1
|
Makke M, Pastor-Ruiz A, Yarzagaray A, Gaya S, Zimmer M, Frisch W, Bruns D. Key determinants of the dual clamp/activator function of Complexin. eLife 2024; 12:RP92438. [PMID: 39585326 PMCID: PMC11589869 DOI: 10.7554/elife.92438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Complexin determines magnitude and kinetics of synchronized secretion, but the underlying molecular mechanisms remained unclear. Here, we show that the hydrophobic face of the amphipathic helix at the C-terminus of Complexin II (CpxII, amino acids 115-134) binds to fusion-promoting SNARE proteins, prevents premature secretion, and allows vesicles to accumulate in a release-ready state in mouse chromaffin cells. Specifically, we demonstrate that an unrelated amphipathic helix functionally substitutes for the C-terminal domain (CTD) of CpxII and that amino acid substitutions on the hydrophobic side compromise the arrest of the pre-fusion intermediate. To facilitate synchronous vesicle fusion, the N-terminal domain (NTD) of CpxII (amino acids 1-27) specifically cooperates with synaptotagmin I (SytI), but not with synaptotagmin VII. Expression of CpxII rescues the slow release kinetics of the Ca2+-binding mutant Syt I R233Q, whereas the N-terminally truncated variant of CpxII further delays it. These results indicate that the CpxII NTD regulates mechanisms which are governed by the forward rate of Ca2+ binding to Syt I. Overall, our results shed new light on key molecular properties of CpxII that hinder premature exocytosis and accelerate synchronous exocytosis.
Collapse
Affiliation(s)
- Mazen Makke
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Alejandro Pastor-Ruiz
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Antonio Yarzagaray
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Surya Gaya
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Michelle Zimmer
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Walentina Frisch
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| | - Dieter Bruns
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of SaarlandHomburgGermany
| |
Collapse
|
2
|
Cao Y, Zhang J, He X, Wu C, Liu Z, Zhu B, Miao L. Empathic pain: Exploring the multidimensional impacts of biological and social aspects in pain. Neuropharmacology 2024; 258:110091. [PMID: 39059575 DOI: 10.1016/j.neuropharm.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Empathic pain refers to an individual's perception, judgment, and emotional response to others' pain. This complex social cognitive ability is crucial for healthy interactions in human society. In recent years, with the development of multidisciplinary research in neuroscience, psychology and sociology, empathic pain has become a focal point of widespread attention in these fields. However, the neural mechanism underlying empathic pain remain a controversial and unresolved area. This review aims to comprehensively summarize the history, influencing factors, neural mechanisms and pharmacological interventions of empathic pain. We hope to provide a comprehensive scientific perspective on how humans perceive and respond to others' pain experiences and to provide guidance for future research directions and clinical applications. This article is part of the Special Issue on "Empathic Pain".
Collapse
Affiliation(s)
- Yuchun Cao
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Jiahui Zhang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Xiaofang He
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Chenye Wu
- Department of Emergency Medicine, Changshu Hospital Affiliated to Soochow University, Changshu, 215500, China
| | - Zeyuan Liu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| | - Liying Miao
- Department of Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
3
|
Queiroz Zetune Villa Real K, Mougios N, Rehm R, Sograte-Idrissi S, Albert L, Rahimi AM, Maidorn M, Hentze J, Martínez-Carranza M, Hosseini H, Saal KA, Oleksiievets N, Prigge M, Tsukanov R, Stenmark P, Fornasiero EF, Opazo F. A Versatile Synaptotagmin-1 Nanobody Provides Perturbation-Free Live Synaptic Imaging And Low Linkage-Error in Super-Resolution Microscopy. SMALL METHODS 2023; 7:e2300218. [PMID: 37421204 DOI: 10.1002/smtd.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Indexed: 07/10/2023]
Abstract
Imaging of living synapses has relied for over two decades on the overexpression of synaptic proteins fused to fluorescent reporters. This strategy alters the stoichiometry of synaptic components and ultimately affects synapse physiology. To overcome these limitations, here a nanobody is presented that binds the calcium sensor synaptotagmin-1 (NbSyt1). This nanobody functions as an intrabody (iNbSyt1) in living neurons and is minimally invasive, leaving synaptic transmission almost unaffected, as suggested by the crystal structure of the NbSyt1 bound to Synaptotagmin-1 and by the physiological data. Its single-domain nature enables the generation of protein-based fluorescent reporters, as showcased here by measuring spatially localized presynaptic Ca2+ with a NbSyt1- jGCaMP8 chimera. Moreover, the small size of NbSyt1 makes it ideal for various super-resolution imaging methods. Overall, NbSyt1 is a versatile binder that will enable imaging in cellular and molecular neuroscience with unprecedented precision across multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Karine Queiroz Zetune Villa Real
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Nikolaos Mougios
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Ronja Rehm
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - László Albert
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Amir Mohammad Rahimi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Manuel Maidorn
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jannik Hentze
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Markel Martínez-Carranza
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Stockholm, SE-10691, Sweden
| | - Hassan Hosseini
- Research Group Neuromodulatory Networks, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Kim-Ann Saal
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Nazar Oleksiievets
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Matthias Prigge
- Research Group Neuromodulatory Networks, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39118, Magdeburg, Germany
| | - Roman Tsukanov
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Stockholm, SE-10691, Sweden
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
- NanoTag Biotechnologies GmbH, 37079, Göttingen, Germany
| |
Collapse
|
4
|
MacLeod KM, Pandya S. Expression and Neurotransmitter Association of the Synaptic Calcium Sensor Synaptotagmin in the Avian Auditory Brain Stem. J Assoc Res Otolaryngol 2022; 23:701-720. [PMID: 35999323 PMCID: PMC9789253 DOI: 10.1007/s10162-022-00863-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 07/12/2022] [Indexed: 01/31/2023] Open
Abstract
In the avian auditory brain stem, acoustic timing and intensity cues are processed in separate, parallel pathways via the two divisions of the cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Differences in excitatory and inhibitory synaptic properties, such as release probability and short-term plasticity, contribute to differential processing of the auditory nerve inputs. We investigated the distribution of synaptotagmin, a putative calcium sensor for exocytosis, via immunohistochemistry and double immunofluorescence in the embryonic and hatchling chick brain stem (Gallus gallus). We found that the two major isoforms, synaptotagmin 1 (Syt1) and synaptotagmin 2 (Syt2), showed differential expression. In the NM, anti-Syt2 label was strong and resembled the endbulb terminals of the auditory nerve inputs, while anti-Syt1 label was weaker and more punctate. In NA, both isoforms were intensely expressed throughout the neuropil. A third isoform, synaptotagmin 7 (Syt7), was largely absent from the cochlear nuclei. In nucleus laminaris (NL, the target nucleus of NM), anti-Syt2 and anti-Syt7 strongly labeled the dendritic lamina. These patterns were established by embryonic day 18 and persisted to postnatal day 7. Double-labeling immunofluorescence showed that Syt1 and Syt2 were associated with vesicular glutamate transporter 2 (VGluT2), but not vesicular GABA transporter (VGAT), suggesting that these Syt isoforms were localized to excitatory, but not inhibitory, terminals. These results suggest that Syt2 is the major calcium binding protein underlying excitatory neurotransmission in the timing pathway comprising NM and NL, while Syt2 and Syt1 regulate excitatory transmission in the parallel intensity pathway via cochlear nucleus NA.
Collapse
Affiliation(s)
- Katrina M MacLeod
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Sangeeta Pandya
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
5
|
Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron 2022; 110:1993-2008.e6. [PMID: 35443154 DOI: 10.1016/j.neuron.2022.03.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/30/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Empathic pain has attracted the interest of a substantial number of researchers studying the social transfer of pain in the sociological, psychological, and neuroscience fields. However, the neural mechanism of empathic pain remains elusive. Here, we establish a long-term observational pain model in mice and find that glutamatergic projection from the insular cortex (IC) to the basolateral amygdala (BLA) is critical for the formation of observational pain. The selective activation or inhibition of the IC-BLA projection pathway strengthens or weakens the intensity of observational pain, respectively. The synaptic molecules are screened, and the upregulated synaptotagmin-2 and RIM3 are identified as key signals in controlling the increased synaptic glutamate transmission from the IC to the BLA. Together, these results reveal the molecular and synaptic mechanisms of a previously unidentified neural pathway that regulates observational pain in mice.
Collapse
|
6
|
Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux. Neurotherapeutics 2021; 18:2040-2060. [PMID: 34235635 PMCID: PMC8609074 DOI: 10.1007/s13311-021-01079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/04/2023] Open
Abstract
Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, 420111, Kazan, Russia
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, 420012, Kazan, Russia
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Tawfik B, Martins JS, Houy S, Imig C, Pinheiro PS, Wojcik SM, Brose N, Cooper BH, Sørensen JB. Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca 2+-dependent priming. eLife 2021; 10:64527. [PMID: 33749593 PMCID: PMC8012061 DOI: 10.7554/elife.64527] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Synaptotagmins confer calcium-dependence to the exocytosis of secretory vesicles, but how coexpressed synaptotagmins interact remains unclear. We find that synaptotagmin-1 and synaptotagmin-7 when present alone act as standalone fast and slow Ca2+-sensors for vesicle fusion in mouse chromaffin cells. When present together, synaptotagmin-1 and synaptotagmin-7 are found in largely non-overlapping clusters on dense-core vesicles. Synaptotagmin-7 stimulates Ca2+-dependent vesicle priming and inhibits depriming, and it promotes ubMunc13-2- and phorbolester-dependent priming, especially at low resting calcium concentrations. The priming effect of synaptotagmin-7 increases the number of vesicles fusing via synaptotagmin-1, while negatively affecting their fusion speed, indicating both synergistic and competitive interactions between synaptotagmins. Synaptotagmin-7 places vesicles in close membrane apposition (<6 nm); without it, vesicles accumulate out of reach of the fusion complex (20-40 nm). We suggest that a synaptotagmin-7-dependent movement toward the membrane is involved in Munc13-2/phorbolester/Ca2+-dependent priming as a prelude to fast and slow exocytosis triggering.
Collapse
Affiliation(s)
- Bassam Tawfik
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Joana S Martins
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Sébastien Houy
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Paulo S Pinheiro
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
8
|
Donkervoort S, Mohassel P, Laugwitz L, Zaki MS, Kamsteeg EJ, Maroofian R, Chao KR, Verschuuren-Bemelmans CC, Horber V, Fock AJM, McCarty RM, Jain MS, Biancavilla V, McMacken G, Nalls M, Voermans NC, Elbendary HM, Snyder M, Cai C, Lehky TJ, Stanley V, Iannaccone ST, Foley AR, Lochmüller H, Gleeson J, Houlden H, Haack TB, Horvath R, Bönnemann CG. Biallelic loss of function variants in SYT2 cause a treatable congenital onset presynaptic myasthenic syndrome. Am J Med Genet A 2020; 182:2272-2283. [PMID: 32776697 DOI: 10.1002/ajmg.a.61765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/25/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Synaptotagmins are integral synaptic vesicle membrane proteins that function as calcium sensors and regulate neurotransmitter release at the presynaptic nerve terminal. Synaptotagmin-2 (SYT2), is the major isoform expressed at the neuromuscular junction. Recently, dominant missense variants in SYT2 have been reported as a rare cause of distal motor neuropathy and myasthenic syndrome, manifesting with stable or slowly progressive distal weakness of variable severity along with presynaptic NMJ impairment. These variants are thought to have a dominant-negative effect on synaptic vesicle exocytosis, although the precise pathomechanism remains to be elucidated. Here we report seven patients of five families, with biallelic loss of function variants in SYT2, clinically manifesting with a remarkably consistent phenotype of severe congenital onset hypotonia and weakness, with variable degrees of respiratory involvement. Electrodiagnostic findings were consistent with a presynaptic congenital myasthenic syndrome (CMS) in some. Treatment with an acetylcholinesterase inhibitor pursued in three patients showed clinical improvement with increased strength and function. This series further establishes SYT2 as a CMS-disease gene and expands its clinical and genetic spectrum to include recessive loss-of-function variants, manifesting as a severe congenital onset presynaptic CMS with potential treatment implications.
Collapse
Affiliation(s)
- Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Department of Paediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London Institute of Neurology, London, UK
| | - Katherine R Chao
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Veronka Horber
- Department of Paediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Annemarie J M Fock
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Riley M McCarty
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Minal S Jain
- Rehabilitation Medicine Department, Clinical Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria Biancavilla
- Rehabilitation Medicine Department, Clinical Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Grace McMacken
- Department of Neurosciences, Royal Victoria Hospital, Belfast, UK
| | - Matthew Nalls
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hasnaa M Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Molly Snyder
- Department of Neurology, Children's Health, Dallas, Texas, USA
| | - Chunyu Cai
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Tanya J Lehky
- EMG Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA.,Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Susan T Iannaccone
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Joseph Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA.,Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London Institute of Neurology, London, UK
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Ruiter M, Houy S, Engholm-Keller K, Graham ME, Sørensen JB. SNAP-25 phosphorylation at Ser187 is not involved in Ca 2+ or phorbolester-dependent potentiation of synaptic release. Mol Cell Neurosci 2019; 102:103452. [PMID: 31794878 DOI: 10.1016/j.mcn.2019.103452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/13/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022] Open
Abstract
SNAP-25, one of the three SNARE-proteins responsible for synaptic release, can be phosphorylated by Protein Kinase C on Ser-187, close to the fusion pore. In neuroendocrine cells, this phosphorylation event potentiates vesicle recruitment into releasable pools, whereas the consequences of phosphorylation for synaptic release remain unclear. We mutated Ser-187 and expressed two mutants (S187C and S187E) in the context of the SNAP-25B-isoform in SNAP-25 knockout glutamatergic autaptic neurons. Whole-cell patch clamp recordings were performed to assess the effect of Ser-187 phosphorylation on synaptic transmission. Blocking phosphorylation by expressing the S187C mutant did not affect synapse density, basic evoked or spontaneous neurotransmission, the readily-releasable pool size or its Ca2+-independent or Ca2+-dependent replenishment. Furthermore, it did not affect the response to phorbol esters, which activate PKC. Expressing S187C in the context of the SNAP-25A isoform also did not affect synaptic transmission. Strikingly, the - potentially phosphomimetic - mutant S187E reduced spontaneous release and release probability, with the largest effect seen in the SNAP-25B isoform, showing that a negative charge in this position is detrimental for neurotransmission, in agreement with electrostatic fusion triggering. During the course of our experiments, we found that higher SNAP-25B expression levels led to decreased paired pulse potentiation, probably due to higher release probabilities. Under these conditions, the potentiation of evoked EPSCs by phorbol esters was followed by a persistent down-regulation, probably due to a ceiling effect. In conclusion, our results indicate that phosphorylation of Ser-187 in SNAP-25 is not involved in modulation of synaptic release by Ca2+ or phorbol esters.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Kasper Engholm-Keller
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mark E Graham
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia
| | - Jakob B Sørensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark.
| |
Collapse
|
10
|
Doc2b Ca 2+ binding site mutants enhance synaptic release at rest at the expense of sustained synaptic strength. Sci Rep 2019; 9:14408. [PMID: 31594980 PMCID: PMC6783474 DOI: 10.1038/s41598-019-50684-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/11/2019] [Indexed: 12/01/2022] Open
Abstract
Communication between neurons involves presynaptic neurotransmitter release which can be evoked by action potentials or occur spontaneously as a result of stochastic vesicle fusion. The Ca2+-binding double C2 proteins Doc2a and –b were implicated in spontaneous and asynchronous evoked release, but the mechanism remains unclear. Here, we compared wildtype Doc2b with two Ca2+ binding site mutants named DN and 6A, previously classified as gain- and loss-of-function mutants. They carry the substitutions D218,220N or D163,218,220,303,357,359A respectively. We found that both mutants bound phospholipids at low Ca2+ concentrations and were membrane-associated in resting neurons, thus mimicking a Ca2+-activated state. Their overexpression in hippocampal primary cultured neurons had similar effects on spontaneous and evoked release, inducing high mEPSC frequencies and increased short-term depression. Together, these data suggest that the DN and 6A mutants both act as gain-of-function mutants at resting conditions.
Collapse
|
11
|
Trotter JH, Hao J, Maxeiner S, Tsetsenis T, Liu Z, Zhuang X, Südhof TC. Synaptic neurexin-1 assembles into dynamically regulated active zone nanoclusters. J Cell Biol 2019; 218:2677-2698. [PMID: 31262725 PMCID: PMC6683742 DOI: 10.1083/jcb.201812076] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/04/2022] Open
Abstract
Neurexins are well-characterized presynaptic cell adhesion molecules that engage multifarious postsynaptic ligands and organize diverse synapse properties. However, the precise synaptic localization of neurexins remains enigmatic. Using super-resolution microscopy, we demonstrate that neurexin-1 forms discrete nanoclusters at excitatory synapses, revealing a novel organizational feature of synaptic architecture. Synapses generally contain a single nanocluster that comprises more than four neurexin-1 molecules and that also includes neurexin-2 and/or neurexin-3 isoforms. Moreover, we find that neurexin-1 is physiologically cleaved by ADAM10 similar to its ligand neuroligin-1, with ∼4-6% of neurexin-1 and ∼2-3% of neuroligin-1 present in the adult brain as soluble ectodomain proteins. Blocking ADAM10-mediated neurexin-1 cleavage dramatically increased the synaptic neurexin-1 content, thereby elevating the percentage of Homer1(+) excitatory synapses containing neurexin-1 nanoclusters from 40-50% to ∼80%, and doubling the number of neurexin-1 molecules per nanocluster. Taken together, our results reveal an unexpected nanodomain organization of synapses in which neurexin-1 is assembled into discrete presynaptic nanoclusters that are dynamically regulated via ectodomain cleavage.
Collapse
Affiliation(s)
- Justin H Trotter
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Junjie Hao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Department of Physics, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Stephan Maxeiner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Theodoros Tsetsenis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Zhihui Liu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Department of Physics, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| |
Collapse
|
12
|
Park J, Park SJ, Kim S. Inositol polyphosphate multikinase deficiency leads to aberrant induction of synaptotagmin-2 in the forebrain. Mol Brain 2019; 12:58. [PMID: 31221192 PMCID: PMC6584979 DOI: 10.1186/s13041-019-0480-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
Inositol polyphosphate multikinase (IPMK), the key enzyme responsible for the synthesis of higher inositol polyphosphates and phosphatidylinositol 3, 4, 5-trisphosphate, is known to mediate various biological events, such as cellular growth and metabolism. Conditional deletion of IPMK in excitatory neurons of the mouse postnatal forebrain results in enhanced extinction of fear memory accompanied by activation of p85 S6 kinase 1 signaling in the amygdala; it also facilitates hippocampal long-term potentiation. However, the molecular changes triggered by IPMK deletion in the brain have not been fully elucidated. In the present study, we investigated gene expression changes in the hippocampal region of IPMK conditional knockout (cKO) mice by performing genome-wide transcriptome analyses. Here we show that expression of synaptotagmin 2 (Syt2), a synaptic vesicle protein essential for Ca2+-dependent neurotransmitter release, is robustly upregulated in the forebrain of IPMKcKO mice. Compared to wild-type mice, in which weak Syt2 expression was detected in the forebrain, IPMKcKO mice showed marked increases in both Syt2 mRNA and protein expression in the hippocampus as well as the amygdala. Collectively, our results suggest a physiological role for IPMK in regulating expression of Syt2, providing a potential underlying molecular mechanism to explain IPMK-mediated neural functions.
Collapse
Affiliation(s)
- Jina Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Seung Ju Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea. .,KAIST Institute for the BioCentury, KAIST, Daejeon, 34141, South Korea.
| |
Collapse
|
13
|
Wrackmeyer U, Kaldrack J, Jüttner R, Pannasch U, Gimber N, Freiberg F, Purfürst B, Kainmueller D, Schmitz D, Haucke V, Rathjen FG, Gotthardt M. The cell adhesion protein CAR is a negative regulator of synaptic transmission. Sci Rep 2019; 9:6768. [PMID: 31043663 PMCID: PMC6494904 DOI: 10.1038/s41598-019-43150-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/17/2019] [Indexed: 11/09/2022] Open
Abstract
The Coxsackievirus and adenovirus receptor (CAR) is essential for normal electrical conductance in the heart, but its role in the postnatal brain is largely unknown. Using brain specific CAR knockout mice (KO), we discovered an unexpected role of CAR in neuronal communication. This includes increased basic synaptic transmission at hippocampal Schaffer collaterals, resistance to fatigue, and enhanced long-term potentiation. Spontaneous neurotransmitter release and speed of endocytosis are increased in KOs, accompanied by increased expression of the exocytosis associated calcium sensor synaptotagmin 2. Using proximity proteomics and binding studies, we link CAR to the exocytosis machinery as it associates with syntenin and synaptobrevin/VAMP2 at the synapse. Increased synaptic function does not cause adverse effects in KO mice, as behavior and learning are unaffected. Thus, unlike the connexin-dependent suppression of atrioventricular conduction in the cardiac knockout, communication in the CAR deficient brain is improved, suggesting a role for CAR in presynaptic processes.
Collapse
Affiliation(s)
- Uta Wrackmeyer
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Joanna Kaldrack
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - René Jüttner
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.,Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Ulrike Pannasch
- Neuroscience Research Center, Cluster of Excellence NeuroCure, Charité, 10117, Berlin, Germany
| | - Niclas Gimber
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Fabian Freiberg
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Bettina Purfürst
- Core Facility Electron Microscopy, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Dagmar Kainmueller
- Biomedical Image Analysis, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, 13125, Berlin, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Cluster of Excellence NeuroCure, Charité, 10117, Berlin, Germany
| | - Volker Haucke
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Fritz G Rathjen
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.
| |
Collapse
|
14
|
|
15
|
SNT-1 Functions as the Ca 2+ Sensor for Tonic and Evoked Neurotransmitter Release in Caenorhabditis Elegans. J Neurosci 2018; 38:5313-5324. [PMID: 29760174 DOI: 10.1523/jneurosci.3097-17.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/23/2022] Open
Abstract
Synaptotagmin-1 (Syt1) binds Ca2+ through its tandem C2 domains (C2A and C2B) and triggers Ca2+-dependent neurotransmitter release. Here, we show that snt-1, the homolog of mammalian Syt1, functions as the Ca2+ sensor for both tonic and evoked neurotransmitter release at the Caenorhabditis elegans neuromuscular junction. Mutations that disrupt Ca2+ binding in double C2 domains of SNT-1 significantly impaired tonic release, whereas disrupting Ca2+ binding in a single C2 domain had no effect, indicating that the Ca2+ binding of the two C2 domains is functionally redundant for tonic release. Stimulus-evoked release was significantly reduced in snt-1 mutants, with prolonged release latency as well as faster rise and decay kinetics. Unlike tonic release, evoked release was triggered by Ca2+ binding solely to the C2B domain. Moreover, we showed that SNT-1 plays an essential role in the priming process in different subpopulations of synaptic vesicles with tight or loose coupling to Ca2+ entry.SIGNIFICANCE STATEMENT We showed that SNT-1 in Caenorhabditis elegans regulates evoked neurotransmitter release through Ca2+ binding to its C2B domain in a similar way to Syt1 in the mouse CNS and the fly neuromuscular junction. However, the largely decreased tonic release in snt-1 mutants argues SNT-1 has a clamping function. Indeed, Ca2+-binding mutations in the C2 domains in SNT-1 significantly reduced the frequency of the miniature EPSC, indicating that SNT-1 also acts as a Ca2+ sensor for tonic release. Therefore, revealing the differential mechanisms between invertebrates and vertebrates will provide significant insights into our understanding how synaptic vesicle fusion is regulated.
Collapse
|
16
|
Tejero R, Lopez-Manzaneda M, Arumugam S, Tabares L. Synaptotagmin-2, and -1, linked to neurotransmission impairment and vulnerability in Spinal Muscular Atrophy. Hum Mol Genet 2018; 25:4703-4716. [PMID: 28173138 DOI: 10.1093/hmg/ddw297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023] Open
Abstract
Spinal muscular atrophy (SMA) is the most frequent genetic cause of infant mortality. The disease is characterized by progressive muscle weakness and paralysis of axial and proximal limb muscles. It is caused by homozygous loss or mutation of the SMN1 gene, which codes for the Survival Motor Neuron (SMN) protein. In mouse models of the disease, neurotransmitter release is greatly impaired, but the molecular mechanisms of the synaptic dysfunction and the basis of the selective muscle vulnerability are unknown. In the present study, we investigated these open questions by comparing the molecular and functional properties of nerve terminals in severely and mildly affected muscles in the SMNΔ7 mouse model. We discovered that synaptotagmin-1 (Syt1) was developmentally downregulated in nerve terminals of highly affected muscles but not in low vulnerable muscles. Additionally, the expression levels of synaptotagmin-2 (Syt2), and its interacting protein, synaptic vesicle protein 2 (SV2) B, were reduced in proportion to the degree of muscle vulnerability while other synaptic proteins, such as syntaxin-1B (Stx1B) and synaptotagmin-7 (Syt7), were not affected. Consistently with the extremely low levels of both Syt-isoforms, and SV2B, in most affected neuromuscular synapses, the functional analysis of neurotransmission revealed highly reduced evoked release, altered short-term plasticity, low release probability, and inability to modulate normally the number of functional release sites. Together, we propose that the strong reduction of Syt2 and SV2B are key factors of the functional synaptic alteration and that the physiological downregulation of Syt1 plays a determinant role in muscle vulnerability in SMA.
Collapse
Affiliation(s)
- Rocío Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Mario Lopez-Manzaneda
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Saravanan Arumugam
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| |
Collapse
|
17
|
Houy S, Groffen AJ, Ziomkiewicz I, Verhage M, Pinheiro PS, Sørensen JB. Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs. eLife 2017; 6:27000. [PMID: 29274147 PMCID: PMC5758110 DOI: 10.7554/elife.27000] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Doc2B is a cytosolic protein with binding sites for Munc13 and Tctex-1 (dynein light chain), and two C2-domains that bind to phospholipids, Ca2+ and SNAREs. Whether Doc2B functions as a calcium sensor akin to synaptotagmins, or in other calcium-independent or calcium-dependent capacities is debated. We here show by mutation and overexpression that Doc2B plays distinct roles in two sequential priming steps in mouse adrenal chromaffin cells. Mutating Ca2+-coordinating aspartates in the C2A-domain localizes Doc2B permanently at the plasma membrane, and renders an upstream priming step Ca2+-independent, whereas a separate function in downstream priming depends on SNARE-binding, Ca2+-binding to the C2B-domain of Doc2B, interaction with ubMunc13-2 and the presence of synaptotagmin-1. Another function of Doc2B – inhibition of release during sustained calcium elevations – depends on an overlapping protein domain (the MID-domain), but is separate from its Ca2+-dependent priming function. We conclude that Doc2B acts as a vesicle priming protein.
Collapse
Affiliation(s)
- Sébastien Houy
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Alexander J Groffen
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU Medical Center, Amsterdam, Netherlands
| | - Iwona Ziomkiewicz
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark.,Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Cambridge, United Kingdom
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU Medical Center, Amsterdam, Netherlands.,Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VrijeUniversiteit, Amsterdam, Netherlands
| | - Paulo S Pinheiro
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Jakob Balslev Sørensen
- Neuronal Secretion Group, Department of Neuroscience, University of Copenhagen, København, Denmark
| |
Collapse
|
18
|
Chen C, Arai I, Satterfield R, Young SM, Jonas P. Synaptotagmin 2 Is the Fast Ca 2+ Sensor at a Central Inhibitory Synapse. Cell Rep 2017; 18:723-736. [PMID: 28099850 PMCID: PMC5276807 DOI: 10.1016/j.celrep.2016.12.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/18/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022] Open
Abstract
GABAergic synapses in brain circuits generate inhibitory output signals with submillisecond latency and temporal precision. Whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Here, we examined the Ca2+ sensor of exocytosis at GABAergic basket cell (BC) to Purkinje cell (PC) synapses in cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2), whereas synaptotagmin 1 (Syt1) was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to ∼10%, identifying Syt2 as the major Ca2+ sensor at BC-PC synapses. Differential adenovirus-mediated rescue revealed that Syt2 triggered release with shorter latency and higher temporal precision and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as release sensor at BC-PC synapses ensures fast and efficient feedforward inhibition in cerebellar microcircuits. Syt2 is the Ca2+ sensor of fast transmitter release at a cerebellar GABAergic synapse Syt2 triggers transmitter release with faster time course than Syt1 Syt2 ensures faster replenishment of the readily releasable pool than Syt1 Syt2 is essential for fast feedforward inhibition in cerebellar microcircuits
Collapse
Affiliation(s)
- Chong Chen
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Itaru Arai
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Rachel Satterfield
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA
| | - Samuel M Young
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
19
|
How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 2017; 470:155-167. [DOI: 10.1007/s00424-017-2052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
|
20
|
Trexler AJ, Taraska JW. Regulation of insulin exocytosis by calcium-dependent protein kinase C in beta cells. Cell Calcium 2017; 67:1-10. [PMID: 29029784 DOI: 10.1016/j.ceca.2017.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
Abstract
The control of insulin release from pancreatic beta cells helps ensure proper blood glucose level, which is critical for human health. Protein kinase C has been shown to be one key control mechanism for this process. After glucose stimulation, calcium influx into beta cells triggers exocytosis of insulin-containing dense-core granules and activates protein kinase C via calcium-dependent phospholipase C-mediated generation of diacylglycerol. Activated protein kinase C potentiates insulin release by enhancing the calcium sensitivity of exocytosis, likely by affecting two main pathways that could be linked: (1) the reorganization of the cortical actin network, and (2) the direct phosphorylation of critical exocytotic proteins such as munc18, SNAP25, and synaptotagmin. Here, we review what is currently known about the molecular mechanisms of protein kinase C action on each of these pathways and how these effects relate to the control of insulin release by exocytosis. We identify remaining challenges in the field and suggest how these challenges might be addressed to advance our understanding of the regulation of insulin release in health and disease.
Collapse
Affiliation(s)
- Adam J Trexler
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Justin W Taraska
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
21
|
Extension of Helix 12 in Munc18-1 Induces Vesicle Priming. J Neurosci 2017; 36:6881-91. [PMID: 27358447 DOI: 10.1523/jneurosci.0007-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Munc18-1 is essential for vesicle fusion and participates in the docking of large dense-core vesicles to the plasma membrane. Recent structural data suggest that conformational changes in the 12th helix of the Munc18-1 domain 3a within the Munc18-1:syntaxin complex result in an additional interaction with synaptobrevin-2/VAMP2 (vesicle-associated membrane protein 2), leading to SNARE complex formation. To test this hypothesis in living cells, we examined secretion from Munc18-1-null mouse adrenal chromaffin cells expressing Munc18-1 mutants designed to either perturb the extension of helix 12 (Δ324-339), block its interaction with synaptobrevin-2 (L348R), or extend the helix to promote coil-coil interactions with other proteins (P335A). The mutants rescued vesicle docking and syntaxin-1 targeting to the plasma membrane, with the exception of P335A that only supported partial syntaxin-1 targeting. Disruptive mutations (L348R or Δ324-339) lowered the secretory amplitude by decreasing vesicle priming, whereas P335A markedly increased priming and secretory amplitude. The mutants displayed unchanged kinetics and Ca(2+) dependence of fusion, indicating that the mutations specifically affect the vesicle priming step. Mutation of a nearby tyrosine (Y337A), which interacts with closed syntaxin-1, mildly increased secretory amplitude. This correlated with results from an in vitro fusion assay probing the functions of Munc18-1, indicating an easier transition to the extended state in the mutant. Our findings support the notion that a conformational transition within the Munc18-1 domain 3a helix 12 leads to opening of a closed Munc18-1:syntaxin complex, followed by productive SNARE complex assembly and vesicle priming. SIGNIFICANCE STATEMENT The essential postdocking role of Munc18-1 in vesicular exocytosis has remained elusive, but recent data led to the hypothesis that the extension of helix 12 in Munc18 within domain 3a leads to synaptobrevin-2/VAMP2 interaction and SNARE complex formation. Using both lack-of-function and gain-of-function mutants, we here report that the conformation of helix 12 predicts vesicle priming and secretory amplitude in living chromaffin cells. The effects of mutants on secretion could not be explained by differences in syntaxin-1 chaperoning/localization or vesicle docking, and the fusion kinetics and calcium dependence were unchanged, indicating that the effect of helix 12 extension is specific for the vesicle-priming step. We conclude that a conformational change within helix 12 is responsible for the essential postdocking role of Munc18-1 in neurosecretion.
Collapse
|
22
|
Pinheiro PS, Houy S, Sørensen JB. C2-domain containing calcium sensors in neuroendocrine secretion. J Neurochem 2016; 139:943-958. [DOI: 10.1111/jnc.13865] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Paulo S. Pinheiro
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Sébastien Houy
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jakob B. Sørensen
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
23
|
Kochubey O, Babai N, Schneggenburger R. A Synaptotagmin Isoform Switch during the Development of an Identified CNS Synapse. Neuron 2016; 90:984-99. [DOI: 10.1016/j.neuron.2016.04.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/26/2016] [Accepted: 04/20/2016] [Indexed: 01/08/2023]
|
24
|
Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity. Proc Natl Acad Sci U S A 2016; 113:5095-100. [PMID: 27091977 DOI: 10.1073/pnas.1522927113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presynaptic activation of the diacylglycerol (DAG)/protein kinase C (PKC) pathway is a central event in short-term synaptic plasticity. Two substrates, Munc13-1 and Munc18-1, are essential for DAG-induced potentiation of vesicle priming, but the role of most presynaptic PKC substrates is not understood. Here, we show that a mutation in synaptotagmin-1 (Syt1(T112A)), which prevents its PKC-dependent phosphorylation, abolishes DAG-induced potentiation of synaptic transmission in hippocampal neurons. This mutant also reduces potentiation of spontaneous release, but only if alternative Ca(2+) sensors, Doc2A/B proteins, are absent. However, unlike mutations in Munc13-1 or Munc18-1 that prevent DAG-induced potentiation, the synaptotagmin-1 mutation does not affect paired-pulse facilitation. Furthermore, experiments to probe vesicle priming (recovery after train stimulation and dual application of hypertonic solutions) also reveal no abnormalities. Expression of synaptotagmin-2, which lacks a seven amino acid sequence that contains the phosphorylation site in synaptotagmin-1, or a synaptotagmin-1 variant with these seven residues removed (Syt1(Δ109-116)), supports normal DAG-induced potentiation. These data suggest that this seven residue sequence in synaptotagmin-1 situated in the linker between the transmembrane and C2A domains is inhibitory in the unphosphorylated state and becomes permissive of potentiation upon phosphorylation. We conclude that synaptotagmin-1 phosphorylation is an essential step in PKC-dependent potentiation of synaptic transmission, acting downstream of the two other essential DAG/PKC substrates, Munc13-1 and Munc18-1.
Collapse
|
25
|
Valente P, Castroflorio E, Rossi P, Fadda M, Sterlini B, Cervigni RI, Prestigio C, Giovedì S, Onofri F, Mura E, Guarnieri FC, Marte A, Orlando M, Zara F, Fassio A, Valtorta F, Baldelli P, Corradi A, Benfenati F. PRRT2 Is a Key Component of the Ca(2+)-Dependent Neurotransmitter Release Machinery. Cell Rep 2016; 15:117-131. [PMID: 27052163 PMCID: PMC4826441 DOI: 10.1016/j.celrep.2016.03.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/14/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
Heterozygous mutations in proline-rich transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders, including epilepsy, kinesigenic dyskinesia, and migraine. Most of the mutations lead to impaired PRRT2 expression, suggesting that loss of PRRT2 function may contribute to pathogenesis. We show that PRRT2 is enriched in presynaptic terminals and that its silencing decreases the number of synapses and increases the number of docked synaptic vesicles at rest. PRRT2-silenced neurons exhibit a severe impairment of synchronous release, attributable to a sharp decrease in release probability and Ca(2+) sensitivity and associated with a marked increase of the asynchronous/synchronous release ratio. PRRT2 interacts with the synaptic proteins SNAP-25 and synaptotagmin 1/2. The results indicate that PRRT2 is intimately connected with the Ca(2+)-sensing machinery and that it plays an important role in the final steps of neurotransmitter release.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Enrico Castroflorio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Pia Rossi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Romina Ines Cervigni
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Elisa Mura
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Fabrizia C Guarnieri
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Marta Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Federico Zara
- Department of Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16148 Genova, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
26
|
Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Müller D, Bau CHD, Mota NR. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J Neural Transm (Vienna) 2016; 123:867-83. [DOI: 10.1007/s00702-016-1514-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
|
27
|
A Post-Docking Role of Synaptotagmin 1-C2B Domain Bottom Residues R398/399 in Mouse Chromaffin Cells. J Neurosci 2016; 35:14172-82. [PMID: 26490858 DOI: 10.1523/jneurosci.1911-15.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Synaptotagmin-1 (Syt1) is the principal Ca(2+) sensor for vesicle fusion and is also essential for vesicle docking in chromaffin cells. Docking depends on interactions of the Syt1-C2B domain with the t-SNARE SNAP25/Syntaxin1 complex and/or plasma membrane phospholipids. Here, we investigated the role of the positively charged "bottom" region of the C2B domain, proposed to help crosslink membranes, in vesicle docking and secretion in mouse chromaffin cells and in cell-free assays. We expressed a double mutation shown previously to interfere with lipid mixing between proteoliposomes and with synaptic transmission, Syt1-R398/399Q (RQ), in syt1 null mutant cells. Ultrastructural morphometry revealed that Syt1-RQ fully restored the docking defect observed previously in syt1 null mutant cells, similar to wild type Syt1 (Syt1-wt). Small unilamellar lipid vesicles (SUVs) that contained the v-SNARE Synaptobrevin2 and Syt1-R398/399Q also docked to t-SNARE-containing giant vesicles (GUVs), similar to Syt1-wt. However, unlike Syt1-wt, Syt1-RQ-induced docking was strictly PI(4,5)P2-dependent. Unlike docking, neither synchronized secretion in chromaffin cells nor Ca(2+)-triggered SUV-GUV fusion was restored by the Syt1 mutants. Finally, overexpressing the RQ-mutant in wild type cells produced no effect on either docking or secretion. We conclude that the positively charged bottom region in the C2B domain--and, by inference, Syt1-mediated membrane crosslinking--is required for triggering fusion, but not for docking. Secretory vesicles dock by multiple, PI(4,5)P2-dependent and PI(4,5)P2-independent mechanisms. The R398/399 mutations selectively disrupt the latter and hereby help to discriminate protein regions involved in different aspects of Syt1 function in docking and fusion. SIGNIFICANCE STATEMENT This study provides new insights in how the two opposite sides of the C2B domain of Synaptotagmin-1 participate in secretory vesicle fusion, and in more upstream steps, especially vesicle docking. We show that the "bottom" surface of the C2B domain is required for triggering fusion, but not for docking. Synaptotagmin-1 promotes docking by multiple, PI(4,5)P2-dependent and PI(4,5)P2-independent mechanisms. Mutations in the C2B bottom surface (R398/399) selectively disrupt the latter. These mutations help to discriminate protein regions involved in different aspects of Synaptotagmin-1 function in docking and fusion.
Collapse
|
28
|
Synaptotagmin-7 phosphorylation mediates GLP-1-dependent potentiation of insulin secretion from β-cells. Proc Natl Acad Sci U S A 2015. [PMID: 26216970 DOI: 10.1073/pnas.1513004112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glucose stimulates insulin secretion from β-cells by increasing intracellular Ca(2+). Ca(2+) then binds to synaptotagmin-7 as a major Ca(2+) sensor for exocytosis, triggering secretory granule fusion and insulin secretion. In type-2 diabetes, insulin secretion is impaired; this impairment is ameliorated by glucagon-like peptide-1 (GLP-1) or by GLP-1 receptor agonists, which improve glucose homeostasis. However, the mechanism by which GLP-1 receptor agonists boost insulin secretion remains unclear. Here, we report that GLP-1 stimulates protein kinase A (PKA)-dependent phosphorylation of synaptotagmin-7 at serine-103, which enhances glucose- and Ca(2+)-stimulated insulin secretion and accounts for the improvement of glucose homeostasis by GLP-1. A phospho-mimetic synaptotagmin-7 mutant enhances Ca(2+)-triggered exocytosis, whereas a phospho-inactive synaptotagmin-7 mutant disrupts GLP-1 potentiation of insulin secretion. Our findings thus suggest that synaptotagmin-7 is directly activated by GLP-1 signaling and may serve as a drug target for boosting insulin secretion. Moreover, our data reveal, to our knowledge, the first physiological modulation of Ca(2+)-triggered exocytosis by direct phosphorylation of a synaptotagmin.
Collapse
|
29
|
McAdam RL, Varga KT, Jiang Z, Young FB, Blandford V, McPherson PS, Gong LW, Sossin WS. The juxtamembrane region of synaptotagmin 1 interacts with dynamin 1 and regulates vesicle fission during compensatory endocytosis in endocrine cells. J Cell Sci 2015; 128:2229-35. [PMID: 25964652 DOI: 10.1242/jcs.161505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/30/2015] [Indexed: 12/25/2022] Open
Abstract
Synaptotagmin 1 (Syt1) is a synaptic vesicle protein that is important for the kinetics of both exocytosis and endocytosis, and is thus a candidate molecule to link these two processes. Although the tandem Ca(2+)-binding C2 domains of Syt1 have important roles in exocytosis and endocytosis, the function of the conserved juxtamembrane (jxm) linker region has yet to be determined. We now demonstrate that the jxm region of Syt1 interacts directly with the pleckstrin homology (PH) domain of the endocytic protein dynamin 1. By using cell-attached capacitance recordings with millisecond time resolution to monitor clathrin-mediated endocytosis of single vesicles in neuroendocrine chromaffin cells, we find that loss of this interaction prolongs the lifetime of the fission pore leading to defects in the dynamics of vesicle fission. These results indicate a previously undescribed interaction between two major regulatory proteins in the secretory vesicle cycle and that this interaction regulates endocytosis.
Collapse
Affiliation(s)
- Robyn L McAdam
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Kelly T Varga
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Zhongjiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Fiona B Young
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Vanessa Blandford
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
30
|
Abstract
Protein Interacting with C Kinase 1 (PICK1) is a Bin/Amphiphysin/Rvs (BAR) domain protein involved in AMPA receptor trafficking. Here, we identify a selective role for PICK1 in the biogenesis of large, dense core vesicles (LDCVs) in mouse chromaffin cells. PICK1 colocalized with syntaxin-6, a marker for immature granules. In chromaffin cells isolated from a PICK1 knockout (KO) mouse the amount of exocytosis was reduced, while release kinetics and Ca(2+) sensitivity were unaffected. Vesicle-fusion events had a reduced frequency and released lower amounts of transmitter per vesicle (i.e., reduced quantal size). This was paralleled by a reduction in the mean single-vesicle capacitance, estimated by averaging time-locked capacitance traces. EM confirmed that LDCVs were fewer and of markedly reduced size in the PICK1 KO, demonstrating that all phenotypes can be explained by reductions in vesicle number and size, whereas the fusion competence of generated vesicles was unaffected by the absence of PICK1. Viral rescue experiments demonstrated that long-term re-expression of PICK1 is necessary to restore normal vesicular content and secretion, while short-term overexpression is ineffective, consistent with an upstream role for PICK1. Disrupting lipid binding of the BAR domain (2K-E mutation) or of the PDZ domain (CC-GG mutation) was sufficient to reproduce the secretion phenotype of the null mutant. The same mutations are known to eliminate PICK1 function in receptor trafficking, indicating that the multiple functions of PICK1 involve a conserved mechanism. Summarized, our findings demonstrate that PICK1 functions in vesicle biogenesis and is necessary to maintain normal vesicle numbers and size.
Collapse
|
31
|
Walter AM, Kurps J, de Wit H, Schöning S, Toft-Bertelsen TL, Lauks J, Ziomkiewicz I, Weiss AN, Schulz A, Fischer von Mollard G, Verhage M, Sørensen JB. The SNARE protein vti1a functions in dense-core vesicle biogenesis. EMBO J 2014; 33:1681-97. [PMID: 24902738 DOI: 10.15252/embj.201387549] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The SNARE protein vti1a is proposed to drive fusion of intracellular organelles, but recent data also implicated vti1a in exocytosis. Here we show that vti1a is absent from mature secretory vesicles in adrenal chromaffin cells, but localizes to a compartment near the trans-Golgi network, partially overlapping with syntaxin-6. Exocytosis is impaired in vti1a null cells, partly due to fewer Ca(2+)-channels at the plasma membrane, partly due to fewer vesicles of reduced size and synaptobrevin-2 content. In contrast, release kinetics and Ca(2+)-sensitivity remain unchanged, indicating that the final fusion reaction leading to transmitter release is unperturbed. Additional deletion of the closest related SNARE, vti1b, does not exacerbate the vti1a phenotype, and vti1b null cells show no secretion defects, indicating that vti1b does not participate in exocytosis. Long-term re-expression of vti1a (days) was necessary for restoration of secretory capacity, whereas strong short-term expression (hours) was ineffective, consistent with vti1a involvement in an upstream step related to vesicle generation, rather than in fusion. We conclude that vti1a functions in vesicle generation and Ca(2+)-channel trafficking, but is dispensable for transmitter release.
Collapse
Affiliation(s)
- Alexander M Walter
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Julia Kurps
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Heidi de Wit
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Susanne Schöning
- Biochemie III, Fakultät für Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Trine L Toft-Bertelsen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juliane Lauks
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Iwona Ziomkiewicz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Annita N Weiss
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Matthijs Verhage
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Jakob B Sørensen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Dhara M, Yarzagaray A, Schwarz Y, Dutta S, Grabner C, Moghadam PK, Bost A, Schirra C, Rettig J, Reim K, Brose N, Mohrmann R, Bruns D. Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics. ACTA ACUST UNITED AC 2014; 204:1123-40. [PMID: 24687280 PMCID: PMC3971750 DOI: 10.1083/jcb.201311085] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ComplexinII and SynaptotagminI coordinately transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca2+-triggered release apparatus. ComplexinII (CpxII) and SynaptotagminI (SytI) have been implicated in regulating the function of SNARE proteins in exocytosis, but their precise mode of action and potential interplay have remained unknown. In this paper, we show that CpxII increases Ca2+-triggered vesicle exocytosis and accelerates its secretory rates, providing two independent, but synergistic, functions to enhance synchronous secretion. Specifically, we demonstrate that the C-terminal domain of CpxII increases the pool of primed vesicles by hindering premature exocytosis at submicromolar Ca2+ concentrations, whereas the N-terminal domain shortens the secretory delay and accelerates the kinetics of Ca2+-triggered exocytosis by increasing the Ca2+ affinity of synchronous secretion. With its C terminus, CpxII attenuates fluctuations of the early fusion pore and slows its expansion but is functionally antagonized by SytI, enabling rapid transmitter discharge from single vesicles. Thus, our results illustrate how key features of CpxII, SytI, and their interplay transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca2+-triggered release apparatus.
Collapse
Affiliation(s)
- Madhurima Dhara
- Institute for Physiology, University of Saarland, 66424 Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Deák F. Neuronal vesicular trafficking and release in age-related cognitive impairment. J Gerontol A Biol Sci Med Sci 2014; 69:1325-30. [PMID: 24809352 DOI: 10.1093/gerona/glu061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aging is a common major risk factor for many neurological disorders resulting in cognitive impairment and neurodegeneration including Parkinson's and Alzheimer's diseases. Novel results from the fields of molecular neuroscience and aging research provide evidence for a link between decline of various cognitive, executive functions and changes in neuronal mechanisms of intracellular trafficking and regulated vesicle release processes in the aging nervous system. In this Perspective, we review these recent findings and formulate a hypothesis on how cargo delivery to the synapses and the release of neurotrophic factors may be involved in maintaining learning and memory capabilities during healthy aging and present examples on how defects of those disrupt normal cognition. We provide an overview of emerging new concepts and approaches that will significantly advance our understanding of the aging brain and pathophysiology of dementia. This knowledge will be instrumental in defining drug targets and designing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ferenc Deák
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center.
| |
Collapse
|
34
|
Genc O, Kochubey O, Toonen RF, Verhage M, Schneggenburger R. Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release. eLife 2014; 3:e01715. [PMID: 24520164 PMCID: PMC3919271 DOI: 10.7554/elife.01715] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Transmitter release at synapses is regulated by preceding neuronal activity, which can give rise to short-term enhancement of release like post-tetanic potentiation (PTP). Diacylglycerol (DAG) and Protein-kinase C (PKC) signaling in the nerve terminal have been widely implicated in the short-term modulation of transmitter release, but the target protein of PKC phosphorylation during short-term enhancement has remained unknown. Here, we use a gene-replacement strategy at the calyx of Held, a large CNS model synapse that expresses robust PTP, to study the molecular mechanisms of PTP. We find that two PKC phosphorylation sites of Munc18-1 are critically important for PTP, which identifies the presynaptic target protein for the action of PKC during PTP. Pharmacological experiments show that a phosphatase normally limits the duration of PTP, and that PTP is initiated by the action of a ‘conventional’ PKC isoform. Thus, a dynamic PKC phosphorylation/de-phosphorylation cycle of Munc18-1 drives short-term enhancement of transmitter release during PTP. DOI:http://dx.doi.org/10.7554/eLife.01715.001 Brain function depends on the rapid transfer of information from one brain cell to the next at junctions known as synapses. Small packages called vesicles play an important role in this process. The arrival of an electrical action potential at the nerve terminal of the first cell causes some vesicles in the cell to fuse with the cell membrane, and this leads to the neurotransmitters inside the vesicles being released into the synapse. The neurotransmitters then bind to receptors on the second cell, which leads to an electrical signal in the second cell. A protein called Munc18-1 has a central role in the fusion of the vesicle at the cell membrane. The strength of a synapse—that is, how easily the first brain cell can impact the electrical behaviour of the second—can change, and this ‘synaptic plasticity’ is thought to underlie learning and memory. Long-term changes in synaptic strength require additional receptors to be inserted into the membrane of the second cell. However, synapses can also be temporarily strengthened: the arrival of a burst of action potentials—a tetanus—causes some synapses to increase the amount of neurotransmitter they release in response to any subsequent, single, action potential. This temporary increase in synaptic strength, which is known as post-tetanic potentiation, requires an enzyme called protein kinase C; the role of this enzyme is to phosphorylate specific target proteins (i.e., to add phosphate groups to them). Now, Genç et al. have genetically modified a mouse synapse in vivo and shown that protein kinase C brings about post-tetanic potentiation by phosphorylating Munc18-1. Furthermore, pharmacological experiments show that proteins called phosphatases, which de-phosphorylate proteins, normally terminate the post-tetanic potentiation after about one minute. Taken together, the study identifies a target protein which is phosphorylated by protein kinase C during post-tetanic potentiation. The study also suggests that in addition to its fundamental role in vesicle fusion, the phosphorylation state of Munc18-1 can change the probability of vesicle fusion in a more subtle way, thereby contributing to synaptic plasticity. DOI:http://dx.doi.org/10.7554/eLife.01715.002
Collapse
Affiliation(s)
- Ozgür Genc
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release. J Neurosci 2013; 33:16459-70. [PMID: 24133251 DOI: 10.1523/jneurosci.2656-13.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptotagmin-1 and -7 constitute the main calcium sensors mediating SNARE-dependent exocytosis in mouse chromaffin cells, but the role of a closely related calcium-binding protein, Doc2b, remains enigmatic. We investigated its role in chromaffin cells using Doc2b knock-out mice and high temporal resolution measurements of exocytosis. We found that the calcium dependence of vesicle priming and release triggering remained unchanged, ruling out an obligatory role for Doc2b in those processes. However, in the absence of Doc2b, release was shifted from the readily releasable pool to the subsequent sustained component. Conversely, upon overexpression of Doc2b, the sustained component was largely inhibited whereas the readily releasable pool was augmented. Electron microscopy revealed an increase in the total number of vesicles upon Doc2b overexpression, ruling out vesicle depletion as the cause for the reduced sustained component. Further experiments showed that, in the absence of Doc2b, the refilling of the readily releasable vesicle pools is faster, but incomplete. Faster refilling leads to an increase in the sustained component as newly primed vesicles fuse while the [Ca(2+)]i following stimulation is still high. We conclude that Doc2b acts to inhibit vesicle priming during prolonged calcium elevations, thus protecting unprimed vesicles from fusing prematurely, and redirecting them to refill the readily releasable pool after relaxation of the calcium signal. In sum, Doc2b favors fast, synchronized release, and limits out-of-phase secretion.
Collapse
|
36
|
Walter AM, Pinheiro PS, Verhage M, Sørensen JB. A sequential vesicle pool model with a single release sensor and a Ca(2+)-dependent priming catalyst effectively explains Ca(2+)-dependent properties of neurosecretion. PLoS Comput Biol 2013; 9:e1003362. [PMID: 24339761 PMCID: PMC3854459 DOI: 10.1371/journal.pcbi.1003362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/09/2013] [Indexed: 12/23/2022] Open
Abstract
Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca2+ dependence, but also upstream steps depend on Ca2+. After deletion of the Ca2+ sensor for fast release – synaptotagmin-1 – slower Ca2+-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca2+ sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca2+-dependent action: a Ca2+-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca2+-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca2+-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca2+-dependent fusion from the NRP. We conclude that the elusive ‘alternative Ca2+ sensor’ for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca2+-dependent properties of secretion without assuming parallel pools or sensors. The release of neurotransmitter involves the rapid Ca2+-dependent fusion of vesicles with the plasma membrane. Kinetic heterogeneity is ubiquitous in secretory systems, with fast phases of release on the millisecond time scale being followed by slower phases. In the absence of synaptotagmin-1 – the Ca2+sensor for fast fusion – the fast phase of release is absent, while slower phases remain. To account for this, mathematical models incorporated several releasable vesicle pools with separate Ca2+ sensors. However, there is no clear evidence for parallel release pathways. We suggest a sequential model for Ca2+-dependent neurotransmitter release in adrenal chromaffin cells. We assume only a single releasable vesicle pool, and a Ca2+-dependent catalytic refilling process from a limited upstream vesicle pool. This model can produce kinetic heterogeneity and does better than the previous Parallel Pool Model in predicting the Ca2+-dependence of releasable pool refilling and the consequences of SNARE-protein mutation. It further accounts for the release in the absence of synaptotagmin-1 by assuming that the releasable vesicle pool is depleted, leading to slow and Ca2+-dependent fusion from the upstream pool, but through the same release pathway. Thus, we suggest that the elusive ‘alternative Ca2+ sensor’ is an upstream priming protein, rather than a parallel Ca2+ sensor.
Collapse
Affiliation(s)
- Alexander M. Walter
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam and VU University Medical Center, Amsterdam, The Netherlands
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (AMW) (AW); (JBS) (JS)
| | - Paulo S. Pinheiro
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Matthijs Verhage
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam and VU University Medical Center, Amsterdam, The Netherlands
| | - Jakob B. Sørensen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (AMW) (AW); (JBS) (JS)
| |
Collapse
|
37
|
Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering. J Neurosci 2013; 33:14417-30. [PMID: 24005294 DOI: 10.1523/jneurosci.1236-13.2013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
SNARE complex assembly constitutes a key step in exocytosis that is rendered Ca(2+)-dependent by interactions with synaptotagmin-1. Two putative sites for synaptotagmin binding have recently been identified in SNAP-25 using biochemical methods: one located around the center and another at the C-terminal end of the SNARE bundle. However, it is still unclear whether and how synaptotagmin-1 × SNARE interactions at these sites are involved in regulating fast neurotransmitter release. Here, we have used electrophysiological techniques with high time-resolution to directly investigate the mechanistic ramifications of proposed SNAP-25 × synaptotagmin-1 interaction in mouse chromaffin cells. We demonstrate that the postulated central binding domain surrounding layer zero covers both SNARE motifs of SNAP-25 and is essential for vesicle docking, priming, and fast fusion-triggering. Mutation of this site caused no further functional alterations in synaptotagmin-1-deficient cells, indicating that the central acidic patch indeed constitutes a mechanistically relevant synaptotagmin-1 interaction site. Moreover, our data show that the C-terminal binding interface only plays a subsidiary role in triggering but is required for the full size of the readily releasable pool. Intriguingly, we also found that mutation of synaptotagmin-1 interaction sites led to more pronounced phenotypes in the context of the adult neuronal isoform SNAP-25B than in the embryonic isoform SNAP-25A. Further experiments demonstrated that stronger synaptotagmin-1 × SNAP-25B interactions allow for the larger primed vesicle pool supported by SNAP-25 isoform B. Thus, synaptotagmin-1 × SNARE interactions are not only required for multiple mechanistic steps en route to fusion but also underlie the developmental control of the releasable vesicle pool.
Collapse
|
38
|
Snapin accelerates exocytosis at low intracellular calcium concentration in mouse chromaffin cells. Cell Calcium 2013; 54:105-10. [DOI: 10.1016/j.ceca.2013.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 11/20/2022]
|
39
|
Lin MY, Rohan JG, Cai H, Reim K, Ko CP, Chow RH. Complexin facilitates exocytosis and synchronizes vesicle release in two secretory model systems. J Physiol 2013; 591:2463-73. [PMID: 23401610 DOI: 10.1113/jphysiol.2012.244517] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complexins (Cplxs) are small, SNARE-associated proteins believed to regulate fast, calcium-triggered exocytosis. However, studies have pointed to either an inhibitory and/or facilitatory role in exocytosis, and the role of Cplxs in synchronizing exocytosis is relatively unexplored. Here, we compare the function of two types of complexin, Cplx 1 and 2, in two model systems of calcium-dependent exocytosis. In mouse neuromuscular junctions (NMJs), we find that lack of Cplx 1 significantly reduces and desynchronizes calcium-triggered synaptic transmission; furthermore, high-frequency stimulation elicits synaptic facilitation, instead of normal synaptic depression, and the degree of facilitation is highly sensitive to the amount of cytoplasmic calcium buffering. In Cplx 2-null adrenal chromaffin cells, we also find decreased and desynchronized evoked release, and identify a significant reduction in the vesicle pool close to the calcium channels (immediately releasable pool, IRP). Viral transduction with either Cplx 1 or 2 rescues both the size of the evoked response and the synchronicity of release, and it restores the IRP size. Our findings in two model systems are mutually compatible and indicate a role of Cplx 1 and 2 in facilitating vesicle priming, and also lead to the new hypothesis that Cplxs may synchronize vesicle release by promoting coupling between secretory vesicles and calcium channels.
Collapse
Affiliation(s)
- Ming-Yi Lin
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA
| | | | | | | | | | | |
Collapse
|
40
|
In vitro antioxidant effects of Aloe barbadensis Miller extracts and the potential role of these extracts as antidiabetic and antilipidemic agents on streptozotocin-induced type 2 diabetic model rats. Molecules 2012; 17:12851-67. [PMID: 23117427 PMCID: PMC6268777 DOI: 10.3390/molecules171112851] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/02/2012] [Accepted: 09/21/2012] [Indexed: 11/16/2022] Open
Abstract
In this study, the total phenolic and flavonoid contents, the 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging ability and the ferric reducing power (FRAP) of Aloe vera were measured to determine the antioxidant activity of this species. The in vivo antidiabetic effects of the plant were also investigated using streptozotocin-induced type 2 diabetic model rats that were divided into five groups based on the treatment received: (1) water (WC); (2) glibenclamide; (3) concentrated gel extract (Gel-C); (4) ethanol (80%) gel extract (Gel-Et); and (5) ethanol (80%) skin extract of Aloe vera (Skin-Et). Skin-Et, which contained the highest level of total phenolics (62.37 ± 1.34 mggallic acid/kg) and flavonoids (20.83 ± 0.77 mg/kg), exhibited the highest scavenging activity (85.01 ± 0.52%) and the greatest reducing power (185.98 ± 0.41 µM), indicating that the skin contained the highest level of antioxidants. The oral consumption of Gel-Et for 4 weeks a caused significant reduction in the fasting serum glucose levels of the rats. The rats in the Gel-C-, Gel-Et- and Skin-Et-treated groups experienced a reduction in their total cholesterol levels by 11%, 17% and 25%, respectively and a reduction in their LDL cholesterol levels by 45%, 3% and 69%, respectively. The in vivo experimental antioxidant parameter MDA is strongly correlated with the in vitro antioxidant parameters of flavonoids and polyphenols, namely the DPPH and FRAP values (r = 0.94, 0.92, 0.93, 0.90), thus confirming the antioxidant potential of the Aloe vera extracts.
Collapse
|
41
|
Abstract
Intracellular membrane trafficking along endocytic and secretory transport pathways plays a critical role in diverse cellular functions including both developmental and pathological processes. Briefly, proteins and lipids destined for transport to distinct locations are collectively assembled into vesicles and delivered to their target site by vesicular fusion. SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins are required for these events, during which v-SNAREs (vesicle SNAREs) interact with t-SNAREs (target SNAREs) to allow transfer of cargo from donor vesicle to target membrane. Recently, the t-SNARE family member, syntaxin-6, has been shown to play an important role in the transport of proteins that are key to diverse cellular dynamic processes. In this paper, we briefly discuss the specific role of SNAREs in various mammalian cell types and comprehensively review the various roles of the Golgi- and endosome-localized t-SNARE, syntaxin-6, in membrane trafficking during physiological as well as pathological conditions.
Collapse
|
42
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
43
|
Becherer U, Medart MR, Schirra C, Krause E, Stevens D, Rettig J. Regulated exocytosis in chromaffin cells and cytotoxic T lymphocytes: How similar are they? Cell Calcium 2012; 52:303-12. [DOI: 10.1016/j.ceca.2012.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|
44
|
Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal. Proc Natl Acad Sci U S A 2012; 109:14657-62. [PMID: 22908295 DOI: 10.1073/pnas.1211971109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although the CA3-CA1 synapse is critically important for learning and memory, experimental limitations have to date prevented direct determination of the structural features that determine the response plasticity. Specifically, the local calcium influx responsible for vesicular release and short-term synaptic facilitation strongly depends on the distance between the voltage-dependent calcium channels (VDCCs) and the presynaptic active zone. Estimates for this distance range over two orders of magnitude. Here, we use a biophysically detailed computational model of the presynaptic bouton and demonstrate that available experimental data provide sufficient constraints to uniquely reconstruct the presynaptic architecture. We predict that for a typical CA3-CA1 synapse, there are ~70 VDCCs located 300 nm from the active zone. This result is surprising, because structural studies on other synapses in the hippocampus report much tighter spatial coupling. We demonstrate that the unusual structure of this synapse reflects its functional role in short-term plasticity (STP).
Collapse
|
45
|
Chan SA, Hill J, Smith C. Reduced calcium current density in female versus male mouse adrenal chromaffin cells in situ. Cell Calcium 2012; 52:313-20. [PMID: 22551621 DOI: 10.1016/j.ceca.2012.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/01/2012] [Accepted: 04/09/2012] [Indexed: 01/08/2023]
Abstract
Neuroendocrine adrenal medullary chromaffin cells are a main output of the sympathetic nervous system. Acute stress activates the sympatho-adrenal stress reflex, excites adrenal chromaffin cells, and elicits catecholamine secretion into the circulation. Previous studies have demonstrated that stress-evoked serum catecholamine levels are greater in males. We investigated potential mechanistic bases for this gender dimorphism at the level of the adrenal medulla. We utilized in situ single-cell perforated patch voltage clamp to measure basic electrophysiological parameters that affect cell excitability. We found that chromaffin cells from male and female mice exhibit statistically identical depolarization-evoked calcium currents. However, the resting capacitance, an index of cell surface area, was significantly higher in cells from female mice. Thus the current density in female cells was significantly lower. We found that inhibition of protein kinase C, an enzyme shown to regulate both exocytosis and endocytosis, eliminates the cell surface area gender dimorphism. Finally, we performed kinetic simulations of the secretion process and report a predicted elevated secretory capacity in male cells. Thus, regulation of cell size may act to decrease cell excitability in female cells and may in-part represent the mechanistic basis for increased stress-evoked catecholamine secretion described in males.
Collapse
Affiliation(s)
- Shyue-An Chan
- Department of Physiology and Biophysics, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
46
|
Sommeijer JP, Levelt CN. Synaptotagmin-2 is a reliable marker for parvalbumin positive inhibitory boutons in the mouse visual cortex. PLoS One 2012; 7:e35323. [PMID: 22539967 PMCID: PMC3335159 DOI: 10.1371/journal.pone.0035323] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/15/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inhibitory innervation by parvalbumin (PV) expressing interneurons has been implicated in the onset of the sensitive period of visual plasticity. Immunohistochemical analysis of the development and plasticity of these inhibitory inputs is difficult because PV expression is low in young animals and strongly influenced by neuronal activity. Moreover, the synaptic boutons that PV neurons form onto each other cannot be distinguished from the innervated cell bodies by immunostaining for this protein because it is present throughout the cells. These problems call for the availability of a synaptic, activity-independent marker for PV+ inhibitory boutons that is expressed before sensitive period onset. We investigated whether synaptotagmin-2 (Syt2) fulfills these properties in the visual cortex. Syt2 is a synaptic vesicle protein involved in fast Ca(2+) dependent neurotransmitter release. Its mRNA expression follows a pattern similar to that of PV throughout the brain and is present in 30-40% of hippocampal PV expressing basket cells. Up to now, no quantitative analyses of Syt2 expression in the visual cortex have been carried out. METHODOLOGY/PRINCIPAL FINDINGS We used immunohistochemistry to analyze colocalization of Syt2 with multiple interneuron markers including vesicular GABA transporter VGAT, calbindin, calretinin, somatostatin and PV in the primary visual cortex of mice during development and after dark-rearing. CONCLUSIONS/SIGNIFICANCE We show that in the adult visual cortex Syt2 is only found in inhibitory, VGAT positive boutons. Practically all Syt2 positive boutons also contain PV and vice versa. During development, Syt2 expression can be detected in synaptic boutons prior to PV and in contrast to PV expression, Syt2 is not down-regulated by dark-rearing. These properties of Syt2 make it an excellent marker for analyzing the development and plasticity of perisomatic inhibitory innervations onto both excitatory and inhibitory neurons in the visual cortex.
Collapse
Affiliation(s)
- Jean-Pierre Sommeijer
- Department of Molecular Visual Neuroscience, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Christiaan N. Levelt
- Department of Molecular Visual Neuroscience, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Gustavsson N, Wu B, Han W. Calcium sensing in exocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:731-57. [PMID: 22453967 DOI: 10.1007/978-94-007-2888-2_32] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurotransmitters, neuropeptides and hormones are released through regulated exocytosis of synaptic vesicles and large dense core vesicles. This complex and highly regulated process is orchestrated by SNAREs and their associated proteins. The triggering signal for regulated exocytosis is usually an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our current understanding of calcium sensing in neurotransmitter release and hormone secretion.
Collapse
Affiliation(s)
- Natalia Gustavsson
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore.
| | | | | |
Collapse
|
48
|
Vrljic M, Strop P, Hill RC, Hansen KC, Chu S, Brunger AT. Post-translational modifications and lipid binding profile of insect cell-expressed full-length mammalian synaptotagmin 1. Biochemistry 2011; 50:9998-10012. [PMID: 21928778 PMCID: PMC3217305 DOI: 10.1021/bi200998y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synaptotagmin 1 (Syt1) is a Ca(2+) sensor for SNARE-mediated, Ca(2+)-triggered synaptic vesicle fusion in neurons. It is composed of luminal, transmembrane, linker, and two Ca(2+)-binding (C2) domains. Here we describe expression and purification of full-length mammalian Syt1 in insect cells along with an extensive biochemical characterization of the purified protein. The expressed and purified protein is properly folded and has increased α-helical content compared to the C2AB fragment alone. Post-translational modifications of Syt1 were analyzed by mass spectrometry, revealing the same modifications of Syt1 that were previously described for Syt1 purified from brain extract or mammalian cell lines, along with a novel modification of Syt1, tyrosine nitration. A lipid binding screen with both full-length Syt1 and the C2AB fragments of Syt1 and Syt3 isoforms revealed new Syt1-lipid interactions. These results suggest a conserved lipid binding mechanism in which Ca(2+)-independent interactions are mediated via a lysine rich region of the C2B domain while Ca(2+)-dependent interactions are mediated via the Ca(2+)-binding loops.
Collapse
Affiliation(s)
- Marija Vrljic
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305-5432, USA
| | | | | | | | | | | |
Collapse
|
49
|
Matveev V, Bertram R, Sherman A. Calcium cooperativity of exocytosis as a measure of Ca²+ channel domain overlap. Brain Res 2011; 1398:126-38. [PMID: 21621748 DOI: 10.1016/j.brainres.2011.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 12/19/2022]
Abstract
The number of Ca(2+) channels contributing to the exocytosis of a single neurotransmitter vesicle in a presynaptic terminal has been a question of significant interest and debate, and is important for a full understanding of localized Ca(2+) signaling in general, and synaptic physiology in particular. This is usually estimated by measuring the sensitivity of the neurotransmitter release rate to changes in the synaptic Ca(2+) current, which is varied using appropriate voltage-clamp protocols or via pharmacological Ca(2+) channel block under the condition of constant single-channel Ca(2+) current. The slope of the resulting log-log plot of transmitter release rate versus presynaptic Ca(2+) current is termed Ca(2+)current cooperativity of exocytosis, and provides indirect information about the underlying presynaptic morphology. In this review, we discuss the relationship between the Ca(2+) current cooperativity and the average number of Ca(2+) channels participating in the exocytosis of a single vesicle, termed the Ca(2+)channel cooperativity. We relate these quantities to the morphology of the presynaptic active zone. We also review experimental studies of Ca(2+) current cooperativity and its modulation during development in different classes of synapses.
Collapse
Affiliation(s)
- Victor Matveev
- Department of Mathematical Sciences, NJIT, University Heights, Newark, NJ 07102-1982, USA
| | | | | |
Collapse
|
50
|
Differential expression of synaptic proteins after chronic restraint stress in rat prefrontal cortex and hippocampus. Brain Res 2011; 1385:26-37. [PMID: 21354112 DOI: 10.1016/j.brainres.2011.02.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/31/2011] [Accepted: 02/14/2011] [Indexed: 01/13/2023]
Abstract
Prolonged stress has been associated with altered synaptic plasticity but little is known about the molecular components and mechanisms involved in the stress response. In this study, we examined the effect of chronic restraint stress (CRS) on the expression of genes associated with synaptic vesicle exocytosis in rat prefrontal cortex and hippocampus. Rats were stressed daily using a 21day restraint stress paradigm, with durations of half an hour or 6h. RNA and protein were extracted from the same tissue sample and used for real-time quantitative polymerase chain reaction (real-time qPCR) and immunoblotting, respectively. Focusing on the SNARE complex, we investigated the expression of the SNARE core components syntaxin 1A, SNAP-25, and VAMP2 at both transcriptional and protein levels. In addition, the expression of 10 SNARE regulatory proteins was investigated at the transcriptional level. Overall, the prefrontal cortex was more sensitive to CRS compared to the hippocampus. In prefrontal cortex, CRS induced increased mRNA levels of VAMP2, VAMP1, syntaxin 1A, snapin, synaptotagmins I and III, and synapsins I and II, whereas SNAP-25 was down-regulated after CRS. Immunoblotting demonstrated equivalent changes in protein levels of VAMP2, syntaxin 1A, and SNAP-25. In hippocampus, we found increased mRNA levels of VAMP2 and SNAP-29 and a decrease in VAMP1 levels. Immunoblotting revealed decreased VAMP2 protein levels despite increased mRNA levels. Changes in the expression of synaptic proteins may accompany or contribute to the morphological, functional, and behavioral changes observed in experimental models of stress and may have relevance to the pathophysiology of stress-related disorders.
Collapse
|