita N, Nagata S. Structure and expression of myelin basic protein gene products in Xenopus laevis. Gene 2010; 459:32-8. [PMID: 20353813 DOI: 10.1016/j.gene.2010.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/13/2010] [Accepted: 03/18/2010] [Indexed: 01/06/2023]
Abstract
To study roles of the myelin basic protein (mbp) gene products in nervous system development, cDNA cloning and expression analyses were performed in Xenopus laevis. We cloned cDNAs for XMBP.1 and XMBP.2 encoded by xmbp.1 and xmbp.2 genes, respectively. We also identified xmbp.1 gene transcripts encoding three XGolli (X.laevis gene of the oligodendrocyte lineage) proteins, XBG21.1, XJ37.1, and XTP8.1, which are homologues of mouse BG21, J37, and TP8, respectively. In reverse transcription-polymerase chain reaction (RT-PCR) analyses, the XMBP, XJ37, and XTP8 mRNAs were expressed in brain, ovaries, testes, and/or thymus in frogs and in larvae after hatching. In contrast, the XBG21 mRNA was found fairly ubiquitously in adult tissues, unfertilized eggs and embryos throughout the developmental stages examined. Western blot analyses using three different monoclonal antibodies (mAbs) showed that the central and peripheral myelin contained 20kDa and18.5 kDa XMBP variants. In addition, XMBP was found in thymus by Western blotting and in thymocyte cytoplasm immunocytochemically. However, the XGolli protein, most provably XBG21, was detectable only in testes. The results indicate that the structure of xmbp gene products seems highly conserved among amphibians and mammals, although their expression patterns and thus physiological roles may partially differ. This is the first report that systematically describes the mbp gene products in nonmammalian vertebrates.
Collapse
Affiliation(s)
- Reiko Nanba
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Mejirodai 2-8-1, Bunkyoku, Tokyo 112-8681, Japan
| | | | | |
Collapse
|
33
|
Young R, Wolf CR, Brown K, Hayes JD, Whitelaw CBA. Spatial monitoring of toxicity in HMOX-LacZ transgenic mice. Transgenic Res 2010; 19:897-902. [DOI: 10.1007/s11248-010-9363-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 01/04/2010] [Indexed: 11/27/2022]
|
34
|
Câmara J, Wang Z, Nunes-Fonseca C, Friedman HC, Grove M, Sherman DL, Komiyama NH, Grant SG, Brophy PJ, Peterson A, ffrench-Constant C. Integrin-mediated axoglial interactions initiate myelination in the central nervous system. ACTA ACUST UNITED AC 2009; 185:699-712. [PMID: 19451276 PMCID: PMC2711572 DOI: 10.1083/jcb.200807010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All but the smallest-diameter axons in the central nervous system are myelinated, but the signals that initiate myelination are unknown. Our prior work has shown that integrin signaling forms part of the cell–cell interactions that ensure only those oligodendrocytes contacting axons survive. Here, therefore, we have asked whether integrins regulate the interactions that lead to myelination. Using homologous recombination to insert a single-copy transgene into the hypoxanthine phosphoribosyl transferase (hprt) locus, we find that mice expressing a dominant-negative β1 integrin in myelinating oligodendrocytes require a larger axon diameter to initiate timely myelination. Mice with a conditional deletion of focal adhesion kinase (a signaling molecule activated by integrins) exhibit a similar phenotype. Conversely, transgenic mice expressing dominant-negative β3 integrin in oligodendrocytes display no myelination abnormalities. We conclude that β1 integrin plays a key role in the axoglial interactions that sense axon size and initiate myelination, such that loss of integrin signaling leads to a delay in myelination of small-diameter axons.
Collapse
Affiliation(s)
- Joana Câmara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, England, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Palais G, Nguyen Dinh Cat A, Friedman H, Panek-Huet N, Millet A, Tronche F, Gellen B, Mercadier JJ, Peterson A, Jaisser F. Targeted transgenesis at the HPRT locus: an efficient strategy to achieve tightly controlled in vivo conditional expression with the tet system. Physiol Genomics 2009; 37:140-6. [DOI: 10.1152/physiolgenomics.90328.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tet-inducible system has been widely used to achieve conditional gene expression in genetically modified mice. To alleviate the frequent difficulties associated with recovery of relevant transgenic founders, we tested whether a controlled strategy of transgenesis would support reliable cell-specific, doxycycline (Dox)-controlled transgene expression in vivo. Taking advantage of the potent hypoxanthine-aminopterin-thymidine selection strategy and an embryonic stem (ES) cell line supporting efficient germ-line transmission, we used hypoxanthine phosphoribosyltransferase ( HPRT) targeting to insert a single copy tet-inducible construct designed to allow both glucocorticoid receptor (GR) and β-galactosidase (β-Gal) expression. Conditional, Dox-dependent GR and β-Gal expression was evidenced in targeted ES cells. Breeding ES-derived single copy transgenic mice with mice bearing appropriate tet transactivators resulted in β-Gal expression both qualitatively and quantitatively similar to that observed in mice with random integration of the same construct. Interestingly, GR expression in mice was dependent on transgene orientation in the HPRT locus while embryonic stem cell expression was not. Thus, a conditional construct inserted in single copy and in predetermined orientation at the HPRT locus demonstrated a Dox-dependent gene expression phenotype in adult mice suggesting that controlled insertion of tet-inducible constructs at the HPRT locus can provide an efficient alternative strategy to reproducibly generate animal models with tetracycline-induced transgene expression.
Collapse
Affiliation(s)
- G. Palais
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| | - A. Nguyen Dinh Cat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| | - H. Friedman
- Laboratory of Developmental Biology, H-5, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - N. Panek-Huet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| | - A. Millet
- Collège de France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7148
| | - F. Tronche
- Collège de France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7148
| | - B. Gellen
- INSERM, U698
- l'Université Paris 7, Paris, France
| | | | - A. Peterson
- Laboratory of Developmental Biology, H-5, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - F. Jaisser
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| |
Collapse
|
36
|
Svaren J, Meijer D. The molecular machinery of myelin gene transcription in Schwann cells. Glia 2009; 56:1541-1551. [PMID: 18803322 DOI: 10.1002/glia.20767] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During late fetal life, Schwann cells in the peripheral nerves singled out by the larger axons will transit through a promyelinating stage before exiting the cell cycle and initiating myelin formation. A network of extra- and intracellular signaling pathways, regulating a transcriptional program of cell differentiation, governs this progression of cellular changes, culminating in a highly differentiated cell. In this review, we focus on the roles of a number of transcription factors not only in myelination, during normal development, but also in demyelination, following nerve trauma. These factors include specification factors involved in early development of Schwann cells from neural crest (Sox10) as well as factors specifically required for transitions into the promyelinating and myelinating stages (Oct6/Scip and Krox20/Egr2). From this description, we can glean the first, still very incomplete, contours of a gene regulatory network that governs myelination and demyelination during development and regeneration.
Collapse
Affiliation(s)
- John Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine and Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
37
|
Bartholin L, Cyprian FS, Vincent D, Garcia CN, Martel S, Horvat B, Berthet C, Goddard-Léon S, Treilleux I, Rimokh R, Marie JC. Generation of mice with conditionally activated transforming growth factor beta signaling through the TbetaRI/ALK5 receptor. Genesis 2009; 46:724-31. [PMID: 18821589 DOI: 10.1002/dvg.20425] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We generated a transgenic mouse strain (LSL-TbetaRI(CA)) containing a latent constitutively active TGFbeta type I receptor (TbetaRI/ALK5) by using a knock-in strategy into the X chromosome-linked hypoxanthine phosphoribosyl-transferase (Hprt) locus. Transgene expression, under the control of the ubiquitous CAG (human cytomegalovirus enhancer and chicken beta-actin) promoter, is repressed by a floxed transcriptional "Stop" (LSL, Lox-Stop-Lox). In the presence of cre-recombinase, the "Stop" is excised to allow TbetaRI(CA) transgene expression. We showed that restricted expression of TbetaRI(CA) in T lymphocytes efficiently activates TGFbeta signaling and rescues the T-cell autoimmune disorders of TGFbetaRII conditional knockouts. Unexpectedly, our study reveals that TGFbeta signaling upregulation controls T-cell activation but does not impair their development or their peripheral homeostasis. In addition to the information provided on TGFbeta effects on T-cell biology, LSL-TbetaRI(CA) mouse constitutes an attractive tool to address the effect of TGFbeta signaling upregulation in any cell type expressing the cre-recombinase.
Collapse
Affiliation(s)
- Laurent Bartholin
- INSERM, U590, INSERM Avenirgroup, Oncogenèse et progression tumorale, Centre Léon Bérard, 28 rue Laënnec, Lyon Cedex 08, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus. Genomics 2008; 93:196-204. [PMID: 18950699 DOI: 10.1016/j.ygeno.2008.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 11/22/2022]
Abstract
We have engineered a set of useful tools that facilitate targeted single copy knock-in (KI) at the hypoxanthine guanine phosphoribosyl transferase 1 (Hprt1) locus. We employed fine scale mapping to delineate the precise breakpoint location at the Hprt1(b-m3) locus allowing allele specific PCR assays to be established. Our suite of tools contains four targeting expression vectors and a complementing series of embryonic stem cell lines. Two of these vectors encode enhanced green fluorescent protein (EGFP) driven by the human cytomegalovirus immediate-early enhancer/modified chicken beta-actin (CAG) promoter, whereas the other two permit flexible combinations of a chosen promoter combined with a reporter and/or gene of choice. We have validated our tools as part of the Pleiades Promoter Project (http://www.pleiades.org), with the generation of brain-specific EGFP positive germline mouse strains.
Collapse
|
39
|
Characterization of the Regulatory Region of the Dopa Decarboxylase Gene in Medaka: An in vivo Green Fluorescent Protein Reporter Assay Combined with a Simple TA-Cloning Method. Mol Biotechnol 2008; 41:224-35. [DOI: 10.1007/s12033-008-9120-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/16/2008] [Indexed: 12/30/2022]
|
40
|
Na SY, Cao Y, Toben C, Nitschke L, Stadelmann C, Gold R, Schimpl A, Hünig T. Naive CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system. ACTA ACUST UNITED AC 2008; 131:2353-65. [PMID: 18669487 DOI: 10.1093/brain/awn148] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In multiple sclerosis, CD8 T-cells are thought play a key pathogenetic role, but mechanistic evidence from rodent models is limited. Here, we have tested the encephalitogenic potential of CD8 T-cells specific for the model antigen ovalbumin (OVA) sequestered in oligodendrocytes as a cytosolic molecule. We show that in these 'ODC-OVA' mice, the neo-self antigen remains invisible to CD4 cells expressing the OVA-specific OT-II receptor. In contrast, OVA is accessible to naïve CD8 T-cells expressing the OT-I T-cell receptor, during the first 10 days of life, resulting in antigen release into the periphery. Introduction of OT-I as a second transgene leads to fulminant demyelinating experimental autoimmune encephalomyelitis with multiple sclerosis-like lesions, affecting cerebellum, brainstem, optic nerve and spinal cord. OVA-transgenic oligodendrocytes activate naïve OT-I cells in vitro, and both major histocompatibility complex class I expression and the OT-I response are further up-regulated by interferon-gamma (IFN-gamma). Release of IFN-gamma into the circulation of ODC-OVA/OT-I double transgenic mice precedes disease manifestation, and pathogenicity of OT-I cells transferred into ODC-OVA mice is largely IFN-gamma dependent. In conclusion, naïve CD8 T-cells gaining access to an 'immune-privileged' organ can initiate autoimmunity via an IFN-gamma-assisted amplification loop even if the self-antigen in question is not spontaneously released for presentation by professional antigen presenting cells.
Collapse
Affiliation(s)
- Shin-Young Na
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Luchman HA, Friedman HC, Villemaire ML, Peterson AC, Jirik FR. Temporally controlled prostate epithelium-specific gene alterations. Genesis 2008; 46:229-34. [PMID: 18395839 DOI: 10.1002/dvg.20386] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Employing the Hprt locus as the site for targeted transgenesis we have developed mice expressing the tamoxifen-inducible Cre-ER(T2) fusion protein under the control of the ARR2-rat probasin promoter. This system enables external control over the timing of prostate epithelial cell-specific gene alterations. Using both the ROSA26-lacZ and ROSA26-EYFP reporter strains to monitor recombinase activity, Cre-ER(T2) was found to be specifically expressed in the prostatic epithelium and was strictly tamoxifen dependent. This strain thus allows precise control over the timing of gene alterations in the mouse prostate, enabling analyses of the phenotypic consequences of gene alterations in mice of any age. It also provides an ideal platform to study the impact of environmental, hormonal, and age-related factors on prostate tumorigenesis. This latter feature will be of particular value given the paucity of murine models that accurately mimic the late onset and prolonged natural history of human prostate cancer.
Collapse
Affiliation(s)
- H Artee Luchman
- Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
42
|
Cadieux C, Fournier S, Peterson AC, Bédard C, Bedell BJ, Nepveu A. Transgenic mice expressing the p75 CCAAT-displacement protein/Cut homeobox isoform develop a myeloproliferative disease-like myeloid leukemia. Cancer Res 2007; 66:9492-501. [PMID: 17018605 DOI: 10.1158/0008-5472.can-05-4230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The p75 CCAAT-displacement protein/Cut homeobox (CDP/Cux) isoform was previously reported to be overexpressed in human breast cancers. To investigate its oncogenic potential, we engineered two transgenic mouse lines expressing p75 CDP/Cux under the control of the mouse mammary tumor virus-long terminal repeat. The FVB strain of mouse is generally used in the generation of mouse models for breast cancer. The transgene was introduced into the hprt locus of 129/Ola embryonic stem cells and, following germ line passage, was backcrossed onto the FVB and C57BL/6 mouse strains. Here, we describe the phenotype of p75 CDP/Cux transgenic virgin female mice of the first backcross generations. We report that after a long latency period, approximately 33% of mice from two independent transgenic lines and from backcrosses into either the FVB or the C57BL/6 strains succumbed to a similar disease characterized by splenomegaly, hepatomegaly, and frequent infiltration of leukocytes into nonhematopoietic organs like the kidneys and lungs. Although an excess of B or T cells was observed in three diseased mice, in 17 other cases, histologic and flow cytometry analyses revealed the expansion of a population of neutrophils in the blood, spleen, and bone marrow. The increase in neutrophils correlated with signs of anemia and thrombocytopenia, whereas there was no indication of a reactive process. Therefore, p75 CDP/Cux transgenic mice displayed heightened susceptibility to a disease defined as a myeloproliferative disease-like myeloid leukemia. These results indicate that the overexpression of p75 CDP/Cux could alter homeostasis in the hematopoietic compartment.
Collapse
Affiliation(s)
- Chantal Cadieux
- Molecular Oncology Group, McGill University Health Center, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Martin MS, Tang B, Ta N, Escayg A. Characterization of 5' untranslated regions of the voltage-gated sodium channels SCN1A, SCN2A, and SCN3A and identification of cis-conserved noncoding sequences. Genomics 2007; 90:225-35. [PMID: 17544618 PMCID: PMC2637551 DOI: 10.1016/j.ygeno.2007.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 03/30/2007] [Accepted: 04/23/2007] [Indexed: 12/26/2022]
Abstract
The human voltage-gated sodium channel gene cluster on chromosome 2q24 contains three paralogs, SCN1A, SCN2A, and SCN3A, which are expressed in the central nervous system. Mutations in SCN1A and SCN2A cause several subtypes of idiopathic epilepsy. Furthermore, many SCN1A mutations are predicted to reduce protein levels, emphasizing the importance of precise sodium channel gene regulation. To investigate the genetic factors that regulate the expression of SCN1A, SCN2A, and SCN3A, we characterized the 5' untranslated region of each gene. We identified multiple noncoding exons and observed brain region differences in the expression levels of noncoding exons. Comparative sequence analysis revealed 33 conserved noncoding sequences (CNSs) between the orthologous mammalian genes and 6 CNSs between the three human paralogs. Seven CNSs corresponded to noncoding exons. Twelve CNSs were evaluated for their ability to alter the transcription of a luciferase reporter gene, and 3 resulted in a modest, but statistically significant change.
Collapse
Affiliation(s)
- Melinda S Martin
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
44
|
Potzner MR, Griffel C, Lütjen-Drecoll E, Bösl MR, Wegner M, Sock E. Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system. Mol Cell Biol 2007; 27:5316-26. [PMID: 17515609 PMCID: PMC1952099 DOI: 10.1128/mcb.00339-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly related transcription factors Sox4 and Sox11 are both expressed in oligodendrocyte precursors. Yet whether they have a function in oligodendrocyte development is unknown. By overexpressing Sox4 under the control of 3.1 kb of 5' flanking sequences of the myelin basic protein gene in transgenic mice, we extended Sox4 expression in the oligodendrocyte lineage from oligodendrocyte precursors to cells undergoing terminal differentiation. As a consequence of transgene expression, mice develop the full spectrum of phenotypic traits associated with a severe hypomyelination during the first postnatal weeks. Myelin gene expression was severely reduced, and myelin dramatically thinned in several central nervous system (CNS) regions. Despite these disturbances in CNS myelination, the number of oligodendrocytic cells remained unaltered. Considering that apoptosis rates were normal and proliferation only slightly increased, oligodendrocytes likely persist in a premyelinating to early myelinating state. This shows that prolonged Sox4 expression in cells of the oligodendrocyte lineage is incompatible with the acquisition of a fully mature phenotype and argues that the presence of Sox4, and possibly Sox11, in oligodendrocyte precursors may normally prevent premature differentiation.
Collapse
Affiliation(s)
- Michaela R Potzner
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Yurchenko E, Friedman H, Hay V, Peterson A, Piccirillo CA. Ubiquitous expression of mRFP-1 in vivo by site-directed transgenesis. Transgenic Res 2007; 16:29-40. [PMID: 17077985 DOI: 10.1007/s11248-006-9030-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
Progress in our understanding of the molecular cellular basis of immune function depends on our ability to track and image individual immune cells in vivo. To this end, the development of mouse models over-expressing various fluorescent proteins would represent an important experimental tool. In this report, we describe the generation and characterization of pUbi-mRFP-1 transgenic mice, in which the monomeric form of red fluorescent protein is ubiquitously expressed in various lymphoid and non-lymphoid tissues. Our newly generated pUbi-mRFP-1 mice are unique among previously reported mice transgenic for red fluorescent proteins because a single-copy of the mRFP-1 transgene driven by human ubiquitin C promoter has been integrated by homologous recombination into the mouse hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus. We show that the distinct and uniform levels of mRFP-1 expression allow easy identification of transferred hematopoietic cells by FACS analysis or confocal microscopy, even when the transferred population represents a very small proportion in the target organ. Also, even in long-term experiments, we have seen no evidence of rejection of transferred pUbi-mRFP-1 lymphocytes. Due to its far-red spectrum, mRFP-1 is an ideal partner for dual imaging with green fluorescent proteins. We observed a good visual separation between donor lymphocytes derived from either mRFP-1 or eGFP transgenic mice in recipient animals. Our study suggests that the new pUbi-mRFP-1 transgenic mouse strain offers new opportunities for studying cellular interactions and migratory patterns of cells, especially for dual imaging of different cell types. In summary, our results demonstrate that a controlled strategy of transgenesis provides an effective means of ubiquitously expressing fluorescent proteins in vivo.
Collapse
Affiliation(s)
- Ekaterina Yurchenko
- Department of Microbiology and Immunology, McGill University, Montreal, H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
46
|
Musse AA, Harauz G. Molecular "negativity" may underlie multiple sclerosis: role of the myelin basic protein family in the pathogenesis of MS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:149-72. [PMID: 17531841 DOI: 10.1016/s0074-7742(07)79007-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is responsible for adhesion of these surfaces in the multilayered myelin sheath. The pattern of extensive posttranslational modifications of MBP is dynamic during normal central nervous system development and during myelin degeneration in multiple sclerosis (MS), affecting its interactions with the myelin membranes and other proteins. In particular, the degree of deimination (or citrullination) of MBP is correlated with the severity of MS, and may represent a primary defect that precedes neurodegeneration due to autoimmune attack. That MBP deimination also affects topological accessibility of an otherwise partially buried immunodominant epitope of the protein indicates that this modification may play a major role in the autoimmune pathogenesis of the disease. In this chapter, we describe the structural and functional consequences of MBP deimination in healthy and diseased myelin.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
47
|
Abstract
Successful transition to air breathing at birth depends on perinatal maturation of the gas exchange surface, resorption of fluid from the air spaces, and synthesis and secretion of pulmonary surfactant. Genetic mutations that alter lung development and/or cellular differentiation in the prenatal period, lung function in the perinatal period, or lung homeostasis in the postnatal period can lead to neonatal lethality or chronic lung disease. Current knowledge of the molecular pathways that regulate key prenatal, perinatal, and postnatal morphogenetic events has been shaped largely by remarkable advances in transgenic technologies. In this review, selected transgenic mouse models are highlighted to illustrate the power of this technology, which in many cases has provided important insights that otherwise could not have been obtained.
Collapse
Affiliation(s)
- James P Bridges
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | |
Collapse
|
48
|
Jang SW, LeBlanc SE, Roopra A, Wrabetz L, Svaren J. In vivo detection of Egr2 binding to target genes during peripheral nerve myelination. J Neurochem 2006; 98:1678-87. [PMID: 16923174 DOI: 10.1111/j.1471-4159.2006.04069.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Egr2/Krox20 is a zinc finger transactivator that regulates a diverse array of genes required for peripheral nerve myelination. Although several studies have elucidated the Egr2-regulated gene network, it is not clear if Egr2 regulates its target genes directly or indirectly through induction of other transactivators. Moreover, very few Egr2 binding sites have been identified in regulatory elements of myelin genes. To address this issue, we have successfully adapted chromatin immunoprecipitation assays to test if Egr2 binds directly to target genes in myelinating rat sciatic nerve. These experiments demonstrate direct binding of Egr2 to previously described binding sites within the Schwann cell enhancer of the myelin basic protein gene. Furthermore, we show Egr2 binding to a conserved site within the myelin-associated glycoprotein gene. Finally, our experiments provide the first evidence that Egr2 directly regulates expression of desert hedgehog, which is critically involved in development, maintenance and regeneration of multiple nerve elements including myelinated fibers. Surprisingly, this analysis has identified an apparent preponderance of Egr2 binding sites within conserved intron sequences of several myelin genes. Application of chromatin immunoprecipitation analysis to myelination in vivo will prove to be a valuable asset in assaying transcription factor binding and chromatin modifications during activation of myelin genes.
Collapse
Affiliation(s)
- Sung-Wook Jang
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
49
|
Harauz G, Musse AA. A Tale of Two Citrullines—Structural and Functional Aspects of Myelin Basic Protein Deimination in Health and Disease. Neurochem Res 2006; 32:137-58. [PMID: 16900293 DOI: 10.1007/s11064-006-9108-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2006] [Indexed: 02/03/2023]
Abstract
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is responsible for adhesion of these surfaces in the multilayered myelin sheath. The pattern of extensive post-translational modifications of MBP is dynamic during normal central nervous system (CNS) development and during myelin degeneration in multiple sclerosis (MS), affecting its interactions with the myelin membranes and with other molecules. In particular, the degree of deimination (or citrullination) of MBP is correlated with the severity of MS, and may represent a primary defect that precedes neurodegeneration due to autoimmune attack. That the degree of MBP deimination is also high in early CNS development indicates that this modification plays major physiological roles in myelin assembly. In this review, we describe the structural and functional consequences of MBP deimination in healthy and diseased myelin.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1.
| | | |
Collapse
|
50
|
Heaney JD, Bronson SK. Artificial chromosome-based transgenes in the study of genome function. Mamm Genome 2006; 17:791-807. [PMID: 16897340 DOI: 10.1007/s00335-006-0023-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 04/06/2006] [Indexed: 12/01/2022]
Abstract
The transfer of large DNA fragments to the mouse genome in the form of bacterial, yeast or phage artificial chromosomes is an important process in the definition of transcription units, the modeling of inherited disease states, the dissection of candidate regions identified by linkage analysis and the construction of in vivo reporter genes. However, as with small recombinant transgenes, the transferred sequences are usually integrated randomly often with accompanying genomic alterations and variable expression of the introduced genes due to the site of integration and/or copy number. Therefore, alternative methods of integrating large genomic transgenes into the genome have been developed to avoid the variables associated with random integration. This review encourages the reader to imagine the large variety of applications where artificial chromosome transgenes can facilitate in vivo and ex vivo studies in the mouse and provides a context for making the necessary decisions regarding the specifics of experimental design.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033-0850, USA
| | | |
Collapse
|