1
|
Krivenko OV, Kuleshova ON, Baiandina IS. Light sensitivity in Beroidae ctenophores: Insights from laboratory studies and genomics. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111694. [PMID: 38992417 DOI: 10.1016/j.cbpa.2024.111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Light detection underlies a variety of animal behaviors, including those related to spatial orientation, feeding, avoidance of predators, and reproduction. Ctenophores are likely the oldest animal group in which light sensitivity based on opsins evolved, so they may still have the ancestral molecular mechanisms for photoreception. However, knowledge about ctenophore photosensitivity, associated morphological structures, molecular mechanisms involved, and behavioral reactions is limited and fragmented. We present the initial experiments on the responses of adult Beroe ovata to high-intensity light exposure with different spectra and photosensitivity in various parts of the animal's body. Ctenophores have shown a consistent behavioral response when their aboral organ is exposed to a household-grade laser in the violet spectrum. To investigate the genes responsible for the photosensitivity of Beroidae, we have analyzed transcriptome and genome-wide datasets. We identified three opsins in Beroe that are homologous to those found in Mnemiopsis leidyi (Lobata) and Pleurobrachia bachei (Cydippida). These opsins form clades Ctenopsin1, 2, and 3, respectively. Ctenopsin3 is significantly distinct from other ctenophore opsins and clustered outside the main animal opsin groups. The Ctenopsin1 and Ctenopsin2 groups are sister clusters within the canonical animal opsin tree. These two groups could have originated from gene duplication in the common ancestor of the species we studied and then developed independently in different lineages of Ctenophores. So far, there is no evidence of additional expansion of the opsin family in ctenophore evolution. The involvement of ctenophore opsins in photoreception is discussed by analyzing their protein structures.
Collapse
Affiliation(s)
- Olga V Krivenko
- Laboratory of functional genomics, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russia.
| | - Olga N Kuleshova
- Laboratory of functional genomics, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russia
| | - Iuliia S Baiandina
- Laboratory of functional genomics, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russia
| |
Collapse
|
2
|
Oliveira HFM, Freire-Jr G, Bicalho Domingos FMC. Digest: Sexually selected traits can affect individual fitness and trait evolution in a butterfly species. Evolution 2024; 78:1639-1640. [PMID: 38982644 DOI: 10.1093/evolut/qpae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
Wedell and Kemp ([2024]. Examined the importance of female sexual preferences for male UV reflectance on offspring viability and the evolution of male traits in the butterfly Eurema hecabe. Female preferences were found to have multiple consequences, including increased trait value, higher offspring viability, and reduced mutational load. These findings highlight that female sexual preferences for specific male traits can also have further consequences for individual fitness and evolution of specific morphological characteristics.
Collapse
|
3
|
Aldrich JC, Vanderlinden LA, Jacobsen TL, Wood C, Saba LM, Britt SG. Genome-Wide Association Study and transcriptome analysis reveals a complex gene network that regulates opsin gene expression and cell fate determination in Drosophila R7 photoreceptor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606616. [PMID: 39149333 PMCID: PMC11326169 DOI: 10.1101/2024.08.05.606616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background An animal's ability to discriminate between differing wavelengths of light (i.e., color vision) is mediated, in part, by a subset of photoreceptor cells that express opsins with distinct absorption spectra. In Drosophila R7 photoreceptors, expression of the rhodopsin molecules, Rh3 or Rh4, is determined by a stochastic process mediated by the transcription factor spineless. The goal of this study was to identify additional factors that regulate R7 cell fate and opsin choice using a Genome Wide Association Study (GWAS) paired with transcriptome analysis via RNA-Seq. Results We examined Rh3 and Rh4 expression in a subset of fully-sequenced inbred strains from the Drosophila Genetic Reference Panel and performed a GWAS to identify 42 naturally-occurring polymorphisms-in proximity to 28 candidate genes-that significantly influence R7 opsin expression. Network analysis revealed multiple potential interactions between the associated candidate genes, spineless and its partners. GWAS candidates were further validated in a secondary RNAi screen which identified 12 lines that significantly reduce the proportion of Rh3 expressing R7 photoreceptors. Finally, using RNA-Seq, we demonstrated that all but four of the GWAS candidates are expressed in the pupal retina at a critical developmental time point and that five are among the 917 differentially expressed genes in sevenless mutants, which lack R7 cells. Conclusions Collectively, these results suggest that the relatively simple, binary cell fate decision underlying R7 opsin expression is modulated by a larger, more complex network of regulatory factors. Of particular interest are a subset of candidate genes with previously characterized neuronal functions including neurogenesis, neurodegeneration, photoreceptor development, axon growth and guidance, synaptogenesis, and synaptic function.
Collapse
Affiliation(s)
- John C. Aldrich
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
- Department of Psychology, University of Texas at Austin, Austin, TX 78712
| | - Lauren A. Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas L. Jacobsen
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Steven G. Britt
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
4
|
Fukuta K, Kato DI, Maeda J, Tsuruta A, Suzuki H, Nagano Y, Tsukamoto H, Niwa K, Terauchi M, Toyoda A, Fujiyama A, Noguchi H. Genome assembly of Genji firefly (Nipponoluciola cruciata) reveals novel luciferase-like luminescent proteins without peroxisome targeting signal. DNA Res 2024; 31:dsae006. [PMID: 38494174 PMCID: PMC11090084 DOI: 10.1093/dnares/dsae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
The Genji firefly, Nipponoluciola cruciata, is an aquatic firefly endemic to Japan, inhabiting a wide area of the Japanese archipelago. The luminescence of fireflies is a scientifically interesting phenomenon, and many studies have evaluated this species in Japan. In this study, we sequenced the whole genome of male N. cruciata and constructed a high-quality genome assembly of 662 Mb with a BUSCO completeness of 99.1% in the genome mode. Using the detected set of 15,169 protein-coding genes, the genomic structures and genetic background of luminescence-related genes were also investigated. We found four new firefly luciferase-like genes in the genome. The highest bioluminescent activity was observed for LLa2, which originated from ancestral PDGY, a mitochondrial acyl-CoA synthetase. A thioesterase candidate, NcruACOT1, which is involved in d-luciferin biosynthesis, was expressed in the lantern. Two opsins were also detected and the absorption wavelength of the UV-type opsin candidate shifted from UV to blue. These findings provide an important resource for unravelling the adaptive evolution of fireflies in terms of luminescence and vision.
Collapse
Affiliation(s)
- Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Dai-ichiro Kato
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Juri Maeda
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Atsuhiro Tsuruta
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | | | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga 840-8502, Japan
| | - Hisao Tsukamoto
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuki Niwa
- Advanced Quantum Measurement Group, Research Institute for Physical Measurement, National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| | - Makoto Terauchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Sequencing Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Asao Fujiyama
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
5
|
Lou F, Ren Z, Tang Y, Han Z. Full-length transcriptome reveals the circularly polarized light response-related molecular genetic characteristics of Oratosquilla oratoria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101183. [PMID: 38141370 DOI: 10.1016/j.cbd.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
The mantis shrimp is the only animal that can recognize circularly polarized light (CPL), but its molecular genetic characteristics are unclear. Multi-tissue level full-length (FL) transcriptome sequencing of Oratosquilla oratoria, a representative widely distributed mantis shrimp, was performed in the present study. We used comparative transcriptomics to explore the critical genes of O. oratoria selected by CPL and the GNβ gene associated with CPL signal transduction was hypothesized to be positively selected. Furthermore, the FL transcriptomes of O. oratoria compound eyes under five light conditions were sequenced and used to detect alternative splicing (AS). The ASs associated with CPL recognition mainly occurred in the LWS, ARR and TRPC regions. The number of FL transcripts with AS events and annotation information also provided evidence that O. oratoria could recognize LCPL. Additionally, 51 sequences belonging to the LWS, UV and Peropsin gene families were identified based on conserved 7tm domains. The LWS, UV and Peropsin opsins have similar 3D structures with seven domains across the cell membrane and conserved KSLRTPSN, DRY, and QAKK motifs. In conclusion, these results are undoubtedly valuable for perfecting the vision theory of O. oratoria and other mantis shrimp.
Collapse
Affiliation(s)
- Fangrui Lou
- School of Ocean, Yantai University, Yantai 264003, Shandong, China.
| | - Zhongjie Ren
- School of Ocean, Yantai University, Yantai 264003, Shandong, China
| | - Yongzheng Tang
- School of Ocean, Yantai University, Yantai 264003, Shandong, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China.
| |
Collapse
|
6
|
Palecanda S, Madrid E, Porter ML. Molecular Evolution of Malacostracan Short Wavelength Sensitive Opsins. J Mol Evol 2023; 91:806-818. [PMID: 37940679 DOI: 10.1007/s00239-023-10137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Investigations of the molecular mechanisms behind detection of short, and particularly ultraviolet, wavelengths in arthropods have relied heavily on studies from insects due to the relative ease of heterologous expression of modified opsin proteins in model organisms like Drosophila. However, species outside of the Insecta can provide information on mechanisms for spectral tuning as well as the evolutionary history of pancrustacean visual pigments. Here we investigate the basis of spectral tuning in malacostracan short wavelength sensitive (SWS) opsins using phylogenetic comparative methods. Tuning sites that may be responsible for the difference between ultraviolet (UV) and violet visual pigment absorbance in the Malacostraca are identified, and the idea that an amino acid polymorphism at a single site is responsible for this shift is shown to be unlikely. Instead, we suggest that this change in absorbance is accomplished through multiple amino acid substitutions. On the basis of our findings, we conducted further surveys to identify spectral tuning mechanisms in the order Stomatopoda where duplication of UV opsins has occurred. Ancestral state reconstructions of stomatopod opsins from two main clades provide insight into the amino acid changes that lead to differing absorption by the visual pigments they form, and likely contribute the basis for the wide array of UV spectral sensitivities found in this order.
Collapse
Affiliation(s)
- Sitara Palecanda
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Elizabeth Madrid
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
7
|
McCulloch KJ, Babonis LS, Liu A, Daly CM, Martindale MQ, Koenig KM. Nematostella vectensis exemplifies the exceptional expansion and diversity of opsins in the eyeless Hexacorallia. EvoDevo 2023; 14:14. [PMID: 37735470 PMCID: PMC10512536 DOI: 10.1186/s13227-023-00218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Opsins are the primary proteins responsible for light detection in animals. Cnidarians (jellyfish, sea anemones, corals) have diverse visual systems that have evolved in parallel with bilaterians (squid, flies, fish) for hundreds of millions of years. Medusozoans (e.g., jellyfish, hydroids) have evolved eyes multiple times, each time independently incorporating distinct opsin orthologs. Anthozoans (e.g., corals, sea anemones,) have diverse light-mediated behaviors and, despite being eyeless, exhibit more extensive opsin duplications than medusozoans. To better understand the evolution of photosensitivity in animals without eyes, we increased anthozoan representation in the phylogeny of animal opsins and investigated the large but poorly characterized opsin family in the sea anemone Nematostella vectensis. RESULTS We analyzed genomic and transcriptomic data from 16 species of cnidarians to generate a large opsin phylogeny (708 sequences) with the largest sampling of anthozoan sequences to date. We identified 29 opsins from N. vectensis (NvOpsins) with high confidence, using transcriptomic and genomic datasets. We found that lineage-specific opsin duplications are common across Cnidaria, with anthozoan lineages exhibiting among the highest numbers of opsins in animals. To establish putative photosensory function of NvOpsins, we identified canonically conserved protein domains and amino acid sequences essential for opsin function in other animal species. We show high sequence diversity among NvOpsins at sites important for photoreception and transduction, suggesting potentially diverse functions. We further examined the spatiotemporal expression of NvOpsins and found both dynamic expression of opsins during embryonic development and sexually dimorphic opsin expression in adults. CONCLUSIONS These data show that lineage-specific duplication and divergence has led to expansive diversity of opsins in eyeless cnidarians, suggesting opsins from these animals may exhibit novel biochemical functions. The variable expression patterns of opsins in N. vectensis suggest opsin gene duplications allowed for a radiation of unique sensory cell types with tissue- and stage-specific functions. This diffuse network of distinct sensory cell types could be an adaptive solution for varied sensory tasks experienced in distinct life history stages in Anthozoans.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Leslie S Babonis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Alicia Liu
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Christina M Daly
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Kristen M Koenig
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
Friedrich M. Parallel Losses of Blue Opsin Correlate with Compensatory Neofunctionalization of UV-Opsin Gene Duplicates in Aphids and Planthoppers. INSECTS 2023; 14:774. [PMID: 37754742 PMCID: PMC10531960 DOI: 10.3390/insects14090774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Expanding on previous efforts to survey the visual opsin repertoires of the Hemiptera, this study confirms that homologs of the UV- and LW-opsin subfamilies are conserved in all Hemiptera, while the B-opsin subfamily is missing from the Heteroptera and subgroups of the Sternorrhyncha and Auchenorrhyncha, i.e., aphids (Aphidoidea) and planthoppers (Fulgoroidea), respectively. Unlike in the Heteroptera, which are characterized by multiple independent expansions of the LW-opsin subfamily, the lack of B-opsin correlates with the presence of tandem-duplicated UV-opsins in aphids and planthoppers. Available data on organismal wavelength sensitivities and retinal gene expression patterns lead to the conclusion that, in both groups, one UV-opsin paralog shifted from ancestral UV peak sensitivity to derived blue sensitivity, likely compensating for the lost B-opsin. Two parallel bona fide tuning site substitutions compare to 18 non-corresponding amino acid replacements in the blue-shifted UV-opsin paralogs of aphids and planthoppers. Most notably, while the aphid blue-shifted UV-opsin clade is characterized by a replacement substitution at one of the best-documented UV/blue tuning sites (Rhodopsin site 90), the planthopper blue-shifted UV-opsin paralogs retained the ancestral lysine at this position. Combined, the new findings identify aphid and planthopper UV-opsins as a new valuable data sample for studying adaptive opsin evolution.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA;
- Department of Ophthalmological, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Azizi K, Gori M, Morzan U, Hassanali A, Kurian P. Examining the origins of observed terahertz modes from an optically pumped atomistic model protein in aqueous solution. PNAS NEXUS 2023; 2:pgad257. [PMID: 37575674 PMCID: PMC10416812 DOI: 10.1093/pnasnexus/pgad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
The microscopic origins of terahertz (THz) vibrational modes in biological systems are an active and open area of current research. Recent experiments [Phys Rev X. 8, 031061 (2018)] have revealed the presence of a pronounced mode at ∼0.3 THz in fluorophore-decorated bovine serum albumin (BSA) protein in aqueous solution under nonequilibrium conditions induced by optical pumping. This result was heuristically interpreted as a collective elastic fluctuation originating from the activation of a low-frequency phonon mode. In this work, we show that the sub-THz spectroscopic response emerges in a statistically significant manner (> 2 σ ) from such collective behavior, illustrating how photoexcitation can alter specific THz vibrational modes. We revisit the theoretical analysis with proof-of-concept molecular dynamics that introduce optical excitations into the simulations. Using information theory techniques, we show that these excitations can give rise to a multiscale response involving two optically excited chromophores (tryptophans), other amino acids in the protein, ions, and water. Our results motivate new experiments and fully nonequilibrium simulations to probe these phenomena, as well as the refinement of atomistic models of Fröhlich condensates that are fundamentally determined by nonlinear interactions in biology.
Collapse
Affiliation(s)
- Khatereh Azizi
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- Quantum Biology Laboratory, Howard University, Washington, DC 20060, USA
| | - Matteo Gori
- Quantum Biology Laboratory, Howard University, Washington, DC 20060, USA
| | - Uriel Morzan
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ali Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Philip Kurian
- Quantum Biology Laboratory, Howard University, Washington, DC 20060, USA
| |
Collapse
|
10
|
Sharkey CR, Blanco J, Lord NP, Wardill TJ. Jewel Beetle Opsin Duplication and Divergence Is the Mechanism for Diverse Spectral Sensitivities. Mol Biol Evol 2023; 40:7017620. [PMID: 36721951 PMCID: PMC9937044 DOI: 10.1093/molbev/msad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/10/2022] [Accepted: 01/20/2023] [Indexed: 02/02/2023] Open
Abstract
The evolutionary history of visual genes in Coleoptera differs from other well-studied insect orders, such as Lepidoptera and Diptera, as beetles have lost the widely conserved short-wavelength (SW) insect opsin gene that typically underpins sensitivity to blue light (∼440 nm). Duplications of the ancestral ultraviolet (UV) and long-wavelength (LW) opsins have occurred in many beetle lineages and have been proposed as an evolutionary route for expanded spectral sensitivity. The jewel beetles (Buprestidae) are a highly ecologically diverse and colorful family of beetles that use color cues for mate and host detection. In addition, there is evidence that buprestids have complex spectral sensitivity with up to five photoreceptor classes. Previous work suggested that opsin duplication and subfunctionalization of the two ancestral buprestid opsins, UV and LW, has expanded sensitivity to different regions of the light spectrum, but this has not yet been tested. We show that both duplications are likely unique to Buprestidae or the wider superfamily of Buprestoidea. To directly test photopigment sensitivity, we expressed buprestid opsins from two Chrysochroa species in Drosophila melanogaster and functionally characterized each photopigment type as UV- (356-357 nm), blue- (431-442 nm), green- (507-509 nm), and orange-sensitive (572-584 nm). As these novel opsin duplicates result in significantly shifted spectral sensitivities from the ancestral copies, we explored spectral tuning at four candidate sites using site-directed mutagenesis. This is the first study to directly test opsin spectral tuning mechanisms in the diverse and specious beetles.
Collapse
Affiliation(s)
| | - Jorge Blanco
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN
| | - Nathan P Lord
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA
| | | |
Collapse
|
11
|
The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria. Dev Biol 2022; 492:187-199. [PMID: 36272560 DOI: 10.1016/j.ydbio.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
Across eumetazoans, the ability to perceive and respond to visual stimuli is largely mediated by opsins, a family of proteins belonging to the G protein-coupled receptor (GPCR) superclass. Lineage-specific gains and losses led to a striking diversity in the numbers, types, and spectral sensitivities conferred by visual opsin gene expression. Here, we review the diversity of visual opsins and differences in opsin gene expression from well-studied protostome, invertebrate deuterostome, and cnidarian groups. We discuss the functional significance of opsin expression differences and spectral tuning among lineages. In some cases, opsin evolution has been linked to the detection of relevant visual signals, including sexually selected color traits and host plant features. In other instances, variation in opsins has not been directly linked to functional or ecological differences. Overall, the array of opsin expression patterns and sensitivities across invertebrate lineages highlight the diversity of opsins in the eumetazoan ancestor and the labile nature of opsins over evolutionary time.
Collapse
|
12
|
Palecanda S, Iwanicki T, Steck M, Porter ML. Crustacean conundrums: a review of opsin diversity and evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210289. [PMID: 36058240 PMCID: PMC9441232 DOI: 10.1098/rstb.2021.0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/06/2022] [Indexed: 11/12/2022] Open
Abstract
Knowledge of crustacean vision is lacking compared to the more well-studied vertebrates and insects. While crustacean visual systems are typically conserved morphologically, the molecular components (i.e. opsins) remain understudied. This review aims to characterize opsin diversity across crustacean lineages for an integrated view of visual system evolution. Using publicly available data from 95 species, we identified opsin sequences and classified them by clade. Our analysis produced 485 putative visual opsins and 141 non-visual opsins. The visual opsins were separated into six clades: long wavelength sensitive (LWS), middle wavelength sensitive (MWS) 1 and 2, short wavelength or ultraviolet sensitive (SWS/UVS) and a clade of thecostracan opsins, with multiple LWS and MWS opsin copies observed. The SWS/UVS opsins were relatively conserved in most species. The crustacean classes Cephalocarida, Remipedia and Hexanauplia exhibited reduced visual opsin diversity compared to others, with the malacostracan decapods having the highest opsin diversity. Non-visual opsins were identified from all investigated classes except Cephalocarida. Additionally, a novel clade of non-visual crustacean-specific, R-type opsins (Rc) was discovered. This review aims to provide a framework for future research on crustacean vision, with an emphasis on the need for more work in spectral characterization and molecular analysis. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Sitara Palecanda
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Thomas Iwanicki
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Mireille Steck
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Megan L. Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
13
|
Christenson MP, Mousavi SN, Oriol E, Heath SL, Behnia R. Exploiting colour space geometry for visual stimulus design across animals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210280. [PMID: 36058250 PMCID: PMC9441238 DOI: 10.1098/rstb.2021.0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022] Open
Abstract
Colour vision represents a vital aspect of perception that ultimately enables a wide variety of species to thrive in the natural world. However, unified methods for constructing chromatic visual stimuli in a laboratory setting are lacking. Here, we present stimulus design methods and an accompanying programming package to efficiently probe the colour space of any species in which the photoreceptor spectral sensitivities are known. Our hardware-agnostic approach incorporates photoreceptor models within the framework of the principle of univariance. This enables experimenters to identify the most effective way to combine multiple light sources to create desired distributions of light, and thus easily construct relevant stimuli for mapping the colour space of an organism. We include methodology to handle uncertainty of photoreceptor spectral sensitivity as well as to optimally reconstruct hyperspectral images given recent hardware advances. Our methods support broad applications in colour vision science and provide a framework for uniform stimulus designs across experimental systems. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Matthias P. Christenson
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - S. Navid Mousavi
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Elie Oriol
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de Paris, Paris, France
| | - Sarah L. Heath
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Rudy Behnia
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| |
Collapse
|
14
|
Liénard MA, Valencia-Montoya WA, Pierce NE. Molecular advances to study the function, evolution and spectral tuning of arthropod visual opsins. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210279. [PMID: 36058235 PMCID: PMC9450095 DOI: 10.1098/rstb.2021.0279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Visual opsins of vertebrates and invertebrates diversified independently and converged to detect ultraviolet to long wavelengths (LW) of green or red light. In both groups, colour vision largely derives from opsin number, expression patterns and changes in amino acids interacting with the chromophore. Functional insights regarding invertebrate opsin evolution have lagged behind those for vertebrates because of the disparity in genomic resources and the lack of robust in vitro systems to characterize spectral sensitivities. Here, we review bioinformatic approaches to identify and model functional variation in opsins as well as recently developed assays to measure spectral phenotypes. In particular, we discuss how transgenic lines, cAMP-spectroscopy and sensitive heterologous expression platforms are starting to decouple genotype-phenotype relationships of LW opsins to complement the classical physiological-behavioural-phylogenetic toolbox of invertebrate visual sensory studies. We illustrate the use of one heterologous method by characterizing novel LW Gq opsins from 10 species, including diurnal and nocturnal Lepidoptera, a terrestrial dragonfly and an aquatic crustacean, expressing them in HEK293T cells, and showing that their maximum absorbance spectra (λmax) range from 518 to 611 nm. We discuss the advantages of molecular approaches for arthropods with complications such as restricted availability, lateral filters, specialized photochemistry and/or electrophysiological constraints. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Marjorie A. Liénard
- Department of Biology, Lund University, 22362 Lund, Sweden
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Wendy A. Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Drozdova P, Kizenko A, Saranchina A, Gurkov A, Firulyova M, Govorukhina E, Timofeyev M. The diversity of opsins in Lake Baikal amphipods (Amphipoda: Gammaridae). BMC Ecol Evol 2021; 21:81. [PMID: 33971810 PMCID: PMC8108468 DOI: 10.1186/s12862-021-01806-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/20/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vision is a crucial sense for the evolutionary success of many animal groups. Here we explore the diversity of visual pigments (opsins) in the transcriptomes of amphipods (Crustacea: Amphipoda) and conclude that it is restricted to middle (MWS) and long wavelength-sensitive (LWS) opsins in the overwhelming majority of examined species. RESULTS We evidenced (i) parallel loss of MWS opsin expression in multiple species (including two independently evolved lineages from the deep and ancient Lake Baikal) and (ii) LWS opsin amplification (up to five transcripts) in both Baikal lineages. The number of LWS opsins negatively correlated with habitat depth in Baikal amphipods. Some LWS opsins in Baikal amphipods contained MWS-like substitutions, suggesting that they might have undergone spectral tuning. CONCLUSIONS This repeating two-step evolutionary scenario suggests common triggers, possibly the lack of light during the periods when Baikal was permanently covered with thick ice and its subsequent melting. Overall, this observation demonstrates the possibility of revealing climate history by following the evolutionary changes in protein families.
Collapse
Affiliation(s)
- Polina Drozdova
- Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | | | | | - Anton Gurkov
- Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | - Maria Firulyova
- Computer Technologies Department, ITMO University, St. Petersburg, Russia
| | | | - Maxim Timofeyev
- Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| |
Collapse
|
16
|
Hontani Y, Broser M, Luck M, Weißenborn J, Kloz M, Hegemann P, Kennis JTM. Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin. J Am Chem Soc 2020; 142:11464-11473. [PMID: 32475117 PMCID: PMC7315636 DOI: 10.1021/jacs.0c03229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
UV-absorbing rhodopsins are essential
for UV vision and sensing
in all kingdoms of life. Unlike the well-known visible-absorbing rhodopsins,
which bind a protonated retinal Schiff base for light absorption,
UV-absorbing rhodopsins bind an unprotonated retinal Schiff base.
Thus far, the photoreaction dynamics and mechanisms of UV-absorbing
rhodopsins have remained essentially unknown. Here, we report the
complete excited- and ground-state dynamics of the UV form of histidine
kinase rhodopsin 1 (HKR1) from eukaryotic algae, using femtosecond
stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy,
covering time scales from femtoseconds to milliseconds. We found that
energy-level ordering is inverted with respect to visible-absorbing
rhodopsins, with an optically forbidden low-lying S1 excited
state that has Ag– symmetry and a higher-lying UV-absorbing
S2 state of Bu+ symmetry. UV-photoexcitation
to the S2 state elicits a unique dual-isomerization reaction:
first, C13=C14 cis–trans isomerization occurs during S2–S1 evolution
in <100 fs. This very fast reaction features the remarkable property
that the newly formed isomer appears in the excited state rather than
in the ground state. Second, C15=N16 anti–syn isomerization occurs on the S1–S0 evolution to the ground state in 4.8 ps. We detected two
ground-state unprotonated retinal photoproducts, 13-trans/15-anti (all-trans) and 13-cis/15-syn, after relaxation to the ground
state. These isomers become protonated in 58 μs and 3.2 ms,
respectively, resulting in formation of the blue-absorbing form of
HKR1. Our results constitute a benchmark of UV-induced photochemistry
of animal and microbial rhodopsins.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - Matthias Broser
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Meike Luck
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Jörn Weißenborn
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands.,ELI-Beamlines, Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - John T M Kennis
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
17
|
Valenta K, Dimac-Stohl K, Baines F, Smith T, Piotrowski G, Hill N, Kuppler J, Nevo O. Ultraviolet radiation changes plant color. BMC PLANT BIOLOGY 2020; 20:253. [PMID: 32493218 PMCID: PMC7268463 DOI: 10.1186/s12870-020-02471-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/26/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Plant absorption of ultraviolet (UV) radiation can result in multiple deleterious effects to plant tissues. As a result, plants have evolved an array of strategies to protect themselves from UV radiation, particularly in the UV-B range (280-320 nm). A common plant response to UV exposure is investment in phenolic compounds that absorb damaging wavelengths of light. However, the inverse phenomenon - plant reflectance of UV to protect plant tissues - has not previously been explored. In a paired experiment, we expose half of our sample (N = 108) of insect-pollinated plants of the cultivar Zinnia Profusion Series to UV radiation, and protect the other half from all light < 400 nm for 42 days, and measure leaf and flower reflectance using spectroscopy. We compare UV-B reflectance in leaves and flowers at the beginning of the experiment or flowering, and after treatment. RESULTS We find that plants protected from UV exposure downregulate UV-B reflectance, and that plants exposed to increased levels of UV show trends of increased UV-B reflectance. CONCLUSIONS Our results indicate that upregulation of UV-B reflecting pigments or structures may be a strategy to protect leaves against highly energetic UV-B radiation.
Collapse
Affiliation(s)
- Kim Valenta
- Department of Anthropology, University of Florida, Turlington Hall, PO Box 117305, Gainesville, FL, 32611-7305, USA.
| | - Kristin Dimac-Stohl
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC, 27708, USA
| | - Frances Baines
- UV Guide UK, Greenfield, School Lane, Govilon, Abergavenny NP79NT, Wales, UK
| | - Todd Smith
- Duke University Phytotron, 14 Circuit Dr, Durham, NC, 27710, USA
| | - Greg Piotrowski
- Duke University Phytotron, 14 Circuit Dr, Durham, NC, 27710, USA
| | - Norman Hill
- Duke University Phytotron, 14 Circuit Dr, Durham, NC, 27710, USA
| | - Jonas Kuppler
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Omer Nevo
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
18
|
Li C, Tian F, Lin T, Wang Z, Liu J, Zeng X. The expression and function of opsin genes related to the phototactic behavior of Asian citrus psyllid. PEST MANAGEMENT SCIENCE 2020; 76:1578-1587. [PMID: 31714677 DOI: 10.1002/ps.5680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/07/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a prominent pest of citrus because it transmits Candidatus Liberibacter asiaticus associated with huanglongbing. Phototactic behavior ubiquitously exists in insects and plays essential roles in host-searching and mate-searching in ACP. However, its mechanism has remained unclear to date. In this paper, molecular assays were performed to understand the relation between opsins and the phototactic behavior of ACP. RESULTS We cloned five opsin genes and analyzed their expression patterns. The main three opsin genes (Dc-UV, Dc-BW and Dc-LW) displayed high expression levels in daytime, and the expression levels of the other two opsin genes (Dc-UV-like and Dc-arthropsin) increased during nighttime. In constant darkness, the expression patterns and levels of opsin genes of ACP were altered. Under starvation, the expression levels of the main three opsins were reduced (53.89-84.10%). In contrast, the expression levels in females increased (27.55-60.58%). Feeding of double-stranded RNA (Dc-UV, Dc-LW or Dc-BW) have reduced the phototactic efficiency of ACP to ultraviolet light (44.79%), green light (54.81%) and blue light (43.00%), respectively. CONCLUSION The results suggest that the expression levels and patterns of opsins of ACP were influenced by photoperiod and the physiological status of ACP. Our research indicates that opsins play crucial roles in phototactic behavior in ACP. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chaofeng Li
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Fajun Tian
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tao Lin
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhengbing Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiali Liu
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xinnian Zeng
- College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Katana R, Guan C, Zanini D, Larsen ME, Giraldo D, Geurten BRH, Schmidt CF, Britt SG, Göpfert MC. Chromophore-Independent Roles of Opsin Apoproteins in Drosophila Mechanoreceptors. Curr Biol 2019; 29:2961-2969.e4. [PMID: 31447373 DOI: 10.1016/j.cub.2019.07.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/24/2019] [Accepted: 07/11/2019] [Indexed: 12/23/2022]
Abstract
Rhodopsins, the major light-detecting molecules of animal visual systems [1], consist of opsin apoproteins that covalently bind a retinal chromophore with a conserved lysine residue [1, 2]. In addition to capturing photons, this chromophore contributes to rhodopsin maturation [3, 4], trafficking [3, 4], and stabilization [5], and defects in chromophore synthesis and recycling can cause dysfunction of the retina and dystrophy [6-9]. Indications that opsin apoproteins alone might have biological roles have come from archaebacteria and platyhelminths, which present opsin-like proteins that lack the chromophore binding site and are deemed to function independently of light [10, 11]. Light-independent sensory roles have been documented for Drosophila opsins [12-15], yet also these unconventional opsin functions are thought to require chromophore binding [12, 13, 15]. Unconjugated opsin apoproteins act as phospholipid scramblases in mammalian photoreceptor disks [16], yet chromophore-independent roles of opsin apoproteins outside of eyes have, to the best of our knowledge, hitherto not been described. Drosophila chordotonal mechanoreceptors require opsins [13, 15], and we find that their function remains uncompromised by nutrient carotenoid depletion. Disrupting carotenoid uptake and cleavage also left the mechanoreceptors unaffected, and manipulating the chromophore attachment site of the fly's major visual opsin Rh1 impaired photoreceptor, but not mechanoreceptor, function. Notwithstanding this chromophore independence, some proteins that process and recycle the chromophore in the retina are also required in mechanoreceptors, including visual cycle components that recycle the chromophore upon its photoisomerization. Our results thus establish biological function for unconjugated opsin apoproteins outside of eyes and, in addition, document chromophore-independent roles for chromophore pathway components.
Collapse
Affiliation(s)
- Radoslaw Katana
- Department of Cellular Neurobiology, University of Göttingen, 37077 Göttingen, Germany
| | - Chonglin Guan
- Faculty of Physics, Third Institute of Physics - Biophysics, University of Göttingen, 37077 Göttingen, Germany
| | - Damiano Zanini
- Department of Cellular Neurobiology, University of Göttingen, 37077 Göttingen, Germany
| | - Matthew E Larsen
- Departments of Neurology and Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Diego Giraldo
- Department of Cellular Neurobiology, University of Göttingen, 37077 Göttingen, Germany
| | - Bart R H Geurten
- Department of Cellular Neurobiology, University of Göttingen, 37077 Göttingen, Germany
| | - Christoph F Schmidt
- Faculty of Physics, Third Institute of Physics - Biophysics, University of Göttingen, 37077 Göttingen, Germany; Department of Physics and Soft Matter Center, Duke University, Durham, NC 27708, USA
| | - Steven G Britt
- Departments of Neurology and Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
20
|
Blake AJ, Pirih P, Qiu X, Arikawa K, Gries G. Compound eyes of the small white butterfly Pieris rapae have three distinct classes of red photoreceptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:553-565. [PMID: 31123814 DOI: 10.1007/s00359-019-01330-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 03/18/2019] [Indexed: 10/26/2022]
Abstract
The two subspecies of the small white butterfly, the European Pieris rapae rapae and the Asian P. r. crucivora, differ in wing colouration. Under ultraviolet light, the wings of both male and female P. r. rapae appear dark, whereas the wings of male P. r. crucivora are dark and those of females are bright. It has been hypothesized that these sexually dimorphic wing reflections in P. r. crucivora may have induced the evolution of a fluorescing-screening pigment in the violet-opsin-expressing photoreceptors of males, thus facilitating greater wavelength discrimination near 400 nm. Comparing the compound eyes of the two subspecies using genetic, microscopical, spectrographic, and histological methods revealed no differences that would meaningfully affect photoreceptor sensitivity, suggesting that the fluorescing-screening pigment did not evolve in response to sexually dimorphic wing reflections. Our investigation further revealed that (i) the peri-rhabdomal reddish-screening pigments differ among the three ommatidial types; (ii) each of the ommatidial types exhibits a unique class of red photoreceptor with a distinct spectral peak; and (iii) the blue, green, and red photoreceptors of P. rapae exhibit a polarization sensitivity > 2, with red photoreceptors allowing for a two-channel opponency form of polarization sensitivity.
Collapse
Affiliation(s)
- Adam J Blake
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A1S6, Canada.
| | - Primož Pirih
- Laboratory of Neuroethology, Sokendai-Hayama (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan.,Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Xudong Qiu
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.,Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77054, USA
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai-Hayama (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A1S6, Canada
| |
Collapse
|
21
|
Pérez-Moreno JL, Balázs G, Bracken-Grissom HD. Transcriptomic Insights into the Loss of Vision in Molnár János Cave’s Crustaceans. Integr Comp Biol 2018; 58:452-464. [DOI: 10.1093/icb/icy071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Jorge L Pérez-Moreno
- Department of Biological Sciences, Florida International University—Biscayne Bay Campus, North Miami, FL 33181, USA
| | - Gergely Balázs
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Heather D Bracken-Grissom
- Department of Biological Sciences, Florida International University—Biscayne Bay Campus, North Miami, FL 33181, USA
| |
Collapse
|
22
|
Lessios N, Rutowski RL, Cohen JH, Sayre ME, Strausfeld NJ. Multiple spectral channels in branchiopods. I. Vision in dim light and neural correlates. ACTA ACUST UNITED AC 2018; 221:jeb.165860. [PMID: 29622664 DOI: 10.1242/jeb.165860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 03/31/2018] [Indexed: 11/20/2022]
Abstract
Animals that have true color vision possess several spectral classes of photoreceptors. Pancrustaceans (Hexapoda+Crustacea) that integrate spectral information about their reconstructed visual world do so from photoreceptor terminals supplying their second optic neuropils, with subsequent participation of the third (lobula) and deeper centers (optic foci). Here, we describe experiments and correlative neural arrangements underlying convergent visual pathways in two species of branchiopod crustaceans that have to cope with a broad range of spectral ambience and illuminance in ephemeral pools, yet possess just two optic neuropils, the lamina and the optic tectum. Electroretinographic recordings and multimodel inference based on modeled spectral absorptance were used to identify the most likely number of spectral photoreceptor classes in their compound eyes. Recordings from the retina provide support for four color channels. Neuroanatomical observations resolve arrangements in their laminas that suggest signal summation at low light intensities, incorporating chromatic channels. Neuroanatomical observations demonstrate that spatial summation in the lamina of the two species are mediated by quite different mechanisms, both of which allow signals from several ommatidia to be pooled at single lamina monopolar cells. We propose that such summation provides sufficient signal for vision at intensities equivalent to those experienced by insects in terrestrial habitats under dim starlight. Our findings suggest that despite the absence of optic lobe neuropils necessary for spectral discrimination utilized by true color vision, four spectral photoreceptor classes have been maintained in Branchiopoda for vision at very low light intensities at variable ambient wavelengths that typify conditions in ephemeral freshwater habitats.
Collapse
Affiliation(s)
- Nicolas Lessios
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA .,Department of Neuroscience, University of Arizona, 611 Gould-Simpson, Tucson, AZ 85721, USA
| | - Ronald L Rutowski
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jonathan H Cohen
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
| | - Marcel E Sayre
- Department of Neuroscience, University of Arizona, 611 Gould-Simpson, Tucson, AZ 85721, USA
| | - Nicholas J Strausfeld
- Department of Neuroscience, University of Arizona, 611 Gould-Simpson, Tucson, AZ 85721, USA
| |
Collapse
|
23
|
Collantes-Alegre JM, Mattenberger F, Barberà M, Martínez-Torres D. Characterisation, analysis of expression and localisation of the opsin gene repertoire from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2018; 104:48-59. [PMID: 29203177 DOI: 10.1016/j.jinsphys.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Organisms exhibit a wide range of seasonal responses as adaptions to predictable annual changes in their environment. These changes are originally caused by the effect of the Earth's cycles around the sun and its axial tilt. Examples of seasonal responses include floration, migration, reproduction and diapause. In temperate climate zones, the most robust variable to predict seasons is the length of the day (i.e. the photoperiod). The first step to trigger photoperiodic driven responses involves measuring the duration of the light-dark phases, but the molecular clockwork performing this task is poorly characterized. Photopigments such as opsins are known to participate in light perception, being part of the machinery in charge of providing information about the luminous state of the surroundings. Aphids (Hemiptera: Aphididae) are paradigmatic photoperiodic insects, exhibiting a strong induction to diapause when the light regime mimics autumn conditions. The availability of the pea aphid (Acyrthosiphon pisum) genome has facilitated molecular approaches to understand the effect of light stimulus in the photoperiodic induction process. We have identified, experimentally validated and characterized the expression of the full opsin gene repertoire in the pea aphid. Among identified opsin genes in A. pisum, arthropsin is absent in most insects sequenced to date (except for dragonflies and two other hemipterans) but also present in a crustacean, an onychophoran and chelicerates. We have quantified the expression of these genes in aphids exposed to different photoperiodic conditions and at different times of the day and localized their transcripts in the aphid brain. Clear differences in expression patterns were found, thus relating opsin expression with the photoperiodic response.
Collapse
Affiliation(s)
- Jorge Mariano Collantes-Alegre
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - Florian Mattenberger
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain; Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain.
| |
Collapse
|
24
|
Lebhardt F, Desplan C. Retinal perception and ecological significance of color vision in insects. CURRENT OPINION IN INSECT SCIENCE 2017; 24:75-83. [PMID: 29208227 PMCID: PMC5726413 DOI: 10.1016/j.cois.2017.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/12/2017] [Indexed: 05/09/2023]
Abstract
Color vision relies on the ability to discriminate different wavelengths and is often improved in insects that inhabit well-lit, spectrally rich environments. Although the Opsin proteins themselves are sensitive to specific wavelength ranges, other factors can alter and further restrict the sensitivity of photoreceptors to allow for finer color discrimination and thereby more informed decisions while interacting with the environment. The ability to discriminate colors differs between insects that exhibit different life styles, between female and male eyes of the same species, and between regions of the same eye, depending on the requirements of intraspecific communication and ecological demands.
Collapse
Affiliation(s)
- Fleur Lebhardt
- Department of Biology, New York University, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, NY 10003, USA.
| |
Collapse
|
25
|
Kistenpfennig C, Grebler R, Ogueta M, Hermann-Luibl C, Schlichting M, Stanewsky R, Senthilan PR, Helfrich-Förster C. A New Rhodopsin Influences Light-dependent Daily Activity Patterns of Fruit Flies. J Biol Rhythms 2017; 32:406-422. [PMID: 28840790 DOI: 10.1177/0748730417721826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rhodopsin 7 ( Rh7), a new invertebrate Rhodopsin gene, was discovered in the genome of Drosophila melanogaster in 2000, but its function has remained elusive. We generated an Rh7 null mutant ( Rh70) by P element-mediated mutagenesis and found that an absence of Rh7 had significant effects on fly activity patterns during light-dark (LD) cycles: Rh70 mutants exhibited less morning activity and a longer siesta than wild-type controls. Consistent with these results, we found that Rh7 appears to be expressed in a few dorsal clock neurons that have been previously implicated in the control of the siesta. We also found putative Rh7 expression in R8 photoreceptor cells of the compound eyes and in the Hofbauer-Buchner eyelets, which have been shown to control the precise timing of locomotor activity. The absence of Rh7 alone impaired neither the flies' responses to constant white light nor the ability to follow phase shifts of white LD cycles. However, in blue light (470 nm), Rh70 mutants needed significantly longer to synchronize than wild-type controls, suggesting that Rh7 is a blue light-sensitive photopigment with a minor contribution to circadian clock synchronization. In combination with mutants that lacked additionally cryptochrome-based and/or eye-based light input to the circadian clock, the absence of Rh7 provoked slightly stronger effects.
Collapse
Affiliation(s)
- Christa Kistenpfennig
- Neurobiology and Genetics, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany.,1. Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Rudi Grebler
- Neurobiology and Genetics, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Maite Ogueta
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Christiane Hermann-Luibl
- Neurobiology and Genetics, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Matthias Schlichting
- Neurobiology and Genetics, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany.,2. Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Ralf Stanewsky
- Department of Cell and Developmental Biology, University College London, London, UK.,3. Institute for Neuro- and Behavioral Biology, Westfälische Wilhelms University, Badestraße 9/13, 48149 Münster, Germany
| | - Pingkalai R Senthilan
- Neurobiology and Genetics, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Sakai K, Tsutsui K, Yamashita T, Iwabe N, Takahashi K, Wada A, Shichida Y. Drosophila melanogaster rhodopsin Rh7 is a UV-to-visible light sensor with an extraordinarily broad absorption spectrum. Sci Rep 2017; 7:7349. [PMID: 28779161 PMCID: PMC5544684 DOI: 10.1038/s41598-017-07461-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 01/15/2023] Open
Abstract
The genome of Drosophila melanogaster contains seven rhodopsin genes. Rh1-6 proteins are known to have respective absorption spectra and function as visual pigments in ocelli and compound eyes. In contrast, Rh7 protein was recently revealed to function as a circadian photoreceptor in the brain. However, its molecular properties have not been characterized yet. Here we successfully prepared a recombinant protein of Drosophila Rh7 in mammalian cultured cells. Drosophila Rh7 bound both 11-cis-retinal and 11-cis-3-hydroxyretinal to form photo-pigments which can absorb UV light. Irradiation with UV light caused formation of a visible-light absorbing metarhodopsin that activated Gq-type of G protein. This state could be photoconverted back to the original state and, thus Rh7 is a Gq-coupled bistable pigment. Interestingly, Rh7 (lambda max = 350 nm) exhibited an unusual broad spectrum with a longer wavelength tail reaching 500 nm, whose shape is like a composite of spectra of two pigments. In contrast, replacement of lysine at position 90 with glutamic acid caused the formation of a normal-shaped absorption spectrum with maximum at 450 nm. Therefore, Rh7 is a unique photo-sensor that can cover a wide wavelength region by a single pigment to contribute to non-visual photoreception.
Collapse
Affiliation(s)
- Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kei Tsutsui
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Naoyuki Iwabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Keisuke Takahashi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan. .,Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
27
|
Porter ML, Steck M, Roncalli V, Lenz PH. Molecular Characterization of Copepod Photoreception. THE BIOLOGICAL BULLETIN 2017; 233:96-110. [PMID: 29182504 DOI: 10.1086/694564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Copepod crustaceans are an abundant and ecologically significant group whose basic biology is guided by numerous visually guided behaviors. These behaviors are driven by copepod eyes, including naupliar eyes and Gicklhorn's organs, which vary widely in structure and function among species. Yet little is known about the molecular aspects of copepod vision. In this study we present a general overview of the molecular aspects of copepod vision by identifying phototransduction genes from newly generated and publicly available RNA-sequencing data and assemblies from 12 taxonomically diverse copepod species. We identify a set of 10 expressed transcripts that serve as a set of target genes for future studies of copepod phototransduction. Our more detailed evolutionary analyses of the opsin gene responsible for forming visual pigments found that all of the copepod species investigated express two main groups of opsins: middle-wavelength-sensitive (MWS) opsins and pteropsins. Additionally, there is evidence from a few species (e.g., Calanus finmarchicus, Eurytemora affinis, Paracyclopina nana, and Lernaea cyprinacea) for the expression of two additional groups of opsins-the peropsins and rhodopsin 7 (Rh7) opsins-at low levels or distinct developmental stages. An ontogenetic analysis of opsin expression in Calanus finmarchicus found the expression of a single dominant MWS opsin, as well as evidence for differences in expression across development in some MWS, pteropsin, and Rh7 opsins, with expression peaking in early naupliar through early copepodite stages.
Collapse
Key Words
- C-type, ciliary-type opsin
- CI, copepod copepodite stage one
- CII, copepod copepodite stage two
- CV, copepod copepodite stage five
- CVI, copepod adult stage
- MWS, middle wavelength sensitive
- NI, copepod nauplius stage one
- NII, copepod nauplius stage two
- NV, copepod nauplius stage five
- NVI, copepod nauplius stage six
- PIA, phylogenetically informed annotation
- R-type, rhabdomeric-type opsin
- Rh7, rhodopsin 7
- TRP, transient receptor potential ion channel protein
- TRP-L, transient receptor potential-like ion channel protein
- bvRh, bovine rhodopsin
- c-opsin, ciliary-type opsin
Collapse
|
28
|
Tsukamoto H, Chen IS, Kubo Y, Furutani Y. A ciliary opsin in the brain of a marine annelid zooplankton is ultraviolet-sensitive, and the sensitivity is tuned by a single amino acid residue. J Biol Chem 2017. [PMID: 28623234 DOI: 10.1074/jbc.m117.793539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ciliary opsins were classically thought to function only in vertebrates for vision, but they have also been identified recently in invertebrates for non-visual photoreception. Larvae of the annelid Platynereis dumerilii are used as a zooplankton model, and this zooplankton species possesses a "vertebrate-type" ciliary opsin (named c-opsin) in the brain. Platynereis c-opsin is suggested to relay light signals for melatonin production and circadian behaviors. Thus, the spectral and biochemical characteristics of this c-opsin would be directly related to non-visual photoreception in this zooplankton model. Here we demonstrate that the c-opsin can sense UV to activate intracellular signaling cascades and that it can directly bind exogenous all-trans-retinal. These results suggest that this c-opsin regulates circadian signaling in a UV-dependent manner and that it does not require a supply of 11-cis-retinal for photoreception. Avoidance of damaging UV irradiation is a major cause of large-scale daily zooplankton movement, and the observed capability of the c-opsin to transmit UV signals and bind all-trans-retinal is ideally suited for sensing UV radiation in the brain, which presumably lacks enzymes producing 11-cis-retinal. Mutagenesis analyses indicated that a unique amino acid residue (Lys-94) is responsible for c-opsin-mediated UV sensing in the Platynereis brain. We therefore propose that acquisition of the lysine residue in the c-opsin would be a critical event in the evolution of Platynereis to enable detection of ambient UV light. In summary, our findings indicate that the c-opsin possesses spectral and biochemical properties suitable for UV sensing by the zooplankton model.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan; Department of Structural Molecular Science, Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
| | - I-Shan Chen
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Physiological Sciences, SOKENDAI, Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Physiological Sciences, SOKENDAI, Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan; Department of Structural Molecular Science, Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
29
|
Grebler R, Kistenpfennig C, Rieger D, Bentrop J, Schneuwly S, Senthilan PR, Helfrich-Förster C. Drosophila Rhodopsin 7 can partially replace the structural role of Rhodopsin 1, but not its physiological function. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:649-659. [PMID: 28500442 PMCID: PMC5537319 DOI: 10.1007/s00359-017-1182-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022]
Abstract
Rhodopsin 7 (Rh7), a new invertebrate Rhodopsin gene, was discovered in the genome of Drosophila melanogaster in 2000 and thought to encode for a functional Rhodopsin protein. Indeed, Rh7 exhibits most hallmarks of the known Rhodopsins, except for the G-protein-activating QAKK motif in the third cytoplasmic loop that is absent in Rh7. Here, we show that Rh7 can partially substitute Rh1 in the outer receptor cells (R1–6) for rhabdomere maintenance, but that it cannot activate the phototransduction cascade in these cells. This speaks against a role of Rh7 as photopigment in R1–6, but does not exclude that it works in the inner photoreceptor cells.
Collapse
Affiliation(s)
- Rudi Grebler
- Neurobiology and Genetics, Biocenter, Theodor Boveri Institute, University of Würzburg, 97074, Würzburg, Germany
| | - Christa Kistenpfennig
- Neurobiology and Genetics, Biocenter, Theodor Boveri Institute, University of Würzburg, 97074, Würzburg, Germany
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Oxford, OX14 4RQ, UK
| | - Dirk Rieger
- Neurobiology and Genetics, Biocenter, Theodor Boveri Institute, University of Würzburg, 97074, Würzburg, Germany
| | - Joachim Bentrop
- Cell- and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Stephan Schneuwly
- Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Pingkalai R Senthilan
- Neurobiology and Genetics, Biocenter, Theodor Boveri Institute, University of Würzburg, 97074, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Biocenter, Theodor Boveri Institute, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
30
|
Sharkey CR, Fujimoto MS, Lord NP, Shin S, McKenna DD, Suvorov A, Martin GJ, Bybee SM. Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles. Sci Rep 2017; 7:8. [PMID: 28127058 PMCID: PMC5428366 DOI: 10.1038/s41598-017-00061-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/16/2016] [Indexed: 11/09/2022] Open
Abstract
Opsin proteins are fundamental components of animal vision whose structure largely determines the sensitivity of visual pigments to different wavelengths of light. Surprisingly little is known about opsin evolution in beetles, even though they are the most species rich animal group on Earth and exhibit considerable variation in visual system sensitivities. We reveal the patterns of opsin evolution across 62 beetle species and relatives. Our results show that the major insect opsin class (SW) that typically confers sensitivity to "blue" wavelengths was lost ~300 million years ago, before the origin of modern beetles. We propose that UV and LW opsin gene duplications have restored the potential for trichromacy (three separate channels for colour vision) in beetles up to 12 times and more specifically, duplications within the UV opsin class have likely led to the restoration of "blue" sensitivity up to 10 times. This finding reveals unexpected plasticity within the insect visual system and highlights its remarkable ability to evolve and adapt to the available light and visual cues present in the environment.
Collapse
Affiliation(s)
- Camilla R Sharkey
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT, 84602, USA.
| | - M Stanley Fujimoto
- Computer Science Department, Brigham Young University, Provo, Utah, 84602, USA
| | - Nathan P Lord
- Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 081, Milledgeville, GA, 31061, USA
| | - Seunggwan Shin
- Department of Biological Sciences, University of Memphis, 3700 Walker Avenue, Memphis, TN, 38152, USA
| | - Duane D McKenna
- Department of Biological Sciences, University of Memphis, 3700 Walker Avenue, Memphis, TN, 38152, USA
| | - Anton Suvorov
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT, 84602, USA
| | - Gavin J Martin
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT, 84602, USA
| | - Seth M Bybee
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT, 84602, USA
| |
Collapse
|
31
|
Brandon CS, Greenwold MJ, Dudycha JL. Ancient and Recent Duplications Support Functional Diversity of Daphnia Opsins. J Mol Evol 2016; 84:12-28. [PMID: 28004131 DOI: 10.1007/s00239-016-9777-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/04/2016] [Indexed: 11/26/2022]
Abstract
Daphnia pulex has the largest known family of opsins, genes critical for photoreception and vision in animals. This diversity may be functionally redundant, arising from recent processes, or ancient duplications may have been preserved due to distinct functions and independent contributions to fitness. We analyzed opsins in D. pulex and its distant congener Daphnia magna. We identified 48 opsins in the D. pulex genome and 32 in D. magna. We inferred the complement of opsins in the last common ancestor of all Daphnia and evaluated the history of opsin duplication and loss. We further analyzed sequence variation to assess possible functional diversification among Daphnia opsins. Much of the opsin expansion occurred before the D. pulex-D. magna split more than 145 Mya, and both Daphnia lineages preserved most ancient opsins. More recent expansion occurred in pteropsins and long-wavelength visual opsins in both species, particularly D. pulex. Recent duplications were not random: the same ancestral genes duplicated independently in each modern species. Most ancient and some recent duplications involved differentiation at residues known to influence spectral tuning of visual opsins. Arthropsins show evidence of gene conversion between tandemly arrayed paralogs in functionally important domains. Intron-exon gene structure was generally conserved within clades inferred from sequences, although pteropsins showed substantial intron size variation. Overall, our analyses support the hypotheses that diverse opsins are maintained due to diverse functional roles in photoreception and vision, that functional diversification is both ancient and recent, and that multiple evolutionary processes have influenced different types of opsins.
Collapse
Affiliation(s)
- Christopher S Brandon
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Matthew J Greenwold
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
32
|
Du EJ, Ahn TJ, Wen X, Seo DW, Na DL, Kwon JY, Choi M, Kim HW, Cho H, Kang K. Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence. eLife 2016; 5. [PMID: 27656903 PMCID: PMC5068967 DOI: 10.7554/elife.18425] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023] Open
Abstract
Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependence re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila. DOI:http://dx.doi.org/10.7554/eLife.18425.001 Atoms are made up of a nucleus that contains protons and neutrons, which is orbited by electrons. The electrons orbit within shells that surround the nucleus and each shell can contain a specific number of electrons. A particle with an outer shell that is missing one or more electrons will be unstable and highly reactive. It will attempt to achieve a full outer shell either by sharing electrons with another particle, or by donating or stealing an electron. Particles that steal electrons are said to be “electrophilic” (electron-loving) while those that donate them are “nucleophilic”. Electrophilic and nucleophilic particles can damage DNA and proteins. In species from fruit flies to humans, electrophilic substances such as formaldehyde activate a type of ion channel called TRPA1. These ion channels contribute to pain signaling, and their activation triggers unpleasant and painful sensations that deter animals from getting too close to electrophilic substances. However, it is not known if animals have an equivalent mechanism to help them avoid toxic nucleophilic compounds, like carbon monoxide and cyanide. Du, Ahn, Wen, Seo, Na et al. now show that fruit fly neurons produce two versions of the TRPA1 channel: one that is sensitive to electrophiles, plus a second that is sensitive to nucleophiles in addition to electrophiles. The existence of nucleophile-sensitive TRPA1 helps explain why fruit flies avoid feeding in strong sunlight. Ultraviolet radiation in sunlight triggers the production of reactive forms of oxygen that behave as strong nucleophiles. These reactive oxygen species – which can damage DNA – activate the nucleophile-sensitive TRPA1 and thereby trigger the fly’s avoidance behavior. Human TRPA1 responds only to electrophiles and not to nucleophiles. By targeting the nucleophile-sensitive version of insect TRPA1, it may thus be possible to develop insect repellants that humans do not find aversive. Furthermore, TRPA1s from some insect species are more sensitive to nucleophiles than others, with a mosquitoes’ being more sensitive than the fruit flies’. This means that insect repellants that target nucleophile-sensitive TRPA1 could potentially repel malaria-transmitting mosquitoes without affecting other insect species. DOI:http://dx.doi.org/10.7554/eLife.18425.002
Collapse
Affiliation(s)
- Eun Jo Du
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Tae Jung Ahn
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Xianlan Wen
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dae-Won Seo
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Duk L Na
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Myunghwan Choi
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Hyung-Wook Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Hana Cho
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - KyeongJin Kang
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
33
|
Abstract
ABSTRACT
Ultraviolet (UV) light occupies the spectral range of wavelengths slightly shorter than those visible to humans. Because of its shorter wavelength, it is more energetic (and potentially more photodamaging) than ‘visible light’, and it is scattered more efficiently in air and water. Until 1990, only a few animals were recognized as being sensitive to UV light, but we now know that a great diversity, possibly even the majority, of animal species can visually detect and respond to it. Here, we discuss the history of research on biological UV photosensitivity and review current major research trends in this field. Some animals use their UV photoreceptors to control simple, innate behaviors, but most incorporate their UV receptors into their general sense of vision. They not only detect UV light but recognize it as a separate color in light fields, on natural objects or living organisms, or in signals displayed by conspecifics. UV visual pigments are based on opsins, the same family of proteins that are used to detect light in conventional photoreceptors. Despite some interesting exceptions, most animal species have a single photoreceptor class devoted to the UV. The roles of UV in vision are manifold, from guiding navigation and orientation behavior, to detecting food and potential predators, to supporting high-level tasks such as mate assessment and intraspecific communication. Our current understanding of UV vision is restricted almost entirely to two phyla: arthropods and chordates (specifically, vertebrates), so there is much comparative work to be done.
Collapse
Affiliation(s)
- Thomas W. Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Michael J. Bok
- Lund University, Department of Biology, Sölvegatan 35, Lund 223 62, Sweden
| |
Collapse
|
34
|
Devine EL, Theobald DL, Oprian DD. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates. Biochemistry 2016; 55:4864-70. [PMID: 27486845 DOI: 10.1021/acs.biochem.6b00478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The visual pigment rhodopsin is a G protein-coupled receptor that covalently binds its retinal chromophore via a Schiff base linkage to an active-site Lys residue in the seventh transmembrane helix. Although this residue is strictly conserved among all type II retinylidene proteins, we found previously that the active-site Lys in bovine rhodopsin (Lys296) can be moved to three other locations (G90K, T94K, S186K) while retaining the ability to form a pigment with retinal and to activate transducin in a light-dependent manner [ Devine et al. ( 2013 ) Proc. Natl. Acad. Sci. USA 110 , 13351 - 13355 ]. Because the active-site Lys is not functionally constrained to be in helix seven, it is possible that it could relocate within the protein, most likely via an evolutionary intermediate with two active-site Lys. Therefore, in this study we characterized potential evolutionary intermediates with two Lys in the active site. Four mutant rhodopsins were prepared in which the original Lys296 was left untouched and a second Lys residue was substituted for G90K, T94K, S186K, or F293K. All four constructs covalently bind 11-cis-retinal, form a pigment, and activate transducin in a light-dependent manner. These results demonstrate that rhodopsin can tolerate a second Lys in the retinal binding pocket and suggest that an evolutionary intermediate with two Lys could allow migration of the Schiff base Lys to a position other than the observed, highly conserved location in the seventh TM helix. From sequence-based searches, we identified two groups of natural opsins, insect UV cones and neuropsins, that contain Lys residues at two positions in their active sites and also have intriguing spectral similarities to the mutant rhodopsins studied here.
Collapse
Affiliation(s)
- Erin L Devine
- Department of Biochemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02454, United States
| | - Douglas L Theobald
- Department of Biochemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02454, United States
| | - Daniel D Oprian
- Department of Biochemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
35
|
Garbers C, Wachtler T. Wavelength Discrimination in Drosophila Suggests a Role of Rhodopsin 1 in Color Vision. PLoS One 2016; 11:e0155728. [PMID: 27258000 PMCID: PMC4892620 DOI: 10.1371/journal.pone.0155728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/03/2016] [Indexed: 11/19/2022] Open
Abstract
Among the five photoreceptor opsins in the eye of Drosophila, Rhodopsin 1 (Rh1) is expressed in the six outer photoreceptors. In a previous study that combined behavioral genetics with computational modeling, we demonstrated that flies can use the signals from Rh1 for color vision. Here, we provide an in-depth computational analysis of wildtype Drosophila wavelength discrimination specifically considering the consequences of different choices of computations in the preprocessing of the behavioral data. The results support the conclusion that Drosophila wavelength discrimination behavior can best be explained by a contribution of Rh1. These findings are corroborated by results of an information-theoretical analysis that shows that Rh1 provides information for discrimination of natural reflectance spectra.
Collapse
Affiliation(s)
- Christian Garbers
- Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany and Bernstein Center for Computational Neuroscience Munich, Munich, Germany
| | - Thomas Wachtler
- Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany and Bernstein Center for Computational Neuroscience Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
36
|
Saint-Charles A, Michard-Vanhée C, Alejevski F, Chélot E, Boivin A, Rouyer F. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light. J Comp Neurol 2016; 524:2828-44. [PMID: 26972685 DOI: 10.1002/cne.23994] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/30/2022]
Abstract
Light is the major stimulus for the synchronization of circadian clocks with day-night cycles. The light-driven entrainment of the clock that controls rest-activity rhythms in Drosophila relies on different photoreceptive molecules. Cryptochrome (CRY) is expressed in most brain clock neurons, whereas six different rhodopsins (RH) are present in the light-sensing organs. The compound eye includes outer photoreceptors that express RH1 and inner photoreceptors that each express one of the four rhodopsins RH3-RH6. RH6 is also expressed in the extraretinal Hofbauer-Buchner eyelet, whereas RH2 is only found in the ocelli. In low light, the synchronization of behavioral rhythms relies on either CRY or the canonical rhodopsin phototransduction pathway, which requires the phospholipase C-β encoded by norpA (no receptor potential A). We used norpA(P24) cry(02) double mutants that are circadianly blind in low light and restored NORPA function in each of the six types of photoreceptors, defined as expressing a particular rhodopsin. We first show that the NORPA pathway is less efficient than CRY for synchronizing rest-activity rhythms with delayed light-dark cycles but is important for proper phasing, whereas the two light-sensing pathways can mediate efficient adjustments to phase advances. Four of the six rhodopsin-expressing photoreceptors can mediate circadian entrainment, and all are more efficient for advancing than for delaying the behavioral clock. In contrast, neither RH5-expressing retinal photoreceptors nor RH2-expressing ocellar photoreceptors are sufficient to mediate synchronization through the NORPA pathway. Our results thus reveal different contributions of rhodopsin-expressing photoreceptors and suggest the existence of several circuits for rhodopsin-dependent circadian entrainment. J. Comp. Neurol. 524:2828-2844, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexandra Saint-Charles
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Christine Michard-Vanhée
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Faredin Alejevski
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Elisabeth Chélot
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Antoine Boivin
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - François Rouyer
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
37
|
Diversification of non-visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions. BMC Biol 2015; 13:73. [PMID: 26370232 PMCID: PMC4570685 DOI: 10.1186/s12915-015-0174-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/27/2015] [Indexed: 02/08/2023] Open
Abstract
Background Recent genome projects of various animals have uncovered an unexpectedly large number of opsin genes, which encode protein moieties of photoreceptor molecules, in most animals. In visual systems, the biological meanings of this diversification are clear; multiple types of visual opsins with different spectral sensitivities are responsible for color vision. However, the significance of the diversification of non-visual opsins remains uncertain, in spite of the importance of understanding the molecular mechanism and evolution of varied non-visual photoreceptions. Results Here, we investigated the diversification of the pineal photopigment parapinopsin, which serves as the UV-sensitive photopigment for the pineal wavelength discrimination in the lamprey, linking it with other pineal photoreception. Spectroscopic analyses of the recombinant pigments of the two teleost parapinopsins PP1 and PP2 revealed that PP1 is a UV-sensitive pigment, similar to lamprey parapinopsin, but PP2 is a blue-sensitive pigment, with an absorption maximum at 460–480 nm, showing the diversification of non-visual pigment with respect to spectral sensitivity. We also found that PP1 and PP2 exhibit mutually exclusive expressions in the pineal organs of three teleost species. By using transgenic zebrafish in which these parapinopsin-expressing cells are labeled, we found that PP1-expressing cells basically possess neuronal processes, which is consistent with their involvement in wavelength discrimination. Interestingly, however, PP2-expressing cells rarely possess neuronal processes, raising the possibility that PP2 could be involved in non-neural responses rather than neural responses. Furthermore, we found that PP2-expressing cells contain serotonin and aanat2, the key enzyme involved in melatonin synthesis from serotonin, whereas PP1-expressing cells do not contain either, suggesting that blue-sensitive PP2 is instead involved in light-regulation of melatonin secretion. Conclusions In this paper, we have clearly shown the different molecular properties of duplicated non-visual opsins by demonstrating the diversification of parapinopsin with respect to spectral sensitivity. Moreover, we have shown a plausible link between the diversification and its physiological impact by discovering a strong candidate for the underlying pigment in light-regulated melatonin secretion in zebrafish; the diversification could generate a new contribution of parapinopsin to pineal photoreception. Current findings could also provide an opportunity to understand the “color” preference of non-visual photoreception. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0174-9) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Henze MJ, Oakley TH. The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins. Integr Comp Biol 2015; 55:830-42. [DOI: 10.1093/icb/icv100] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
39
|
Zheng L, Farrell DM, Fulton RM, Bagg EE, Salcedo E, Manino M, Britt SG. Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning. J Biol Chem 2015. [PMID: 26195627 PMCID: PMC4571949 DOI: 10.1074/jbc.m115.677765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other invertebrate visual pigments as well. Here we describe a series of mutagenesis experiments to test this hypothesis and to also test whether other conserved acidic amino acids in Drosophila Rhodopsin 1 (Rh1) may serve as the counterion of this visual pigment. Of the 5 Glu and Asp residues replaced by Gln or Asn in our experiments, none of the mutant pigments shift the absorption of Rh1 by more than 6 nm. In combination with prior studies, these results suggest that the counterion in Drosophila Rh1 may not be located at Glu-181 as in amphioxus, or at Glu-113 as in bovine rhodopsin. Conversely, the extremely low steady state levels of the E194Q mutant pigment (bovine opsin site Glu-181), and the rhabdomere degeneration observed in flies expressing this mutant demonstrate that a negatively charged residue at this position is essential for normal rhodopsin function in vivo. This work also raises the possibility that another residue or physiologic anion may compensate for the missing counterion in the E194Q mutant.
Collapse
Affiliation(s)
- Lijun Zheng
- From the Departments of Cell and Developmental Biology
| | | | - Ruth M Fulton
- From the Departments of Cell and Developmental Biology
| | - Eve E Bagg
- From the Departments of Cell and Developmental Biology
| | | | | | - Steven G Britt
- From the Departments of Cell and Developmental Biology, Ophthalmology and Rocky Mountain Lions Eye Institute, University of Colorado, Anschutz Medical Campus, School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
40
|
Battelle BA, Kempler KE, Saraf SR, Marten CE, Dugger DR, Speiser DI, Oakley TH. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes. J Exp Biol 2015; 218:466-79. [PMID: 25524988 PMCID: PMC4317242 DOI: 10.1242/jeb.116087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates.
Collapse
Affiliation(s)
- Barbara-Anne Battelle
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Karen E Kempler
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Spencer R Saraf
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Catherine E Marten
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Donald R Dugger
- Department of Ophthalmology, University of Florida, Gainesville, FL 32080, USA
| | - Daniel I Speiser
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Todd H Oakley
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
41
|
Wong JM, Pérez-Moreno JL, Chan TY, Frank TM, Bracken-Grissom HD. Phylogenetic and transcriptomic analyses reveal the evolution of bioluminescence and light detection in marine deep-sea shrimps of the family Oplophoridae (Crustacea: Decapoda). Mol Phylogenet Evol 2014; 83:278-92. [PMID: 25482362 DOI: 10.1016/j.ympev.2014.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/17/2014] [Accepted: 11/22/2014] [Indexed: 12/17/2022]
Abstract
Bioluminescence is essential to the survival of many organisms, particularly in the deep sea where light is limited. Shrimp of the family Oplophoridae exhibit a remarkable mechanism of bioluminescence in the form of a secretion used for predatory defense. Three of the ten genera possess an additional mode of bioluminescence in the form of light-emitting organs called photophores. Phylogenetic analyses can be useful for tracing the evolution of bioluminescence, however, the few studies that have attempted to reconcile the relationships within Oplophoridae have generated trees with low-resolution. We present the most comprehensive phylogeny of Oplophoridae to date, with 90% genera coverage using seven genes (mitochondrial and nuclear) across 30 oplophorid species. We use our resulting topology to trace the evolution of bioluminescence within Oplophoridae. Previous studies have suggested that oplophorid visual systems may be tuned to differentiate the separate modes of bioluminescence. While all oplophorid shrimp possess a visual pigment sensitive to blue-green light, only those bearing photophores have an additional pigment sensitive to near-ultraviolet light. We attempt to characterize opsins, visual pigment proteins essential to light detection, in two photophore-bearing species (Systellaspis debilis and Oplophorus gracilirostris) and make inferences regarding their function and evolutionary significance.
Collapse
Affiliation(s)
- Juliet M Wong
- Florida International University, Department of Biological Sciences, 3000 NE 151st St, North Miami, FL 33181, United States.
| | - Jorge L Pérez-Moreno
- Florida International University, Department of Biological Sciences, 3000 NE 151st St, North Miami, FL 33181, United States.
| | - Tin-Yam Chan
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC.
| | - Tamara M Frank
- Nova Southeastern University, Oceanographic Center, 8000 North Ocean Drive, Dania Beach, FL 33004, United States.
| | - Heather D Bracken-Grissom
- Florida International University, Department of Biological Sciences, 3000 NE 151st St, North Miami, FL 33181, United States.
| |
Collapse
|
42
|
Frentiu FD, Yuan F, Savage WK, Bernard GD, Mullen SP, Briscoe AD. Opsin clines in butterflies suggest novel roles for insect photopigments. Mol Biol Evol 2014; 32:368-79. [PMID: 25371434 DOI: 10.1093/molbev/msu304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Opsins are ancient molecules that enable animal vision by coupling to a vitamin-derived chromophore to form light-sensitive photopigments. The primary drivers of evolutionary diversification in opsins are thought to be visual tasks related to spectral sensitivity and color vision. Typically, only a few opsin amino acid sites affect photopigment spectral sensitivity. We show that opsin genes of the North American butterfly Limenitis arthemis have diversified along a latitudinal cline, consistent with natural selection due to environmental factors. We sequenced single nucleotide (SNP) polymorphisms in the coding regions of the ultraviolet (UVRh), blue (BRh), and long-wavelength (LWRh) opsin genes from ten butterfly populations along the eastern United States and found that a majority of opsin SNPs showed significant clinal variation. Outlier detection and analysis of molecular variance indicated that many SNPs are under balancing selection and show significant population structure. This contrasts with what we found by analysing SNPs in the wingless and EF-1 alpha loci, and from neutral amplified fragment length polymorphisms, which show no evidence of significant locus-specific or genome-wide structure among populations. Using a combination of functional genetic and physiological approaches, including expression in cell culture, transgenic Drosophila, UV-visible spectroscopy, and optophysiology, we show that key BRh opsin SNPs that vary clinally have almost no effect on spectral sensitivity. Our results suggest that opsin diversification in this butterfly is more consistent with natural selection unrelated to spectral tuning. Some of the clinally varying SNPs may instead play a role in regulating opsin gene expression levels or the thermostability of the opsin protein. Lastly, we discuss the possibility that insect opsins might have important, yet-to-be elucidated, adaptive functions in mediating animal responses to abiotic factors, such as temperature or photoperiod.
Collapse
Affiliation(s)
- Francesca D Frentiu
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Furong Yuan
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Wesley K Savage
- Center for Ecology and Conservation Biology and Department of Biology, Boston University Department of Biological Sciences, University of Massachusetts, Lowell
| | - Gary D Bernard
- Department of Electrical Engineering, University of Washington, Seattle
| | - Sean P Mullen
- Center for Ecology and Conservation Biology and Department of Biology, Boston University
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| |
Collapse
|
43
|
Hering L, Mayer G. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda. Genome Biol Evol 2014; 6:2380-91. [PMID: 25193307 PMCID: PMC4202329 DOI: 10.1093/gbe/evu193] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an "arthropsin," were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage.
Collapse
Affiliation(s)
- Lars Hering
- Animal Evolution and Development, Institute of Biology, University of Leipzig, Germany
| | - Georg Mayer
- Animal Evolution and Development, Institute of Biology, University of Leipzig, Germany
| |
Collapse
|
44
|
Bok M, Porter M, Place A, Cronin T. Biological Sunscreens Tune Polychromatic Ultraviolet Vision in Mantis Shrimp. Curr Biol 2014; 24:1636-1642. [DOI: 10.1016/j.cub.2014.05.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
45
|
Battelle BA, Kempler KE, Harrison A, Dugger DR, Payne R. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes. ACTA ACUST UNITED AC 2014; 217:3133-45. [PMID: 24948643 DOI: 10.1242/jeb.107383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors.
Collapse
Affiliation(s)
- Barbara-Anne Battelle
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA Departments of Neuroscience and Biology, University of Florida, Gainesville, FL 32611, USA
| | - Karen E Kempler
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA Departments of Neuroscience and Biology, University of Florida, Gainesville, FL 32611, USA
| | - Alexandra Harrison
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA Departments of Neuroscience and Biology, University of Florida, Gainesville, FL 32611, USA
| | - Donald R Dugger
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Richard Payne
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
46
|
Jellies J. Detection and selective avoidance of near ultraviolet radiation by an aquatic annelid: the medicinal leech. J Exp Biol 2014; 217:974-85. [PMID: 24265432 PMCID: PMC3951364 DOI: 10.1242/jeb.094243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/12/2013] [Indexed: 01/12/2023]
Abstract
Medicinal leeches are aquatic predators that inhabit surface waters during daylight and also leave the water where they might be exposed to less screened light. Whereas the leech visual system has been shown to respond to visible light, leeches in the genus Hirudo do not appear to be as negatively phototactic as one might expect in order to avoid potential ultraviolet radiation (UVR)-induced damage. I used high intensity light emitting diodes to test the hypothesis that leeches could detect and specifically avoid near UVR (395-405 nm). Groups of unfed juvenile leeches exhibited a robust negative phototaxis to UVR, but had no behavioral response to blue or red and only a slight negative phototaxis to green and white light. Individual leeches also exhibited a vigorous negative phototaxis to UVR; responding in 100% of trials compared with modest negative responses to visible light (responding in ~8% of the trials). The responses in fed and unfed leeches were comparable for UVR stimuli. The responses depended upon the stimulus site: leeches shortened away from UV light to the head, and extended away from UV light to the tail. Electrophysiological nerve recordings showed that the cephalic eyes responded vigorously to UVR. Additionally, individual leech photoreceptors also showed strong responses to UVR, and a higher-order neuron associated with shortening and rapid behavioral responses, the S-cell, was activated by UVR, on both the head and tail. These results demonstrate that the leech can detect UVR and is able to discriminate behaviorally between UVR and visible light.
Collapse
Affiliation(s)
- John Jellies
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| |
Collapse
|
47
|
Hu X, Leming MT, Whaley MA, O'Tousa JE. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes. ACTA ACUST UNITED AC 2013; 217:1003-8. [PMID: 24311804 DOI: 10.1242/jeb.096347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differential rhodopsin gene expression within specialized R7 photoreceptor cells divides the retinas of Aedes aegypti and Anopheles gambiae mosquitoes into distinct domains. The two species express the rhodopsin orthologs Aaop8 and Agop8, respectively, in a large subset of these R7 photoreceptors that function as ultraviolet receptors. We show here that a divergent subfamily of mosquito rhodopsins, Aaop10 and Agop10, is coexpressed in these R7 photoreceptors. The properties of the A. aegypti Aaop8 and Aaop10 rhodopsins were analyzed by creating transgenic Drosophila expressing these rhodopsins. Electroretinogram recordings, and spectral analysis of head extracts, obtained from the Aaop8 strain confirmed that Aaop8 is an ultraviolet-sensitive rhodopsin. Aaop10 was poorly expressed and capable of eliciting only small and slow light responses in Drosophila photoreceptors, and electroretinogram analysis suggested that it is a long-wavelength rhodopsin with a maximal sensitivity near 500 nm. Thus, coexpression of Aaop10 rhodopsin with Aaop8 rhodopsin has the potential to modify the spectral properties of mosquito ultraviolet receptors. Retention of Op10 rhodopsin family members in the genomes of Drosophila species suggests that this rhodopsin family may play a conserved role in insect vision.
Collapse
Affiliation(s)
- Xiaobang Hu
- Department of Biological Sciences and the ECK Institute for Global Health, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
48
|
Zopf LM, Schmid A, Fredman D, Eriksson BJ. Spectral sensitivity of the ctenid spider Cupiennius salei. ACTA ACUST UNITED AC 2013; 216:4103-8. [PMID: 23948480 DOI: 10.1242/jeb.086256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spectral sensitivity of adult male Cupiennius salei Keys, a nocturnal hunting spider, was studied in a behavioural test. As known from earlier behavioural tests, C. salei will walk towards a black target presented in front of a white background. In this study, a black target (size 42×70 cm) was presented in a white arena illuminated by monochromatic light in the range 365-695 nm using 19 monochromatic filters (half-width in the range 6-10 nm). In the first trial, the transmission of the optical filters was between 40% and 80%. In the second trial, the transmission was reduced to 5% using a neutral density filter. At the high intensity, the spiders showed a spectral sensitivity in the range 380-670 nm. In the second trial, the animals only showed directed walks if the illumination was in the range 449-599 nm, indicating a lower sensitivity at the margins of the spectral sensitivity. In previous intracellular recordings, the measured spectral sensitivity was between 320 and 620 nm. Interestingly, these results do not completely match the behaviourally tested spectral sensitivity of the photoreceptors, where the sensitivity range is shifted to longer wavelengths. In order to investigate the molecular background of spectral sensitivity, we searched for opsin genes in C. salei. We found three visual opsins that correspond to UV and middle to long wavelength sensitive opsins as described for jumping spiders.
Collapse
Affiliation(s)
- Lydia M Zopf
- Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
49
|
|
50
|
Hering L, Henze MJ, Kohler M, Kelber A, Bleidorn C, Leschke M, Nickel B, Meyer M, Kircher M, Sunnucks P, Mayer G. Opsins in Onychophora (Velvet Worms) Suggest a Single Origin and Subsequent Diversification of Visual Pigments in Arthropods. Mol Biol Evol 2012; 29:3451-8. [DOI: 10.1093/molbev/mss148] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|