1
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. PLoS One 2024; 19:e0301063. [PMID: 38995900 PMCID: PMC11244776 DOI: 10.1371/journal.pone.0301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vernon R. J. Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
2
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584540. [PMID: 38558974 PMCID: PMC10979978 DOI: 10.1101/2024.03.11.584540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme CaMKII plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on runaway synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| |
Collapse
|
3
|
Li J, Veeraraghavan P, Young SM. Ca V 2.1 α 1 subunit motifs that control presynaptic Ca V 2.1 subtype abundance are distinct from Ca V 2.1 preference. J Physiol 2024; 602:485-506. [PMID: 38155373 PMCID: PMC10872416 DOI: 10.1113/jp284957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Presynaptic voltage-gated Ca2+ channel (CaV ) subtype abundance at mammalian synapses regulates synaptic transmission in health and disease. In the mammalian central nervous system (CNS), most presynaptic terminals are CaV 2.1 dominant with a developmental reduction in CaV 2.2 and CaV 2.3 levels, and CaV 2 subtype levels are altered in various diseases. However, the molecular mechanisms controlling presynaptic CaV 2 subtype levels are largely unsolved. Because the CaV 2 α1 subunit cytoplasmic regions contain varying levels of sequence conservation, these regions are proposed to control presynaptic CaV 2 subtype preference and abundance. To investigate the potential role of these regions, we expressed chimeric CaV 2.1 α1 subunits containing swapped motifs with the CaV 2.2 and CaV 2.3 α1 subunit on a CaV 2.1/CaV 2.2 null background at the calyx of Held presynaptic terminals. We found that expression of CaV 2.1 α1 subunit chimeras containing the CaV 2.3 loop II-III region or cytoplasmic C-terminus (CT) resulted in a large reduction of presynaptic Ca2+ currents compared to the CaV 2.1 α1 subunit. However, the Ca2+ current sensitivity to the CaV 2.1 blocker agatoxin-IVA was the same between the chimeras and the CaV 2.1 α1 subunit. Additionally, we found no reduction in presynaptic Ca2+ currents with CaV 2.1/2.2 cytoplasmic CT chimeras. We conclude that the motifs in the CaV 2.1 loop II-III and CT do not individually regulate CaV 2.1 preference, although these motifs control CaV 2.1 levels and the CaV 2.3 CT contains motifs that negatively regulate presynaptic CaV 2.3 levels. We propose that the motifs controlling presynaptic CaV 2.1 preference are distinct from those regulating CaV 2.1 levels and may act synergistically to impact pathways regulating CaV 2.1 preference and abundance. KEY POINTS: Presynaptic CaV 2 subtype abundance regulates neuronal circuit properties, although the mechanisms regulating presynaptic CaV 2 subtype abundance and preference remain enigmatic. The CaV α1 subunit determines subtype and contains multiple motifs implicated in regulating presynaptic subtype abundance and preference. The CaV 2.1 α1 subunit domain II-III loop and cytoplasmic C-terminus are positive regulators of presynaptic CaV 2.1 abundance but do not regulate preference. The CaV 2.3 α1 subunit cytoplasmic C-terminus negatively regulates presynaptic CaV 2 subtype abundance but not preference, whereas the CaV 2.2 α1 subunit cytoplasmic C-terminus is not a key regulator of presynaptic CaV 2 subtype abundance or preference. The CaV 2 α1 subunit motifs determining the presynaptic CaV 2 preference are distinct from abundance.
Collapse
Affiliation(s)
- Jianing Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
- Cell Developmental Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | | | - Samuel M. Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
- Department of Otolaryngology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Niere F, Uneri A, McArdle CJ, Deng Z, Egido-Betancourt HX, Cacheaux LP, Namjoshi SV, Taylor WC, Wang X, Barth SH, Reynoldson C, Penaranda J, Stierer MP, Heaney CF, Craft S, Keene CD, Ma T, Raab-Graham KF. Aberrant DJ-1 expression underlies L-type calcium channel hypoactivity in dendrites in tuberous sclerosis complex and Alzheimer's disease. Proc Natl Acad Sci U S A 2023; 120:e2301534120. [PMID: 37903257 PMCID: PMC10636362 DOI: 10.1073/pnas.2301534120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.
Collapse
Affiliation(s)
- Farr Niere
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC27411
| | - Ayse Uneri
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Colin J. McArdle
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Zhiyong Deng
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Hailey X. Egido-Betancourt
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Luisa P. Cacheaux
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Sanjeev V. Namjoshi
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - William C. Taylor
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Xin Wang
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Samuel H. Barth
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Cameron Reynoldson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Juan Penaranda
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Michael P. Stierer
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Chelcie F. Heaney
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Suzanne Craft
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC27157
- Wake Forest Alzheimer’s Disease Research Center, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA98104
| | - Tao Ma
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| |
Collapse
|
5
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
6
|
Adinolfi A, Di Sante G, Rivignani Vaccari L, Tredicine M, Ria F, Bonvissuto D, Corvino V, Sette C, Geloso MC. Regionally restricted modulation of Sam68 expression and Arhgef9 alternative splicing in the hippocampus of a murine model of multiple sclerosis. Front Mol Neurosci 2023; 15:1073627. [PMID: 36710925 PMCID: PMC9878567 DOI: 10.3389/fnmol.2022.1073627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) and its preclinical models are characterized by marked changes in neuroplasticity, including excitatory/inhibitory imbalance and synaptic dysfunction that are believed to underlie the progressive cognitive impairment (CI), which represents a significant clinical hallmark of the disease. In this study, we investigated several parameters of neuroplasticity in the hippocampus of the experimental autoimmune encephalomyelitis (EAE) SJL/J mouse model, characterized by rostral inflammatory and demyelinating lesions similar to Relapsing-Remitting MS. By combining morphological and molecular analyses, we found that the hippocampus undergoes extensive inflammation in EAE-mice, more pronounced in the CA3 and dentate gyrus (DG) subfields than in the CA1, associated with changes in GABAergic circuitry, as indicated by the increased expression of the interneuron marker Parvalbumin selectively in CA3. By laser-microdissection, we investigated the impact of EAE on the alternative splicing of Arhgef9, a gene encoding a post-synaptic protein playing an essential role in GABAergic synapses and whose mutations have been related to CI and epilepsy. Our results indicate that EAE induces a specific increase in inclusion of the alternative exon 11a only in the CA3 and DG subfields, in line with the higher local levels of inflammation. Consistently, we found a region-specific downregulation of Sam68, a splicing-factor that represses this splicing event. Collectively, our findings confirm a regionalized distribution of inflammation in the hippocampus of EAE-mice. Moreover, since neuronal circuit rearrangement and dynamic remodeling of structural components of the synapse are key processes that contribute to neuroplasticity, our study suggests potential new molecular players involved in EAE-induced hippocampal dysfunction.
Collapse
Affiliation(s)
- Annalisa Adinolfi
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Di Sante
- Section of Human, Clinic and Forensic Anatomy, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Rivignani Vaccari
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Tredicine
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Ria
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Corvino
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy,*Correspondence: Claudio Sette, ✉
| | - Maria Concetta Geloso
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,Maria Concetta Geloso, ✉
| |
Collapse
|
7
|
Martins HC, Gilardi C, Sungur AÖ, Winterer J, Pelzl MA, Bicker S, Gross F, Kisko TM, Malikowska‐Racia N, Braun MD, Brosch K, Nenadic I, Stein F, Meinert S, Schwarting RKW, Dannlowski U, Kircher T, Wöhr M, Schratt G. Bipolar‐associated
miR
‐499‐5p controls neuroplasticity by downregulating the Cav1.2 subunit
CACNB2. EMBO Rep 2022; 23:e54420. [PMID: 35969184 PMCID: PMC9535808 DOI: 10.15252/embr.202154420] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Bipolar disorder (BD) is a chronic mood disorder characterized by manic and depressive episodes. Dysregulation of neuroplasticity and calcium homeostasis are frequently observed in BD patients, but the underlying molecular mechanisms are largely unknown. Here, we show that miR‐499‐5p regulates dendritogenesis and cognitive function by downregulating the BD risk gene CACNB2. miR‐499‐5p expression is increased in peripheral blood of BD patients, as well as in the hippocampus of rats which underwent juvenile social isolation. In rat hippocampal neurons, miR‐499‐5p impairs dendritogenesis and reduces surface expression and activity of the L‐type calcium channel Cav1.2. We further identified CACNB2, which encodes a regulatory β‐subunit of Cav1.2, as a direct functional target of miR‐499‐5p in neurons. miR‐499‐5p overexpression in the hippocampus in vivo induces short‐term memory impairments selectively in rats haploinsufficient for the Cav1.2 pore forming subunit Cacna1c. In humans, miR‐499‐5p expression is negatively associated with gray matter volumes of the left superior temporal gyrus, a region implicated in auditory and emotional processing. We propose that stress‐induced miR‐499‐5p overexpression contributes to dendritic impairments, deregulated calcium homeostasis, and neurocognitive dysfunction in BD.
Collapse
Affiliation(s)
- Helena C Martins
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Carlotta Gilardi
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - A Özge Sungur
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Michael A Pelzl
- Institute for Physiological Chemistry, Biochemical‐Pharmacological Center Marburg Philipps‐University of Marburg Marburg Germany
- Psychiatry and Psychotherapy University of Tübingen Tübingen Germany
| | - Silvia Bicker
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Fridolin Gross
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Theresa M Kisko
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
| | - Natalia Malikowska‐Racia
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences Krakow Poland
| | - Moria D Braun
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry University of Münster Münster Germany
| | - Rainer K W Schwarting
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry University of Münster Münster Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Markus Wöhr
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences KU Leuven Leuven Belgium
- Leuven Brain Institute KU Leuven Leuven Belgium
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| |
Collapse
|
8
|
Klomp A, Omichi R, Iwasa Y, Smith RJ, Usachev YM, Russo AF, Narayanan NS, Lee A. The voltage-gated Ca2+ channel subunit α2δ-4 regulates locomotor behavior and sensorimotor gating in mice. PLoS One 2022; 17:e0263197. [PMID: 35353835 PMCID: PMC8967030 DOI: 10.1371/journal.pone.0263197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 01/06/2023] Open
Abstract
Voltage-gated Ca2+ channels are critical for the development and mature function of the nervous system. Variants in the CACNA2D4 gene encoding the α2δ-4 auxiliary subunit of these channels are associated with neuropsychiatric and neurodevelopmental disorders. α2δ-4 is prominently expressed in the retina and is crucial for vision, but extra-retinal functions of α2δ-4 have not been investigated. Here, we sought to fill this gap by analyzing the behavioral phenotypes of α2δ-4 knockout (KO) mice. α2δ-4 KO mice (both males and females) exhibited significant impairments in prepulse inhibition that were unlikely to result from the modestly elevated auditory brainstem response thresholds. Whereas α2δ-4 KO mice of both sexes were hyperactive in various assays, only females showed impaired motor coordination in the rotarod assay. α2δ-4 KO mice exhibited anxiolytic and anti-depressive behaviors in the elevated plus maze and tail suspension tests, respectively. Our results reveal an unexpected role for α2δ-4 in sensorimotor gating and motor function and identify α2δ-4 KO mice as a novel model for studying the pathophysiology associated with CACNA2D4 variants.
Collapse
Affiliation(s)
- Annette Klomp
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryotaro Omichi
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Yoichiro Iwasa
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Richard J. Smith
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Yuriy M. Usachev
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew F. Russo
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
| | - Nandakumar S. Narayanan
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
| | - Amy Lee
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
9
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
10
|
Regulation of neuronal excitation-transcription coupling by Kv2.1-induced clustering of somatic L-type Ca 2+ channels at ER-PM junctions. Proc Natl Acad Sci U S A 2021; 118:2110094118. [PMID: 34750263 PMCID: PMC8609631 DOI: 10.1073/pnas.2110094118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
In hippocampal neurons, gene expression is triggered by electrical activity and Ca2+ entry via L-type Cav1.2 channels in a process called excitation–transcription coupling. We identified a domain on the voltage-gated K+ channel Kv2.1 that promotes the clustering of L-type Cav1.2 channels at endoplasmic reticulum–plasma membrane junctions in the soma of neurons. Importantly, we discovered by disrupting this domain that the Kv2.1-mediated clustering of Cav1.2 at this somatic microdomain is critical for depolarization-induced excitation–transcription coupling. In mammalian brain neurons, membrane depolarization leads to voltage-gated Ca2+ channel-mediated Ca2+ influx that triggers diverse cellular responses, including gene expression, in a process termed excitation–transcription coupling. Neuronal L-type Ca2+ channels, which have prominent populations on the soma and distal dendrites of hippocampal neurons, play a privileged role in excitation–transcription coupling. The voltage-gated K+ channel Kv2.1 organizes signaling complexes containing the L-type Ca2+ channel Cav1.2 at somatic endoplasmic reticulum–plasma membrane junctions. This leads to enhanced clustering of Cav1.2 channels, increasing their activity. However, the downstream consequences of the Kv2.1-mediated regulation of Cav1.2 localization and function on excitation–transcription coupling are not known. Here, we have identified a region between residues 478 to 486 of Kv2.1’s C terminus that mediates the Kv2.1-dependent clustering of Cav1.2. By disrupting this Ca2+ channel association domain with either mutations or with a cell-penetrating interfering peptide, we blocked the Kv2.1-mediated clustering of Cav1.2 at endoplasmic reticulum–plasma membrane junctions and the subsequent enhancement of its channel activity and somatic Ca2+ signals without affecting the clustering of Kv2.1. These interventions abolished the depolarization-induced and L-type Ca2+ channel-dependent phosphorylation of the transcription factor CREB and the subsequent expression of c-Fos in hippocampal neurons. Our findings support a model whereby the Kv2.1-Ca2+ channel association domain-mediated clustering of Cav1.2 channels imparts a mechanism to control somatic Ca2+ signals that couple neuronal excitation to gene expression.
Collapse
|
11
|
Hagan R, Rex E, Woody D, Milewski M, Glaza T, Maher MP, Liu Y. Development of phenotypic assays for identifying novel blockers of L-type calcium channels in neurons. Sci Rep 2021; 11:456. [PMID: 33432098 PMCID: PMC7801380 DOI: 10.1038/s41598-020-80692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
L-type calcium channels (LTCCs) are highly expressed in the heart and brain and are critical for cardiac and neuronal functions. LTCC-blocking drugs have a long and successful record in the clinic for treating cardiovascular disorders. In contrast, establishment of their efficacy for indications of the central nervous system remains challenging given the tendency of existing LTCC drugs being functionally and mechanistically more selective for peripheral tissues. LTCCs in vivo are large macromolecular complexes consisting of a pore-forming subunit and other modulatory proteins, some of which may be neuro-specific and potentially harbor mechanisms for neuronal selectivity. To exploit the possibility of identifying mechanistically novel and/or neuro-selective blockers, we developed two phenotypic assays—a calcium flux-based primary screening assay and a patch clamp secondary assay, using rat primary cortical cultures. We screened a library comprised of 1278 known bioactive agents and successfully identified a majority of the potent LTCC-blocking drugs in the library. Significantly, we identified a previously unrecognized LTCC blocker with a novel mechanism, which was corroborated by patch clamp and binding studies. As such, these phenotypic assays are robust and represent an important step towards identifying mechanistically novel and neuro-selective LTCC blockers.
Collapse
Affiliation(s)
- Rebecca Hagan
- Neuroscience Discovery, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Elizabeth Rex
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - David Woody
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Monika Milewski
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Thomas Glaza
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Michael P Maher
- Neuroscience Discovery, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Yi Liu
- Neuroscience Discovery, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| |
Collapse
|
12
|
Kyrke-Smith M, Logan B, Abraham WC, Williams JM. Bilateral histone deacetylase 1 and 2 activity and enrichment at unique genes following induction of long-term potentiation in vivo. Hippocampus 2020; 31:389-407. [PMID: 33378103 DOI: 10.1002/hipo.23297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 11/10/2022]
Abstract
Long-term potentiation (LTP) is a synaptic plasticity mechanism critical to long-term memory. LTP induced in vivo is characterized by altered transcriptional activity, including a period of upregulation of gene expression which is followed by a later dominant downregulation. This temporal shift to downregulated gene expression is predicted to be partly mediated by epigenetic inhibitors of gene expression, such as histone deacetylases (HDACs). Further, pharmacological inhibitors of HDAC activity have previously been shown to enhance LTP persistence in vitro. To explore the contribution of HDACs to the persistence of LTP in vivo, we examined HDAC1 and HDAC2 activity over a 24 hr period following unilateral LTP induction in the dentate gyrus of freely moving rats. Surprisingly, we found significant changes in HDAC1 and HDAC2 activity in both the stimulated as well as the unstimulated hemispheres, with the largest increase in activity occurring bilaterally, 20 min after LTP stimulation. During this time point of heightened activity, chromatin immunoprecipitation assays showed that both HDAC1 and HDAC2 were enriched at distinct sets of genes within each hemispheres. Further, the HDAC inhibitor Trichostatin A enhanced an intermediate phase of LTP lasting days, which has not previously been associated with altered transcription. The inhibitor had no effect on the persistence of LTP lasting weeks. Together, these data suggest that HDAC activity early after the induction of LTP may negatively regulate plasticity-related gene expression that is involved in the initial stabilization of LTP, but not its long-term maintenance.
Collapse
Affiliation(s)
- Madeleine Kyrke-Smith
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Barbara Logan
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Kim CH, Kim S, Kim SH, Roh J, Jin H, Song B. Role of densin-180 in mouse ventral hippocampal neurons in 24-hr retention of contextual fear conditioning. Brain Behav 2020; 10:e01891. [PMID: 33064361 PMCID: PMC7749528 DOI: 10.1002/brb3.1891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Densin-180 interacts with postsynaptic molecules including calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) but its function in learning and memory process has been unclear. METHODS To investigate a role of hippocampal densin-180 in contextual fear conditioning (CFC) learning and memory processes, knockdown (KD) of densin-180 in hippocampal subareas was applied. RESULTS First, ventral hippocampal (vHC) densin-180 KD impaired single-trial CFC (stCFC) memory one day later. stCFC caused freezing behaviors to reach the peak about one hour later in both control and KD mice, but then freezing was disappeared at 2 hr postshock in KD mice. Second, stCFC caused an immediate and transient reduction of vHC densin-180 in control mice, which was not observed in KD mice. Third, stCFC caused phosphorylated-T286 (p-T286) CaMKIIα to change similarly to densin-180, but p-T305 CaMKIIα was increased 1 hr later in control mice. In KD mice, these effects were gone. Moreover, both basal levels of p-T286 and p-T305 CaMKIIα were reduced without change in total CaMKIIα in KD mice. Fourth, we found double-trial CFC (dtCFC) memory acquisition and retrieval kinetics were different from those of stCFC in vHC KD mice. In addition, densin-180 in dorsal hippocampal area appeared to play its unique role during the very early retrieval period of both CFC memories. CONCLUSION This study shows that vHC densin-180 is necessary for stCFC memory formation and retrieval and suggests that both densin-180 and p-T305 CaMKIIα at 1 ~ 2 hr postshock are important for stCFC memory formation. We conclude that roles of hippocampal neuronal densin-180 in CFC are temporally dynamic and differential depending on the pattern of conditioning stimuli and its location along the dorsoventral axis of hippocampal formation.
Collapse
Affiliation(s)
- Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Seoyul Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Su-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Jongtae Roh
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Harin Jin
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Bokyung Song
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| |
Collapse
|
14
|
Dickerson MT, Dadi PK, Butterworth RB, Nakhe AY, Graff SM, Zaborska KE, Schaub CM, Jacobson DA. Tetraspanin-7 regulation of L-type voltage-dependent calcium channels controls pancreatic β-cell insulin secretion. J Physiol 2020; 598:4887-4905. [PMID: 32790176 PMCID: PMC8095317 DOI: 10.1113/jp279941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Tetraspanin (TSPAN) proteins regulate many biological processes, including intracellular calcium (Ca2+ ) handling. TSPAN-7 is enriched in pancreatic islet cells; however, the function of islet TSPAN-7 has not been identified. Here, we characterize how β-cell TSPAN-7 regulates Ca2+ handling and hormone secretion. We find that TSPAN-7 reduces β-cell glucose-stimulated Ca2+ entry, slows Ca2+ oscillation frequency and decreases glucose-stimulated insulin secretion. TSPAN-7 controls β-cell function through a direct interaction with L-type voltage-dependent Ca2+ channels (CaV 1.2 and CaV 1.3), which reduces channel Ca2+ conductance. TSPAN-7 slows activation of CaV 1.2 and accelerates recovery from voltage-dependent inactivation; TSPAN-7 also slows CaV 1.3 inactivation kinetics. These findings strongly implicate TSPAN-7 as a key regulator in determining the set-point of glucose-stimulated Ca2+ influx and insulin secretion. ABSTRACT Glucose-stimulated insulin secretion (GSIS) is regulated by calcium (Ca2+ ) entry into pancreatic β-cells through voltage-dependent Ca2+ (CaV ) channels. Tetraspanin (TSPAN) transmembrane proteins control Ca2+ handling, and thus they may also modulate GSIS. TSPAN-7 is the most abundant islet TSPAN and immunostaining of mouse and human pancreatic slices shows that TSPAN-7 is highly expressed in β- and α-cells; however, the function of islet TSPAN-7 has not been determined. Here, we show that TSPAN-7 knockdown (KD) increases glucose-stimulated Ca2+ influx into mouse and human β-cells. Additionally, mouse β-cell Ca2+ oscillation frequency was accelerated by TSPAN-7 KD. Because TSPAN-7 KD also enhanced Ca2+ entry when membrane potential was clamped with depolarization, the effect of TSPAN-7 on CaV channel activity was examined. TSPAN-7 KD enhanced L-type CaV currents in mouse and human β-cells. Conversely, heterologous expression of TSPAN-7 with CaV 1.2 and CaV 1.3 L-type CaV channels decreased CaV currents and reduced Ca2+ influx through both channels. This was presumably the result of a direct interaction of TSPAN-7 and L-type CaV channels because TSPAN-7 coimmunoprecipitated with both CaV 1.2 and CaV 1.3 from primary human β-cells and from a heterologous expression system. Finally, TSPAN-7 KD in human β-cells increased basal (5.6 mM glucose) and stimulated (45 mM KCl + 14 mM glucose) insulin secretion. These findings strongly suggest that TSPAN-7 modulation of β-cell L-type CaV channels is a key determinant of β-cell glucose-stimulated Ca2+ entry and thus the set-point of GSIS.
Collapse
Affiliation(s)
- Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Regan B Butterworth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Sarah M Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Charles M Schaub
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| |
Collapse
|
15
|
Wilkinson B, Coba MP. Molecular architecture of postsynaptic Interactomes. Cell Signal 2020; 76:109782. [PMID: 32941943 DOI: 10.1016/j.cellsig.2020.109782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/02/2023]
Abstract
The postsynaptic density (PSD) plays an essential role in the organization of the synaptic signaling machinery. It contains a set of core scaffolding proteins that provide the backbone to PSD protein-protein interaction networks (PINs). These core scaffolding proteins can be seen as three principal layers classified by protein family, with DLG proteins being at the top, SHANKs along the bottom, and DLGAPs connecting the two layers. Early studies utilizing yeast two hybrid enabled the identification of direct protein-protein interactions (PPIs) within the multiple layers of scaffolding proteins. More recently, mass-spectrometry has allowed the characterization of whole interactomes within the PSD. This expansion of knowledge has further solidified the centrality of core scaffolding family members within synaptic PINs and provided context for their role in neuronal development and synaptic function. Here, we discuss the scaffolding machinery of the PSD, their essential functions in the organization of synaptic PINs, along with their relationship to neuronal processes found to be impaired in complex brain disorders.
Collapse
Affiliation(s)
- Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
16
|
Wang S, Cortes CJ. Interactions with PDZ proteins diversify voltage-gated calcium channel signaling. J Neurosci Res 2020; 99:332-348. [PMID: 32476168 DOI: 10.1002/jnr.24650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 11/12/2022]
Abstract
Voltage-gated Ca2+ (CaV ) channels are crucial for neuronal excitability and synaptic transmission upon depolarization. Their properties in vivo are modulated by their interaction with a variety of scaffolding proteins. Such interactions can influence the function and localization of CaV channels, as well as their coupling to intracellular second messengers and regulatory pathways, thus amplifying their signaling potential. Among these scaffolding proteins, a subset of PDZ (postsynaptic density-95, Drosophila discs-large, and zona occludens)-domain containing proteins play diverse roles in modulating CaV channel properties. At the presynaptic terminal, PDZ proteins enrich CaV channels in the active zone, enabling neurotransmitter release by maintaining a tight and vital link between channels and vesicles. In the postsynaptic density, these interactions are essential in regulating dendritic spine morphology and postsynaptic signaling cascades. In this review, we highlight the studies that demonstrate dynamic regulations of neuronal CaV channels by PDZ proteins. We discuss the role of PDZ proteins in controlling channel activity, regulating channel cell surface density, and influencing channel-mediated downstream signaling events. We highlight the importance of PDZ protein regulations of CaV channels and evaluate the link between this regulatory effect and human disease.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Cell Biology, Duke University, Durham, NC, USA.,Department of Neurology, Duke University, Durham, NC, USA
| | - Constanza J Cortes
- Department of Neurology, Duke University, Durham, NC, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins. Pflugers Arch 2020; 472:653-667. [PMID: 32435990 DOI: 10.1007/s00424-020-02398-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Voltage-gated calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alterations of calcium channel function have been implicated in multiple cardiovascular diseases, such as hypertension, atrial fibrillation, and long QT syndrome. Post-translational modifications do expand cardiovascular calcium channel structure and function to affect processes such as channel trafficking or polyubiquitination by two E3 ubiquitin ligases, Ret finger protein 2 (Rfp2) or murine double minute 2 protein (Mdm2). Additionally, biophysical property such as Ca2+-dependent inactivation (CDI) could be altered through binding of calmodulin, or channel activity could be modulated via S-nitrosylation by nitric oxide and phosphorylation by protein kinases or by interacting protein partners, such as galectin-1 and Rem. Understanding how cardiovascular calcium channel function is post-translationally remodeled under distinctive disease conditions will provide better information about calcium channel-related disease mechanisms and improve the development of more selective therapeutic agents for cardiovascular diseases.
Collapse
|
18
|
Summers KM, Bush SJ, Wu C, Su AI, Muriuki C, Clark EL, Finlayson HA, Eory L, Waddell LA, Talbot R, Archibald AL, Hume DA. Functional Annotation of the Transcriptome of the Pig, Sus scrofa, Based Upon Network Analysis of an RNAseq Transcriptional Atlas. Front Genet 2020; 10:1355. [PMID: 32117413 PMCID: PMC7034361 DOI: 10.3389/fgene.2019.01355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
The domestic pig (Sus scrofa) is both an economically important livestock species and a model for biomedical research. Two highly contiguous pig reference genomes have recently been released. To support functional annotation of the pig genomes and comparative analysis with large human transcriptomic data sets, we aimed to create a pig gene expression atlas. To achieve this objective, we extended a previous approach developed for the chicken. We downloaded RNAseq data sets from public repositories, down-sampled to a common depth, and quantified expression against a reference transcriptome using the mRNA quantitation tool, Kallisto. We then used the network analysis tool Graphia to identify clusters of transcripts that were coexpressed across the merged data set. Consistent with the principle of guilt-by-association, we identified coexpression clusters that were highly tissue or cell-type restricted and contained transcription factors that have previously been implicated in lineage determination. Other clusters were enriched for transcripts associated with biological processes, such as the cell cycle and oxidative phosphorylation. The same approach was used to identify coexpression clusters within RNAseq data from multiple individual liver and brain samples, highlighting cell type, process, and region-specific gene expression. Evidence of conserved expression can add confidence to assignment of orthology between pig and human genes. Many transcripts currently identified as novel genes with ENSSSCG or LOC IDs were found to be coexpressed with annotated neighbouring transcripts in the same orientation, indicating they may be products of the same transcriptional unit. The meta-analytic approach to utilising public RNAseq data is extendable to include new data sets and new species and provides a framework to support the Functional Annotation of Animals Genomes (FAANG) initiative.
Collapse
Affiliation(s)
- Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Chunlei Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Andrew I. Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Charity Muriuki
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Emily L. Clark
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | | | - Lel Eory
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Lindsey A. Waddell
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Richard Talbot
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Alan L. Archibald
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
19
|
Vierra NC, Kirmiz M, van der List D, Santana LF, Trimmer JS. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. eLife 2019; 8:49953. [PMID: 31663850 PMCID: PMC6839919 DOI: 10.7554/elife.49953] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The voltage-gated K+ channel Kv2.1 serves a major structural role in the soma and proximal dendrites of mammalian brain neurons, tethering the plasma membrane (PM) to endoplasmic reticulum (ER). Although Kv2.1 clustering at neuronal ER-PM junctions (EPJs) is tightly regulated and highly conserved, its function remains unclear. By identifying and evaluating proteins in close spatial proximity to Kv2.1-containing EPJs, we discovered that a significant role of Kv2.1 at EPJs is to promote the clustering and functional coupling of PM L-type Ca2+ channels (LTCCs) to ryanodine receptor (RyR) ER Ca2+ release channels. Kv2.1 clustering also unexpectedly enhanced LTCC opening at polarized membrane potentials. This enabled Kv2.1-LTCC-RyR triads to generate localized Ca2+ release events (i.e., Ca2+ sparks) independently of action potentials. Together, these findings uncover a novel mode of LTCC regulation and establish a unique mechanism whereby Kv2.1-associated EPJs provide a molecular platform for localized somatodendritic Ca2+ signals in mammalian brain neurons.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Deborah van der List
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| |
Collapse
|
20
|
Chong CH, Li Q, Mak PHS, Ng CCP, Leung EHW, Tan VH, Chan AKW, McAlonan G, Chan SY. Lrrc7 mutant mice model developmental emotional dysregulation that can be alleviated by mGluR5 allosteric modulation. Transl Psychiatry 2019; 9:244. [PMID: 31582721 PMCID: PMC6776540 DOI: 10.1038/s41398-019-0580-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/30/2023] Open
Abstract
LRRC7 has been identified as a candidate gene for severe childhood emotional dysregulation. Direct experimental evidence for a role of LRRC7 in the disease is needed, as is a better understanding of its impact on neuronal structure and signaling, and hence potential treatment targets. Here, we generated and analyzed an Lrrc7 mutant mouse line. Consistent with a critical role of LRRC7 in emotional regulation, mutant mice had inappropriate juvenile aggressive behavior and significant anxiety-like behavior and social dysfunction in adulthood. The pivotal role of mGluR5 signaling was demonstrated by rescue of behavioral defects with augmentation of mGluR5 receptor activity by 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB). Intra-peritoneal injection of CDPPB alleviated abnormal juvenile behavior, as well as anxiety-like behavior and hypersociability at adulthood. Furthermore, mutant primary neurons had impaired neurite outgrowth which was rescued by CDPPB treatment. In conclusion, Lrrc7 mutant mice provide a valuable tool to model childhood emotional dysregulation and persistent mental health comorbidities. Moreover, our data highlight an important role of LRRC7 in mGluR5 signaling, which is a potential new treatment target for anxiety and social dysfunction.
Collapse
Affiliation(s)
- Chi Ho Chong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Li
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Priscilla Hoi Shan Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cypress Chun Pong Ng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eva Hin Wa Leung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vicky Huiqi Tan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anthony Kin Wang Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Grainne McAlonan
- The Sackler Centre for Translational Neurodevelopment and The Department of Forensic and Neurodevelopmental Sciences, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Witte H, Schreiner D, Scheiffele P. A Sam68-dependent alternative splicing program shapes postsynaptic protein complexes. Eur J Neurosci 2019; 49:1436-1453. [PMID: 30589479 DOI: 10.1111/ejn.14332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
Alternative splicing is one of the key mechanisms to increase the diversity of cellular transcriptomes, thereby expanding the coding capacity of the genome. This diversity is of particular importance in the nervous system with its elaborated cellular networks. Sam68, a member of the Signal Transduction Associated RNA-binding (STAR) family of RNA-binding proteins, is expressed in the developing and mature nervous system but its neuronal functions are poorly understood. Here, we perform genome-wide mapping of the Sam68-dependent alternative splicing program in mice. We find that Sam68 is required for the regulation of a set of alternative splicing events in pre-mRNAs encoding several postsynaptic scaffolding molecules that are central to the function of GABAergic and glutamatergic synapses. These components include Collybistin (Arhgef9), Gephyrin (Gphn), and Densin-180 (Lrrc7). Sam68-regulated Lrrc7 variants engage in differential protein interactions with signalling proteins, thus, highlighting a contribution of the Sam68 splicing program to shaping synaptic complexes. These findings suggest an important role for Sam68-dependent alternative splicing in the regulation of synapses in the central nervous system.
Collapse
Affiliation(s)
- Harald Witte
- Biozentrum of the University of Basel, Basel, Switzerland
| | - Dietmar Schreiner
- Biozentrum of the University of Basel, Basel, Switzerland.,Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | | |
Collapse
|
22
|
Dosemeci A, Tao-Cheng JH, Loo H, Reese TS. Distribution of densin in neurons. PLoS One 2018; 13:e0205859. [PMID: 30325965 PMCID: PMC6191147 DOI: 10.1371/journal.pone.0205859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
Densin is a scaffold protein known to associate with key elements of neuronal signaling. The present study examines the distribution of densin at the ultrastructural level in order to reveal potential sites that can support specific interactions of densin. Immunogold electron microscopy on hippocampal cultures shows intense labeling for densin at postsynaptic densities (PSDs), but also some labeling at extrasynaptic plasma membranes of soma and dendrites and endoplasmic reticulum. At the PSD, the median distance of label from the postsynaptic membrane was ~27 nm, with the majority of label (90%) confined within 40 nm from the postsynaptic membrane, indicating predominant localization of densin at the PSD core. Depolarization (90 mM K+ for 2 min) promoted a slight shift of densin label within the PSD complex resulting in 77% of label remaining within 40 nm from the postsynaptic membrane. Densin molecules firmly embedded within the PSD may target a minor pool of CaMKII to substrates at the PSD core.
Collapse
Affiliation(s)
- Ayse Dosemeci
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Jung-Hwa Tao-Cheng
- EM Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hannah Loo
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
23
|
Garza-Lopez E, Lopez JA, Hagen J, Sheffer R, Meiner V, Lee A. Role of a conserved glutamine in the function of voltage-gated Ca 2+ channels revealed by a mutation in human CACNA1D. J Biol Chem 2018; 293:14444-14454. [PMID: 30054272 DOI: 10.1074/jbc.ra118.003681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated Cav Ca2+ channels play crucial roles in regulating gene transcription, neuronal excitability, and synaptic transmission. Natural or pathological variations in Cav channels have yielded rich insights into the molecular determinants controlling channel function. Here, we report the consequences of a natural, putatively disease-associated mutation in the CACNA1D gene encoding the pore-forming Cav1.3 α1 subunit. The mutation causes a substitution of a glutamine residue that is highly conserved in the extracellular S1-S2 loop of domain II in all Cav channels with a histidine and was identified by whole-exome sequencing of an individual with moderate hearing impairment, developmental delay, and epilepsy. When introduced into the rat Cav1.3 cDNA, Q558H significantly decreased the density of Ca2+ currents in transfected HEK293T cells. Gating current analyses and cell-surface biotinylation experiments suggested that the smaller current amplitudes caused by Q558H were because of decreased numbers of functional Cav1.3 channels at the cell surface. The substitution also produced more sustained Ca2+ currents by weakening voltage-dependent inactivation. When inserted into the corresponding locus of Cav2.1, the substitution had similar effects as in Cav1.3. However, the substitution introduced in Cav3.1 reduced current density, but had no effects on voltage-dependent inactivation. Our results reveal a critical extracellular determinant of current density for all Cav family members and of voltage-dependent inactivation of Cav1.3 and Cav2.1 channels.
Collapse
Affiliation(s)
- Edgar Garza-Lopez
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242 and
| | - Josue A Lopez
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242 and
| | - Jussara Hagen
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242 and
| | - Ruth Sheffer
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Vardiella Meiner
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Amy Lee
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242 and
| |
Collapse
|
24
|
Ghosh D, Nieves-Cintrón M, Tajada S, Brust-Mascher I, Horne MC, Hell JW, Dixon RE, Santana LF, Navedo MF. Dynamic L-type Ca V1.2 channel trafficking facilitates Ca V1.2 clustering and cooperative gating. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1341-1355. [PMID: 29959960 PMCID: PMC6407617 DOI: 10.1016/j.bbamcr.2018.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022]
Abstract
L-type CaV1.2 channels are key regulators of gene expression, cell excitability and muscle contraction. CaV1.2 channels organize in clusters throughout the plasma membrane. This channel organization has been suggested to contribute to the concerted activation of adjacent CaV1.2 channels (e.g. cooperative gating). Here, we tested the hypothesis that dynamic intracellular and perimembrane trafficking of CaV1.2 channels is critical for formation and dissolution of functional channel clusters mediating cooperative gating. We found that CaV1.2 moves in vesicular structures of circular and tubular shape with diverse intracellular and submembrane trafficking patterns. Both microtubules and actin filaments are required for dynamic movement of CaV1.2 vesicles. These vesicles undergo constitutive homotypic fusion and fission events that sustain CaV1.2 clustering, channel activity and cooperative gating. Our study suggests that CaV1.2 clusters and activity can be modulated by diverse and unique intracellular and perimembrane vesicular dynamics to fine-tune Ca2+ signals.
Collapse
Affiliation(s)
- Debapriya Ghosh
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Sendoa Tajada
- Department of Physiology & Membrane Biology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Ingrid Brust-Mascher
- Advanced Imaging Facility, School of Veterinary Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Mary C Horne
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Rose E Dixon
- Department of Physiology & Membrane Biology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Luis F Santana
- Department of Physiology & Membrane Biology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Manuel F Navedo
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA.
| |
Collapse
|
25
|
|
26
|
Folci A, Steinberger A, Lee B, Stanika R, Scheruebel S, Campiglio M, Ramprecht C, Pelzmann B, Hell JW, Obermair GJ, Heine M, Di Biase V. Molecular mimicking of C-terminal phosphorylation tunes the surface dynamics of Ca V1.2 calcium channels in hippocampal neurons. J Biol Chem 2017; 293:1040-1053. [PMID: 29180451 PMCID: PMC5777246 DOI: 10.1074/jbc.m117.799585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/03/2017] [Indexed: 11/26/2022] Open
Abstract
L-type voltage-gated CaV1.2 calcium channels (CaV1.2) are key regulators of neuronal excitability, synaptic plasticity, and excitation-transcription coupling. Surface-exposed CaV1.2 distributes in clusters along the dendrites of hippocampal neurons. A permanent exchange between stably clustered and laterally diffusive extra-clustered channels maintains steady-state levels of CaV1.2 at dendritic signaling domains. A dynamic equilibrium between anchored and diffusive receptors is a common feature among ion channels and is crucial to modulate signaling transduction. Despite the importance of this fine regulatory system, the molecular mechanisms underlying the surface dynamics of CaV1.2 are completely unexplored. Here, we examined the dynamic states of CaV1.2 depending on phosphorylation on Ser-1700 and Ser-1928 at the channel C terminus. Phosphorylation at these sites is strongly involved in CaV1.2-mediated nuclear factor of activated T cells (NFAT) signaling, long-term potentiation, and responsiveness to adrenergic stimulation. We engineered CaV1.2 constructs mimicking phosphorylation at Ser-1700 and Ser-1928 and analyzed their behavior at the membrane by immunolabeling protocols, fluorescence recovery after photobleaching, and single particle tracking. We found that the phosphomimetic S1928E variant increases the mobility of CaV1.2 without altering the steady-state maintenance of cluster in young neurons and favors channel stabilization later in differentiation. Instead, mimicking phosphorylation at Ser-1700 promoted the diffusive state of CaV1.2 irrespective of the differentiation stage. Together, these results reveal that phosphorylation could contribute to the establishment of channel anchoring mechanisms depending on the neuronal differentiation state. Finally, our findings suggest a novel mechanism by which phosphorylation at the C terminus regulates calcium signaling by tuning the content of CaV1.2 at signaling complexes.
Collapse
Affiliation(s)
- Alessandra Folci
- From the Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Angela Steinberger
- From the Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Boram Lee
- the Department of Pharmacology, University of California, Davis, California 95616
| | - Ruslan Stanika
- the Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria, and
| | - Susanne Scheruebel
- From the Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Marta Campiglio
- the Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria, and
| | - Claudia Ramprecht
- From the Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Brigitte Pelzmann
- From the Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Johannes W Hell
- the Department of Pharmacology, University of California, Davis, California 95616
| | - Gerald J Obermair
- the Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria, and
| | - Martin Heine
- the Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Valentina Di Biase
- From the Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria,
| |
Collapse
|
27
|
Activity-Dependent Facilitation of Ca V1.3 Calcium Channels Promotes KCa3.1 Activation in Hippocampal Neurons. J Neurosci 2017; 37:11255-11270. [PMID: 29038242 DOI: 10.1523/jneurosci.0967-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 11/21/2022] Open
Abstract
CaV1 L-type calcium channels are key to regulating neuronal excitability, with the range of functional roles enhanced by interactions with calmodulin, accessory proteins, or CaMKII that modulate channel activity. In hippocampal pyramidal cells, a prominent elevation of CaV1 activity is apparent in late channel openings that can last for seconds following a depolarizing stimulus train. The current study tested the hypothesis that a reported interaction among CaV1.3 channels, the scaffolding protein densin, and CaMKII could generate a facilitation of channel activity that outlasts a depolarizing stimulus. We found that CaV1.3 but not CaV1.2 channels exhibit a long-duration calcium-dependent facilitation (L-CDF) that lasts up to 8 s following a brief 50 Hz stimulus train, but only when coexpressed with densin and CaMKII. To test the physiological role for CaV1.3 L-CDF, we coexpressed the intermediate-conductance KCa3.1 potassium channel, revealing a strong functional coupling to CaV1.3 channel activity that was accentuated by densin and CaMKII. Moreover, the CaV1.3-densin-CaMKII interaction gave rise to an outward tail current of up to 8 s duration following a depolarizing stimulus in both tsA-201 cells and male rat CA1 pyramidal cells. A slow afterhyperpolarization in pyramidal cells was reduced by a selective block of CaV1 channels by isradipine, a CaMKII blocker, and siRNA knockdown of densin, and spike frequency increased upon selective block of CaV1 channel conductance. The results are important in revealing a CaV1.3-densin-CaMKII interaction that extends the contribution of CaV1.3 calcium influx to a time frame well beyond a brief input train.SIGNIFICANCE STATEMENT CaV1 L-type calcium channels play a key role in regulating the output of central neurons by providing calcium influx during repetitive inputs. This study identifies a long-duration calcium-dependent facilitation (L-CDF) of CaV1.3 channels that depends on the scaffolding protein densin and CaMKII and that outlasts a depolarizing stimulus by seconds. We further show a tight functional coupling between CaV1.3 calcium influx and the intermediate-conductance KCa3.1 potassium channel that promotes an outward tail current of up to 8 s following a depolarizing stimulus. Tests in CA1 hippocampal pyramidal cells reveal that a slow AHP is reduced by blocking different components of the CaV1.3-densin-CaMKII interaction, identifying an important role for CaV1.3 L-CDF in regulating neuronal excitability.
Collapse
|
28
|
Tseng PY, Henderson PB, Hergarden AC, Patriarchi T, Coleman AM, Lillya MW, Montagut-Bordas C, Lee B, Hell JW, Horne MC. α-Actinin Promotes Surface Localization and Current Density of the Ca 2+ Channel Ca V1.2 by Binding to the IQ Region of the α1 Subunit. Biochemistry 2017; 56:3669-3681. [PMID: 28613835 DOI: 10.1021/acs.biochem.7b00359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The voltage-gated L-type Ca2+ channel CaV1.2 is crucial for initiating heartbeat and control of a number of neuronal functions such as neuronal excitability and long-term potentiation. Mutations of CaV1.2 subunits result in serious health problems, including arrhythmia, autism spectrum disorders, immunodeficiency, and hypoglycemia. Thus, precise control of CaV1.2 surface expression and localization is essential. We previously reported that α-actinin associates and colocalizes with neuronal CaV1.2 channels and that shRNA-mediated depletion of α-actinin significantly reduces localization of endogenous CaV1.2 in dendritic spines in hippocampal neurons. Here we investigated the hypothesis that direct binding of α-actinin to CaV1.2 supports its surface expression. Using two-hybrid screens and pull-down assays, we identified three point mutations (K1647A, Y1649A, and I1654A) in the central, pore-forming α11.2 subunit of CaV1.2 that individually impaired α-actinin binding. Surface biotinylation and flow cytometry assays revealed that CaV1.2 channels composed of the corresponding α-actinin-binding-deficient mutants result in a 35-40% reduction in surface expression compared to that of wild-type channels. Moreover, the mutant CaV1.2 channels expressed in HEK293 cells exhibit a 60-75% decrease in current density. The larger decrease in current density as compared to surface expression imparted by these α11.2 subunit mutations hints at the possibility that α-actinin not only stabilizes surface localization of CaV1.2 but also augments its ion conducting activity.
Collapse
Affiliation(s)
- Pang-Yen Tseng
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Peter B Henderson
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Anne C Hergarden
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Tommaso Patriarchi
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Andrea M Coleman
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Mark W Lillya
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Carlota Montagut-Bordas
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Boram Lee
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Mary C Horne
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| |
Collapse
|